xref: /openbmc/linux/include/net/tcp.h (revision e1f7c9ee)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 #include <linux/ktime.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		512
69 
70 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
71 #define TCP_FASTRETRANS_THRESH 3
72 
73 /* Maximal reordering. */
74 #define TCP_MAX_REORDERING	127
75 
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS	16U
78 
79 /* urg_data states */
80 #define TCP_URG_VALID	0x0100
81 #define TCP_URG_NOTYET	0x0200
82 #define TCP_URG_READ	0x0400
83 
84 #define TCP_RETR1	3	/*
85 				 * This is how many retries it does before it
86 				 * tries to figure out if the gateway is
87 				 * down. Minimal RFC value is 3; it corresponds
88 				 * to ~3sec-8min depending on RTO.
89 				 */
90 
91 #define TCP_RETR2	15	/*
92 				 * This should take at least
93 				 * 90 minutes to time out.
94 				 * RFC1122 says that the limit is 100 sec.
95 				 * 15 is ~13-30min depending on RTO.
96 				 */
97 
98 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
99 				 * when active opening a connection.
100 				 * RFC1122 says the minimum retry MUST
101 				 * be at least 180secs.  Nevertheless
102 				 * this value is corresponding to
103 				 * 63secs of retransmission with the
104 				 * current initial RTO.
105 				 */
106 
107 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
108 				 * when passive opening a connection.
109 				 * This is corresponding to 31secs of
110 				 * retransmission with the current
111 				 * initial RTO.
112 				 */
113 
114 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
115 				  * state, about 60 seconds	*/
116 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
117                                  /* BSD style FIN_WAIT2 deadlock breaker.
118 				  * It used to be 3min, new value is 60sec,
119 				  * to combine FIN-WAIT-2 timeout with
120 				  * TIME-WAIT timer.
121 				  */
122 
123 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
124 #if HZ >= 100
125 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
126 #define TCP_ATO_MIN	((unsigned)(HZ/25))
127 #else
128 #define TCP_DELACK_MIN	4U
129 #define TCP_ATO_MIN	4U
130 #endif
131 #define TCP_RTO_MAX	((unsigned)(120*HZ))
132 #define TCP_RTO_MIN	((unsigned)(HZ/5))
133 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
134 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
135 						 * used as a fallback RTO for the
136 						 * initial data transmission if no
137 						 * valid RTT sample has been acquired,
138 						 * most likely due to retrans in 3WHS.
139 						 */
140 
141 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
142 					                 * for local resources.
143 					                 */
144 
145 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
146 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
147 #define TCP_KEEPALIVE_INTVL	(75*HZ)
148 
149 #define MAX_TCP_KEEPIDLE	32767
150 #define MAX_TCP_KEEPINTVL	32767
151 #define MAX_TCP_KEEPCNT		127
152 #define MAX_TCP_SYNCNT		127
153 
154 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
155 
156 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
157 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
158 					 * after this time. It should be equal
159 					 * (or greater than) TCP_TIMEWAIT_LEN
160 					 * to provide reliability equal to one
161 					 * provided by timewait state.
162 					 */
163 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
164 					 * timestamps. It must be less than
165 					 * minimal timewait lifetime.
166 					 */
167 /*
168  *	TCP option
169  */
170 
171 #define TCPOPT_NOP		1	/* Padding */
172 #define TCPOPT_EOL		0	/* End of options */
173 #define TCPOPT_MSS		2	/* Segment size negotiating */
174 #define TCPOPT_WINDOW		3	/* Window scaling */
175 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
176 #define TCPOPT_SACK             5       /* SACK Block */
177 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
178 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
179 #define TCPOPT_EXP		254	/* Experimental */
180 /* Magic number to be after the option value for sharing TCP
181  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
182  */
183 #define TCPOPT_FASTOPEN_MAGIC	0xF989
184 
185 /*
186  *     TCP option lengths
187  */
188 
189 #define TCPOLEN_MSS            4
190 #define TCPOLEN_WINDOW         3
191 #define TCPOLEN_SACK_PERM      2
192 #define TCPOLEN_TIMESTAMP      10
193 #define TCPOLEN_MD5SIG         18
194 #define TCPOLEN_EXP_FASTOPEN_BASE  4
195 
196 /* But this is what stacks really send out. */
197 #define TCPOLEN_TSTAMP_ALIGNED		12
198 #define TCPOLEN_WSCALE_ALIGNED		4
199 #define TCPOLEN_SACKPERM_ALIGNED	4
200 #define TCPOLEN_SACK_BASE		2
201 #define TCPOLEN_SACK_BASE_ALIGNED	4
202 #define TCPOLEN_SACK_PERBLOCK		8
203 #define TCPOLEN_MD5SIG_ALIGNED		20
204 #define TCPOLEN_MSS_ALIGNED		4
205 
206 /* Flags in tp->nonagle */
207 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
208 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
209 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
210 
211 /* TCP thin-stream limits */
212 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
213 
214 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
215 #define TCP_INIT_CWND		10
216 
217 /* Bit Flags for sysctl_tcp_fastopen */
218 #define	TFO_CLIENT_ENABLE	1
219 #define	TFO_SERVER_ENABLE	2
220 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
221 
222 /* Accept SYN data w/o any cookie option */
223 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
224 
225 /* Force enable TFO on all listeners, i.e., not requiring the
226  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
227  */
228 #define	TFO_SERVER_WO_SOCKOPT1	0x400
229 #define	TFO_SERVER_WO_SOCKOPT2	0x800
230 
231 extern struct inet_timewait_death_row tcp_death_row;
232 
233 /* sysctl variables for tcp */
234 extern int sysctl_tcp_timestamps;
235 extern int sysctl_tcp_window_scaling;
236 extern int sysctl_tcp_sack;
237 extern int sysctl_tcp_fin_timeout;
238 extern int sysctl_tcp_keepalive_time;
239 extern int sysctl_tcp_keepalive_probes;
240 extern int sysctl_tcp_keepalive_intvl;
241 extern int sysctl_tcp_syn_retries;
242 extern int sysctl_tcp_synack_retries;
243 extern int sysctl_tcp_retries1;
244 extern int sysctl_tcp_retries2;
245 extern int sysctl_tcp_orphan_retries;
246 extern int sysctl_tcp_syncookies;
247 extern int sysctl_tcp_fastopen;
248 extern int sysctl_tcp_retrans_collapse;
249 extern int sysctl_tcp_stdurg;
250 extern int sysctl_tcp_rfc1337;
251 extern int sysctl_tcp_abort_on_overflow;
252 extern int sysctl_tcp_max_orphans;
253 extern int sysctl_tcp_fack;
254 extern int sysctl_tcp_reordering;
255 extern int sysctl_tcp_dsack;
256 extern long sysctl_tcp_mem[3];
257 extern int sysctl_tcp_wmem[3];
258 extern int sysctl_tcp_rmem[3];
259 extern int sysctl_tcp_app_win;
260 extern int sysctl_tcp_adv_win_scale;
261 extern int sysctl_tcp_tw_reuse;
262 extern int sysctl_tcp_frto;
263 extern int sysctl_tcp_low_latency;
264 extern int sysctl_tcp_nometrics_save;
265 extern int sysctl_tcp_moderate_rcvbuf;
266 extern int sysctl_tcp_tso_win_divisor;
267 extern int sysctl_tcp_mtu_probing;
268 extern int sysctl_tcp_base_mss;
269 extern int sysctl_tcp_workaround_signed_windows;
270 extern int sysctl_tcp_slow_start_after_idle;
271 extern int sysctl_tcp_thin_linear_timeouts;
272 extern int sysctl_tcp_thin_dupack;
273 extern int sysctl_tcp_early_retrans;
274 extern int sysctl_tcp_limit_output_bytes;
275 extern int sysctl_tcp_challenge_ack_limit;
276 extern unsigned int sysctl_tcp_notsent_lowat;
277 extern int sysctl_tcp_min_tso_segs;
278 extern int sysctl_tcp_autocorking;
279 
280 extern atomic_long_t tcp_memory_allocated;
281 extern struct percpu_counter tcp_sockets_allocated;
282 extern int tcp_memory_pressure;
283 
284 /*
285  * The next routines deal with comparing 32 bit unsigned ints
286  * and worry about wraparound (automatic with unsigned arithmetic).
287  */
288 
289 static inline bool before(__u32 seq1, __u32 seq2)
290 {
291         return (__s32)(seq1-seq2) < 0;
292 }
293 #define after(seq2, seq1) 	before(seq1, seq2)
294 
295 /* is s2<=s1<=s3 ? */
296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
297 {
298 	return seq3 - seq2 >= seq1 - seq2;
299 }
300 
301 static inline bool tcp_out_of_memory(struct sock *sk)
302 {
303 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
304 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
305 		return true;
306 	return false;
307 }
308 
309 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
310 {
311 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
312 	int orphans = percpu_counter_read_positive(ocp);
313 
314 	if (orphans << shift > sysctl_tcp_max_orphans) {
315 		orphans = percpu_counter_sum_positive(ocp);
316 		if (orphans << shift > sysctl_tcp_max_orphans)
317 			return true;
318 	}
319 	return false;
320 }
321 
322 bool tcp_check_oom(struct sock *sk, int shift);
323 
324 /* syncookies: remember time of last synqueue overflow */
325 static inline void tcp_synq_overflow(struct sock *sk)
326 {
327 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
328 }
329 
330 /* syncookies: no recent synqueue overflow on this listening socket? */
331 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
332 {
333 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
334 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
335 }
336 
337 extern struct proto tcp_prot;
338 
339 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
341 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
343 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
344 
345 void tcp_tasklet_init(void);
346 
347 void tcp_v4_err(struct sk_buff *skb, u32);
348 
349 void tcp_shutdown(struct sock *sk, int how);
350 
351 void tcp_v4_early_demux(struct sk_buff *skb);
352 int tcp_v4_rcv(struct sk_buff *skb);
353 
354 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
355 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
356 		size_t size);
357 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
358 		 int flags);
359 void tcp_release_cb(struct sock *sk);
360 void tcp_wfree(struct sk_buff *skb);
361 void tcp_write_timer_handler(struct sock *sk);
362 void tcp_delack_timer_handler(struct sock *sk);
363 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
364 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
365 			  const struct tcphdr *th, unsigned int len);
366 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
367 			 const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_space_adjust(struct sock *sk);
369 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
370 void tcp_twsk_destructor(struct sock *sk);
371 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
372 			struct pipe_inode_info *pipe, size_t len,
373 			unsigned int flags);
374 
375 static inline void tcp_dec_quickack_mode(struct sock *sk,
376 					 const unsigned int pkts)
377 {
378 	struct inet_connection_sock *icsk = inet_csk(sk);
379 
380 	if (icsk->icsk_ack.quick) {
381 		if (pkts >= icsk->icsk_ack.quick) {
382 			icsk->icsk_ack.quick = 0;
383 			/* Leaving quickack mode we deflate ATO. */
384 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
385 		} else
386 			icsk->icsk_ack.quick -= pkts;
387 	}
388 }
389 
390 #define	TCP_ECN_OK		1
391 #define	TCP_ECN_QUEUE_CWR	2
392 #define	TCP_ECN_DEMAND_CWR	4
393 #define	TCP_ECN_SEEN		8
394 
395 enum tcp_tw_status {
396 	TCP_TW_SUCCESS = 0,
397 	TCP_TW_RST = 1,
398 	TCP_TW_ACK = 2,
399 	TCP_TW_SYN = 3
400 };
401 
402 
403 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
404 					      struct sk_buff *skb,
405 					      const struct tcphdr *th);
406 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
407 			   struct request_sock *req, struct request_sock **prev,
408 			   bool fastopen);
409 int tcp_child_process(struct sock *parent, struct sock *child,
410 		      struct sk_buff *skb);
411 void tcp_enter_loss(struct sock *sk);
412 void tcp_clear_retrans(struct tcp_sock *tp);
413 void tcp_update_metrics(struct sock *sk);
414 void tcp_init_metrics(struct sock *sk);
415 void tcp_metrics_init(void);
416 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
417 			bool paws_check, bool timestamps);
418 bool tcp_remember_stamp(struct sock *sk);
419 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
420 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 void tcp_disable_fack(struct tcp_sock *tp);
422 void tcp_close(struct sock *sk, long timeout);
423 void tcp_init_sock(struct sock *sk);
424 unsigned int tcp_poll(struct file *file, struct socket *sock,
425 		      struct poll_table_struct *wait);
426 int tcp_getsockopt(struct sock *sk, int level, int optname,
427 		   char __user *optval, int __user *optlen);
428 int tcp_setsockopt(struct sock *sk, int level, int optname,
429 		   char __user *optval, unsigned int optlen);
430 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 			  char __user *optval, int __user *optlen);
432 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 			  char __user *optval, unsigned int optlen);
434 void tcp_set_keepalive(struct sock *sk, int val);
435 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 		size_t len, int nonblock, int flags, int *addr_len);
438 void tcp_parse_options(const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
454 				  struct request_sock *req,
455 				  struct dst_entry *dst);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc);
462 int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467 
468 /* From syncookies.c */
469 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
470 		      u32 cookie);
471 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
472 #ifdef CONFIG_SYN_COOKIES
473 
474 /* Syncookies use a monotonic timer which increments every 60 seconds.
475  * This counter is used both as a hash input and partially encoded into
476  * the cookie value.  A cookie is only validated further if the delta
477  * between the current counter value and the encoded one is less than this,
478  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
479  * the counter advances immediately after a cookie is generated).
480  */
481 #define MAX_SYNCOOKIE_AGE 2
482 
483 static inline u32 tcp_cookie_time(void)
484 {
485 	u64 val = get_jiffies_64();
486 
487 	do_div(val, 60 * HZ);
488 	return val;
489 }
490 
491 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
492 			      u16 *mssp);
493 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
494 			      __u16 *mss);
495 #endif
496 
497 __u32 cookie_init_timestamp(struct request_sock *req);
498 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
499 			    bool *ecn_ok);
500 
501 /* From net/ipv6/syncookies.c */
502 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
503 		      u32 cookie);
504 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
505 #ifdef CONFIG_SYN_COOKIES
506 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
507 			      const struct tcphdr *th, u16 *mssp);
508 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
509 			      __u16 *mss);
510 #endif
511 /* tcp_output.c */
512 
513 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
514 			       int nonagle);
515 bool tcp_may_send_now(struct sock *sk);
516 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
517 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
518 void tcp_retransmit_timer(struct sock *sk);
519 void tcp_xmit_retransmit_queue(struct sock *);
520 void tcp_simple_retransmit(struct sock *);
521 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
522 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
523 
524 void tcp_send_probe0(struct sock *);
525 void tcp_send_partial(struct sock *);
526 int tcp_write_wakeup(struct sock *);
527 void tcp_send_fin(struct sock *sk);
528 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
529 int tcp_send_synack(struct sock *);
530 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
531 			  const char *proto);
532 void tcp_push_one(struct sock *, unsigned int mss_now);
533 void tcp_send_ack(struct sock *sk);
534 void tcp_send_delayed_ack(struct sock *sk);
535 void tcp_send_loss_probe(struct sock *sk);
536 bool tcp_schedule_loss_probe(struct sock *sk);
537 
538 /* tcp_input.c */
539 void tcp_resume_early_retransmit(struct sock *sk);
540 void tcp_rearm_rto(struct sock *sk);
541 void tcp_reset(struct sock *sk);
542 
543 /* tcp_timer.c */
544 void tcp_init_xmit_timers(struct sock *);
545 static inline void tcp_clear_xmit_timers(struct sock *sk)
546 {
547 	inet_csk_clear_xmit_timers(sk);
548 }
549 
550 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
551 unsigned int tcp_current_mss(struct sock *sk);
552 
553 /* Bound MSS / TSO packet size with the half of the window */
554 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
555 {
556 	int cutoff;
557 
558 	/* When peer uses tiny windows, there is no use in packetizing
559 	 * to sub-MSS pieces for the sake of SWS or making sure there
560 	 * are enough packets in the pipe for fast recovery.
561 	 *
562 	 * On the other hand, for extremely large MSS devices, handling
563 	 * smaller than MSS windows in this way does make sense.
564 	 */
565 	if (tp->max_window >= 512)
566 		cutoff = (tp->max_window >> 1);
567 	else
568 		cutoff = tp->max_window;
569 
570 	if (cutoff && pktsize > cutoff)
571 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
572 	else
573 		return pktsize;
574 }
575 
576 /* tcp.c */
577 void tcp_get_info(const struct sock *, struct tcp_info *);
578 
579 /* Read 'sendfile()'-style from a TCP socket */
580 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
581 				unsigned int, size_t);
582 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
583 		  sk_read_actor_t recv_actor);
584 
585 void tcp_initialize_rcv_mss(struct sock *sk);
586 
587 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
588 int tcp_mss_to_mtu(struct sock *sk, int mss);
589 void tcp_mtup_init(struct sock *sk);
590 void tcp_init_buffer_space(struct sock *sk);
591 
592 static inline void tcp_bound_rto(const struct sock *sk)
593 {
594 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
595 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
596 }
597 
598 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
599 {
600 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
601 }
602 
603 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
604 {
605 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
606 			       ntohl(TCP_FLAG_ACK) |
607 			       snd_wnd);
608 }
609 
610 static inline void tcp_fast_path_on(struct tcp_sock *tp)
611 {
612 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
613 }
614 
615 static inline void tcp_fast_path_check(struct sock *sk)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 
619 	if (skb_queue_empty(&tp->out_of_order_queue) &&
620 	    tp->rcv_wnd &&
621 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
622 	    !tp->urg_data)
623 		tcp_fast_path_on(tp);
624 }
625 
626 /* Compute the actual rto_min value */
627 static inline u32 tcp_rto_min(struct sock *sk)
628 {
629 	const struct dst_entry *dst = __sk_dst_get(sk);
630 	u32 rto_min = TCP_RTO_MIN;
631 
632 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
633 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
634 	return rto_min;
635 }
636 
637 static inline u32 tcp_rto_min_us(struct sock *sk)
638 {
639 	return jiffies_to_usecs(tcp_rto_min(sk));
640 }
641 
642 /* Compute the actual receive window we are currently advertising.
643  * Rcv_nxt can be after the window if our peer push more data
644  * than the offered window.
645  */
646 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
647 {
648 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
649 
650 	if (win < 0)
651 		win = 0;
652 	return (u32) win;
653 }
654 
655 /* Choose a new window, without checks for shrinking, and without
656  * scaling applied to the result.  The caller does these things
657  * if necessary.  This is a "raw" window selection.
658  */
659 u32 __tcp_select_window(struct sock *sk);
660 
661 void tcp_send_window_probe(struct sock *sk);
662 
663 /* TCP timestamps are only 32-bits, this causes a slight
664  * complication on 64-bit systems since we store a snapshot
665  * of jiffies in the buffer control blocks below.  We decided
666  * to use only the low 32-bits of jiffies and hide the ugly
667  * casts with the following macro.
668  */
669 #define tcp_time_stamp		((__u32)(jiffies))
670 
671 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
672 {
673 	return skb->skb_mstamp.stamp_jiffies;
674 }
675 
676 
677 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
678 
679 #define TCPHDR_FIN 0x01
680 #define TCPHDR_SYN 0x02
681 #define TCPHDR_RST 0x04
682 #define TCPHDR_PSH 0x08
683 #define TCPHDR_ACK 0x10
684 #define TCPHDR_URG 0x20
685 #define TCPHDR_ECE 0x40
686 #define TCPHDR_CWR 0x80
687 
688 /* This is what the send packet queuing engine uses to pass
689  * TCP per-packet control information to the transmission code.
690  * We also store the host-order sequence numbers in here too.
691  * This is 44 bytes if IPV6 is enabled.
692  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
693  */
694 struct tcp_skb_cb {
695 	__u32		seq;		/* Starting sequence number	*/
696 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
697 	union {
698 		/* Note : tcp_tw_isn is used in input path only
699 		 *	  (isn chosen by tcp_timewait_state_process())
700 		 *
701 		 * 	  tcp_gso_segs is used in write queue only,
702 		 *	  cf tcp_skb_pcount()
703 		 */
704 		__u32		tcp_tw_isn;
705 		__u32		tcp_gso_segs;
706 	};
707 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
708 
709 	__u8		sacked;		/* State flags for SACK/FACK.	*/
710 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
711 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
712 #define TCPCB_LOST		0x04	/* SKB is lost			*/
713 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
714 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
715 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
716 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
717 				TCPCB_REPAIRED)
718 
719 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
720 	/* 1 byte hole */
721 	__u32		ack_seq;	/* Sequence number ACK'd	*/
722 	union {
723 		struct inet_skb_parm	h4;
724 #if IS_ENABLED(CONFIG_IPV6)
725 		struct inet6_skb_parm	h6;
726 #endif
727 	} header;	/* For incoming frames		*/
728 };
729 
730 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
731 
732 
733 #if IS_ENABLED(CONFIG_IPV6)
734 /* This is the variant of inet6_iif() that must be used by TCP,
735  * as TCP moves IP6CB into a different location in skb->cb[]
736  */
737 static inline int tcp_v6_iif(const struct sk_buff *skb)
738 {
739 	return TCP_SKB_CB(skb)->header.h6.iif;
740 }
741 #endif
742 
743 /* Due to TSO, an SKB can be composed of multiple actual
744  * packets.  To keep these tracked properly, we use this.
745  */
746 static inline int tcp_skb_pcount(const struct sk_buff *skb)
747 {
748 	return TCP_SKB_CB(skb)->tcp_gso_segs;
749 }
750 
751 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
752 {
753 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
754 }
755 
756 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
757 {
758 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
759 }
760 
761 /* This is valid iff tcp_skb_pcount() > 1. */
762 static inline int tcp_skb_mss(const struct sk_buff *skb)
763 {
764 	return skb_shinfo(skb)->gso_size;
765 }
766 
767 /* Events passed to congestion control interface */
768 enum tcp_ca_event {
769 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
770 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
771 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
772 	CA_EVENT_LOSS,		/* loss timeout */
773 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
774 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
775 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
776 	CA_EVENT_NON_DELAYED_ACK,
777 };
778 
779 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
780 enum tcp_ca_ack_event_flags {
781 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
782 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
783 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
784 };
785 
786 /*
787  * Interface for adding new TCP congestion control handlers
788  */
789 #define TCP_CA_NAME_MAX	16
790 #define TCP_CA_MAX	128
791 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
792 
793 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
794 #define TCP_CONG_NON_RESTRICTED 0x1
795 /* Requires ECN/ECT set on all packets */
796 #define TCP_CONG_NEEDS_ECN	0x2
797 
798 struct tcp_congestion_ops {
799 	struct list_head	list;
800 	unsigned long flags;
801 
802 	/* initialize private data (optional) */
803 	void (*init)(struct sock *sk);
804 	/* cleanup private data  (optional) */
805 	void (*release)(struct sock *sk);
806 
807 	/* return slow start threshold (required) */
808 	u32 (*ssthresh)(struct sock *sk);
809 	/* do new cwnd calculation (required) */
810 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
811 	/* call before changing ca_state (optional) */
812 	void (*set_state)(struct sock *sk, u8 new_state);
813 	/* call when cwnd event occurs (optional) */
814 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
815 	/* call when ack arrives (optional) */
816 	void (*in_ack_event)(struct sock *sk, u32 flags);
817 	/* new value of cwnd after loss (optional) */
818 	u32  (*undo_cwnd)(struct sock *sk);
819 	/* hook for packet ack accounting (optional) */
820 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
821 	/* get info for inet_diag (optional) */
822 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
823 
824 	char 		name[TCP_CA_NAME_MAX];
825 	struct module 	*owner;
826 };
827 
828 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
829 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
830 
831 void tcp_assign_congestion_control(struct sock *sk);
832 void tcp_init_congestion_control(struct sock *sk);
833 void tcp_cleanup_congestion_control(struct sock *sk);
834 int tcp_set_default_congestion_control(const char *name);
835 void tcp_get_default_congestion_control(char *name);
836 void tcp_get_available_congestion_control(char *buf, size_t len);
837 void tcp_get_allowed_congestion_control(char *buf, size_t len);
838 int tcp_set_allowed_congestion_control(char *allowed);
839 int tcp_set_congestion_control(struct sock *sk, const char *name);
840 void tcp_slow_start(struct tcp_sock *tp, u32 acked);
841 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
842 
843 u32 tcp_reno_ssthresh(struct sock *sk);
844 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
845 extern struct tcp_congestion_ops tcp_reno;
846 
847 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
848 {
849 	const struct inet_connection_sock *icsk = inet_csk(sk);
850 
851 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
852 }
853 
854 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
855 {
856 	struct inet_connection_sock *icsk = inet_csk(sk);
857 
858 	if (icsk->icsk_ca_ops->set_state)
859 		icsk->icsk_ca_ops->set_state(sk, ca_state);
860 	icsk->icsk_ca_state = ca_state;
861 }
862 
863 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
864 {
865 	const struct inet_connection_sock *icsk = inet_csk(sk);
866 
867 	if (icsk->icsk_ca_ops->cwnd_event)
868 		icsk->icsk_ca_ops->cwnd_event(sk, event);
869 }
870 
871 /* These functions determine how the current flow behaves in respect of SACK
872  * handling. SACK is negotiated with the peer, and therefore it can vary
873  * between different flows.
874  *
875  * tcp_is_sack - SACK enabled
876  * tcp_is_reno - No SACK
877  * tcp_is_fack - FACK enabled, implies SACK enabled
878  */
879 static inline int tcp_is_sack(const struct tcp_sock *tp)
880 {
881 	return tp->rx_opt.sack_ok;
882 }
883 
884 static inline bool tcp_is_reno(const struct tcp_sock *tp)
885 {
886 	return !tcp_is_sack(tp);
887 }
888 
889 static inline bool tcp_is_fack(const struct tcp_sock *tp)
890 {
891 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
892 }
893 
894 static inline void tcp_enable_fack(struct tcp_sock *tp)
895 {
896 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
897 }
898 
899 /* TCP early-retransmit (ER) is similar to but more conservative than
900  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
901  */
902 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
903 {
904 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
905 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
906 		sysctl_tcp_reordering == 3;
907 }
908 
909 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
910 {
911 	tp->do_early_retrans = 0;
912 }
913 
914 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
915 {
916 	return tp->sacked_out + tp->lost_out;
917 }
918 
919 /* This determines how many packets are "in the network" to the best
920  * of our knowledge.  In many cases it is conservative, but where
921  * detailed information is available from the receiver (via SACK
922  * blocks etc.) we can make more aggressive calculations.
923  *
924  * Use this for decisions involving congestion control, use just
925  * tp->packets_out to determine if the send queue is empty or not.
926  *
927  * Read this equation as:
928  *
929  *	"Packets sent once on transmission queue" MINUS
930  *	"Packets left network, but not honestly ACKed yet" PLUS
931  *	"Packets fast retransmitted"
932  */
933 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
934 {
935 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
936 }
937 
938 #define TCP_INFINITE_SSTHRESH	0x7fffffff
939 
940 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
941 {
942 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
943 }
944 
945 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
946 {
947 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
948 	       (1 << inet_csk(sk)->icsk_ca_state);
949 }
950 
951 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
952  * The exception is cwnd reduction phase, when cwnd is decreasing towards
953  * ssthresh.
954  */
955 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
956 {
957 	const struct tcp_sock *tp = tcp_sk(sk);
958 
959 	if (tcp_in_cwnd_reduction(sk))
960 		return tp->snd_ssthresh;
961 	else
962 		return max(tp->snd_ssthresh,
963 			   ((tp->snd_cwnd >> 1) +
964 			    (tp->snd_cwnd >> 2)));
965 }
966 
967 /* Use define here intentionally to get WARN_ON location shown at the caller */
968 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
969 
970 void tcp_enter_cwr(struct sock *sk);
971 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
972 
973 /* The maximum number of MSS of available cwnd for which TSO defers
974  * sending if not using sysctl_tcp_tso_win_divisor.
975  */
976 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
977 {
978 	return 3;
979 }
980 
981 /* Slow start with delack produces 3 packets of burst, so that
982  * it is safe "de facto".  This will be the default - same as
983  * the default reordering threshold - but if reordering increases,
984  * we must be able to allow cwnd to burst at least this much in order
985  * to not pull it back when holes are filled.
986  */
987 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
988 {
989 	return tp->reordering;
990 }
991 
992 /* Returns end sequence number of the receiver's advertised window */
993 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
994 {
995 	return tp->snd_una + tp->snd_wnd;
996 }
997 
998 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
999  * flexible approach. The RFC suggests cwnd should not be raised unless
1000  * it was fully used previously. And that's exactly what we do in
1001  * congestion avoidance mode. But in slow start we allow cwnd to grow
1002  * as long as the application has used half the cwnd.
1003  * Example :
1004  *    cwnd is 10 (IW10), but application sends 9 frames.
1005  *    We allow cwnd to reach 18 when all frames are ACKed.
1006  * This check is safe because it's as aggressive as slow start which already
1007  * risks 100% overshoot. The advantage is that we discourage application to
1008  * either send more filler packets or data to artificially blow up the cwnd
1009  * usage, and allow application-limited process to probe bw more aggressively.
1010  */
1011 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1012 {
1013 	const struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1016 	if (tp->snd_cwnd <= tp->snd_ssthresh)
1017 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1018 
1019 	return tp->is_cwnd_limited;
1020 }
1021 
1022 static inline void tcp_check_probe_timer(struct sock *sk)
1023 {
1024 	const struct tcp_sock *tp = tcp_sk(sk);
1025 	const struct inet_connection_sock *icsk = inet_csk(sk);
1026 
1027 	if (!tp->packets_out && !icsk->icsk_pending)
1028 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1029 					  icsk->icsk_rto, TCP_RTO_MAX);
1030 }
1031 
1032 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1033 {
1034 	tp->snd_wl1 = seq;
1035 }
1036 
1037 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1038 {
1039 	tp->snd_wl1 = seq;
1040 }
1041 
1042 /*
1043  * Calculate(/check) TCP checksum
1044  */
1045 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1046 				   __be32 daddr, __wsum base)
1047 {
1048 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1049 }
1050 
1051 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1052 {
1053 	return __skb_checksum_complete(skb);
1054 }
1055 
1056 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1057 {
1058 	return !skb_csum_unnecessary(skb) &&
1059 		__tcp_checksum_complete(skb);
1060 }
1061 
1062 /* Prequeue for VJ style copy to user, combined with checksumming. */
1063 
1064 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1065 {
1066 	tp->ucopy.task = NULL;
1067 	tp->ucopy.len = 0;
1068 	tp->ucopy.memory = 0;
1069 	skb_queue_head_init(&tp->ucopy.prequeue);
1070 }
1071 
1072 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1073 
1074 #undef STATE_TRACE
1075 
1076 #ifdef STATE_TRACE
1077 static const char *statename[]={
1078 	"Unused","Established","Syn Sent","Syn Recv",
1079 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1080 	"Close Wait","Last ACK","Listen","Closing"
1081 };
1082 #endif
1083 void tcp_set_state(struct sock *sk, int state);
1084 
1085 void tcp_done(struct sock *sk);
1086 
1087 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1088 {
1089 	rx_opt->dsack = 0;
1090 	rx_opt->num_sacks = 0;
1091 }
1092 
1093 u32 tcp_default_init_rwnd(u32 mss);
1094 
1095 /* Determine a window scaling and initial window to offer. */
1096 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1097 			       __u32 *window_clamp, int wscale_ok,
1098 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1099 
1100 static inline int tcp_win_from_space(int space)
1101 {
1102 	return sysctl_tcp_adv_win_scale<=0 ?
1103 		(space>>(-sysctl_tcp_adv_win_scale)) :
1104 		space - (space>>sysctl_tcp_adv_win_scale);
1105 }
1106 
1107 /* Note: caller must be prepared to deal with negative returns */
1108 static inline int tcp_space(const struct sock *sk)
1109 {
1110 	return tcp_win_from_space(sk->sk_rcvbuf -
1111 				  atomic_read(&sk->sk_rmem_alloc));
1112 }
1113 
1114 static inline int tcp_full_space(const struct sock *sk)
1115 {
1116 	return tcp_win_from_space(sk->sk_rcvbuf);
1117 }
1118 
1119 static inline void tcp_openreq_init(struct request_sock *req,
1120 				    struct tcp_options_received *rx_opt,
1121 				    struct sk_buff *skb, struct sock *sk)
1122 {
1123 	struct inet_request_sock *ireq = inet_rsk(req);
1124 
1125 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1126 	req->cookie_ts = 0;
1127 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1128 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1129 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1130 	req->mss = rx_opt->mss_clamp;
1131 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1132 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1133 	ireq->sack_ok = rx_opt->sack_ok;
1134 	ireq->snd_wscale = rx_opt->snd_wscale;
1135 	ireq->wscale_ok = rx_opt->wscale_ok;
1136 	ireq->acked = 0;
1137 	ireq->ecn_ok = 0;
1138 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
1139 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1140 	ireq->ir_mark = inet_request_mark(sk, skb);
1141 }
1142 
1143 extern void tcp_openreq_init_rwin(struct request_sock *req,
1144 				  struct sock *sk, struct dst_entry *dst);
1145 
1146 void tcp_enter_memory_pressure(struct sock *sk);
1147 
1148 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1149 {
1150 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1151 }
1152 
1153 static inline int keepalive_time_when(const struct tcp_sock *tp)
1154 {
1155 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1156 }
1157 
1158 static inline int keepalive_probes(const struct tcp_sock *tp)
1159 {
1160 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1161 }
1162 
1163 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1164 {
1165 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1166 
1167 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1168 			  tcp_time_stamp - tp->rcv_tstamp);
1169 }
1170 
1171 static inline int tcp_fin_time(const struct sock *sk)
1172 {
1173 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1174 	const int rto = inet_csk(sk)->icsk_rto;
1175 
1176 	if (fin_timeout < (rto << 2) - (rto >> 1))
1177 		fin_timeout = (rto << 2) - (rto >> 1);
1178 
1179 	return fin_timeout;
1180 }
1181 
1182 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1183 				  int paws_win)
1184 {
1185 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1186 		return true;
1187 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1188 		return true;
1189 	/*
1190 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1191 	 * then following tcp messages have valid values. Ignore 0 value,
1192 	 * or else 'negative' tsval might forbid us to accept their packets.
1193 	 */
1194 	if (!rx_opt->ts_recent)
1195 		return true;
1196 	return false;
1197 }
1198 
1199 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1200 				   int rst)
1201 {
1202 	if (tcp_paws_check(rx_opt, 0))
1203 		return false;
1204 
1205 	/* RST segments are not recommended to carry timestamp,
1206 	   and, if they do, it is recommended to ignore PAWS because
1207 	   "their cleanup function should take precedence over timestamps."
1208 	   Certainly, it is mistake. It is necessary to understand the reasons
1209 	   of this constraint to relax it: if peer reboots, clock may go
1210 	   out-of-sync and half-open connections will not be reset.
1211 	   Actually, the problem would be not existing if all
1212 	   the implementations followed draft about maintaining clock
1213 	   via reboots. Linux-2.2 DOES NOT!
1214 
1215 	   However, we can relax time bounds for RST segments to MSL.
1216 	 */
1217 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1218 		return false;
1219 	return true;
1220 }
1221 
1222 static inline void tcp_mib_init(struct net *net)
1223 {
1224 	/* See RFC 2012 */
1225 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1226 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1227 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1228 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1229 }
1230 
1231 /* from STCP */
1232 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1233 {
1234 	tp->lost_skb_hint = NULL;
1235 }
1236 
1237 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1238 {
1239 	tcp_clear_retrans_hints_partial(tp);
1240 	tp->retransmit_skb_hint = NULL;
1241 }
1242 
1243 /* MD5 Signature */
1244 struct crypto_hash;
1245 
1246 union tcp_md5_addr {
1247 	struct in_addr  a4;
1248 #if IS_ENABLED(CONFIG_IPV6)
1249 	struct in6_addr	a6;
1250 #endif
1251 };
1252 
1253 /* - key database */
1254 struct tcp_md5sig_key {
1255 	struct hlist_node	node;
1256 	u8			keylen;
1257 	u8			family; /* AF_INET or AF_INET6 */
1258 	union tcp_md5_addr	addr;
1259 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1260 	struct rcu_head		rcu;
1261 };
1262 
1263 /* - sock block */
1264 struct tcp_md5sig_info {
1265 	struct hlist_head	head;
1266 	struct rcu_head		rcu;
1267 };
1268 
1269 /* - pseudo header */
1270 struct tcp4_pseudohdr {
1271 	__be32		saddr;
1272 	__be32		daddr;
1273 	__u8		pad;
1274 	__u8		protocol;
1275 	__be16		len;
1276 };
1277 
1278 struct tcp6_pseudohdr {
1279 	struct in6_addr	saddr;
1280 	struct in6_addr daddr;
1281 	__be32		len;
1282 	__be32		protocol;	/* including padding */
1283 };
1284 
1285 union tcp_md5sum_block {
1286 	struct tcp4_pseudohdr ip4;
1287 #if IS_ENABLED(CONFIG_IPV6)
1288 	struct tcp6_pseudohdr ip6;
1289 #endif
1290 };
1291 
1292 /* - pool: digest algorithm, hash description and scratch buffer */
1293 struct tcp_md5sig_pool {
1294 	struct hash_desc	md5_desc;
1295 	union tcp_md5sum_block	md5_blk;
1296 };
1297 
1298 /* - functions */
1299 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1300 			const struct sock *sk, const struct request_sock *req,
1301 			const struct sk_buff *skb);
1302 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1303 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1304 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1305 		   int family);
1306 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1307 					 struct sock *addr_sk);
1308 
1309 #ifdef CONFIG_TCP_MD5SIG
1310 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1311 					 const union tcp_md5_addr *addr,
1312 					 int family);
1313 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1314 #else
1315 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1316 					 const union tcp_md5_addr *addr,
1317 					 int family)
1318 {
1319 	return NULL;
1320 }
1321 #define tcp_twsk_md5_key(twsk)	NULL
1322 #endif
1323 
1324 bool tcp_alloc_md5sig_pool(void);
1325 
1326 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1327 static inline void tcp_put_md5sig_pool(void)
1328 {
1329 	local_bh_enable();
1330 }
1331 
1332 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1333 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1334 			  unsigned int header_len);
1335 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1336 		     const struct tcp_md5sig_key *key);
1337 
1338 /* From tcp_fastopen.c */
1339 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1340 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1341 			    unsigned long *last_syn_loss);
1342 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1343 			    struct tcp_fastopen_cookie *cookie, bool syn_lost);
1344 struct tcp_fastopen_request {
1345 	/* Fast Open cookie. Size 0 means a cookie request */
1346 	struct tcp_fastopen_cookie	cookie;
1347 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1348 	size_t				size;
1349 	int				copied;	/* queued in tcp_connect() */
1350 };
1351 void tcp_free_fastopen_req(struct tcp_sock *tp);
1352 
1353 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1354 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1355 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1356 		      struct request_sock *req,
1357 		      struct tcp_fastopen_cookie *foc,
1358 		      struct dst_entry *dst);
1359 void tcp_fastopen_init_key_once(bool publish);
1360 #define TCP_FASTOPEN_KEY_LENGTH 16
1361 
1362 /* Fastopen key context */
1363 struct tcp_fastopen_context {
1364 	struct crypto_cipher	*tfm;
1365 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1366 	struct rcu_head		rcu;
1367 };
1368 
1369 /* write queue abstraction */
1370 static inline void tcp_write_queue_purge(struct sock *sk)
1371 {
1372 	struct sk_buff *skb;
1373 
1374 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1375 		sk_wmem_free_skb(sk, skb);
1376 	sk_mem_reclaim(sk);
1377 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1378 }
1379 
1380 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1381 {
1382 	return skb_peek(&sk->sk_write_queue);
1383 }
1384 
1385 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1386 {
1387 	return skb_peek_tail(&sk->sk_write_queue);
1388 }
1389 
1390 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1391 						   const struct sk_buff *skb)
1392 {
1393 	return skb_queue_next(&sk->sk_write_queue, skb);
1394 }
1395 
1396 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1397 						   const struct sk_buff *skb)
1398 {
1399 	return skb_queue_prev(&sk->sk_write_queue, skb);
1400 }
1401 
1402 #define tcp_for_write_queue(skb, sk)					\
1403 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1404 
1405 #define tcp_for_write_queue_from(skb, sk)				\
1406 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1407 
1408 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1409 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1410 
1411 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1412 {
1413 	return sk->sk_send_head;
1414 }
1415 
1416 static inline bool tcp_skb_is_last(const struct sock *sk,
1417 				   const struct sk_buff *skb)
1418 {
1419 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1420 }
1421 
1422 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1423 {
1424 	if (tcp_skb_is_last(sk, skb))
1425 		sk->sk_send_head = NULL;
1426 	else
1427 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1428 }
1429 
1430 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1431 {
1432 	if (sk->sk_send_head == skb_unlinked)
1433 		sk->sk_send_head = NULL;
1434 }
1435 
1436 static inline void tcp_init_send_head(struct sock *sk)
1437 {
1438 	sk->sk_send_head = NULL;
1439 }
1440 
1441 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1442 {
1443 	__skb_queue_tail(&sk->sk_write_queue, skb);
1444 }
1445 
1446 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1447 {
1448 	__tcp_add_write_queue_tail(sk, skb);
1449 
1450 	/* Queue it, remembering where we must start sending. */
1451 	if (sk->sk_send_head == NULL) {
1452 		sk->sk_send_head = skb;
1453 
1454 		if (tcp_sk(sk)->highest_sack == NULL)
1455 			tcp_sk(sk)->highest_sack = skb;
1456 	}
1457 }
1458 
1459 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1460 {
1461 	__skb_queue_head(&sk->sk_write_queue, skb);
1462 }
1463 
1464 /* Insert buff after skb on the write queue of sk.  */
1465 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1466 						struct sk_buff *buff,
1467 						struct sock *sk)
1468 {
1469 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1470 }
1471 
1472 /* Insert new before skb on the write queue of sk.  */
1473 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1474 						  struct sk_buff *skb,
1475 						  struct sock *sk)
1476 {
1477 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1478 
1479 	if (sk->sk_send_head == skb)
1480 		sk->sk_send_head = new;
1481 }
1482 
1483 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1484 {
1485 	__skb_unlink(skb, &sk->sk_write_queue);
1486 }
1487 
1488 static inline bool tcp_write_queue_empty(struct sock *sk)
1489 {
1490 	return skb_queue_empty(&sk->sk_write_queue);
1491 }
1492 
1493 static inline void tcp_push_pending_frames(struct sock *sk)
1494 {
1495 	if (tcp_send_head(sk)) {
1496 		struct tcp_sock *tp = tcp_sk(sk);
1497 
1498 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1499 	}
1500 }
1501 
1502 /* Start sequence of the skb just after the highest skb with SACKed
1503  * bit, valid only if sacked_out > 0 or when the caller has ensured
1504  * validity by itself.
1505  */
1506 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1507 {
1508 	if (!tp->sacked_out)
1509 		return tp->snd_una;
1510 
1511 	if (tp->highest_sack == NULL)
1512 		return tp->snd_nxt;
1513 
1514 	return TCP_SKB_CB(tp->highest_sack)->seq;
1515 }
1516 
1517 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1518 {
1519 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1520 						tcp_write_queue_next(sk, skb);
1521 }
1522 
1523 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1524 {
1525 	return tcp_sk(sk)->highest_sack;
1526 }
1527 
1528 static inline void tcp_highest_sack_reset(struct sock *sk)
1529 {
1530 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1531 }
1532 
1533 /* Called when old skb is about to be deleted (to be combined with new skb) */
1534 static inline void tcp_highest_sack_combine(struct sock *sk,
1535 					    struct sk_buff *old,
1536 					    struct sk_buff *new)
1537 {
1538 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1539 		tcp_sk(sk)->highest_sack = new;
1540 }
1541 
1542 /* Determines whether this is a thin stream (which may suffer from
1543  * increased latency). Used to trigger latency-reducing mechanisms.
1544  */
1545 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1546 {
1547 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1548 }
1549 
1550 /* /proc */
1551 enum tcp_seq_states {
1552 	TCP_SEQ_STATE_LISTENING,
1553 	TCP_SEQ_STATE_OPENREQ,
1554 	TCP_SEQ_STATE_ESTABLISHED,
1555 };
1556 
1557 int tcp_seq_open(struct inode *inode, struct file *file);
1558 
1559 struct tcp_seq_afinfo {
1560 	char				*name;
1561 	sa_family_t			family;
1562 	const struct file_operations	*seq_fops;
1563 	struct seq_operations		seq_ops;
1564 };
1565 
1566 struct tcp_iter_state {
1567 	struct seq_net_private	p;
1568 	sa_family_t		family;
1569 	enum tcp_seq_states	state;
1570 	struct sock		*syn_wait_sk;
1571 	int			bucket, offset, sbucket, num;
1572 	kuid_t			uid;
1573 	loff_t			last_pos;
1574 };
1575 
1576 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1577 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1578 
1579 extern struct request_sock_ops tcp_request_sock_ops;
1580 extern struct request_sock_ops tcp6_request_sock_ops;
1581 
1582 void tcp_v4_destroy_sock(struct sock *sk);
1583 
1584 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1585 				netdev_features_t features);
1586 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1587 int tcp_gro_complete(struct sk_buff *skb);
1588 
1589 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1590 
1591 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1592 {
1593 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1594 }
1595 
1596 static inline bool tcp_stream_memory_free(const struct sock *sk)
1597 {
1598 	const struct tcp_sock *tp = tcp_sk(sk);
1599 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1600 
1601 	return notsent_bytes < tcp_notsent_lowat(tp);
1602 }
1603 
1604 #ifdef CONFIG_PROC_FS
1605 int tcp4_proc_init(void);
1606 void tcp4_proc_exit(void);
1607 #endif
1608 
1609 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1610 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1611 		     const struct tcp_request_sock_ops *af_ops,
1612 		     struct sock *sk, struct sk_buff *skb);
1613 
1614 /* TCP af-specific functions */
1615 struct tcp_sock_af_ops {
1616 #ifdef CONFIG_TCP_MD5SIG
1617 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1618 						struct sock *addr_sk);
1619 	int			(*calc_md5_hash) (char *location,
1620 						  struct tcp_md5sig_key *md5,
1621 						  const struct sock *sk,
1622 						  const struct request_sock *req,
1623 						  const struct sk_buff *skb);
1624 	int			(*md5_parse) (struct sock *sk,
1625 					      char __user *optval,
1626 					      int optlen);
1627 #endif
1628 };
1629 
1630 struct tcp_request_sock_ops {
1631 	u16 mss_clamp;
1632 #ifdef CONFIG_TCP_MD5SIG
1633 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1634 						struct request_sock *req);
1635 	int			(*calc_md5_hash) (char *location,
1636 						  struct tcp_md5sig_key *md5,
1637 						  const struct sock *sk,
1638 						  const struct request_sock *req,
1639 						  const struct sk_buff *skb);
1640 #endif
1641 	void (*init_req)(struct request_sock *req, struct sock *sk,
1642 			 struct sk_buff *skb);
1643 #ifdef CONFIG_SYN_COOKIES
1644 	__u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1645 				 __u16 *mss);
1646 #endif
1647 	struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1648 				       const struct request_sock *req,
1649 				       bool *strict);
1650 	__u32 (*init_seq)(const struct sk_buff *skb);
1651 	int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1652 			   struct flowi *fl, struct request_sock *req,
1653 			   u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1654 	void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1655 			       const unsigned long timeout);
1656 };
1657 
1658 #ifdef CONFIG_SYN_COOKIES
1659 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1660 					 struct sock *sk, struct sk_buff *skb,
1661 					 __u16 *mss)
1662 {
1663 	return ops->cookie_init_seq(sk, skb, mss);
1664 }
1665 #else
1666 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1667 					 struct sock *sk, struct sk_buff *skb,
1668 					 __u16 *mss)
1669 {
1670 	return 0;
1671 }
1672 #endif
1673 
1674 int tcpv4_offload_init(void);
1675 
1676 void tcp_v4_init(void);
1677 void tcp_init(void);
1678 
1679 /*
1680  * Save and compile IPv4 options, return a pointer to it
1681  */
1682 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1683 {
1684 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1685 	struct ip_options_rcu *dopt = NULL;
1686 
1687 	if (opt->optlen) {
1688 		int opt_size = sizeof(*dopt) + opt->optlen;
1689 
1690 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1691 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1692 			kfree(dopt);
1693 			dopt = NULL;
1694 		}
1695 	}
1696 	return dopt;
1697 }
1698 
1699 #endif	/* _TCP_H */
1700