1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 330 int flags); 331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 332 size_t size, int flags); 333 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 334 size_t size, int flags); 335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 336 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 337 int size_goal); 338 void tcp_release_cb(struct sock *sk); 339 void tcp_wfree(struct sk_buff *skb); 340 void tcp_write_timer_handler(struct sock *sk); 341 void tcp_delack_timer_handler(struct sock *sk); 342 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 343 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 344 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 345 void tcp_rcv_space_adjust(struct sock *sk); 346 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 347 void tcp_twsk_destructor(struct sock *sk); 348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 349 struct pipe_inode_info *pipe, size_t len, 350 unsigned int flags); 351 352 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 353 static inline void tcp_dec_quickack_mode(struct sock *sk, 354 const unsigned int pkts) 355 { 356 struct inet_connection_sock *icsk = inet_csk(sk); 357 358 if (icsk->icsk_ack.quick) { 359 if (pkts >= icsk->icsk_ack.quick) { 360 icsk->icsk_ack.quick = 0; 361 /* Leaving quickack mode we deflate ATO. */ 362 icsk->icsk_ack.ato = TCP_ATO_MIN; 363 } else 364 icsk->icsk_ack.quick -= pkts; 365 } 366 } 367 368 #define TCP_ECN_OK 1 369 #define TCP_ECN_QUEUE_CWR 2 370 #define TCP_ECN_DEMAND_CWR 4 371 #define TCP_ECN_SEEN 8 372 373 enum tcp_tw_status { 374 TCP_TW_SUCCESS = 0, 375 TCP_TW_RST = 1, 376 TCP_TW_ACK = 2, 377 TCP_TW_SYN = 3 378 }; 379 380 381 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 382 struct sk_buff *skb, 383 const struct tcphdr *th); 384 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 385 struct request_sock *req, bool fastopen, 386 bool *lost_race); 387 int tcp_child_process(struct sock *parent, struct sock *child, 388 struct sk_buff *skb); 389 void tcp_enter_loss(struct sock *sk); 390 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 391 void tcp_clear_retrans(struct tcp_sock *tp); 392 void tcp_update_metrics(struct sock *sk); 393 void tcp_init_metrics(struct sock *sk); 394 void tcp_metrics_init(void); 395 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 396 void __tcp_close(struct sock *sk, long timeout); 397 void tcp_close(struct sock *sk, long timeout); 398 void tcp_init_sock(struct sock *sk); 399 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 400 __poll_t tcp_poll(struct file *file, struct socket *sock, 401 struct poll_table_struct *wait); 402 int tcp_getsockopt(struct sock *sk, int level, int optname, 403 char __user *optval, int __user *optlen); 404 bool tcp_bpf_bypass_getsockopt(int level, int optname); 405 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 406 unsigned int optlen); 407 void tcp_set_keepalive(struct sock *sk, int val); 408 void tcp_syn_ack_timeout(const struct request_sock *req); 409 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 410 int flags, int *addr_len); 411 int tcp_set_rcvlowat(struct sock *sk, int val); 412 int tcp_set_window_clamp(struct sock *sk, int val); 413 void tcp_update_recv_tstamps(struct sk_buff *skb, 414 struct scm_timestamping_internal *tss); 415 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 416 struct scm_timestamping_internal *tss); 417 void tcp_data_ready(struct sock *sk); 418 #ifdef CONFIG_MMU 419 int tcp_mmap(struct file *file, struct socket *sock, 420 struct vm_area_struct *vma); 421 #endif 422 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 423 struct tcp_options_received *opt_rx, 424 int estab, struct tcp_fastopen_cookie *foc); 425 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 426 427 /* 428 * BPF SKB-less helpers 429 */ 430 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 431 struct tcphdr *th, u32 *cookie); 432 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 433 struct tcphdr *th, u32 *cookie); 434 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 435 const struct tcp_request_sock_ops *af_ops, 436 struct sock *sk, struct tcphdr *th); 437 /* 438 * TCP v4 functions exported for the inet6 API 439 */ 440 441 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 442 void tcp_v4_mtu_reduced(struct sock *sk); 443 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 444 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 445 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 446 struct sock *tcp_create_openreq_child(const struct sock *sk, 447 struct request_sock *req, 448 struct sk_buff *skb); 449 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 450 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 451 struct request_sock *req, 452 struct dst_entry *dst, 453 struct request_sock *req_unhash, 454 bool *own_req); 455 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 456 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 457 int tcp_connect(struct sock *sk); 458 enum tcp_synack_type { 459 TCP_SYNACK_NORMAL, 460 TCP_SYNACK_FASTOPEN, 461 TCP_SYNACK_COOKIE, 462 }; 463 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 464 struct request_sock *req, 465 struct tcp_fastopen_cookie *foc, 466 enum tcp_synack_type synack_type, 467 struct sk_buff *syn_skb); 468 int tcp_disconnect(struct sock *sk, int flags); 469 470 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 471 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 472 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 473 474 /* From syncookies.c */ 475 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 476 struct request_sock *req, 477 struct dst_entry *dst, u32 tsoff); 478 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 479 u32 cookie); 480 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 481 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 482 struct sock *sk, struct sk_buff *skb); 483 #ifdef CONFIG_SYN_COOKIES 484 485 /* Syncookies use a monotonic timer which increments every 60 seconds. 486 * This counter is used both as a hash input and partially encoded into 487 * the cookie value. A cookie is only validated further if the delta 488 * between the current counter value and the encoded one is less than this, 489 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 490 * the counter advances immediately after a cookie is generated). 491 */ 492 #define MAX_SYNCOOKIE_AGE 2 493 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 494 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 495 496 /* syncookies: remember time of last synqueue overflow 497 * But do not dirty this field too often (once per second is enough) 498 * It is racy as we do not hold a lock, but race is very minor. 499 */ 500 static inline void tcp_synq_overflow(const struct sock *sk) 501 { 502 unsigned int last_overflow; 503 unsigned int now = jiffies; 504 505 if (sk->sk_reuseport) { 506 struct sock_reuseport *reuse; 507 508 reuse = rcu_dereference(sk->sk_reuseport_cb); 509 if (likely(reuse)) { 510 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 511 if (!time_between32(now, last_overflow, 512 last_overflow + HZ)) 513 WRITE_ONCE(reuse->synq_overflow_ts, now); 514 return; 515 } 516 } 517 518 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 519 if (!time_between32(now, last_overflow, last_overflow + HZ)) 520 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 521 } 522 523 /* syncookies: no recent synqueue overflow on this listening socket? */ 524 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 525 { 526 unsigned int last_overflow; 527 unsigned int now = jiffies; 528 529 if (sk->sk_reuseport) { 530 struct sock_reuseport *reuse; 531 532 reuse = rcu_dereference(sk->sk_reuseport_cb); 533 if (likely(reuse)) { 534 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 535 return !time_between32(now, last_overflow - HZ, 536 last_overflow + 537 TCP_SYNCOOKIE_VALID); 538 } 539 } 540 541 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 542 543 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 544 * then we're under synflood. However, we have to use 545 * 'last_overflow - HZ' as lower bound. That's because a concurrent 546 * tcp_synq_overflow() could update .ts_recent_stamp after we read 547 * jiffies but before we store .ts_recent_stamp into last_overflow, 548 * which could lead to rejecting a valid syncookie. 549 */ 550 return !time_between32(now, last_overflow - HZ, 551 last_overflow + TCP_SYNCOOKIE_VALID); 552 } 553 554 static inline u32 tcp_cookie_time(void) 555 { 556 u64 val = get_jiffies_64(); 557 558 do_div(val, TCP_SYNCOOKIE_PERIOD); 559 return val; 560 } 561 562 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 563 u16 *mssp); 564 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 565 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 566 bool cookie_timestamp_decode(const struct net *net, 567 struct tcp_options_received *opt); 568 bool cookie_ecn_ok(const struct tcp_options_received *opt, 569 const struct net *net, const struct dst_entry *dst); 570 571 /* From net/ipv6/syncookies.c */ 572 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 573 u32 cookie); 574 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 575 576 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 577 const struct tcphdr *th, u16 *mssp); 578 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 579 #endif 580 /* tcp_output.c */ 581 582 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 583 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 585 int nonagle); 586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 588 void tcp_retransmit_timer(struct sock *sk); 589 void tcp_xmit_retransmit_queue(struct sock *); 590 void tcp_simple_retransmit(struct sock *); 591 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 592 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 593 enum tcp_queue { 594 TCP_FRAG_IN_WRITE_QUEUE, 595 TCP_FRAG_IN_RTX_QUEUE, 596 }; 597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 598 struct sk_buff *skb, u32 len, 599 unsigned int mss_now, gfp_t gfp); 600 601 void tcp_send_probe0(struct sock *); 602 void tcp_send_partial(struct sock *); 603 int tcp_write_wakeup(struct sock *, int mib); 604 void tcp_send_fin(struct sock *sk); 605 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 606 int tcp_send_synack(struct sock *); 607 void tcp_push_one(struct sock *, unsigned int mss_now); 608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 609 void tcp_send_ack(struct sock *sk); 610 void tcp_send_delayed_ack(struct sock *sk); 611 void tcp_send_loss_probe(struct sock *sk); 612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 613 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 614 const struct sk_buff *next_skb); 615 616 /* tcp_input.c */ 617 void tcp_rearm_rto(struct sock *sk); 618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 619 void tcp_reset(struct sock *sk, struct sk_buff *skb); 620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 621 void tcp_fin(struct sock *sk); 622 623 /* tcp_timer.c */ 624 void tcp_init_xmit_timers(struct sock *); 625 static inline void tcp_clear_xmit_timers(struct sock *sk) 626 { 627 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 628 __sock_put(sk); 629 630 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 631 __sock_put(sk); 632 633 inet_csk_clear_xmit_timers(sk); 634 } 635 636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 637 unsigned int tcp_current_mss(struct sock *sk); 638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 639 640 /* Bound MSS / TSO packet size with the half of the window */ 641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 642 { 643 int cutoff; 644 645 /* When peer uses tiny windows, there is no use in packetizing 646 * to sub-MSS pieces for the sake of SWS or making sure there 647 * are enough packets in the pipe for fast recovery. 648 * 649 * On the other hand, for extremely large MSS devices, handling 650 * smaller than MSS windows in this way does make sense. 651 */ 652 if (tp->max_window > TCP_MSS_DEFAULT) 653 cutoff = (tp->max_window >> 1); 654 else 655 cutoff = tp->max_window; 656 657 if (cutoff && pktsize > cutoff) 658 return max_t(int, cutoff, 68U - tp->tcp_header_len); 659 else 660 return pktsize; 661 } 662 663 /* tcp.c */ 664 void tcp_get_info(struct sock *, struct tcp_info *); 665 666 /* Read 'sendfile()'-style from a TCP socket */ 667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 668 sk_read_actor_t recv_actor); 669 670 void tcp_initialize_rcv_mss(struct sock *sk); 671 672 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 673 int tcp_mss_to_mtu(struct sock *sk, int mss); 674 void tcp_mtup_init(struct sock *sk); 675 676 static inline void tcp_bound_rto(const struct sock *sk) 677 { 678 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 679 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 680 } 681 682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 683 { 684 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 685 } 686 687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 688 { 689 /* mptcp hooks are only on the slow path */ 690 if (sk_is_mptcp((struct sock *)tp)) 691 return; 692 693 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 694 ntohl(TCP_FLAG_ACK) | 695 snd_wnd); 696 } 697 698 static inline void tcp_fast_path_on(struct tcp_sock *tp) 699 { 700 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 701 } 702 703 static inline void tcp_fast_path_check(struct sock *sk) 704 { 705 struct tcp_sock *tp = tcp_sk(sk); 706 707 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 708 tp->rcv_wnd && 709 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 710 !tp->urg_data) 711 tcp_fast_path_on(tp); 712 } 713 714 /* Compute the actual rto_min value */ 715 static inline u32 tcp_rto_min(struct sock *sk) 716 { 717 const struct dst_entry *dst = __sk_dst_get(sk); 718 u32 rto_min = inet_csk(sk)->icsk_rto_min; 719 720 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 721 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 722 return rto_min; 723 } 724 725 static inline u32 tcp_rto_min_us(struct sock *sk) 726 { 727 return jiffies_to_usecs(tcp_rto_min(sk)); 728 } 729 730 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 731 { 732 return dst_metric_locked(dst, RTAX_CC_ALGO); 733 } 734 735 /* Minimum RTT in usec. ~0 means not available. */ 736 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 737 { 738 return minmax_get(&tp->rtt_min); 739 } 740 741 /* Compute the actual receive window we are currently advertising. 742 * Rcv_nxt can be after the window if our peer push more data 743 * than the offered window. 744 */ 745 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 746 { 747 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 748 749 if (win < 0) 750 win = 0; 751 return (u32) win; 752 } 753 754 /* Choose a new window, without checks for shrinking, and without 755 * scaling applied to the result. The caller does these things 756 * if necessary. This is a "raw" window selection. 757 */ 758 u32 __tcp_select_window(struct sock *sk); 759 760 void tcp_send_window_probe(struct sock *sk); 761 762 /* TCP uses 32bit jiffies to save some space. 763 * Note that this is different from tcp_time_stamp, which 764 * historically has been the same until linux-4.13. 765 */ 766 #define tcp_jiffies32 ((u32)jiffies) 767 768 /* 769 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 770 * It is no longer tied to jiffies, but to 1 ms clock. 771 * Note: double check if you want to use tcp_jiffies32 instead of this. 772 */ 773 #define TCP_TS_HZ 1000 774 775 static inline u64 tcp_clock_ns(void) 776 { 777 return ktime_get_ns(); 778 } 779 780 static inline u64 tcp_clock_us(void) 781 { 782 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 783 } 784 785 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 786 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 787 { 788 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 789 } 790 791 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 792 static inline u32 tcp_ns_to_ts(u64 ns) 793 { 794 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 795 } 796 797 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 798 static inline u32 tcp_time_stamp_raw(void) 799 { 800 return tcp_ns_to_ts(tcp_clock_ns()); 801 } 802 803 void tcp_mstamp_refresh(struct tcp_sock *tp); 804 805 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 806 { 807 return max_t(s64, t1 - t0, 0); 808 } 809 810 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 811 { 812 return tcp_ns_to_ts(skb->skb_mstamp_ns); 813 } 814 815 /* provide the departure time in us unit */ 816 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 817 { 818 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 819 } 820 821 822 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 823 824 #define TCPHDR_FIN 0x01 825 #define TCPHDR_SYN 0x02 826 #define TCPHDR_RST 0x04 827 #define TCPHDR_PSH 0x08 828 #define TCPHDR_ACK 0x10 829 #define TCPHDR_URG 0x20 830 #define TCPHDR_ECE 0x40 831 #define TCPHDR_CWR 0x80 832 833 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 834 835 /* This is what the send packet queuing engine uses to pass 836 * TCP per-packet control information to the transmission code. 837 * We also store the host-order sequence numbers in here too. 838 * This is 44 bytes if IPV6 is enabled. 839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 840 */ 841 struct tcp_skb_cb { 842 __u32 seq; /* Starting sequence number */ 843 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 844 union { 845 /* Note : tcp_tw_isn is used in input path only 846 * (isn chosen by tcp_timewait_state_process()) 847 * 848 * tcp_gso_segs/size are used in write queue only, 849 * cf tcp_skb_pcount()/tcp_skb_mss() 850 */ 851 __u32 tcp_tw_isn; 852 struct { 853 u16 tcp_gso_segs; 854 u16 tcp_gso_size; 855 }; 856 }; 857 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 858 859 __u8 sacked; /* State flags for SACK. */ 860 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 861 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 862 #define TCPCB_LOST 0x04 /* SKB is lost */ 863 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 864 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 865 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 866 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 867 TCPCB_REPAIRED) 868 869 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 870 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 871 eor:1, /* Is skb MSG_EOR marked? */ 872 has_rxtstamp:1, /* SKB has a RX timestamp */ 873 unused:5; 874 __u32 ack_seq; /* Sequence number ACK'd */ 875 union { 876 struct { 877 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 878 /* There is space for up to 24 bytes */ 879 __u32 is_app_limited:1, /* cwnd not fully used? */ 880 delivered_ce:20, 881 unused:11; 882 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 883 __u32 delivered; 884 /* start of send pipeline phase */ 885 u64 first_tx_mstamp; 886 /* when we reached the "delivered" count */ 887 u64 delivered_mstamp; 888 } tx; /* only used for outgoing skbs */ 889 union { 890 struct inet_skb_parm h4; 891 #if IS_ENABLED(CONFIG_IPV6) 892 struct inet6_skb_parm h6; 893 #endif 894 } header; /* For incoming skbs */ 895 }; 896 }; 897 898 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 899 900 extern const struct inet_connection_sock_af_ops ipv4_specific; 901 902 #if IS_ENABLED(CONFIG_IPV6) 903 /* This is the variant of inet6_iif() that must be used by TCP, 904 * as TCP moves IP6CB into a different location in skb->cb[] 905 */ 906 static inline int tcp_v6_iif(const struct sk_buff *skb) 907 { 908 return TCP_SKB_CB(skb)->header.h6.iif; 909 } 910 911 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 912 { 913 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 914 915 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 916 } 917 918 /* TCP_SKB_CB reference means this can not be used from early demux */ 919 static inline int tcp_v6_sdif(const struct sk_buff *skb) 920 { 921 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 922 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 923 return TCP_SKB_CB(skb)->header.h6.iif; 924 #endif 925 return 0; 926 } 927 928 extern const struct inet_connection_sock_af_ops ipv6_specific; 929 930 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 931 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 932 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 933 934 #endif 935 936 /* TCP_SKB_CB reference means this can not be used from early demux */ 937 static inline int tcp_v4_sdif(struct sk_buff *skb) 938 { 939 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 940 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 941 return TCP_SKB_CB(skb)->header.h4.iif; 942 #endif 943 return 0; 944 } 945 946 /* Due to TSO, an SKB can be composed of multiple actual 947 * packets. To keep these tracked properly, we use this. 948 */ 949 static inline int tcp_skb_pcount(const struct sk_buff *skb) 950 { 951 return TCP_SKB_CB(skb)->tcp_gso_segs; 952 } 953 954 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 955 { 956 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 957 } 958 959 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 960 { 961 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 962 } 963 964 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 965 static inline int tcp_skb_mss(const struct sk_buff *skb) 966 { 967 return TCP_SKB_CB(skb)->tcp_gso_size; 968 } 969 970 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 971 { 972 return likely(!TCP_SKB_CB(skb)->eor); 973 } 974 975 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 976 const struct sk_buff *from) 977 { 978 return likely(tcp_skb_can_collapse_to(to) && 979 mptcp_skb_can_collapse(to, from)); 980 } 981 982 /* Events passed to congestion control interface */ 983 enum tcp_ca_event { 984 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 985 CA_EVENT_CWND_RESTART, /* congestion window restart */ 986 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 987 CA_EVENT_LOSS, /* loss timeout */ 988 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 989 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 990 }; 991 992 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 993 enum tcp_ca_ack_event_flags { 994 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 995 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 996 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 997 }; 998 999 /* 1000 * Interface for adding new TCP congestion control handlers 1001 */ 1002 #define TCP_CA_NAME_MAX 16 1003 #define TCP_CA_MAX 128 1004 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1005 1006 #define TCP_CA_UNSPEC 0 1007 1008 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1009 #define TCP_CONG_NON_RESTRICTED 0x1 1010 /* Requires ECN/ECT set on all packets */ 1011 #define TCP_CONG_NEEDS_ECN 0x2 1012 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1013 1014 union tcp_cc_info; 1015 1016 struct ack_sample { 1017 u32 pkts_acked; 1018 s32 rtt_us; 1019 u32 in_flight; 1020 }; 1021 1022 /* A rate sample measures the number of (original/retransmitted) data 1023 * packets delivered "delivered" over an interval of time "interval_us". 1024 * The tcp_rate.c code fills in the rate sample, and congestion 1025 * control modules that define a cong_control function to run at the end 1026 * of ACK processing can optionally chose to consult this sample when 1027 * setting cwnd and pacing rate. 1028 * A sample is invalid if "delivered" or "interval_us" is negative. 1029 */ 1030 struct rate_sample { 1031 u64 prior_mstamp; /* starting timestamp for interval */ 1032 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1033 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1034 s32 delivered; /* number of packets delivered over interval */ 1035 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1036 long interval_us; /* time for tp->delivered to incr "delivered" */ 1037 u32 snd_interval_us; /* snd interval for delivered packets */ 1038 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1039 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1040 int losses; /* number of packets marked lost upon ACK */ 1041 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1042 u32 prior_in_flight; /* in flight before this ACK */ 1043 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1044 bool is_retrans; /* is sample from retransmission? */ 1045 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1046 }; 1047 1048 struct tcp_congestion_ops { 1049 /* fast path fields are put first to fill one cache line */ 1050 1051 /* return slow start threshold (required) */ 1052 u32 (*ssthresh)(struct sock *sk); 1053 1054 /* do new cwnd calculation (required) */ 1055 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1056 1057 /* call before changing ca_state (optional) */ 1058 void (*set_state)(struct sock *sk, u8 new_state); 1059 1060 /* call when cwnd event occurs (optional) */ 1061 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1062 1063 /* call when ack arrives (optional) */ 1064 void (*in_ack_event)(struct sock *sk, u32 flags); 1065 1066 /* hook for packet ack accounting (optional) */ 1067 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1068 1069 /* override sysctl_tcp_min_tso_segs */ 1070 u32 (*min_tso_segs)(struct sock *sk); 1071 1072 /* call when packets are delivered to update cwnd and pacing rate, 1073 * after all the ca_state processing. (optional) 1074 */ 1075 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1076 1077 1078 /* new value of cwnd after loss (required) */ 1079 u32 (*undo_cwnd)(struct sock *sk); 1080 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1081 u32 (*sndbuf_expand)(struct sock *sk); 1082 1083 /* control/slow paths put last */ 1084 /* get info for inet_diag (optional) */ 1085 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1086 union tcp_cc_info *info); 1087 1088 char name[TCP_CA_NAME_MAX]; 1089 struct module *owner; 1090 struct list_head list; 1091 u32 key; 1092 u32 flags; 1093 1094 /* initialize private data (optional) */ 1095 void (*init)(struct sock *sk); 1096 /* cleanup private data (optional) */ 1097 void (*release)(struct sock *sk); 1098 } ____cacheline_aligned_in_smp; 1099 1100 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1101 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1102 1103 void tcp_assign_congestion_control(struct sock *sk); 1104 void tcp_init_congestion_control(struct sock *sk); 1105 void tcp_cleanup_congestion_control(struct sock *sk); 1106 int tcp_set_default_congestion_control(struct net *net, const char *name); 1107 void tcp_get_default_congestion_control(struct net *net, char *name); 1108 void tcp_get_available_congestion_control(char *buf, size_t len); 1109 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1110 int tcp_set_allowed_congestion_control(char *allowed); 1111 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1112 bool cap_net_admin); 1113 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1114 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1115 1116 u32 tcp_reno_ssthresh(struct sock *sk); 1117 u32 tcp_reno_undo_cwnd(struct sock *sk); 1118 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1119 extern struct tcp_congestion_ops tcp_reno; 1120 1121 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1122 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1123 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1124 #ifdef CONFIG_INET 1125 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1126 #else 1127 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1128 { 1129 return NULL; 1130 } 1131 #endif 1132 1133 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1134 { 1135 const struct inet_connection_sock *icsk = inet_csk(sk); 1136 1137 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1138 } 1139 1140 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1141 { 1142 struct inet_connection_sock *icsk = inet_csk(sk); 1143 1144 if (icsk->icsk_ca_ops->set_state) 1145 icsk->icsk_ca_ops->set_state(sk, ca_state); 1146 icsk->icsk_ca_state = ca_state; 1147 } 1148 1149 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1150 { 1151 const struct inet_connection_sock *icsk = inet_csk(sk); 1152 1153 if (icsk->icsk_ca_ops->cwnd_event) 1154 icsk->icsk_ca_ops->cwnd_event(sk, event); 1155 } 1156 1157 /* From tcp_rate.c */ 1158 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1159 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1160 struct rate_sample *rs); 1161 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1162 bool is_sack_reneg, struct rate_sample *rs); 1163 void tcp_rate_check_app_limited(struct sock *sk); 1164 1165 /* These functions determine how the current flow behaves in respect of SACK 1166 * handling. SACK is negotiated with the peer, and therefore it can vary 1167 * between different flows. 1168 * 1169 * tcp_is_sack - SACK enabled 1170 * tcp_is_reno - No SACK 1171 */ 1172 static inline int tcp_is_sack(const struct tcp_sock *tp) 1173 { 1174 return likely(tp->rx_opt.sack_ok); 1175 } 1176 1177 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1178 { 1179 return !tcp_is_sack(tp); 1180 } 1181 1182 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1183 { 1184 return tp->sacked_out + tp->lost_out; 1185 } 1186 1187 /* This determines how many packets are "in the network" to the best 1188 * of our knowledge. In many cases it is conservative, but where 1189 * detailed information is available from the receiver (via SACK 1190 * blocks etc.) we can make more aggressive calculations. 1191 * 1192 * Use this for decisions involving congestion control, use just 1193 * tp->packets_out to determine if the send queue is empty or not. 1194 * 1195 * Read this equation as: 1196 * 1197 * "Packets sent once on transmission queue" MINUS 1198 * "Packets left network, but not honestly ACKed yet" PLUS 1199 * "Packets fast retransmitted" 1200 */ 1201 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1202 { 1203 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1204 } 1205 1206 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1207 1208 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1209 { 1210 return tp->snd_cwnd < tp->snd_ssthresh; 1211 } 1212 1213 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1214 { 1215 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1216 } 1217 1218 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1219 { 1220 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1221 (1 << inet_csk(sk)->icsk_ca_state); 1222 } 1223 1224 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1225 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1226 * ssthresh. 1227 */ 1228 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1229 { 1230 const struct tcp_sock *tp = tcp_sk(sk); 1231 1232 if (tcp_in_cwnd_reduction(sk)) 1233 return tp->snd_ssthresh; 1234 else 1235 return max(tp->snd_ssthresh, 1236 ((tp->snd_cwnd >> 1) + 1237 (tp->snd_cwnd >> 2))); 1238 } 1239 1240 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1241 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1242 1243 void tcp_enter_cwr(struct sock *sk); 1244 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1245 1246 /* The maximum number of MSS of available cwnd for which TSO defers 1247 * sending if not using sysctl_tcp_tso_win_divisor. 1248 */ 1249 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1250 { 1251 return 3; 1252 } 1253 1254 /* Returns end sequence number of the receiver's advertised window */ 1255 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1256 { 1257 return tp->snd_una + tp->snd_wnd; 1258 } 1259 1260 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1261 * flexible approach. The RFC suggests cwnd should not be raised unless 1262 * it was fully used previously. And that's exactly what we do in 1263 * congestion avoidance mode. But in slow start we allow cwnd to grow 1264 * as long as the application has used half the cwnd. 1265 * Example : 1266 * cwnd is 10 (IW10), but application sends 9 frames. 1267 * We allow cwnd to reach 18 when all frames are ACKed. 1268 * This check is safe because it's as aggressive as slow start which already 1269 * risks 100% overshoot. The advantage is that we discourage application to 1270 * either send more filler packets or data to artificially blow up the cwnd 1271 * usage, and allow application-limited process to probe bw more aggressively. 1272 */ 1273 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1274 { 1275 const struct tcp_sock *tp = tcp_sk(sk); 1276 1277 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1278 if (tcp_in_slow_start(tp)) 1279 return tp->snd_cwnd < 2 * tp->max_packets_out; 1280 1281 return tp->is_cwnd_limited; 1282 } 1283 1284 /* BBR congestion control needs pacing. 1285 * Same remark for SO_MAX_PACING_RATE. 1286 * sch_fq packet scheduler is efficiently handling pacing, 1287 * but is not always installed/used. 1288 * Return true if TCP stack should pace packets itself. 1289 */ 1290 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1291 { 1292 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1293 } 1294 1295 /* Estimates in how many jiffies next packet for this flow can be sent. 1296 * Scheduling a retransmit timer too early would be silly. 1297 */ 1298 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1299 { 1300 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1301 1302 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1303 } 1304 1305 static inline void tcp_reset_xmit_timer(struct sock *sk, 1306 const int what, 1307 unsigned long when, 1308 const unsigned long max_when) 1309 { 1310 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1311 max_when); 1312 } 1313 1314 /* Something is really bad, we could not queue an additional packet, 1315 * because qdisc is full or receiver sent a 0 window, or we are paced. 1316 * We do not want to add fuel to the fire, or abort too early, 1317 * so make sure the timer we arm now is at least 200ms in the future, 1318 * regardless of current icsk_rto value (as it could be ~2ms) 1319 */ 1320 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1321 { 1322 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1323 } 1324 1325 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1326 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1327 unsigned long max_when) 1328 { 1329 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1330 inet_csk(sk)->icsk_backoff); 1331 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1332 1333 return (unsigned long)min_t(u64, when, max_when); 1334 } 1335 1336 static inline void tcp_check_probe_timer(struct sock *sk) 1337 { 1338 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1339 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1340 tcp_probe0_base(sk), TCP_RTO_MAX); 1341 } 1342 1343 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1344 { 1345 tp->snd_wl1 = seq; 1346 } 1347 1348 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1349 { 1350 tp->snd_wl1 = seq; 1351 } 1352 1353 /* 1354 * Calculate(/check) TCP checksum 1355 */ 1356 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1357 __be32 daddr, __wsum base) 1358 { 1359 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1360 } 1361 1362 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1363 { 1364 return !skb_csum_unnecessary(skb) && 1365 __skb_checksum_complete(skb); 1366 } 1367 1368 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1369 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1370 void tcp_set_state(struct sock *sk, int state); 1371 void tcp_done(struct sock *sk); 1372 int tcp_abort(struct sock *sk, int err); 1373 1374 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1375 { 1376 rx_opt->dsack = 0; 1377 rx_opt->num_sacks = 0; 1378 } 1379 1380 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1381 1382 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1383 { 1384 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 s32 delta; 1387 1388 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1389 ca_ops->cong_control) 1390 return; 1391 delta = tcp_jiffies32 - tp->lsndtime; 1392 if (delta > inet_csk(sk)->icsk_rto) 1393 tcp_cwnd_restart(sk, delta); 1394 } 1395 1396 /* Determine a window scaling and initial window to offer. */ 1397 void tcp_select_initial_window(const struct sock *sk, int __space, 1398 __u32 mss, __u32 *rcv_wnd, 1399 __u32 *window_clamp, int wscale_ok, 1400 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1401 1402 static inline int tcp_win_from_space(const struct sock *sk, int space) 1403 { 1404 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1405 1406 return tcp_adv_win_scale <= 0 ? 1407 (space>>(-tcp_adv_win_scale)) : 1408 space - (space>>tcp_adv_win_scale); 1409 } 1410 1411 /* Note: caller must be prepared to deal with negative returns */ 1412 static inline int tcp_space(const struct sock *sk) 1413 { 1414 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1415 READ_ONCE(sk->sk_backlog.len) - 1416 atomic_read(&sk->sk_rmem_alloc)); 1417 } 1418 1419 static inline int tcp_full_space(const struct sock *sk) 1420 { 1421 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1422 } 1423 1424 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1425 { 1426 int unused_mem = sk_unused_reserved_mem(sk); 1427 struct tcp_sock *tp = tcp_sk(sk); 1428 1429 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1430 if (unused_mem) 1431 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1432 tcp_win_from_space(sk, unused_mem)); 1433 } 1434 1435 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1436 1437 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1438 * If 87.5 % (7/8) of the space has been consumed, we want to override 1439 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1440 * len/truesize ratio. 1441 */ 1442 static inline bool tcp_rmem_pressure(const struct sock *sk) 1443 { 1444 int rcvbuf, threshold; 1445 1446 if (tcp_under_memory_pressure(sk)) 1447 return true; 1448 1449 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1450 threshold = rcvbuf - (rcvbuf >> 3); 1451 1452 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1453 } 1454 1455 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1456 { 1457 const struct tcp_sock *tp = tcp_sk(sk); 1458 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1459 1460 if (avail <= 0) 1461 return false; 1462 1463 return (avail >= target) || tcp_rmem_pressure(sk) || 1464 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1465 } 1466 1467 extern void tcp_openreq_init_rwin(struct request_sock *req, 1468 const struct sock *sk_listener, 1469 const struct dst_entry *dst); 1470 1471 void tcp_enter_memory_pressure(struct sock *sk); 1472 void tcp_leave_memory_pressure(struct sock *sk); 1473 1474 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1475 { 1476 struct net *net = sock_net((struct sock *)tp); 1477 1478 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1479 } 1480 1481 static inline int keepalive_time_when(const struct tcp_sock *tp) 1482 { 1483 struct net *net = sock_net((struct sock *)tp); 1484 1485 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1486 } 1487 1488 static inline int keepalive_probes(const struct tcp_sock *tp) 1489 { 1490 struct net *net = sock_net((struct sock *)tp); 1491 1492 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1493 } 1494 1495 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1496 { 1497 const struct inet_connection_sock *icsk = &tp->inet_conn; 1498 1499 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1500 tcp_jiffies32 - tp->rcv_tstamp); 1501 } 1502 1503 static inline int tcp_fin_time(const struct sock *sk) 1504 { 1505 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1506 const int rto = inet_csk(sk)->icsk_rto; 1507 1508 if (fin_timeout < (rto << 2) - (rto >> 1)) 1509 fin_timeout = (rto << 2) - (rto >> 1); 1510 1511 return fin_timeout; 1512 } 1513 1514 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1515 int paws_win) 1516 { 1517 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1518 return true; 1519 if (unlikely(!time_before32(ktime_get_seconds(), 1520 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1521 return true; 1522 /* 1523 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1524 * then following tcp messages have valid values. Ignore 0 value, 1525 * or else 'negative' tsval might forbid us to accept their packets. 1526 */ 1527 if (!rx_opt->ts_recent) 1528 return true; 1529 return false; 1530 } 1531 1532 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1533 int rst) 1534 { 1535 if (tcp_paws_check(rx_opt, 0)) 1536 return false; 1537 1538 /* RST segments are not recommended to carry timestamp, 1539 and, if they do, it is recommended to ignore PAWS because 1540 "their cleanup function should take precedence over timestamps." 1541 Certainly, it is mistake. It is necessary to understand the reasons 1542 of this constraint to relax it: if peer reboots, clock may go 1543 out-of-sync and half-open connections will not be reset. 1544 Actually, the problem would be not existing if all 1545 the implementations followed draft about maintaining clock 1546 via reboots. Linux-2.2 DOES NOT! 1547 1548 However, we can relax time bounds for RST segments to MSL. 1549 */ 1550 if (rst && !time_before32(ktime_get_seconds(), 1551 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1552 return false; 1553 return true; 1554 } 1555 1556 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1557 int mib_idx, u32 *last_oow_ack_time); 1558 1559 static inline void tcp_mib_init(struct net *net) 1560 { 1561 /* See RFC 2012 */ 1562 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1563 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1564 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1565 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1566 } 1567 1568 /* from STCP */ 1569 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1570 { 1571 tp->lost_skb_hint = NULL; 1572 } 1573 1574 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1575 { 1576 tcp_clear_retrans_hints_partial(tp); 1577 tp->retransmit_skb_hint = NULL; 1578 } 1579 1580 union tcp_md5_addr { 1581 struct in_addr a4; 1582 #if IS_ENABLED(CONFIG_IPV6) 1583 struct in6_addr a6; 1584 #endif 1585 }; 1586 1587 /* - key database */ 1588 struct tcp_md5sig_key { 1589 struct hlist_node node; 1590 u8 keylen; 1591 u8 family; /* AF_INET or AF_INET6 */ 1592 u8 prefixlen; 1593 union tcp_md5_addr addr; 1594 int l3index; /* set if key added with L3 scope */ 1595 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1596 struct rcu_head rcu; 1597 }; 1598 1599 /* - sock block */ 1600 struct tcp_md5sig_info { 1601 struct hlist_head head; 1602 struct rcu_head rcu; 1603 }; 1604 1605 /* - pseudo header */ 1606 struct tcp4_pseudohdr { 1607 __be32 saddr; 1608 __be32 daddr; 1609 __u8 pad; 1610 __u8 protocol; 1611 __be16 len; 1612 }; 1613 1614 struct tcp6_pseudohdr { 1615 struct in6_addr saddr; 1616 struct in6_addr daddr; 1617 __be32 len; 1618 __be32 protocol; /* including padding */ 1619 }; 1620 1621 union tcp_md5sum_block { 1622 struct tcp4_pseudohdr ip4; 1623 #if IS_ENABLED(CONFIG_IPV6) 1624 struct tcp6_pseudohdr ip6; 1625 #endif 1626 }; 1627 1628 /* - pool: digest algorithm, hash description and scratch buffer */ 1629 struct tcp_md5sig_pool { 1630 struct ahash_request *md5_req; 1631 void *scratch; 1632 }; 1633 1634 /* - functions */ 1635 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1636 const struct sock *sk, const struct sk_buff *skb); 1637 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1638 int family, u8 prefixlen, int l3index, 1639 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1640 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1641 int family, u8 prefixlen, int l3index); 1642 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1643 const struct sock *addr_sk); 1644 1645 #ifdef CONFIG_TCP_MD5SIG 1646 #include <linux/jump_label.h> 1647 extern struct static_key_false tcp_md5_needed; 1648 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1649 const union tcp_md5_addr *addr, 1650 int family); 1651 static inline struct tcp_md5sig_key * 1652 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1653 const union tcp_md5_addr *addr, int family) 1654 { 1655 if (!static_branch_unlikely(&tcp_md5_needed)) 1656 return NULL; 1657 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1658 } 1659 1660 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1661 #else 1662 static inline struct tcp_md5sig_key * 1663 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1664 const union tcp_md5_addr *addr, int family) 1665 { 1666 return NULL; 1667 } 1668 #define tcp_twsk_md5_key(twsk) NULL 1669 #endif 1670 1671 bool tcp_alloc_md5sig_pool(void); 1672 1673 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1674 static inline void tcp_put_md5sig_pool(void) 1675 { 1676 local_bh_enable(); 1677 } 1678 1679 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1680 unsigned int header_len); 1681 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1682 const struct tcp_md5sig_key *key); 1683 1684 /* From tcp_fastopen.c */ 1685 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1686 struct tcp_fastopen_cookie *cookie); 1687 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1688 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1689 u16 try_exp); 1690 struct tcp_fastopen_request { 1691 /* Fast Open cookie. Size 0 means a cookie request */ 1692 struct tcp_fastopen_cookie cookie; 1693 struct msghdr *data; /* data in MSG_FASTOPEN */ 1694 size_t size; 1695 int copied; /* queued in tcp_connect() */ 1696 struct ubuf_info *uarg; 1697 }; 1698 void tcp_free_fastopen_req(struct tcp_sock *tp); 1699 void tcp_fastopen_destroy_cipher(struct sock *sk); 1700 void tcp_fastopen_ctx_destroy(struct net *net); 1701 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1702 void *primary_key, void *backup_key); 1703 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1704 u64 *key); 1705 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1706 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1707 struct request_sock *req, 1708 struct tcp_fastopen_cookie *foc, 1709 const struct dst_entry *dst); 1710 void tcp_fastopen_init_key_once(struct net *net); 1711 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1712 struct tcp_fastopen_cookie *cookie); 1713 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1714 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1715 #define TCP_FASTOPEN_KEY_MAX 2 1716 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1717 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1718 1719 /* Fastopen key context */ 1720 struct tcp_fastopen_context { 1721 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1722 int num; 1723 struct rcu_head rcu; 1724 }; 1725 1726 void tcp_fastopen_active_disable(struct sock *sk); 1727 bool tcp_fastopen_active_should_disable(struct sock *sk); 1728 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1729 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1730 1731 /* Caller needs to wrap with rcu_read_(un)lock() */ 1732 static inline 1733 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1734 { 1735 struct tcp_fastopen_context *ctx; 1736 1737 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1738 if (!ctx) 1739 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1740 return ctx; 1741 } 1742 1743 static inline 1744 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1745 const struct tcp_fastopen_cookie *orig) 1746 { 1747 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1748 orig->len == foc->len && 1749 !memcmp(orig->val, foc->val, foc->len)) 1750 return true; 1751 return false; 1752 } 1753 1754 static inline 1755 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1756 { 1757 return ctx->num; 1758 } 1759 1760 /* Latencies incurred by various limits for a sender. They are 1761 * chronograph-like stats that are mutually exclusive. 1762 */ 1763 enum tcp_chrono { 1764 TCP_CHRONO_UNSPEC, 1765 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1766 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1767 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1768 __TCP_CHRONO_MAX, 1769 }; 1770 1771 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1772 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1773 1774 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1775 * the same memory storage than skb->destructor/_skb_refdst 1776 */ 1777 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1778 { 1779 skb->destructor = NULL; 1780 skb->_skb_refdst = 0UL; 1781 } 1782 1783 #define tcp_skb_tsorted_save(skb) { \ 1784 unsigned long _save = skb->_skb_refdst; \ 1785 skb->_skb_refdst = 0UL; 1786 1787 #define tcp_skb_tsorted_restore(skb) \ 1788 skb->_skb_refdst = _save; \ 1789 } 1790 1791 void tcp_write_queue_purge(struct sock *sk); 1792 1793 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1794 { 1795 return skb_rb_first(&sk->tcp_rtx_queue); 1796 } 1797 1798 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1799 { 1800 return skb_rb_last(&sk->tcp_rtx_queue); 1801 } 1802 1803 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1804 { 1805 return skb_peek(&sk->sk_write_queue); 1806 } 1807 1808 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1809 { 1810 return skb_peek_tail(&sk->sk_write_queue); 1811 } 1812 1813 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1814 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1815 1816 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1817 { 1818 return skb_peek(&sk->sk_write_queue); 1819 } 1820 1821 static inline bool tcp_skb_is_last(const struct sock *sk, 1822 const struct sk_buff *skb) 1823 { 1824 return skb_queue_is_last(&sk->sk_write_queue, skb); 1825 } 1826 1827 /** 1828 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1829 * @sk: socket 1830 * 1831 * Since the write queue can have a temporary empty skb in it, 1832 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1833 */ 1834 static inline bool tcp_write_queue_empty(const struct sock *sk) 1835 { 1836 const struct tcp_sock *tp = tcp_sk(sk); 1837 1838 return tp->write_seq == tp->snd_nxt; 1839 } 1840 1841 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1842 { 1843 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1844 } 1845 1846 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1847 { 1848 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1849 } 1850 1851 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1852 { 1853 __skb_queue_tail(&sk->sk_write_queue, skb); 1854 1855 /* Queue it, remembering where we must start sending. */ 1856 if (sk->sk_write_queue.next == skb) 1857 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1858 } 1859 1860 /* Insert new before skb on the write queue of sk. */ 1861 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1862 struct sk_buff *skb, 1863 struct sock *sk) 1864 { 1865 __skb_queue_before(&sk->sk_write_queue, skb, new); 1866 } 1867 1868 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1869 { 1870 tcp_skb_tsorted_anchor_cleanup(skb); 1871 __skb_unlink(skb, &sk->sk_write_queue); 1872 } 1873 1874 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1875 1876 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1877 { 1878 tcp_skb_tsorted_anchor_cleanup(skb); 1879 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1880 } 1881 1882 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1883 { 1884 list_del(&skb->tcp_tsorted_anchor); 1885 tcp_rtx_queue_unlink(skb, sk); 1886 sk_wmem_free_skb(sk, skb); 1887 } 1888 1889 static inline void tcp_push_pending_frames(struct sock *sk) 1890 { 1891 if (tcp_send_head(sk)) { 1892 struct tcp_sock *tp = tcp_sk(sk); 1893 1894 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1895 } 1896 } 1897 1898 /* Start sequence of the skb just after the highest skb with SACKed 1899 * bit, valid only if sacked_out > 0 or when the caller has ensured 1900 * validity by itself. 1901 */ 1902 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1903 { 1904 if (!tp->sacked_out) 1905 return tp->snd_una; 1906 1907 if (tp->highest_sack == NULL) 1908 return tp->snd_nxt; 1909 1910 return TCP_SKB_CB(tp->highest_sack)->seq; 1911 } 1912 1913 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1914 { 1915 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1916 } 1917 1918 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1919 { 1920 return tcp_sk(sk)->highest_sack; 1921 } 1922 1923 static inline void tcp_highest_sack_reset(struct sock *sk) 1924 { 1925 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1926 } 1927 1928 /* Called when old skb is about to be deleted and replaced by new skb */ 1929 static inline void tcp_highest_sack_replace(struct sock *sk, 1930 struct sk_buff *old, 1931 struct sk_buff *new) 1932 { 1933 if (old == tcp_highest_sack(sk)) 1934 tcp_sk(sk)->highest_sack = new; 1935 } 1936 1937 /* This helper checks if socket has IP_TRANSPARENT set */ 1938 static inline bool inet_sk_transparent(const struct sock *sk) 1939 { 1940 switch (sk->sk_state) { 1941 case TCP_TIME_WAIT: 1942 return inet_twsk(sk)->tw_transparent; 1943 case TCP_NEW_SYN_RECV: 1944 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1945 } 1946 return inet_sk(sk)->transparent; 1947 } 1948 1949 /* Determines whether this is a thin stream (which may suffer from 1950 * increased latency). Used to trigger latency-reducing mechanisms. 1951 */ 1952 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1953 { 1954 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1955 } 1956 1957 /* /proc */ 1958 enum tcp_seq_states { 1959 TCP_SEQ_STATE_LISTENING, 1960 TCP_SEQ_STATE_ESTABLISHED, 1961 }; 1962 1963 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1964 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1965 void tcp_seq_stop(struct seq_file *seq, void *v); 1966 1967 struct tcp_seq_afinfo { 1968 sa_family_t family; 1969 }; 1970 1971 struct tcp_iter_state { 1972 struct seq_net_private p; 1973 enum tcp_seq_states state; 1974 struct sock *syn_wait_sk; 1975 int bucket, offset, sbucket, num; 1976 loff_t last_pos; 1977 }; 1978 1979 extern struct request_sock_ops tcp_request_sock_ops; 1980 extern struct request_sock_ops tcp6_request_sock_ops; 1981 1982 void tcp_v4_destroy_sock(struct sock *sk); 1983 1984 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1985 netdev_features_t features); 1986 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1987 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 1988 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 1989 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 1990 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 1991 int tcp_gro_complete(struct sk_buff *skb); 1992 1993 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1994 1995 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1996 { 1997 struct net *net = sock_net((struct sock *)tp); 1998 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1999 } 2000 2001 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2002 2003 #ifdef CONFIG_PROC_FS 2004 int tcp4_proc_init(void); 2005 void tcp4_proc_exit(void); 2006 #endif 2007 2008 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2009 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2010 const struct tcp_request_sock_ops *af_ops, 2011 struct sock *sk, struct sk_buff *skb); 2012 2013 /* TCP af-specific functions */ 2014 struct tcp_sock_af_ops { 2015 #ifdef CONFIG_TCP_MD5SIG 2016 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2017 const struct sock *addr_sk); 2018 int (*calc_md5_hash)(char *location, 2019 const struct tcp_md5sig_key *md5, 2020 const struct sock *sk, 2021 const struct sk_buff *skb); 2022 int (*md5_parse)(struct sock *sk, 2023 int optname, 2024 sockptr_t optval, 2025 int optlen); 2026 #endif 2027 }; 2028 2029 struct tcp_request_sock_ops { 2030 u16 mss_clamp; 2031 #ifdef CONFIG_TCP_MD5SIG 2032 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2033 const struct sock *addr_sk); 2034 int (*calc_md5_hash) (char *location, 2035 const struct tcp_md5sig_key *md5, 2036 const struct sock *sk, 2037 const struct sk_buff *skb); 2038 #endif 2039 #ifdef CONFIG_SYN_COOKIES 2040 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2041 __u16 *mss); 2042 #endif 2043 struct dst_entry *(*route_req)(const struct sock *sk, 2044 struct sk_buff *skb, 2045 struct flowi *fl, 2046 struct request_sock *req); 2047 u32 (*init_seq)(const struct sk_buff *skb); 2048 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2049 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2050 struct flowi *fl, struct request_sock *req, 2051 struct tcp_fastopen_cookie *foc, 2052 enum tcp_synack_type synack_type, 2053 struct sk_buff *syn_skb); 2054 }; 2055 2056 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2057 #if IS_ENABLED(CONFIG_IPV6) 2058 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2059 #endif 2060 2061 #ifdef CONFIG_SYN_COOKIES 2062 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2063 const struct sock *sk, struct sk_buff *skb, 2064 __u16 *mss) 2065 { 2066 tcp_synq_overflow(sk); 2067 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2068 return ops->cookie_init_seq(skb, mss); 2069 } 2070 #else 2071 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2072 const struct sock *sk, struct sk_buff *skb, 2073 __u16 *mss) 2074 { 2075 return 0; 2076 } 2077 #endif 2078 2079 int tcpv4_offload_init(void); 2080 2081 void tcp_v4_init(void); 2082 void tcp_init(void); 2083 2084 /* tcp_recovery.c */ 2085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2086 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2087 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2088 u32 reo_wnd); 2089 extern bool tcp_rack_mark_lost(struct sock *sk); 2090 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2091 u64 xmit_time); 2092 extern void tcp_rack_reo_timeout(struct sock *sk); 2093 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2094 2095 /* At how many usecs into the future should the RTO fire? */ 2096 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2097 { 2098 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2099 u32 rto = inet_csk(sk)->icsk_rto; 2100 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2101 2102 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2103 } 2104 2105 /* 2106 * Save and compile IPv4 options, return a pointer to it 2107 */ 2108 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2109 struct sk_buff *skb) 2110 { 2111 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2112 struct ip_options_rcu *dopt = NULL; 2113 2114 if (opt->optlen) { 2115 int opt_size = sizeof(*dopt) + opt->optlen; 2116 2117 dopt = kmalloc(opt_size, GFP_ATOMIC); 2118 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2119 kfree(dopt); 2120 dopt = NULL; 2121 } 2122 } 2123 return dopt; 2124 } 2125 2126 /* locally generated TCP pure ACKs have skb->truesize == 2 2127 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2128 * This is much faster than dissecting the packet to find out. 2129 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2130 */ 2131 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2132 { 2133 return skb->truesize == 2; 2134 } 2135 2136 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2137 { 2138 skb->truesize = 2; 2139 } 2140 2141 static inline int tcp_inq(struct sock *sk) 2142 { 2143 struct tcp_sock *tp = tcp_sk(sk); 2144 int answ; 2145 2146 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2147 answ = 0; 2148 } else if (sock_flag(sk, SOCK_URGINLINE) || 2149 !tp->urg_data || 2150 before(tp->urg_seq, tp->copied_seq) || 2151 !before(tp->urg_seq, tp->rcv_nxt)) { 2152 2153 answ = tp->rcv_nxt - tp->copied_seq; 2154 2155 /* Subtract 1, if FIN was received */ 2156 if (answ && sock_flag(sk, SOCK_DONE)) 2157 answ--; 2158 } else { 2159 answ = tp->urg_seq - tp->copied_seq; 2160 } 2161 2162 return answ; 2163 } 2164 2165 int tcp_peek_len(struct socket *sock); 2166 2167 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2168 { 2169 u16 segs_in; 2170 2171 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2172 tp->segs_in += segs_in; 2173 if (skb->len > tcp_hdrlen(skb)) 2174 tp->data_segs_in += segs_in; 2175 } 2176 2177 /* 2178 * TCP listen path runs lockless. 2179 * We forced "struct sock" to be const qualified to make sure 2180 * we don't modify one of its field by mistake. 2181 * Here, we increment sk_drops which is an atomic_t, so we can safely 2182 * make sock writable again. 2183 */ 2184 static inline void tcp_listendrop(const struct sock *sk) 2185 { 2186 atomic_inc(&((struct sock *)sk)->sk_drops); 2187 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2188 } 2189 2190 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2191 2192 /* 2193 * Interface for adding Upper Level Protocols over TCP 2194 */ 2195 2196 #define TCP_ULP_NAME_MAX 16 2197 #define TCP_ULP_MAX 128 2198 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2199 2200 struct tcp_ulp_ops { 2201 struct list_head list; 2202 2203 /* initialize ulp */ 2204 int (*init)(struct sock *sk); 2205 /* update ulp */ 2206 void (*update)(struct sock *sk, struct proto *p, 2207 void (*write_space)(struct sock *sk)); 2208 /* cleanup ulp */ 2209 void (*release)(struct sock *sk); 2210 /* diagnostic */ 2211 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2212 size_t (*get_info_size)(const struct sock *sk); 2213 /* clone ulp */ 2214 void (*clone)(const struct request_sock *req, struct sock *newsk, 2215 const gfp_t priority); 2216 2217 char name[TCP_ULP_NAME_MAX]; 2218 struct module *owner; 2219 }; 2220 int tcp_register_ulp(struct tcp_ulp_ops *type); 2221 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2222 int tcp_set_ulp(struct sock *sk, const char *name); 2223 void tcp_get_available_ulp(char *buf, size_t len); 2224 void tcp_cleanup_ulp(struct sock *sk); 2225 void tcp_update_ulp(struct sock *sk, struct proto *p, 2226 void (*write_space)(struct sock *sk)); 2227 2228 #define MODULE_ALIAS_TCP_ULP(name) \ 2229 __MODULE_INFO(alias, alias_userspace, name); \ 2230 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2231 2232 #ifdef CONFIG_NET_SOCK_MSG 2233 struct sk_msg; 2234 struct sk_psock; 2235 2236 #ifdef CONFIG_BPF_SYSCALL 2237 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2238 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2239 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2240 #endif /* CONFIG_BPF_SYSCALL */ 2241 2242 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2243 int flags); 2244 #endif /* CONFIG_NET_SOCK_MSG */ 2245 2246 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2247 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2248 { 2249 } 2250 #endif 2251 2252 #ifdef CONFIG_CGROUP_BPF 2253 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2254 struct sk_buff *skb, 2255 unsigned int end_offset) 2256 { 2257 skops->skb = skb; 2258 skops->skb_data_end = skb->data + end_offset; 2259 } 2260 #else 2261 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2262 struct sk_buff *skb, 2263 unsigned int end_offset) 2264 { 2265 } 2266 #endif 2267 2268 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2269 * is < 0, then the BPF op failed (for example if the loaded BPF 2270 * program does not support the chosen operation or there is no BPF 2271 * program loaded). 2272 */ 2273 #ifdef CONFIG_BPF 2274 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2275 { 2276 struct bpf_sock_ops_kern sock_ops; 2277 int ret; 2278 2279 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2280 if (sk_fullsock(sk)) { 2281 sock_ops.is_fullsock = 1; 2282 sock_owned_by_me(sk); 2283 } 2284 2285 sock_ops.sk = sk; 2286 sock_ops.op = op; 2287 if (nargs > 0) 2288 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2289 2290 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2291 if (ret == 0) 2292 ret = sock_ops.reply; 2293 else 2294 ret = -1; 2295 return ret; 2296 } 2297 2298 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2299 { 2300 u32 args[2] = {arg1, arg2}; 2301 2302 return tcp_call_bpf(sk, op, 2, args); 2303 } 2304 2305 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2306 u32 arg3) 2307 { 2308 u32 args[3] = {arg1, arg2, arg3}; 2309 2310 return tcp_call_bpf(sk, op, 3, args); 2311 } 2312 2313 #else 2314 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2315 { 2316 return -EPERM; 2317 } 2318 2319 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2320 { 2321 return -EPERM; 2322 } 2323 2324 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2325 u32 arg3) 2326 { 2327 return -EPERM; 2328 } 2329 2330 #endif 2331 2332 static inline u32 tcp_timeout_init(struct sock *sk) 2333 { 2334 int timeout; 2335 2336 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2337 2338 if (timeout <= 0) 2339 timeout = TCP_TIMEOUT_INIT; 2340 return timeout; 2341 } 2342 2343 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2344 { 2345 int rwnd; 2346 2347 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2348 2349 if (rwnd < 0) 2350 rwnd = 0; 2351 return rwnd; 2352 } 2353 2354 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2355 { 2356 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2357 } 2358 2359 static inline void tcp_bpf_rtt(struct sock *sk) 2360 { 2361 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2362 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2363 } 2364 2365 #if IS_ENABLED(CONFIG_SMC) 2366 extern struct static_key_false tcp_have_smc; 2367 #endif 2368 2369 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2370 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2371 void (*cad)(struct sock *sk, u32 ack_seq)); 2372 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2373 void clean_acked_data_flush(void); 2374 #endif 2375 2376 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2377 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2378 const struct tcp_sock *tp) 2379 { 2380 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2381 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2382 } 2383 2384 /* Compute Earliest Departure Time for some control packets 2385 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2386 */ 2387 static inline u64 tcp_transmit_time(const struct sock *sk) 2388 { 2389 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2390 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2391 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2392 2393 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2394 } 2395 return 0; 2396 } 2397 2398 #endif /* _TCP_H */ 2399