xref: /openbmc/linux/include/net/tcp.h (revision e330fb14)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
334 		 size_t size, int flags);
335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
336 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
337 	      int size_goal);
338 void tcp_release_cb(struct sock *sk);
339 void tcp_wfree(struct sk_buff *skb);
340 void tcp_write_timer_handler(struct sock *sk);
341 void tcp_delack_timer_handler(struct sock *sk);
342 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
343 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_space_adjust(struct sock *sk);
346 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
347 void tcp_twsk_destructor(struct sock *sk);
348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349 			struct pipe_inode_info *pipe, size_t len,
350 			unsigned int flags);
351 
352 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
353 static inline void tcp_dec_quickack_mode(struct sock *sk,
354 					 const unsigned int pkts)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	if (icsk->icsk_ack.quick) {
359 		if (pkts >= icsk->icsk_ack.quick) {
360 			icsk->icsk_ack.quick = 0;
361 			/* Leaving quickack mode we deflate ATO. */
362 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
363 		} else
364 			icsk->icsk_ack.quick -= pkts;
365 	}
366 }
367 
368 #define	TCP_ECN_OK		1
369 #define	TCP_ECN_QUEUE_CWR	2
370 #define	TCP_ECN_DEMAND_CWR	4
371 #define	TCP_ECN_SEEN		8
372 
373 enum tcp_tw_status {
374 	TCP_TW_SUCCESS = 0,
375 	TCP_TW_RST = 1,
376 	TCP_TW_ACK = 2,
377 	TCP_TW_SYN = 3
378 };
379 
380 
381 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
382 					      struct sk_buff *skb,
383 					      const struct tcphdr *th);
384 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
385 			   struct request_sock *req, bool fastopen,
386 			   bool *lost_race);
387 int tcp_child_process(struct sock *parent, struct sock *child,
388 		      struct sk_buff *skb);
389 void tcp_enter_loss(struct sock *sk);
390 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
391 void tcp_clear_retrans(struct tcp_sock *tp);
392 void tcp_update_metrics(struct sock *sk);
393 void tcp_init_metrics(struct sock *sk);
394 void tcp_metrics_init(void);
395 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
396 void __tcp_close(struct sock *sk, long timeout);
397 void tcp_close(struct sock *sk, long timeout);
398 void tcp_init_sock(struct sock *sk);
399 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
400 __poll_t tcp_poll(struct file *file, struct socket *sock,
401 		      struct poll_table_struct *wait);
402 int tcp_getsockopt(struct sock *sk, int level, int optname,
403 		   char __user *optval, int __user *optlen);
404 bool tcp_bpf_bypass_getsockopt(int level, int optname);
405 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
406 		   unsigned int optlen);
407 void tcp_set_keepalive(struct sock *sk, int val);
408 void tcp_syn_ack_timeout(const struct request_sock *req);
409 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
410 		int flags, int *addr_len);
411 int tcp_set_rcvlowat(struct sock *sk, int val);
412 int tcp_set_window_clamp(struct sock *sk, int val);
413 void tcp_update_recv_tstamps(struct sk_buff *skb,
414 			     struct scm_timestamping_internal *tss);
415 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
416 			struct scm_timestamping_internal *tss);
417 void tcp_data_ready(struct sock *sk);
418 #ifdef CONFIG_MMU
419 int tcp_mmap(struct file *file, struct socket *sock,
420 	     struct vm_area_struct *vma);
421 #endif
422 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
423 		       struct tcp_options_received *opt_rx,
424 		       int estab, struct tcp_fastopen_cookie *foc);
425 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
426 
427 /*
428  *	BPF SKB-less helpers
429  */
430 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
431 			 struct tcphdr *th, u32 *cookie);
432 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
433 			 struct tcphdr *th, u32 *cookie);
434 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
435 			  const struct tcp_request_sock_ops *af_ops,
436 			  struct sock *sk, struct tcphdr *th);
437 /*
438  *	TCP v4 functions exported for the inet6 API
439  */
440 
441 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
442 void tcp_v4_mtu_reduced(struct sock *sk);
443 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
444 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
445 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
446 struct sock *tcp_create_openreq_child(const struct sock *sk,
447 				      struct request_sock *req,
448 				      struct sk_buff *skb);
449 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
450 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
451 				  struct request_sock *req,
452 				  struct dst_entry *dst,
453 				  struct request_sock *req_unhash,
454 				  bool *own_req);
455 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
456 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
457 int tcp_connect(struct sock *sk);
458 enum tcp_synack_type {
459 	TCP_SYNACK_NORMAL,
460 	TCP_SYNACK_FASTOPEN,
461 	TCP_SYNACK_COOKIE,
462 };
463 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
464 				struct request_sock *req,
465 				struct tcp_fastopen_cookie *foc,
466 				enum tcp_synack_type synack_type,
467 				struct sk_buff *syn_skb);
468 int tcp_disconnect(struct sock *sk, int flags);
469 
470 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
471 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
472 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
473 
474 /* From syncookies.c */
475 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
476 				 struct request_sock *req,
477 				 struct dst_entry *dst, u32 tsoff);
478 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
479 		      u32 cookie);
480 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
481 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
482 					    struct sock *sk, struct sk_buff *skb);
483 #ifdef CONFIG_SYN_COOKIES
484 
485 /* Syncookies use a monotonic timer which increments every 60 seconds.
486  * This counter is used both as a hash input and partially encoded into
487  * the cookie value.  A cookie is only validated further if the delta
488  * between the current counter value and the encoded one is less than this,
489  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
490  * the counter advances immediately after a cookie is generated).
491  */
492 #define MAX_SYNCOOKIE_AGE	2
493 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
494 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
495 
496 /* syncookies: remember time of last synqueue overflow
497  * But do not dirty this field too often (once per second is enough)
498  * It is racy as we do not hold a lock, but race is very minor.
499  */
500 static inline void tcp_synq_overflow(const struct sock *sk)
501 {
502 	unsigned int last_overflow;
503 	unsigned int now = jiffies;
504 
505 	if (sk->sk_reuseport) {
506 		struct sock_reuseport *reuse;
507 
508 		reuse = rcu_dereference(sk->sk_reuseport_cb);
509 		if (likely(reuse)) {
510 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
511 			if (!time_between32(now, last_overflow,
512 					    last_overflow + HZ))
513 				WRITE_ONCE(reuse->synq_overflow_ts, now);
514 			return;
515 		}
516 	}
517 
518 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
519 	if (!time_between32(now, last_overflow, last_overflow + HZ))
520 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
521 }
522 
523 /* syncookies: no recent synqueue overflow on this listening socket? */
524 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
525 {
526 	unsigned int last_overflow;
527 	unsigned int now = jiffies;
528 
529 	if (sk->sk_reuseport) {
530 		struct sock_reuseport *reuse;
531 
532 		reuse = rcu_dereference(sk->sk_reuseport_cb);
533 		if (likely(reuse)) {
534 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
535 			return !time_between32(now, last_overflow - HZ,
536 					       last_overflow +
537 					       TCP_SYNCOOKIE_VALID);
538 		}
539 	}
540 
541 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
542 
543 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
544 	 * then we're under synflood. However, we have to use
545 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
546 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
547 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
548 	 * which could lead to rejecting a valid syncookie.
549 	 */
550 	return !time_between32(now, last_overflow - HZ,
551 			       last_overflow + TCP_SYNCOOKIE_VALID);
552 }
553 
554 static inline u32 tcp_cookie_time(void)
555 {
556 	u64 val = get_jiffies_64();
557 
558 	do_div(val, TCP_SYNCOOKIE_PERIOD);
559 	return val;
560 }
561 
562 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
563 			      u16 *mssp);
564 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
565 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
566 bool cookie_timestamp_decode(const struct net *net,
567 			     struct tcp_options_received *opt);
568 bool cookie_ecn_ok(const struct tcp_options_received *opt,
569 		   const struct net *net, const struct dst_entry *dst);
570 
571 /* From net/ipv6/syncookies.c */
572 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
573 		      u32 cookie);
574 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
575 
576 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
577 			      const struct tcphdr *th, u16 *mssp);
578 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
579 #endif
580 /* tcp_output.c */
581 
582 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
583 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
585 			       int nonagle);
586 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
587 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588 void tcp_retransmit_timer(struct sock *sk);
589 void tcp_xmit_retransmit_queue(struct sock *);
590 void tcp_simple_retransmit(struct sock *);
591 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
592 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
593 enum tcp_queue {
594 	TCP_FRAG_IN_WRITE_QUEUE,
595 	TCP_FRAG_IN_RTX_QUEUE,
596 };
597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
598 		 struct sk_buff *skb, u32 len,
599 		 unsigned int mss_now, gfp_t gfp);
600 
601 void tcp_send_probe0(struct sock *);
602 void tcp_send_partial(struct sock *);
603 int tcp_write_wakeup(struct sock *, int mib);
604 void tcp_send_fin(struct sock *sk);
605 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
606 int tcp_send_synack(struct sock *);
607 void tcp_push_one(struct sock *, unsigned int mss_now);
608 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
609 void tcp_send_ack(struct sock *sk);
610 void tcp_send_delayed_ack(struct sock *sk);
611 void tcp_send_loss_probe(struct sock *sk);
612 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
613 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
614 			     const struct sk_buff *next_skb);
615 
616 /* tcp_input.c */
617 void tcp_rearm_rto(struct sock *sk);
618 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
619 void tcp_reset(struct sock *sk, struct sk_buff *skb);
620 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
621 void tcp_fin(struct sock *sk);
622 
623 /* tcp_timer.c */
624 void tcp_init_xmit_timers(struct sock *);
625 static inline void tcp_clear_xmit_timers(struct sock *sk)
626 {
627 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 		__sock_put(sk);
629 
630 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 		__sock_put(sk);
632 
633 	inet_csk_clear_xmit_timers(sk);
634 }
635 
636 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
637 unsigned int tcp_current_mss(struct sock *sk);
638 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
639 
640 /* Bound MSS / TSO packet size with the half of the window */
641 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
642 {
643 	int cutoff;
644 
645 	/* When peer uses tiny windows, there is no use in packetizing
646 	 * to sub-MSS pieces for the sake of SWS or making sure there
647 	 * are enough packets in the pipe for fast recovery.
648 	 *
649 	 * On the other hand, for extremely large MSS devices, handling
650 	 * smaller than MSS windows in this way does make sense.
651 	 */
652 	if (tp->max_window > TCP_MSS_DEFAULT)
653 		cutoff = (tp->max_window >> 1);
654 	else
655 		cutoff = tp->max_window;
656 
657 	if (cutoff && pktsize > cutoff)
658 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
659 	else
660 		return pktsize;
661 }
662 
663 /* tcp.c */
664 void tcp_get_info(struct sock *, struct tcp_info *);
665 
666 /* Read 'sendfile()'-style from a TCP socket */
667 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
668 		  sk_read_actor_t recv_actor);
669 
670 void tcp_initialize_rcv_mss(struct sock *sk);
671 
672 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
673 int tcp_mss_to_mtu(struct sock *sk, int mss);
674 void tcp_mtup_init(struct sock *sk);
675 
676 static inline void tcp_bound_rto(const struct sock *sk)
677 {
678 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
679 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680 }
681 
682 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
683 {
684 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685 }
686 
687 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
688 {
689 	/* mptcp hooks are only on the slow path */
690 	if (sk_is_mptcp((struct sock *)tp))
691 		return;
692 
693 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
694 			       ntohl(TCP_FLAG_ACK) |
695 			       snd_wnd);
696 }
697 
698 static inline void tcp_fast_path_on(struct tcp_sock *tp)
699 {
700 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
701 }
702 
703 static inline void tcp_fast_path_check(struct sock *sk)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 
707 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
708 	    tp->rcv_wnd &&
709 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
710 	    !tp->urg_data)
711 		tcp_fast_path_on(tp);
712 }
713 
714 /* Compute the actual rto_min value */
715 static inline u32 tcp_rto_min(struct sock *sk)
716 {
717 	const struct dst_entry *dst = __sk_dst_get(sk);
718 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
719 
720 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
721 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
722 	return rto_min;
723 }
724 
725 static inline u32 tcp_rto_min_us(struct sock *sk)
726 {
727 	return jiffies_to_usecs(tcp_rto_min(sk));
728 }
729 
730 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
731 {
732 	return dst_metric_locked(dst, RTAX_CC_ALGO);
733 }
734 
735 /* Minimum RTT in usec. ~0 means not available. */
736 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
737 {
738 	return minmax_get(&tp->rtt_min);
739 }
740 
741 /* Compute the actual receive window we are currently advertising.
742  * Rcv_nxt can be after the window if our peer push more data
743  * than the offered window.
744  */
745 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
746 {
747 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
748 
749 	if (win < 0)
750 		win = 0;
751 	return (u32) win;
752 }
753 
754 /* Choose a new window, without checks for shrinking, and without
755  * scaling applied to the result.  The caller does these things
756  * if necessary.  This is a "raw" window selection.
757  */
758 u32 __tcp_select_window(struct sock *sk);
759 
760 void tcp_send_window_probe(struct sock *sk);
761 
762 /* TCP uses 32bit jiffies to save some space.
763  * Note that this is different from tcp_time_stamp, which
764  * historically has been the same until linux-4.13.
765  */
766 #define tcp_jiffies32 ((u32)jiffies)
767 
768 /*
769  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
770  * It is no longer tied to jiffies, but to 1 ms clock.
771  * Note: double check if you want to use tcp_jiffies32 instead of this.
772  */
773 #define TCP_TS_HZ	1000
774 
775 static inline u64 tcp_clock_ns(void)
776 {
777 	return ktime_get_ns();
778 }
779 
780 static inline u64 tcp_clock_us(void)
781 {
782 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
783 }
784 
785 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
786 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
787 {
788 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
789 }
790 
791 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
792 static inline u32 tcp_ns_to_ts(u64 ns)
793 {
794 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
795 }
796 
797 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
798 static inline u32 tcp_time_stamp_raw(void)
799 {
800 	return tcp_ns_to_ts(tcp_clock_ns());
801 }
802 
803 void tcp_mstamp_refresh(struct tcp_sock *tp);
804 
805 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
806 {
807 	return max_t(s64, t1 - t0, 0);
808 }
809 
810 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
811 {
812 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
813 }
814 
815 /* provide the departure time in us unit */
816 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
817 {
818 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
819 }
820 
821 
822 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
823 
824 #define TCPHDR_FIN 0x01
825 #define TCPHDR_SYN 0x02
826 #define TCPHDR_RST 0x04
827 #define TCPHDR_PSH 0x08
828 #define TCPHDR_ACK 0x10
829 #define TCPHDR_URG 0x20
830 #define TCPHDR_ECE 0x40
831 #define TCPHDR_CWR 0x80
832 
833 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
834 
835 /* This is what the send packet queuing engine uses to pass
836  * TCP per-packet control information to the transmission code.
837  * We also store the host-order sequence numbers in here too.
838  * This is 44 bytes if IPV6 is enabled.
839  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
840  */
841 struct tcp_skb_cb {
842 	__u32		seq;		/* Starting sequence number	*/
843 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
844 	union {
845 		/* Note : tcp_tw_isn is used in input path only
846 		 *	  (isn chosen by tcp_timewait_state_process())
847 		 *
848 		 * 	  tcp_gso_segs/size are used in write queue only,
849 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
850 		 */
851 		__u32		tcp_tw_isn;
852 		struct {
853 			u16	tcp_gso_segs;
854 			u16	tcp_gso_size;
855 		};
856 	};
857 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
858 
859 	__u8		sacked;		/* State flags for SACK.	*/
860 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
861 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
862 #define TCPCB_LOST		0x04	/* SKB is lost			*/
863 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
864 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
865 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
866 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
867 				TCPCB_REPAIRED)
868 
869 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
870 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
871 			eor:1,		/* Is skb MSG_EOR marked? */
872 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
873 			unused:5;
874 	__u32		ack_seq;	/* Sequence number ACK'd	*/
875 	union {
876 		struct {
877 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
878 			/* There is space for up to 24 bytes */
879 			__u32 is_app_limited:1, /* cwnd not fully used? */
880 			      delivered_ce:20,
881 			      unused:11;
882 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
883 			__u32 delivered;
884 			/* start of send pipeline phase */
885 			u64 first_tx_mstamp;
886 			/* when we reached the "delivered" count */
887 			u64 delivered_mstamp;
888 		} tx;   /* only used for outgoing skbs */
889 		union {
890 			struct inet_skb_parm	h4;
891 #if IS_ENABLED(CONFIG_IPV6)
892 			struct inet6_skb_parm	h6;
893 #endif
894 		} header;	/* For incoming skbs */
895 	};
896 };
897 
898 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
899 
900 extern const struct inet_connection_sock_af_ops ipv4_specific;
901 
902 #if IS_ENABLED(CONFIG_IPV6)
903 /* This is the variant of inet6_iif() that must be used by TCP,
904  * as TCP moves IP6CB into a different location in skb->cb[]
905  */
906 static inline int tcp_v6_iif(const struct sk_buff *skb)
907 {
908 	return TCP_SKB_CB(skb)->header.h6.iif;
909 }
910 
911 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
912 {
913 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
914 
915 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
916 }
917 
918 /* TCP_SKB_CB reference means this can not be used from early demux */
919 static inline int tcp_v6_sdif(const struct sk_buff *skb)
920 {
921 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
922 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
923 		return TCP_SKB_CB(skb)->header.h6.iif;
924 #endif
925 	return 0;
926 }
927 
928 extern const struct inet_connection_sock_af_ops ipv6_specific;
929 
930 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
931 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
932 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
933 
934 #endif
935 
936 /* TCP_SKB_CB reference means this can not be used from early demux */
937 static inline int tcp_v4_sdif(struct sk_buff *skb)
938 {
939 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
940 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
941 		return TCP_SKB_CB(skb)->header.h4.iif;
942 #endif
943 	return 0;
944 }
945 
946 /* Due to TSO, an SKB can be composed of multiple actual
947  * packets.  To keep these tracked properly, we use this.
948  */
949 static inline int tcp_skb_pcount(const struct sk_buff *skb)
950 {
951 	return TCP_SKB_CB(skb)->tcp_gso_segs;
952 }
953 
954 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
955 {
956 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
957 }
958 
959 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
960 {
961 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
962 }
963 
964 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
965 static inline int tcp_skb_mss(const struct sk_buff *skb)
966 {
967 	return TCP_SKB_CB(skb)->tcp_gso_size;
968 }
969 
970 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
971 {
972 	return likely(!TCP_SKB_CB(skb)->eor);
973 }
974 
975 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
976 					const struct sk_buff *from)
977 {
978 	return likely(tcp_skb_can_collapse_to(to) &&
979 		      mptcp_skb_can_collapse(to, from));
980 }
981 
982 /* Events passed to congestion control interface */
983 enum tcp_ca_event {
984 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
985 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
986 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
987 	CA_EVENT_LOSS,		/* loss timeout */
988 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
989 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
990 };
991 
992 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
993 enum tcp_ca_ack_event_flags {
994 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
995 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
996 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
997 };
998 
999 /*
1000  * Interface for adding new TCP congestion control handlers
1001  */
1002 #define TCP_CA_NAME_MAX	16
1003 #define TCP_CA_MAX	128
1004 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1005 
1006 #define TCP_CA_UNSPEC	0
1007 
1008 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1009 #define TCP_CONG_NON_RESTRICTED 0x1
1010 /* Requires ECN/ECT set on all packets */
1011 #define TCP_CONG_NEEDS_ECN	0x2
1012 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1013 
1014 union tcp_cc_info;
1015 
1016 struct ack_sample {
1017 	u32 pkts_acked;
1018 	s32 rtt_us;
1019 	u32 in_flight;
1020 };
1021 
1022 /* A rate sample measures the number of (original/retransmitted) data
1023  * packets delivered "delivered" over an interval of time "interval_us".
1024  * The tcp_rate.c code fills in the rate sample, and congestion
1025  * control modules that define a cong_control function to run at the end
1026  * of ACK processing can optionally chose to consult this sample when
1027  * setting cwnd and pacing rate.
1028  * A sample is invalid if "delivered" or "interval_us" is negative.
1029  */
1030 struct rate_sample {
1031 	u64  prior_mstamp; /* starting timestamp for interval */
1032 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1033 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1034 	s32  delivered;		/* number of packets delivered over interval */
1035 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1036 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1037 	u32 snd_interval_us;	/* snd interval for delivered packets */
1038 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1039 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1040 	int  losses;		/* number of packets marked lost upon ACK */
1041 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1042 	u32  prior_in_flight;	/* in flight before this ACK */
1043 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1044 	bool is_retrans;	/* is sample from retransmission? */
1045 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1046 };
1047 
1048 struct tcp_congestion_ops {
1049 /* fast path fields are put first to fill one cache line */
1050 
1051 	/* return slow start threshold (required) */
1052 	u32 (*ssthresh)(struct sock *sk);
1053 
1054 	/* do new cwnd calculation (required) */
1055 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1056 
1057 	/* call before changing ca_state (optional) */
1058 	void (*set_state)(struct sock *sk, u8 new_state);
1059 
1060 	/* call when cwnd event occurs (optional) */
1061 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1062 
1063 	/* call when ack arrives (optional) */
1064 	void (*in_ack_event)(struct sock *sk, u32 flags);
1065 
1066 	/* hook for packet ack accounting (optional) */
1067 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1068 
1069 	/* override sysctl_tcp_min_tso_segs */
1070 	u32 (*min_tso_segs)(struct sock *sk);
1071 
1072 	/* call when packets are delivered to update cwnd and pacing rate,
1073 	 * after all the ca_state processing. (optional)
1074 	 */
1075 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1076 
1077 
1078 	/* new value of cwnd after loss (required) */
1079 	u32  (*undo_cwnd)(struct sock *sk);
1080 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1081 	u32 (*sndbuf_expand)(struct sock *sk);
1082 
1083 /* control/slow paths put last */
1084 	/* get info for inet_diag (optional) */
1085 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1086 			   union tcp_cc_info *info);
1087 
1088 	char 			name[TCP_CA_NAME_MAX];
1089 	struct module		*owner;
1090 	struct list_head	list;
1091 	u32			key;
1092 	u32			flags;
1093 
1094 	/* initialize private data (optional) */
1095 	void (*init)(struct sock *sk);
1096 	/* cleanup private data  (optional) */
1097 	void (*release)(struct sock *sk);
1098 } ____cacheline_aligned_in_smp;
1099 
1100 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1101 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1102 
1103 void tcp_assign_congestion_control(struct sock *sk);
1104 void tcp_init_congestion_control(struct sock *sk);
1105 void tcp_cleanup_congestion_control(struct sock *sk);
1106 int tcp_set_default_congestion_control(struct net *net, const char *name);
1107 void tcp_get_default_congestion_control(struct net *net, char *name);
1108 void tcp_get_available_congestion_control(char *buf, size_t len);
1109 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1110 int tcp_set_allowed_congestion_control(char *allowed);
1111 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1112 			       bool cap_net_admin);
1113 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1114 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1115 
1116 u32 tcp_reno_ssthresh(struct sock *sk);
1117 u32 tcp_reno_undo_cwnd(struct sock *sk);
1118 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1119 extern struct tcp_congestion_ops tcp_reno;
1120 
1121 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1122 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1123 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1124 #ifdef CONFIG_INET
1125 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1126 #else
1127 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1128 {
1129 	return NULL;
1130 }
1131 #endif
1132 
1133 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1134 {
1135 	const struct inet_connection_sock *icsk = inet_csk(sk);
1136 
1137 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1138 }
1139 
1140 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1141 {
1142 	struct inet_connection_sock *icsk = inet_csk(sk);
1143 
1144 	if (icsk->icsk_ca_ops->set_state)
1145 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1146 	icsk->icsk_ca_state = ca_state;
1147 }
1148 
1149 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1150 {
1151 	const struct inet_connection_sock *icsk = inet_csk(sk);
1152 
1153 	if (icsk->icsk_ca_ops->cwnd_event)
1154 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1155 }
1156 
1157 /* From tcp_rate.c */
1158 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1159 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1160 			    struct rate_sample *rs);
1161 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1162 		  bool is_sack_reneg, struct rate_sample *rs);
1163 void tcp_rate_check_app_limited(struct sock *sk);
1164 
1165 /* These functions determine how the current flow behaves in respect of SACK
1166  * handling. SACK is negotiated with the peer, and therefore it can vary
1167  * between different flows.
1168  *
1169  * tcp_is_sack - SACK enabled
1170  * tcp_is_reno - No SACK
1171  */
1172 static inline int tcp_is_sack(const struct tcp_sock *tp)
1173 {
1174 	return likely(tp->rx_opt.sack_ok);
1175 }
1176 
1177 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1178 {
1179 	return !tcp_is_sack(tp);
1180 }
1181 
1182 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1183 {
1184 	return tp->sacked_out + tp->lost_out;
1185 }
1186 
1187 /* This determines how many packets are "in the network" to the best
1188  * of our knowledge.  In many cases it is conservative, but where
1189  * detailed information is available from the receiver (via SACK
1190  * blocks etc.) we can make more aggressive calculations.
1191  *
1192  * Use this for decisions involving congestion control, use just
1193  * tp->packets_out to determine if the send queue is empty or not.
1194  *
1195  * Read this equation as:
1196  *
1197  *	"Packets sent once on transmission queue" MINUS
1198  *	"Packets left network, but not honestly ACKed yet" PLUS
1199  *	"Packets fast retransmitted"
1200  */
1201 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1202 {
1203 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1204 }
1205 
1206 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1207 
1208 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_cwnd < tp->snd_ssthresh;
1211 }
1212 
1213 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1214 {
1215 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1216 }
1217 
1218 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1219 {
1220 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1221 	       (1 << inet_csk(sk)->icsk_ca_state);
1222 }
1223 
1224 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1225  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1226  * ssthresh.
1227  */
1228 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1229 {
1230 	const struct tcp_sock *tp = tcp_sk(sk);
1231 
1232 	if (tcp_in_cwnd_reduction(sk))
1233 		return tp->snd_ssthresh;
1234 	else
1235 		return max(tp->snd_ssthresh,
1236 			   ((tp->snd_cwnd >> 1) +
1237 			    (tp->snd_cwnd >> 2)));
1238 }
1239 
1240 /* Use define here intentionally to get WARN_ON location shown at the caller */
1241 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1242 
1243 void tcp_enter_cwr(struct sock *sk);
1244 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1245 
1246 /* The maximum number of MSS of available cwnd for which TSO defers
1247  * sending if not using sysctl_tcp_tso_win_divisor.
1248  */
1249 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1250 {
1251 	return 3;
1252 }
1253 
1254 /* Returns end sequence number of the receiver's advertised window */
1255 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1256 {
1257 	return tp->snd_una + tp->snd_wnd;
1258 }
1259 
1260 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1261  * flexible approach. The RFC suggests cwnd should not be raised unless
1262  * it was fully used previously. And that's exactly what we do in
1263  * congestion avoidance mode. But in slow start we allow cwnd to grow
1264  * as long as the application has used half the cwnd.
1265  * Example :
1266  *    cwnd is 10 (IW10), but application sends 9 frames.
1267  *    We allow cwnd to reach 18 when all frames are ACKed.
1268  * This check is safe because it's as aggressive as slow start which already
1269  * risks 100% overshoot. The advantage is that we discourage application to
1270  * either send more filler packets or data to artificially blow up the cwnd
1271  * usage, and allow application-limited process to probe bw more aggressively.
1272  */
1273 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1274 {
1275 	const struct tcp_sock *tp = tcp_sk(sk);
1276 
1277 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1278 	if (tcp_in_slow_start(tp))
1279 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1280 
1281 	return tp->is_cwnd_limited;
1282 }
1283 
1284 /* BBR congestion control needs pacing.
1285  * Same remark for SO_MAX_PACING_RATE.
1286  * sch_fq packet scheduler is efficiently handling pacing,
1287  * but is not always installed/used.
1288  * Return true if TCP stack should pace packets itself.
1289  */
1290 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1291 {
1292 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1293 }
1294 
1295 /* Estimates in how many jiffies next packet for this flow can be sent.
1296  * Scheduling a retransmit timer too early would be silly.
1297  */
1298 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1299 {
1300 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1301 
1302 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1303 }
1304 
1305 static inline void tcp_reset_xmit_timer(struct sock *sk,
1306 					const int what,
1307 					unsigned long when,
1308 					const unsigned long max_when)
1309 {
1310 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1311 				  max_when);
1312 }
1313 
1314 /* Something is really bad, we could not queue an additional packet,
1315  * because qdisc is full or receiver sent a 0 window, or we are paced.
1316  * We do not want to add fuel to the fire, or abort too early,
1317  * so make sure the timer we arm now is at least 200ms in the future,
1318  * regardless of current icsk_rto value (as it could be ~2ms)
1319  */
1320 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1321 {
1322 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1323 }
1324 
1325 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1326 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1327 					    unsigned long max_when)
1328 {
1329 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1330 			   inet_csk(sk)->icsk_backoff);
1331 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1332 
1333 	return (unsigned long)min_t(u64, when, max_when);
1334 }
1335 
1336 static inline void tcp_check_probe_timer(struct sock *sk)
1337 {
1338 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1339 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1340 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1341 }
1342 
1343 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1344 {
1345 	tp->snd_wl1 = seq;
1346 }
1347 
1348 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1349 {
1350 	tp->snd_wl1 = seq;
1351 }
1352 
1353 /*
1354  * Calculate(/check) TCP checksum
1355  */
1356 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1357 				   __be32 daddr, __wsum base)
1358 {
1359 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1360 }
1361 
1362 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1363 {
1364 	return !skb_csum_unnecessary(skb) &&
1365 		__skb_checksum_complete(skb);
1366 }
1367 
1368 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1369 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1370 void tcp_set_state(struct sock *sk, int state);
1371 void tcp_done(struct sock *sk);
1372 int tcp_abort(struct sock *sk, int err);
1373 
1374 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1375 {
1376 	rx_opt->dsack = 0;
1377 	rx_opt->num_sacks = 0;
1378 }
1379 
1380 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1381 
1382 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1383 {
1384 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1385 	struct tcp_sock *tp = tcp_sk(sk);
1386 	s32 delta;
1387 
1388 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1389 	    ca_ops->cong_control)
1390 		return;
1391 	delta = tcp_jiffies32 - tp->lsndtime;
1392 	if (delta > inet_csk(sk)->icsk_rto)
1393 		tcp_cwnd_restart(sk, delta);
1394 }
1395 
1396 /* Determine a window scaling and initial window to offer. */
1397 void tcp_select_initial_window(const struct sock *sk, int __space,
1398 			       __u32 mss, __u32 *rcv_wnd,
1399 			       __u32 *window_clamp, int wscale_ok,
1400 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1401 
1402 static inline int tcp_win_from_space(const struct sock *sk, int space)
1403 {
1404 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1405 
1406 	return tcp_adv_win_scale <= 0 ?
1407 		(space>>(-tcp_adv_win_scale)) :
1408 		space - (space>>tcp_adv_win_scale);
1409 }
1410 
1411 /* Note: caller must be prepared to deal with negative returns */
1412 static inline int tcp_space(const struct sock *sk)
1413 {
1414 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1415 				  READ_ONCE(sk->sk_backlog.len) -
1416 				  atomic_read(&sk->sk_rmem_alloc));
1417 }
1418 
1419 static inline int tcp_full_space(const struct sock *sk)
1420 {
1421 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1422 }
1423 
1424 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1425 {
1426 	int unused_mem = sk_unused_reserved_mem(sk);
1427 	struct tcp_sock *tp = tcp_sk(sk);
1428 
1429 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1430 	if (unused_mem)
1431 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1432 					 tcp_win_from_space(sk, unused_mem));
1433 }
1434 
1435 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1436 
1437 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1438  * If 87.5 % (7/8) of the space has been consumed, we want to override
1439  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1440  * len/truesize ratio.
1441  */
1442 static inline bool tcp_rmem_pressure(const struct sock *sk)
1443 {
1444 	int rcvbuf, threshold;
1445 
1446 	if (tcp_under_memory_pressure(sk))
1447 		return true;
1448 
1449 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1450 	threshold = rcvbuf - (rcvbuf >> 3);
1451 
1452 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1453 }
1454 
1455 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1456 {
1457 	const struct tcp_sock *tp = tcp_sk(sk);
1458 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1459 
1460 	if (avail <= 0)
1461 		return false;
1462 
1463 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1464 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1465 }
1466 
1467 extern void tcp_openreq_init_rwin(struct request_sock *req,
1468 				  const struct sock *sk_listener,
1469 				  const struct dst_entry *dst);
1470 
1471 void tcp_enter_memory_pressure(struct sock *sk);
1472 void tcp_leave_memory_pressure(struct sock *sk);
1473 
1474 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1475 {
1476 	struct net *net = sock_net((struct sock *)tp);
1477 
1478 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1479 }
1480 
1481 static inline int keepalive_time_when(const struct tcp_sock *tp)
1482 {
1483 	struct net *net = sock_net((struct sock *)tp);
1484 
1485 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1486 }
1487 
1488 static inline int keepalive_probes(const struct tcp_sock *tp)
1489 {
1490 	struct net *net = sock_net((struct sock *)tp);
1491 
1492 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1493 }
1494 
1495 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1496 {
1497 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1498 
1499 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1500 			  tcp_jiffies32 - tp->rcv_tstamp);
1501 }
1502 
1503 static inline int tcp_fin_time(const struct sock *sk)
1504 {
1505 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1506 	const int rto = inet_csk(sk)->icsk_rto;
1507 
1508 	if (fin_timeout < (rto << 2) - (rto >> 1))
1509 		fin_timeout = (rto << 2) - (rto >> 1);
1510 
1511 	return fin_timeout;
1512 }
1513 
1514 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1515 				  int paws_win)
1516 {
1517 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1518 		return true;
1519 	if (unlikely(!time_before32(ktime_get_seconds(),
1520 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1521 		return true;
1522 	/*
1523 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1524 	 * then following tcp messages have valid values. Ignore 0 value,
1525 	 * or else 'negative' tsval might forbid us to accept their packets.
1526 	 */
1527 	if (!rx_opt->ts_recent)
1528 		return true;
1529 	return false;
1530 }
1531 
1532 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1533 				   int rst)
1534 {
1535 	if (tcp_paws_check(rx_opt, 0))
1536 		return false;
1537 
1538 	/* RST segments are not recommended to carry timestamp,
1539 	   and, if they do, it is recommended to ignore PAWS because
1540 	   "their cleanup function should take precedence over timestamps."
1541 	   Certainly, it is mistake. It is necessary to understand the reasons
1542 	   of this constraint to relax it: if peer reboots, clock may go
1543 	   out-of-sync and half-open connections will not be reset.
1544 	   Actually, the problem would be not existing if all
1545 	   the implementations followed draft about maintaining clock
1546 	   via reboots. Linux-2.2 DOES NOT!
1547 
1548 	   However, we can relax time bounds for RST segments to MSL.
1549 	 */
1550 	if (rst && !time_before32(ktime_get_seconds(),
1551 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1552 		return false;
1553 	return true;
1554 }
1555 
1556 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1557 			  int mib_idx, u32 *last_oow_ack_time);
1558 
1559 static inline void tcp_mib_init(struct net *net)
1560 {
1561 	/* See RFC 2012 */
1562 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1563 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1564 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1565 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1566 }
1567 
1568 /* from STCP */
1569 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1570 {
1571 	tp->lost_skb_hint = NULL;
1572 }
1573 
1574 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1575 {
1576 	tcp_clear_retrans_hints_partial(tp);
1577 	tp->retransmit_skb_hint = NULL;
1578 }
1579 
1580 union tcp_md5_addr {
1581 	struct in_addr  a4;
1582 #if IS_ENABLED(CONFIG_IPV6)
1583 	struct in6_addr	a6;
1584 #endif
1585 };
1586 
1587 /* - key database */
1588 struct tcp_md5sig_key {
1589 	struct hlist_node	node;
1590 	u8			keylen;
1591 	u8			family; /* AF_INET or AF_INET6 */
1592 	u8			prefixlen;
1593 	union tcp_md5_addr	addr;
1594 	int			l3index; /* set if key added with L3 scope */
1595 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1596 	struct rcu_head		rcu;
1597 };
1598 
1599 /* - sock block */
1600 struct tcp_md5sig_info {
1601 	struct hlist_head	head;
1602 	struct rcu_head		rcu;
1603 };
1604 
1605 /* - pseudo header */
1606 struct tcp4_pseudohdr {
1607 	__be32		saddr;
1608 	__be32		daddr;
1609 	__u8		pad;
1610 	__u8		protocol;
1611 	__be16		len;
1612 };
1613 
1614 struct tcp6_pseudohdr {
1615 	struct in6_addr	saddr;
1616 	struct in6_addr daddr;
1617 	__be32		len;
1618 	__be32		protocol;	/* including padding */
1619 };
1620 
1621 union tcp_md5sum_block {
1622 	struct tcp4_pseudohdr ip4;
1623 #if IS_ENABLED(CONFIG_IPV6)
1624 	struct tcp6_pseudohdr ip6;
1625 #endif
1626 };
1627 
1628 /* - pool: digest algorithm, hash description and scratch buffer */
1629 struct tcp_md5sig_pool {
1630 	struct ahash_request	*md5_req;
1631 	void			*scratch;
1632 };
1633 
1634 /* - functions */
1635 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1636 			const struct sock *sk, const struct sk_buff *skb);
1637 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1638 		   int family, u8 prefixlen, int l3index,
1639 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1640 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1641 		   int family, u8 prefixlen, int l3index);
1642 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1643 					 const struct sock *addr_sk);
1644 
1645 #ifdef CONFIG_TCP_MD5SIG
1646 #include <linux/jump_label.h>
1647 extern struct static_key_false tcp_md5_needed;
1648 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1649 					   const union tcp_md5_addr *addr,
1650 					   int family);
1651 static inline struct tcp_md5sig_key *
1652 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1653 		  const union tcp_md5_addr *addr, int family)
1654 {
1655 	if (!static_branch_unlikely(&tcp_md5_needed))
1656 		return NULL;
1657 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1658 }
1659 
1660 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1661 #else
1662 static inline struct tcp_md5sig_key *
1663 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1664 		  const union tcp_md5_addr *addr, int family)
1665 {
1666 	return NULL;
1667 }
1668 #define tcp_twsk_md5_key(twsk)	NULL
1669 #endif
1670 
1671 bool tcp_alloc_md5sig_pool(void);
1672 
1673 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1674 static inline void tcp_put_md5sig_pool(void)
1675 {
1676 	local_bh_enable();
1677 }
1678 
1679 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1680 			  unsigned int header_len);
1681 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1682 		     const struct tcp_md5sig_key *key);
1683 
1684 /* From tcp_fastopen.c */
1685 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1686 			    struct tcp_fastopen_cookie *cookie);
1687 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1688 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1689 			    u16 try_exp);
1690 struct tcp_fastopen_request {
1691 	/* Fast Open cookie. Size 0 means a cookie request */
1692 	struct tcp_fastopen_cookie	cookie;
1693 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1694 	size_t				size;
1695 	int				copied;	/* queued in tcp_connect() */
1696 	struct ubuf_info		*uarg;
1697 };
1698 void tcp_free_fastopen_req(struct tcp_sock *tp);
1699 void tcp_fastopen_destroy_cipher(struct sock *sk);
1700 void tcp_fastopen_ctx_destroy(struct net *net);
1701 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1702 			      void *primary_key, void *backup_key);
1703 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1704 			    u64 *key);
1705 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1706 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1707 			      struct request_sock *req,
1708 			      struct tcp_fastopen_cookie *foc,
1709 			      const struct dst_entry *dst);
1710 void tcp_fastopen_init_key_once(struct net *net);
1711 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1712 			     struct tcp_fastopen_cookie *cookie);
1713 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1714 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1715 #define TCP_FASTOPEN_KEY_MAX 2
1716 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1717 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1718 
1719 /* Fastopen key context */
1720 struct tcp_fastopen_context {
1721 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1722 	int		num;
1723 	struct rcu_head	rcu;
1724 };
1725 
1726 void tcp_fastopen_active_disable(struct sock *sk);
1727 bool tcp_fastopen_active_should_disable(struct sock *sk);
1728 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1729 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1730 
1731 /* Caller needs to wrap with rcu_read_(un)lock() */
1732 static inline
1733 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1734 {
1735 	struct tcp_fastopen_context *ctx;
1736 
1737 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1738 	if (!ctx)
1739 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1740 	return ctx;
1741 }
1742 
1743 static inline
1744 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1745 			       const struct tcp_fastopen_cookie *orig)
1746 {
1747 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1748 	    orig->len == foc->len &&
1749 	    !memcmp(orig->val, foc->val, foc->len))
1750 		return true;
1751 	return false;
1752 }
1753 
1754 static inline
1755 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1756 {
1757 	return ctx->num;
1758 }
1759 
1760 /* Latencies incurred by various limits for a sender. They are
1761  * chronograph-like stats that are mutually exclusive.
1762  */
1763 enum tcp_chrono {
1764 	TCP_CHRONO_UNSPEC,
1765 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1766 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1767 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1768 	__TCP_CHRONO_MAX,
1769 };
1770 
1771 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1772 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1773 
1774 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1775  * the same memory storage than skb->destructor/_skb_refdst
1776  */
1777 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1778 {
1779 	skb->destructor = NULL;
1780 	skb->_skb_refdst = 0UL;
1781 }
1782 
1783 #define tcp_skb_tsorted_save(skb) {		\
1784 	unsigned long _save = skb->_skb_refdst;	\
1785 	skb->_skb_refdst = 0UL;
1786 
1787 #define tcp_skb_tsorted_restore(skb)		\
1788 	skb->_skb_refdst = _save;		\
1789 }
1790 
1791 void tcp_write_queue_purge(struct sock *sk);
1792 
1793 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1794 {
1795 	return skb_rb_first(&sk->tcp_rtx_queue);
1796 }
1797 
1798 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1799 {
1800 	return skb_rb_last(&sk->tcp_rtx_queue);
1801 }
1802 
1803 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1804 {
1805 	return skb_peek(&sk->sk_write_queue);
1806 }
1807 
1808 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1809 {
1810 	return skb_peek_tail(&sk->sk_write_queue);
1811 }
1812 
1813 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1814 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1815 
1816 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1817 {
1818 	return skb_peek(&sk->sk_write_queue);
1819 }
1820 
1821 static inline bool tcp_skb_is_last(const struct sock *sk,
1822 				   const struct sk_buff *skb)
1823 {
1824 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1825 }
1826 
1827 /**
1828  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1829  * @sk: socket
1830  *
1831  * Since the write queue can have a temporary empty skb in it,
1832  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1833  */
1834 static inline bool tcp_write_queue_empty(const struct sock *sk)
1835 {
1836 	const struct tcp_sock *tp = tcp_sk(sk);
1837 
1838 	return tp->write_seq == tp->snd_nxt;
1839 }
1840 
1841 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1842 {
1843 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1844 }
1845 
1846 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1847 {
1848 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1849 }
1850 
1851 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1852 {
1853 	__skb_queue_tail(&sk->sk_write_queue, skb);
1854 
1855 	/* Queue it, remembering where we must start sending. */
1856 	if (sk->sk_write_queue.next == skb)
1857 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1858 }
1859 
1860 /* Insert new before skb on the write queue of sk.  */
1861 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1862 						  struct sk_buff *skb,
1863 						  struct sock *sk)
1864 {
1865 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1866 }
1867 
1868 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1869 {
1870 	tcp_skb_tsorted_anchor_cleanup(skb);
1871 	__skb_unlink(skb, &sk->sk_write_queue);
1872 }
1873 
1874 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1875 
1876 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1877 {
1878 	tcp_skb_tsorted_anchor_cleanup(skb);
1879 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1880 }
1881 
1882 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1883 {
1884 	list_del(&skb->tcp_tsorted_anchor);
1885 	tcp_rtx_queue_unlink(skb, sk);
1886 	sk_wmem_free_skb(sk, skb);
1887 }
1888 
1889 static inline void tcp_push_pending_frames(struct sock *sk)
1890 {
1891 	if (tcp_send_head(sk)) {
1892 		struct tcp_sock *tp = tcp_sk(sk);
1893 
1894 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1895 	}
1896 }
1897 
1898 /* Start sequence of the skb just after the highest skb with SACKed
1899  * bit, valid only if sacked_out > 0 or when the caller has ensured
1900  * validity by itself.
1901  */
1902 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1903 {
1904 	if (!tp->sacked_out)
1905 		return tp->snd_una;
1906 
1907 	if (tp->highest_sack == NULL)
1908 		return tp->snd_nxt;
1909 
1910 	return TCP_SKB_CB(tp->highest_sack)->seq;
1911 }
1912 
1913 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1914 {
1915 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1916 }
1917 
1918 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1919 {
1920 	return tcp_sk(sk)->highest_sack;
1921 }
1922 
1923 static inline void tcp_highest_sack_reset(struct sock *sk)
1924 {
1925 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1926 }
1927 
1928 /* Called when old skb is about to be deleted and replaced by new skb */
1929 static inline void tcp_highest_sack_replace(struct sock *sk,
1930 					    struct sk_buff *old,
1931 					    struct sk_buff *new)
1932 {
1933 	if (old == tcp_highest_sack(sk))
1934 		tcp_sk(sk)->highest_sack = new;
1935 }
1936 
1937 /* This helper checks if socket has IP_TRANSPARENT set */
1938 static inline bool inet_sk_transparent(const struct sock *sk)
1939 {
1940 	switch (sk->sk_state) {
1941 	case TCP_TIME_WAIT:
1942 		return inet_twsk(sk)->tw_transparent;
1943 	case TCP_NEW_SYN_RECV:
1944 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1945 	}
1946 	return inet_sk(sk)->transparent;
1947 }
1948 
1949 /* Determines whether this is a thin stream (which may suffer from
1950  * increased latency). Used to trigger latency-reducing mechanisms.
1951  */
1952 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1953 {
1954 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1955 }
1956 
1957 /* /proc */
1958 enum tcp_seq_states {
1959 	TCP_SEQ_STATE_LISTENING,
1960 	TCP_SEQ_STATE_ESTABLISHED,
1961 };
1962 
1963 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1964 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1965 void tcp_seq_stop(struct seq_file *seq, void *v);
1966 
1967 struct tcp_seq_afinfo {
1968 	sa_family_t			family;
1969 };
1970 
1971 struct tcp_iter_state {
1972 	struct seq_net_private	p;
1973 	enum tcp_seq_states	state;
1974 	struct sock		*syn_wait_sk;
1975 	int			bucket, offset, sbucket, num;
1976 	loff_t			last_pos;
1977 };
1978 
1979 extern struct request_sock_ops tcp_request_sock_ops;
1980 extern struct request_sock_ops tcp6_request_sock_ops;
1981 
1982 void tcp_v4_destroy_sock(struct sock *sk);
1983 
1984 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1985 				netdev_features_t features);
1986 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1987 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1988 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1989 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1990 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1991 int tcp_gro_complete(struct sk_buff *skb);
1992 
1993 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1994 
1995 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1996 {
1997 	struct net *net = sock_net((struct sock *)tp);
1998 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1999 }
2000 
2001 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2002 
2003 #ifdef CONFIG_PROC_FS
2004 int tcp4_proc_init(void);
2005 void tcp4_proc_exit(void);
2006 #endif
2007 
2008 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2009 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2010 		     const struct tcp_request_sock_ops *af_ops,
2011 		     struct sock *sk, struct sk_buff *skb);
2012 
2013 /* TCP af-specific functions */
2014 struct tcp_sock_af_ops {
2015 #ifdef CONFIG_TCP_MD5SIG
2016 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2017 						const struct sock *addr_sk);
2018 	int		(*calc_md5_hash)(char *location,
2019 					 const struct tcp_md5sig_key *md5,
2020 					 const struct sock *sk,
2021 					 const struct sk_buff *skb);
2022 	int		(*md5_parse)(struct sock *sk,
2023 				     int optname,
2024 				     sockptr_t optval,
2025 				     int optlen);
2026 #endif
2027 };
2028 
2029 struct tcp_request_sock_ops {
2030 	u16 mss_clamp;
2031 #ifdef CONFIG_TCP_MD5SIG
2032 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2033 						 const struct sock *addr_sk);
2034 	int		(*calc_md5_hash) (char *location,
2035 					  const struct tcp_md5sig_key *md5,
2036 					  const struct sock *sk,
2037 					  const struct sk_buff *skb);
2038 #endif
2039 #ifdef CONFIG_SYN_COOKIES
2040 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2041 				 __u16 *mss);
2042 #endif
2043 	struct dst_entry *(*route_req)(const struct sock *sk,
2044 				       struct sk_buff *skb,
2045 				       struct flowi *fl,
2046 				       struct request_sock *req);
2047 	u32 (*init_seq)(const struct sk_buff *skb);
2048 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2049 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2050 			   struct flowi *fl, struct request_sock *req,
2051 			   struct tcp_fastopen_cookie *foc,
2052 			   enum tcp_synack_type synack_type,
2053 			   struct sk_buff *syn_skb);
2054 };
2055 
2056 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2057 #if IS_ENABLED(CONFIG_IPV6)
2058 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2059 #endif
2060 
2061 #ifdef CONFIG_SYN_COOKIES
2062 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2063 					 const struct sock *sk, struct sk_buff *skb,
2064 					 __u16 *mss)
2065 {
2066 	tcp_synq_overflow(sk);
2067 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2068 	return ops->cookie_init_seq(skb, mss);
2069 }
2070 #else
2071 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2072 					 const struct sock *sk, struct sk_buff *skb,
2073 					 __u16 *mss)
2074 {
2075 	return 0;
2076 }
2077 #endif
2078 
2079 int tcpv4_offload_init(void);
2080 
2081 void tcp_v4_init(void);
2082 void tcp_init(void);
2083 
2084 /* tcp_recovery.c */
2085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2086 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2087 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2088 				u32 reo_wnd);
2089 extern bool tcp_rack_mark_lost(struct sock *sk);
2090 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2091 			     u64 xmit_time);
2092 extern void tcp_rack_reo_timeout(struct sock *sk);
2093 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2094 
2095 /* At how many usecs into the future should the RTO fire? */
2096 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2097 {
2098 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2099 	u32 rto = inet_csk(sk)->icsk_rto;
2100 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2101 
2102 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2103 }
2104 
2105 /*
2106  * Save and compile IPv4 options, return a pointer to it
2107  */
2108 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2109 							 struct sk_buff *skb)
2110 {
2111 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2112 	struct ip_options_rcu *dopt = NULL;
2113 
2114 	if (opt->optlen) {
2115 		int opt_size = sizeof(*dopt) + opt->optlen;
2116 
2117 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2118 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2119 			kfree(dopt);
2120 			dopt = NULL;
2121 		}
2122 	}
2123 	return dopt;
2124 }
2125 
2126 /* locally generated TCP pure ACKs have skb->truesize == 2
2127  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2128  * This is much faster than dissecting the packet to find out.
2129  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2130  */
2131 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2132 {
2133 	return skb->truesize == 2;
2134 }
2135 
2136 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2137 {
2138 	skb->truesize = 2;
2139 }
2140 
2141 static inline int tcp_inq(struct sock *sk)
2142 {
2143 	struct tcp_sock *tp = tcp_sk(sk);
2144 	int answ;
2145 
2146 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2147 		answ = 0;
2148 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2149 		   !tp->urg_data ||
2150 		   before(tp->urg_seq, tp->copied_seq) ||
2151 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2152 
2153 		answ = tp->rcv_nxt - tp->copied_seq;
2154 
2155 		/* Subtract 1, if FIN was received */
2156 		if (answ && sock_flag(sk, SOCK_DONE))
2157 			answ--;
2158 	} else {
2159 		answ = tp->urg_seq - tp->copied_seq;
2160 	}
2161 
2162 	return answ;
2163 }
2164 
2165 int tcp_peek_len(struct socket *sock);
2166 
2167 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2168 {
2169 	u16 segs_in;
2170 
2171 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2172 	tp->segs_in += segs_in;
2173 	if (skb->len > tcp_hdrlen(skb))
2174 		tp->data_segs_in += segs_in;
2175 }
2176 
2177 /*
2178  * TCP listen path runs lockless.
2179  * We forced "struct sock" to be const qualified to make sure
2180  * we don't modify one of its field by mistake.
2181  * Here, we increment sk_drops which is an atomic_t, so we can safely
2182  * make sock writable again.
2183  */
2184 static inline void tcp_listendrop(const struct sock *sk)
2185 {
2186 	atomic_inc(&((struct sock *)sk)->sk_drops);
2187 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2188 }
2189 
2190 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2191 
2192 /*
2193  * Interface for adding Upper Level Protocols over TCP
2194  */
2195 
2196 #define TCP_ULP_NAME_MAX	16
2197 #define TCP_ULP_MAX		128
2198 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2199 
2200 struct tcp_ulp_ops {
2201 	struct list_head	list;
2202 
2203 	/* initialize ulp */
2204 	int (*init)(struct sock *sk);
2205 	/* update ulp */
2206 	void (*update)(struct sock *sk, struct proto *p,
2207 		       void (*write_space)(struct sock *sk));
2208 	/* cleanup ulp */
2209 	void (*release)(struct sock *sk);
2210 	/* diagnostic */
2211 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2212 	size_t (*get_info_size)(const struct sock *sk);
2213 	/* clone ulp */
2214 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2215 		      const gfp_t priority);
2216 
2217 	char		name[TCP_ULP_NAME_MAX];
2218 	struct module	*owner;
2219 };
2220 int tcp_register_ulp(struct tcp_ulp_ops *type);
2221 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2222 int tcp_set_ulp(struct sock *sk, const char *name);
2223 void tcp_get_available_ulp(char *buf, size_t len);
2224 void tcp_cleanup_ulp(struct sock *sk);
2225 void tcp_update_ulp(struct sock *sk, struct proto *p,
2226 		    void (*write_space)(struct sock *sk));
2227 
2228 #define MODULE_ALIAS_TCP_ULP(name)				\
2229 	__MODULE_INFO(alias, alias_userspace, name);		\
2230 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2231 
2232 #ifdef CONFIG_NET_SOCK_MSG
2233 struct sk_msg;
2234 struct sk_psock;
2235 
2236 #ifdef CONFIG_BPF_SYSCALL
2237 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2238 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2239 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2240 #endif /* CONFIG_BPF_SYSCALL */
2241 
2242 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2243 			  int flags);
2244 #endif /* CONFIG_NET_SOCK_MSG */
2245 
2246 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2247 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2248 {
2249 }
2250 #endif
2251 
2252 #ifdef CONFIG_CGROUP_BPF
2253 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2254 				      struct sk_buff *skb,
2255 				      unsigned int end_offset)
2256 {
2257 	skops->skb = skb;
2258 	skops->skb_data_end = skb->data + end_offset;
2259 }
2260 #else
2261 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2262 				      struct sk_buff *skb,
2263 				      unsigned int end_offset)
2264 {
2265 }
2266 #endif
2267 
2268 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2269  * is < 0, then the BPF op failed (for example if the loaded BPF
2270  * program does not support the chosen operation or there is no BPF
2271  * program loaded).
2272  */
2273 #ifdef CONFIG_BPF
2274 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2275 {
2276 	struct bpf_sock_ops_kern sock_ops;
2277 	int ret;
2278 
2279 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2280 	if (sk_fullsock(sk)) {
2281 		sock_ops.is_fullsock = 1;
2282 		sock_owned_by_me(sk);
2283 	}
2284 
2285 	sock_ops.sk = sk;
2286 	sock_ops.op = op;
2287 	if (nargs > 0)
2288 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2289 
2290 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2291 	if (ret == 0)
2292 		ret = sock_ops.reply;
2293 	else
2294 		ret = -1;
2295 	return ret;
2296 }
2297 
2298 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2299 {
2300 	u32 args[2] = {arg1, arg2};
2301 
2302 	return tcp_call_bpf(sk, op, 2, args);
2303 }
2304 
2305 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2306 				    u32 arg3)
2307 {
2308 	u32 args[3] = {arg1, arg2, arg3};
2309 
2310 	return tcp_call_bpf(sk, op, 3, args);
2311 }
2312 
2313 #else
2314 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2315 {
2316 	return -EPERM;
2317 }
2318 
2319 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2320 {
2321 	return -EPERM;
2322 }
2323 
2324 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2325 				    u32 arg3)
2326 {
2327 	return -EPERM;
2328 }
2329 
2330 #endif
2331 
2332 static inline u32 tcp_timeout_init(struct sock *sk)
2333 {
2334 	int timeout;
2335 
2336 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2337 
2338 	if (timeout <= 0)
2339 		timeout = TCP_TIMEOUT_INIT;
2340 	return timeout;
2341 }
2342 
2343 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2344 {
2345 	int rwnd;
2346 
2347 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2348 
2349 	if (rwnd < 0)
2350 		rwnd = 0;
2351 	return rwnd;
2352 }
2353 
2354 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2355 {
2356 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2357 }
2358 
2359 static inline void tcp_bpf_rtt(struct sock *sk)
2360 {
2361 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2362 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2363 }
2364 
2365 #if IS_ENABLED(CONFIG_SMC)
2366 extern struct static_key_false tcp_have_smc;
2367 #endif
2368 
2369 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2370 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2371 			     void (*cad)(struct sock *sk, u32 ack_seq));
2372 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2373 void clean_acked_data_flush(void);
2374 #endif
2375 
2376 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2377 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2378 				    const struct tcp_sock *tp)
2379 {
2380 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2381 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2382 }
2383 
2384 /* Compute Earliest Departure Time for some control packets
2385  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2386  */
2387 static inline u64 tcp_transmit_time(const struct sock *sk)
2388 {
2389 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2390 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2391 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2392 
2393 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2394 	}
2395 	return 0;
2396 }
2397 
2398 #endif	/* _TCP_H */
2399