xref: /openbmc/linux/include/net/tcp.h (revision d6fc9fcb)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 
47 extern struct inet_hashinfo tcp_hashinfo;
48 
49 extern struct percpu_counter tcp_orphan_count;
50 void tcp_time_wait(struct sock *sk, int state, int timeo);
51 
52 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
53 #define MAX_TCP_OPTION_SPACE 40
54 
55 /*
56  * Never offer a window over 32767 without using window scaling. Some
57  * poor stacks do signed 16bit maths!
58  */
59 #define MAX_TCP_WINDOW		32767U
60 
61 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
62 #define TCP_MIN_MSS		88U
63 
64 /* The least MTU to use for probing */
65 #define TCP_BASE_MSS		1024
66 
67 /* probing interval, default to 10 minutes as per RFC4821 */
68 #define TCP_PROBE_INTERVAL	600
69 
70 /* Specify interval when tcp mtu probing will stop */
71 #define TCP_PROBE_THRESHOLD	8
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS	16U
78 
79 /* Maximal number of window scale according to RFC1323 */
80 #define TCP_MAX_WSCALE		14U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
102 				 * when active opening a connection.
103 				 * RFC1122 says the minimum retry MUST
104 				 * be at least 180secs.  Nevertheless
105 				 * this value is corresponding to
106 				 * 63secs of retransmission with the
107 				 * current initial RTO.
108 				 */
109 
110 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
111 				 * when passive opening a connection.
112 				 * This is corresponding to 31secs of
113 				 * retransmission with the current
114 				 * initial RTO.
115 				 */
116 
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 				  * state, about 60 seconds	*/
119 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
120                                  /* BSD style FIN_WAIT2 deadlock breaker.
121 				  * It used to be 3min, new value is 60sec,
122 				  * to combine FIN-WAIT-2 timeout with
123 				  * TIME-WAIT timer.
124 				  */
125 
126 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN	((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN	4U
132 #define TCP_ATO_MIN	4U
133 #endif
134 #define TCP_RTO_MAX	((unsigned)(120*HZ))
135 #define TCP_RTO_MIN	((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
137 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
138 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
139 						 * used as a fallback RTO for the
140 						 * initial data transmission if no
141 						 * valid RTT sample has been acquired,
142 						 * most likely due to retrans in 3WHS.
143 						 */
144 
145 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
146 					                 * for local resources.
147 					                 */
148 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
149 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
150 #define TCP_KEEPALIVE_INTVL	(75*HZ)
151 
152 #define MAX_TCP_KEEPIDLE	32767
153 #define MAX_TCP_KEEPINTVL	32767
154 #define MAX_TCP_KEEPCNT		127
155 #define MAX_TCP_SYNCNT		127
156 
157 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
158 
159 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
161 					 * after this time. It should be equal
162 					 * (or greater than) TCP_TIMEWAIT_LEN
163 					 * to provide reliability equal to one
164 					 * provided by timewait state.
165 					 */
166 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
167 					 * timestamps. It must be less than
168 					 * minimal timewait lifetime.
169 					 */
170 /*
171  *	TCP option
172  */
173 
174 #define TCPOPT_NOP		1	/* Padding */
175 #define TCPOPT_EOL		0	/* End of options */
176 #define TCPOPT_MSS		2	/* Segment size negotiating */
177 #define TCPOPT_WINDOW		3	/* Window scaling */
178 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
179 #define TCPOPT_SACK             5       /* SACK Block */
180 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
182 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
183 #define TCPOPT_EXP		254	/* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186  */
187 #define TCPOPT_FASTOPEN_MAGIC	0xF989
188 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
189 
190 /*
191  *     TCP option lengths
192  */
193 
194 #define TCPOLEN_MSS            4
195 #define TCPOLEN_WINDOW         3
196 #define TCPOLEN_SACK_PERM      2
197 #define TCPOLEN_TIMESTAMP      10
198 #define TCPOLEN_MD5SIG         18
199 #define TCPOLEN_FASTOPEN_BASE  2
200 #define TCPOLEN_EXP_FASTOPEN_BASE  4
201 #define TCPOLEN_EXP_SMC_BASE   6
202 
203 /* But this is what stacks really send out. */
204 #define TCPOLEN_TSTAMP_ALIGNED		12
205 #define TCPOLEN_WSCALE_ALIGNED		4
206 #define TCPOLEN_SACKPERM_ALIGNED	4
207 #define TCPOLEN_SACK_BASE		2
208 #define TCPOLEN_SACK_BASE_ALIGNED	4
209 #define TCPOLEN_SACK_PERBLOCK		8
210 #define TCPOLEN_MD5SIG_ALIGNED		20
211 #define TCPOLEN_MSS_ALIGNED		4
212 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
213 
214 /* Flags in tp->nonagle */
215 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
216 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
217 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
218 
219 /* TCP thin-stream limits */
220 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
221 
222 /* TCP initial congestion window as per rfc6928 */
223 #define TCP_INIT_CWND		10
224 
225 /* Bit Flags for sysctl_tcp_fastopen */
226 #define	TFO_CLIENT_ENABLE	1
227 #define	TFO_SERVER_ENABLE	2
228 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
229 
230 /* Accept SYN data w/o any cookie option */
231 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
232 
233 /* Force enable TFO on all listeners, i.e., not requiring the
234  * TCP_FASTOPEN socket option.
235  */
236 #define	TFO_SERVER_WO_SOCKOPT1	0x400
237 
238 
239 /* sysctl variables for tcp */
240 extern int sysctl_tcp_max_orphans;
241 extern long sysctl_tcp_mem[3];
242 
243 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
244 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
245 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
246 
247 extern atomic_long_t tcp_memory_allocated;
248 extern struct percpu_counter tcp_sockets_allocated;
249 extern unsigned long tcp_memory_pressure;
250 
251 /* optimized version of sk_under_memory_pressure() for TCP sockets */
252 static inline bool tcp_under_memory_pressure(const struct sock *sk)
253 {
254 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
255 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
256 		return true;
257 
258 	return tcp_memory_pressure;
259 }
260 /*
261  * The next routines deal with comparing 32 bit unsigned ints
262  * and worry about wraparound (automatic with unsigned arithmetic).
263  */
264 
265 static inline bool before(__u32 seq1, __u32 seq2)
266 {
267         return (__s32)(seq1-seq2) < 0;
268 }
269 #define after(seq2, seq1) 	before(seq1, seq2)
270 
271 /* is s2<=s1<=s3 ? */
272 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
273 {
274 	return seq3 - seq2 >= seq1 - seq2;
275 }
276 
277 static inline bool tcp_out_of_memory(struct sock *sk)
278 {
279 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
280 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
281 		return true;
282 	return false;
283 }
284 
285 void sk_forced_mem_schedule(struct sock *sk, int size);
286 
287 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
288 {
289 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
290 	int orphans = percpu_counter_read_positive(ocp);
291 
292 	if (orphans << shift > sysctl_tcp_max_orphans) {
293 		orphans = percpu_counter_sum_positive(ocp);
294 		if (orphans << shift > sysctl_tcp_max_orphans)
295 			return true;
296 	}
297 	return false;
298 }
299 
300 bool tcp_check_oom(struct sock *sk, int shift);
301 
302 
303 extern struct proto tcp_prot;
304 
305 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
306 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
307 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
308 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
309 
310 void tcp_tasklet_init(void);
311 
312 int tcp_v4_err(struct sk_buff *skb, u32);
313 
314 void tcp_shutdown(struct sock *sk, int how);
315 
316 int tcp_v4_early_demux(struct sk_buff *skb);
317 int tcp_v4_rcv(struct sk_buff *skb);
318 
319 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
320 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
321 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
322 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
323 		 int flags);
324 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
325 			size_t size, int flags);
326 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
327 		 size_t size, int flags);
328 void tcp_release_cb(struct sock *sk);
329 void tcp_wfree(struct sk_buff *skb);
330 void tcp_write_timer_handler(struct sock *sk);
331 void tcp_delack_timer_handler(struct sock *sk);
332 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
333 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
334 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
335 void tcp_rcv_space_adjust(struct sock *sk);
336 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
337 void tcp_twsk_destructor(struct sock *sk);
338 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
339 			struct pipe_inode_info *pipe, size_t len,
340 			unsigned int flags);
341 
342 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
343 static inline void tcp_dec_quickack_mode(struct sock *sk,
344 					 const unsigned int pkts)
345 {
346 	struct inet_connection_sock *icsk = inet_csk(sk);
347 
348 	if (icsk->icsk_ack.quick) {
349 		if (pkts >= icsk->icsk_ack.quick) {
350 			icsk->icsk_ack.quick = 0;
351 			/* Leaving quickack mode we deflate ATO. */
352 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
353 		} else
354 			icsk->icsk_ack.quick -= pkts;
355 	}
356 }
357 
358 #define	TCP_ECN_OK		1
359 #define	TCP_ECN_QUEUE_CWR	2
360 #define	TCP_ECN_DEMAND_CWR	4
361 #define	TCP_ECN_SEEN		8
362 
363 enum tcp_tw_status {
364 	TCP_TW_SUCCESS = 0,
365 	TCP_TW_RST = 1,
366 	TCP_TW_ACK = 2,
367 	TCP_TW_SYN = 3
368 };
369 
370 
371 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
372 					      struct sk_buff *skb,
373 					      const struct tcphdr *th);
374 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
375 			   struct request_sock *req, bool fastopen,
376 			   bool *lost_race);
377 int tcp_child_process(struct sock *parent, struct sock *child,
378 		      struct sk_buff *skb);
379 void tcp_enter_loss(struct sock *sk);
380 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
381 void tcp_clear_retrans(struct tcp_sock *tp);
382 void tcp_update_metrics(struct sock *sk);
383 void tcp_init_metrics(struct sock *sk);
384 void tcp_metrics_init(void);
385 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
386 void tcp_close(struct sock *sk, long timeout);
387 void tcp_init_sock(struct sock *sk);
388 void tcp_init_transfer(struct sock *sk, int bpf_op);
389 __poll_t tcp_poll(struct file *file, struct socket *sock,
390 		      struct poll_table_struct *wait);
391 int tcp_getsockopt(struct sock *sk, int level, int optname,
392 		   char __user *optval, int __user *optlen);
393 int tcp_setsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, unsigned int optlen);
395 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
396 			  char __user *optval, int __user *optlen);
397 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, unsigned int optlen);
399 void tcp_set_keepalive(struct sock *sk, int val);
400 void tcp_syn_ack_timeout(const struct request_sock *req);
401 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
402 		int flags, int *addr_len);
403 int tcp_set_rcvlowat(struct sock *sk, int val);
404 void tcp_data_ready(struct sock *sk);
405 #ifdef CONFIG_MMU
406 int tcp_mmap(struct file *file, struct socket *sock,
407 	     struct vm_area_struct *vma);
408 #endif
409 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
410 		       struct tcp_options_received *opt_rx,
411 		       int estab, struct tcp_fastopen_cookie *foc);
412 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
413 
414 /*
415  *	TCP v4 functions exported for the inet6 API
416  */
417 
418 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
419 void tcp_v4_mtu_reduced(struct sock *sk);
420 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
421 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 struct sock *tcp_create_openreq_child(const struct sock *sk,
423 				      struct request_sock *req,
424 				      struct sk_buff *skb);
425 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
426 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
427 				  struct request_sock *req,
428 				  struct dst_entry *dst,
429 				  struct request_sock *req_unhash,
430 				  bool *own_req);
431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
433 int tcp_connect(struct sock *sk);
434 enum tcp_synack_type {
435 	TCP_SYNACK_NORMAL,
436 	TCP_SYNACK_FASTOPEN,
437 	TCP_SYNACK_COOKIE,
438 };
439 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
440 				struct request_sock *req,
441 				struct tcp_fastopen_cookie *foc,
442 				enum tcp_synack_type synack_type);
443 int tcp_disconnect(struct sock *sk, int flags);
444 
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
448 
449 /* From syncookies.c */
450 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
451 				 struct request_sock *req,
452 				 struct dst_entry *dst, u32 tsoff);
453 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
454 		      u32 cookie);
455 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
456 #ifdef CONFIG_SYN_COOKIES
457 
458 /* Syncookies use a monotonic timer which increments every 60 seconds.
459  * This counter is used both as a hash input and partially encoded into
460  * the cookie value.  A cookie is only validated further if the delta
461  * between the current counter value and the encoded one is less than this,
462  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
463  * the counter advances immediately after a cookie is generated).
464  */
465 #define MAX_SYNCOOKIE_AGE	2
466 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
467 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
468 
469 /* syncookies: remember time of last synqueue overflow
470  * But do not dirty this field too often (once per second is enough)
471  * It is racy as we do not hold a lock, but race is very minor.
472  */
473 static inline void tcp_synq_overflow(const struct sock *sk)
474 {
475 	unsigned int last_overflow;
476 	unsigned int now = jiffies;
477 
478 	if (sk->sk_reuseport) {
479 		struct sock_reuseport *reuse;
480 
481 		reuse = rcu_dereference(sk->sk_reuseport_cb);
482 		if (likely(reuse)) {
483 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
484 			if (time_after32(now, last_overflow + HZ))
485 				WRITE_ONCE(reuse->synq_overflow_ts, now);
486 			return;
487 		}
488 	}
489 
490 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
491 	if (time_after32(now, last_overflow + HZ))
492 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
493 }
494 
495 /* syncookies: no recent synqueue overflow on this listening socket? */
496 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
497 {
498 	unsigned int last_overflow;
499 	unsigned int now = jiffies;
500 
501 	if (sk->sk_reuseport) {
502 		struct sock_reuseport *reuse;
503 
504 		reuse = rcu_dereference(sk->sk_reuseport_cb);
505 		if (likely(reuse)) {
506 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
507 			return time_after32(now, last_overflow +
508 					    TCP_SYNCOOKIE_VALID);
509 		}
510 	}
511 
512 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
513 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
514 }
515 
516 static inline u32 tcp_cookie_time(void)
517 {
518 	u64 val = get_jiffies_64();
519 
520 	do_div(val, TCP_SYNCOOKIE_PERIOD);
521 	return val;
522 }
523 
524 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
525 			      u16 *mssp);
526 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
527 u64 cookie_init_timestamp(struct request_sock *req);
528 bool cookie_timestamp_decode(const struct net *net,
529 			     struct tcp_options_received *opt);
530 bool cookie_ecn_ok(const struct tcp_options_received *opt,
531 		   const struct net *net, const struct dst_entry *dst);
532 
533 /* From net/ipv6/syncookies.c */
534 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
535 		      u32 cookie);
536 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
537 
538 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
539 			      const struct tcphdr *th, u16 *mssp);
540 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
541 #endif
542 /* tcp_output.c */
543 
544 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
545 			       int nonagle);
546 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
547 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
548 void tcp_retransmit_timer(struct sock *sk);
549 void tcp_xmit_retransmit_queue(struct sock *);
550 void tcp_simple_retransmit(struct sock *);
551 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
552 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
553 enum tcp_queue {
554 	TCP_FRAG_IN_WRITE_QUEUE,
555 	TCP_FRAG_IN_RTX_QUEUE,
556 };
557 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
558 		 struct sk_buff *skb, u32 len,
559 		 unsigned int mss_now, gfp_t gfp);
560 
561 void tcp_send_probe0(struct sock *);
562 void tcp_send_partial(struct sock *);
563 int tcp_write_wakeup(struct sock *, int mib);
564 void tcp_send_fin(struct sock *sk);
565 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
566 int tcp_send_synack(struct sock *);
567 void tcp_push_one(struct sock *, unsigned int mss_now);
568 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
569 void tcp_send_ack(struct sock *sk);
570 void tcp_send_delayed_ack(struct sock *sk);
571 void tcp_send_loss_probe(struct sock *sk);
572 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
573 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
574 			     const struct sk_buff *next_skb);
575 
576 /* tcp_input.c */
577 void tcp_rearm_rto(struct sock *sk);
578 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
579 void tcp_reset(struct sock *sk);
580 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
581 void tcp_fin(struct sock *sk);
582 
583 /* tcp_timer.c */
584 void tcp_init_xmit_timers(struct sock *);
585 static inline void tcp_clear_xmit_timers(struct sock *sk)
586 {
587 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
588 		__sock_put(sk);
589 
590 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
591 		__sock_put(sk);
592 
593 	inet_csk_clear_xmit_timers(sk);
594 }
595 
596 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
597 unsigned int tcp_current_mss(struct sock *sk);
598 
599 /* Bound MSS / TSO packet size with the half of the window */
600 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
601 {
602 	int cutoff;
603 
604 	/* When peer uses tiny windows, there is no use in packetizing
605 	 * to sub-MSS pieces for the sake of SWS or making sure there
606 	 * are enough packets in the pipe for fast recovery.
607 	 *
608 	 * On the other hand, for extremely large MSS devices, handling
609 	 * smaller than MSS windows in this way does make sense.
610 	 */
611 	if (tp->max_window > TCP_MSS_DEFAULT)
612 		cutoff = (tp->max_window >> 1);
613 	else
614 		cutoff = tp->max_window;
615 
616 	if (cutoff && pktsize > cutoff)
617 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
618 	else
619 		return pktsize;
620 }
621 
622 /* tcp.c */
623 void tcp_get_info(struct sock *, struct tcp_info *);
624 
625 /* Read 'sendfile()'-style from a TCP socket */
626 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
627 		  sk_read_actor_t recv_actor);
628 
629 void tcp_initialize_rcv_mss(struct sock *sk);
630 
631 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
632 int tcp_mss_to_mtu(struct sock *sk, int mss);
633 void tcp_mtup_init(struct sock *sk);
634 void tcp_init_buffer_space(struct sock *sk);
635 
636 static inline void tcp_bound_rto(const struct sock *sk)
637 {
638 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
639 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
640 }
641 
642 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
643 {
644 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
645 }
646 
647 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
648 {
649 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
650 			       ntohl(TCP_FLAG_ACK) |
651 			       snd_wnd);
652 }
653 
654 static inline void tcp_fast_path_on(struct tcp_sock *tp)
655 {
656 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
657 }
658 
659 static inline void tcp_fast_path_check(struct sock *sk)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 
663 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
664 	    tp->rcv_wnd &&
665 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
666 	    !tp->urg_data)
667 		tcp_fast_path_on(tp);
668 }
669 
670 /* Compute the actual rto_min value */
671 static inline u32 tcp_rto_min(struct sock *sk)
672 {
673 	const struct dst_entry *dst = __sk_dst_get(sk);
674 	u32 rto_min = TCP_RTO_MIN;
675 
676 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
677 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
678 	return rto_min;
679 }
680 
681 static inline u32 tcp_rto_min_us(struct sock *sk)
682 {
683 	return jiffies_to_usecs(tcp_rto_min(sk));
684 }
685 
686 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
687 {
688 	return dst_metric_locked(dst, RTAX_CC_ALGO);
689 }
690 
691 /* Minimum RTT in usec. ~0 means not available. */
692 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
693 {
694 	return minmax_get(&tp->rtt_min);
695 }
696 
697 /* Compute the actual receive window we are currently advertising.
698  * Rcv_nxt can be after the window if our peer push more data
699  * than the offered window.
700  */
701 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
702 {
703 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
704 
705 	if (win < 0)
706 		win = 0;
707 	return (u32) win;
708 }
709 
710 /* Choose a new window, without checks for shrinking, and without
711  * scaling applied to the result.  The caller does these things
712  * if necessary.  This is a "raw" window selection.
713  */
714 u32 __tcp_select_window(struct sock *sk);
715 
716 void tcp_send_window_probe(struct sock *sk);
717 
718 /* TCP uses 32bit jiffies to save some space.
719  * Note that this is different from tcp_time_stamp, which
720  * historically has been the same until linux-4.13.
721  */
722 #define tcp_jiffies32 ((u32)jiffies)
723 
724 /*
725  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
726  * It is no longer tied to jiffies, but to 1 ms clock.
727  * Note: double check if you want to use tcp_jiffies32 instead of this.
728  */
729 #define TCP_TS_HZ	1000
730 
731 static inline u64 tcp_clock_ns(void)
732 {
733 	return ktime_get_ns();
734 }
735 
736 static inline u64 tcp_clock_us(void)
737 {
738 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
739 }
740 
741 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
742 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
743 {
744 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
745 }
746 
747 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
748 static inline u32 tcp_time_stamp_raw(void)
749 {
750 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
751 }
752 
753 void tcp_mstamp_refresh(struct tcp_sock *tp);
754 
755 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
756 {
757 	return max_t(s64, t1 - t0, 0);
758 }
759 
760 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
761 {
762 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
763 }
764 
765 /* provide the departure time in us unit */
766 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
767 {
768 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
769 }
770 
771 
772 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
773 
774 #define TCPHDR_FIN 0x01
775 #define TCPHDR_SYN 0x02
776 #define TCPHDR_RST 0x04
777 #define TCPHDR_PSH 0x08
778 #define TCPHDR_ACK 0x10
779 #define TCPHDR_URG 0x20
780 #define TCPHDR_ECE 0x40
781 #define TCPHDR_CWR 0x80
782 
783 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
784 
785 /* This is what the send packet queuing engine uses to pass
786  * TCP per-packet control information to the transmission code.
787  * We also store the host-order sequence numbers in here too.
788  * This is 44 bytes if IPV6 is enabled.
789  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
790  */
791 struct tcp_skb_cb {
792 	__u32		seq;		/* Starting sequence number	*/
793 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
794 	union {
795 		/* Note : tcp_tw_isn is used in input path only
796 		 *	  (isn chosen by tcp_timewait_state_process())
797 		 *
798 		 * 	  tcp_gso_segs/size are used in write queue only,
799 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
800 		 */
801 		__u32		tcp_tw_isn;
802 		struct {
803 			u16	tcp_gso_segs;
804 			u16	tcp_gso_size;
805 		};
806 	};
807 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
808 
809 	__u8		sacked;		/* State flags for SACK.	*/
810 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
811 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
812 #define TCPCB_LOST		0x04	/* SKB is lost			*/
813 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
814 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
815 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
816 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
817 				TCPCB_REPAIRED)
818 
819 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
820 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
821 			eor:1,		/* Is skb MSG_EOR marked? */
822 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
823 			unused:5;
824 	__u32		ack_seq;	/* Sequence number ACK'd	*/
825 	union {
826 		struct {
827 			/* There is space for up to 24 bytes */
828 			__u32 in_flight:30,/* Bytes in flight at transmit */
829 			      is_app_limited:1, /* cwnd not fully used? */
830 			      unused:1;
831 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
832 			__u32 delivered;
833 			/* start of send pipeline phase */
834 			u64 first_tx_mstamp;
835 			/* when we reached the "delivered" count */
836 			u64 delivered_mstamp;
837 		} tx;   /* only used for outgoing skbs */
838 		union {
839 			struct inet_skb_parm	h4;
840 #if IS_ENABLED(CONFIG_IPV6)
841 			struct inet6_skb_parm	h6;
842 #endif
843 		} header;	/* For incoming skbs */
844 		struct {
845 			__u32 flags;
846 			struct sock *sk_redir;
847 			void *data_end;
848 		} bpf;
849 	};
850 };
851 
852 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
853 
854 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
855 {
856 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
857 }
858 
859 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
860 {
861 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
862 }
863 
864 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
865 {
866 	return TCP_SKB_CB(skb)->bpf.sk_redir;
867 }
868 
869 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
870 {
871 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
872 }
873 
874 #if IS_ENABLED(CONFIG_IPV6)
875 /* This is the variant of inet6_iif() that must be used by TCP,
876  * as TCP moves IP6CB into a different location in skb->cb[]
877  */
878 static inline int tcp_v6_iif(const struct sk_buff *skb)
879 {
880 	return TCP_SKB_CB(skb)->header.h6.iif;
881 }
882 
883 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
884 {
885 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
886 
887 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
888 }
889 
890 /* TCP_SKB_CB reference means this can not be used from early demux */
891 static inline int tcp_v6_sdif(const struct sk_buff *skb)
892 {
893 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
894 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
895 		return TCP_SKB_CB(skb)->header.h6.iif;
896 #endif
897 	return 0;
898 }
899 #endif
900 
901 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
902 {
903 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
904 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
905 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
906 		return true;
907 #endif
908 	return false;
909 }
910 
911 /* TCP_SKB_CB reference means this can not be used from early demux */
912 static inline int tcp_v4_sdif(struct sk_buff *skb)
913 {
914 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
915 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
916 		return TCP_SKB_CB(skb)->header.h4.iif;
917 #endif
918 	return 0;
919 }
920 
921 /* Due to TSO, an SKB can be composed of multiple actual
922  * packets.  To keep these tracked properly, we use this.
923  */
924 static inline int tcp_skb_pcount(const struct sk_buff *skb)
925 {
926 	return TCP_SKB_CB(skb)->tcp_gso_segs;
927 }
928 
929 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
930 {
931 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
932 }
933 
934 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
935 {
936 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
937 }
938 
939 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
940 static inline int tcp_skb_mss(const struct sk_buff *skb)
941 {
942 	return TCP_SKB_CB(skb)->tcp_gso_size;
943 }
944 
945 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
946 {
947 	return likely(!TCP_SKB_CB(skb)->eor);
948 }
949 
950 /* Events passed to congestion control interface */
951 enum tcp_ca_event {
952 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
953 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
954 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
955 	CA_EVENT_LOSS,		/* loss timeout */
956 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
957 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
958 };
959 
960 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
961 enum tcp_ca_ack_event_flags {
962 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
963 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
964 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
965 };
966 
967 /*
968  * Interface for adding new TCP congestion control handlers
969  */
970 #define TCP_CA_NAME_MAX	16
971 #define TCP_CA_MAX	128
972 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
973 
974 #define TCP_CA_UNSPEC	0
975 
976 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
977 #define TCP_CONG_NON_RESTRICTED 0x1
978 /* Requires ECN/ECT set on all packets */
979 #define TCP_CONG_NEEDS_ECN	0x2
980 
981 union tcp_cc_info;
982 
983 struct ack_sample {
984 	u32 pkts_acked;
985 	s32 rtt_us;
986 	u32 in_flight;
987 };
988 
989 /* A rate sample measures the number of (original/retransmitted) data
990  * packets delivered "delivered" over an interval of time "interval_us".
991  * The tcp_rate.c code fills in the rate sample, and congestion
992  * control modules that define a cong_control function to run at the end
993  * of ACK processing can optionally chose to consult this sample when
994  * setting cwnd and pacing rate.
995  * A sample is invalid if "delivered" or "interval_us" is negative.
996  */
997 struct rate_sample {
998 	u64  prior_mstamp; /* starting timestamp for interval */
999 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1000 	s32  delivered;		/* number of packets delivered over interval */
1001 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1002 	u32 snd_interval_us;	/* snd interval for delivered packets */
1003 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1004 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1005 	int  losses;		/* number of packets marked lost upon ACK */
1006 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1007 	u32  prior_in_flight;	/* in flight before this ACK */
1008 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1009 	bool is_retrans;	/* is sample from retransmission? */
1010 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1011 };
1012 
1013 struct tcp_congestion_ops {
1014 	struct list_head	list;
1015 	u32 key;
1016 	u32 flags;
1017 
1018 	/* initialize private data (optional) */
1019 	void (*init)(struct sock *sk);
1020 	/* cleanup private data  (optional) */
1021 	void (*release)(struct sock *sk);
1022 
1023 	/* return slow start threshold (required) */
1024 	u32 (*ssthresh)(struct sock *sk);
1025 	/* do new cwnd calculation (required) */
1026 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1027 	/* call before changing ca_state (optional) */
1028 	void (*set_state)(struct sock *sk, u8 new_state);
1029 	/* call when cwnd event occurs (optional) */
1030 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1031 	/* call when ack arrives (optional) */
1032 	void (*in_ack_event)(struct sock *sk, u32 flags);
1033 	/* new value of cwnd after loss (required) */
1034 	u32  (*undo_cwnd)(struct sock *sk);
1035 	/* hook for packet ack accounting (optional) */
1036 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1037 	/* override sysctl_tcp_min_tso_segs */
1038 	u32 (*min_tso_segs)(struct sock *sk);
1039 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1040 	u32 (*sndbuf_expand)(struct sock *sk);
1041 	/* call when packets are delivered to update cwnd and pacing rate,
1042 	 * after all the ca_state processing. (optional)
1043 	 */
1044 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1045 	/* get info for inet_diag (optional) */
1046 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1047 			   union tcp_cc_info *info);
1048 
1049 	char 		name[TCP_CA_NAME_MAX];
1050 	struct module 	*owner;
1051 };
1052 
1053 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1054 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1055 
1056 void tcp_assign_congestion_control(struct sock *sk);
1057 void tcp_init_congestion_control(struct sock *sk);
1058 void tcp_cleanup_congestion_control(struct sock *sk);
1059 int tcp_set_default_congestion_control(struct net *net, const char *name);
1060 void tcp_get_default_congestion_control(struct net *net, char *name);
1061 void tcp_get_available_congestion_control(char *buf, size_t len);
1062 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1063 int tcp_set_allowed_congestion_control(char *allowed);
1064 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1065 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1066 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1067 
1068 u32 tcp_reno_ssthresh(struct sock *sk);
1069 u32 tcp_reno_undo_cwnd(struct sock *sk);
1070 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1071 extern struct tcp_congestion_ops tcp_reno;
1072 
1073 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1074 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1075 #ifdef CONFIG_INET
1076 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1077 #else
1078 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1079 {
1080 	return NULL;
1081 }
1082 #endif
1083 
1084 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1085 {
1086 	const struct inet_connection_sock *icsk = inet_csk(sk);
1087 
1088 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1089 }
1090 
1091 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1092 {
1093 	struct inet_connection_sock *icsk = inet_csk(sk);
1094 
1095 	if (icsk->icsk_ca_ops->set_state)
1096 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1097 	icsk->icsk_ca_state = ca_state;
1098 }
1099 
1100 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1101 {
1102 	const struct inet_connection_sock *icsk = inet_csk(sk);
1103 
1104 	if (icsk->icsk_ca_ops->cwnd_event)
1105 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1106 }
1107 
1108 /* From tcp_rate.c */
1109 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1110 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1111 			    struct rate_sample *rs);
1112 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1113 		  bool is_sack_reneg, struct rate_sample *rs);
1114 void tcp_rate_check_app_limited(struct sock *sk);
1115 
1116 /* These functions determine how the current flow behaves in respect of SACK
1117  * handling. SACK is negotiated with the peer, and therefore it can vary
1118  * between different flows.
1119  *
1120  * tcp_is_sack - SACK enabled
1121  * tcp_is_reno - No SACK
1122  */
1123 static inline int tcp_is_sack(const struct tcp_sock *tp)
1124 {
1125 	return likely(tp->rx_opt.sack_ok);
1126 }
1127 
1128 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1129 {
1130 	return !tcp_is_sack(tp);
1131 }
1132 
1133 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1134 {
1135 	return tp->sacked_out + tp->lost_out;
1136 }
1137 
1138 /* This determines how many packets are "in the network" to the best
1139  * of our knowledge.  In many cases it is conservative, but where
1140  * detailed information is available from the receiver (via SACK
1141  * blocks etc.) we can make more aggressive calculations.
1142  *
1143  * Use this for decisions involving congestion control, use just
1144  * tp->packets_out to determine if the send queue is empty or not.
1145  *
1146  * Read this equation as:
1147  *
1148  *	"Packets sent once on transmission queue" MINUS
1149  *	"Packets left network, but not honestly ACKed yet" PLUS
1150  *	"Packets fast retransmitted"
1151  */
1152 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1153 {
1154 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1155 }
1156 
1157 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1158 
1159 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1160 {
1161 	return tp->snd_cwnd < tp->snd_ssthresh;
1162 }
1163 
1164 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1165 {
1166 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1167 }
1168 
1169 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1170 {
1171 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1172 	       (1 << inet_csk(sk)->icsk_ca_state);
1173 }
1174 
1175 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1176  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1177  * ssthresh.
1178  */
1179 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1180 {
1181 	const struct tcp_sock *tp = tcp_sk(sk);
1182 
1183 	if (tcp_in_cwnd_reduction(sk))
1184 		return tp->snd_ssthresh;
1185 	else
1186 		return max(tp->snd_ssthresh,
1187 			   ((tp->snd_cwnd >> 1) +
1188 			    (tp->snd_cwnd >> 2)));
1189 }
1190 
1191 /* Use define here intentionally to get WARN_ON location shown at the caller */
1192 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1193 
1194 void tcp_enter_cwr(struct sock *sk);
1195 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1196 
1197 /* The maximum number of MSS of available cwnd for which TSO defers
1198  * sending if not using sysctl_tcp_tso_win_divisor.
1199  */
1200 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1201 {
1202 	return 3;
1203 }
1204 
1205 /* Returns end sequence number of the receiver's advertised window */
1206 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1207 {
1208 	return tp->snd_una + tp->snd_wnd;
1209 }
1210 
1211 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1212  * flexible approach. The RFC suggests cwnd should not be raised unless
1213  * it was fully used previously. And that's exactly what we do in
1214  * congestion avoidance mode. But in slow start we allow cwnd to grow
1215  * as long as the application has used half the cwnd.
1216  * Example :
1217  *    cwnd is 10 (IW10), but application sends 9 frames.
1218  *    We allow cwnd to reach 18 when all frames are ACKed.
1219  * This check is safe because it's as aggressive as slow start which already
1220  * risks 100% overshoot. The advantage is that we discourage application to
1221  * either send more filler packets or data to artificially blow up the cwnd
1222  * usage, and allow application-limited process to probe bw more aggressively.
1223  */
1224 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1225 {
1226 	const struct tcp_sock *tp = tcp_sk(sk);
1227 
1228 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1229 	if (tcp_in_slow_start(tp))
1230 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1231 
1232 	return tp->is_cwnd_limited;
1233 }
1234 
1235 /* BBR congestion control needs pacing.
1236  * Same remark for SO_MAX_PACING_RATE.
1237  * sch_fq packet scheduler is efficiently handling pacing,
1238  * but is not always installed/used.
1239  * Return true if TCP stack should pace packets itself.
1240  */
1241 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1242 {
1243 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1244 }
1245 
1246 /* Return in jiffies the delay before one skb is sent.
1247  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1248  */
1249 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1250 					     const struct sk_buff *skb)
1251 {
1252 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1253 
1254 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1255 
1256 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1257 }
1258 
1259 static inline void tcp_reset_xmit_timer(struct sock *sk,
1260 					const int what,
1261 					unsigned long when,
1262 					const unsigned long max_when,
1263 					const struct sk_buff *skb)
1264 {
1265 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1266 				  max_when);
1267 }
1268 
1269 /* Something is really bad, we could not queue an additional packet,
1270  * because qdisc is full or receiver sent a 0 window, or we are paced.
1271  * We do not want to add fuel to the fire, or abort too early,
1272  * so make sure the timer we arm now is at least 200ms in the future,
1273  * regardless of current icsk_rto value (as it could be ~2ms)
1274  */
1275 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1276 {
1277 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1278 }
1279 
1280 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1281 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1282 					    unsigned long max_when)
1283 {
1284 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1285 
1286 	return (unsigned long)min_t(u64, when, max_when);
1287 }
1288 
1289 static inline void tcp_check_probe_timer(struct sock *sk)
1290 {
1291 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1292 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1293 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1294 				     NULL);
1295 }
1296 
1297 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1298 {
1299 	tp->snd_wl1 = seq;
1300 }
1301 
1302 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1303 {
1304 	tp->snd_wl1 = seq;
1305 }
1306 
1307 /*
1308  * Calculate(/check) TCP checksum
1309  */
1310 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1311 				   __be32 daddr, __wsum base)
1312 {
1313 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1314 }
1315 
1316 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1317 {
1318 	return !skb_csum_unnecessary(skb) &&
1319 		__skb_checksum_complete(skb);
1320 }
1321 
1322 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1323 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1324 void tcp_set_state(struct sock *sk, int state);
1325 void tcp_done(struct sock *sk);
1326 int tcp_abort(struct sock *sk, int err);
1327 
1328 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1329 {
1330 	rx_opt->dsack = 0;
1331 	rx_opt->num_sacks = 0;
1332 }
1333 
1334 u32 tcp_default_init_rwnd(u32 mss);
1335 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1336 
1337 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1338 {
1339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1340 	struct tcp_sock *tp = tcp_sk(sk);
1341 	s32 delta;
1342 
1343 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1344 	    ca_ops->cong_control)
1345 		return;
1346 	delta = tcp_jiffies32 - tp->lsndtime;
1347 	if (delta > inet_csk(sk)->icsk_rto)
1348 		tcp_cwnd_restart(sk, delta);
1349 }
1350 
1351 /* Determine a window scaling and initial window to offer. */
1352 void tcp_select_initial_window(const struct sock *sk, int __space,
1353 			       __u32 mss, __u32 *rcv_wnd,
1354 			       __u32 *window_clamp, int wscale_ok,
1355 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1356 
1357 static inline int tcp_win_from_space(const struct sock *sk, int space)
1358 {
1359 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1360 
1361 	return tcp_adv_win_scale <= 0 ?
1362 		(space>>(-tcp_adv_win_scale)) :
1363 		space - (space>>tcp_adv_win_scale);
1364 }
1365 
1366 /* Note: caller must be prepared to deal with negative returns */
1367 static inline int tcp_space(const struct sock *sk)
1368 {
1369 	return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1370 				  atomic_read(&sk->sk_rmem_alloc));
1371 }
1372 
1373 static inline int tcp_full_space(const struct sock *sk)
1374 {
1375 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1376 }
1377 
1378 extern void tcp_openreq_init_rwin(struct request_sock *req,
1379 				  const struct sock *sk_listener,
1380 				  const struct dst_entry *dst);
1381 
1382 void tcp_enter_memory_pressure(struct sock *sk);
1383 void tcp_leave_memory_pressure(struct sock *sk);
1384 
1385 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1386 {
1387 	struct net *net = sock_net((struct sock *)tp);
1388 
1389 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1390 }
1391 
1392 static inline int keepalive_time_when(const struct tcp_sock *tp)
1393 {
1394 	struct net *net = sock_net((struct sock *)tp);
1395 
1396 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1397 }
1398 
1399 static inline int keepalive_probes(const struct tcp_sock *tp)
1400 {
1401 	struct net *net = sock_net((struct sock *)tp);
1402 
1403 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1404 }
1405 
1406 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1407 {
1408 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1409 
1410 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1411 			  tcp_jiffies32 - tp->rcv_tstamp);
1412 }
1413 
1414 static inline int tcp_fin_time(const struct sock *sk)
1415 {
1416 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1417 	const int rto = inet_csk(sk)->icsk_rto;
1418 
1419 	if (fin_timeout < (rto << 2) - (rto >> 1))
1420 		fin_timeout = (rto << 2) - (rto >> 1);
1421 
1422 	return fin_timeout;
1423 }
1424 
1425 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1426 				  int paws_win)
1427 {
1428 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1429 		return true;
1430 	if (unlikely(!time_before32(ktime_get_seconds(),
1431 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1432 		return true;
1433 	/*
1434 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1435 	 * then following tcp messages have valid values. Ignore 0 value,
1436 	 * or else 'negative' tsval might forbid us to accept their packets.
1437 	 */
1438 	if (!rx_opt->ts_recent)
1439 		return true;
1440 	return false;
1441 }
1442 
1443 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1444 				   int rst)
1445 {
1446 	if (tcp_paws_check(rx_opt, 0))
1447 		return false;
1448 
1449 	/* RST segments are not recommended to carry timestamp,
1450 	   and, if they do, it is recommended to ignore PAWS because
1451 	   "their cleanup function should take precedence over timestamps."
1452 	   Certainly, it is mistake. It is necessary to understand the reasons
1453 	   of this constraint to relax it: if peer reboots, clock may go
1454 	   out-of-sync and half-open connections will not be reset.
1455 	   Actually, the problem would be not existing if all
1456 	   the implementations followed draft about maintaining clock
1457 	   via reboots. Linux-2.2 DOES NOT!
1458 
1459 	   However, we can relax time bounds for RST segments to MSL.
1460 	 */
1461 	if (rst && !time_before32(ktime_get_seconds(),
1462 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1463 		return false;
1464 	return true;
1465 }
1466 
1467 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1468 			  int mib_idx, u32 *last_oow_ack_time);
1469 
1470 static inline void tcp_mib_init(struct net *net)
1471 {
1472 	/* See RFC 2012 */
1473 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1474 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1475 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1476 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1477 }
1478 
1479 /* from STCP */
1480 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1481 {
1482 	tp->lost_skb_hint = NULL;
1483 }
1484 
1485 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1486 {
1487 	tcp_clear_retrans_hints_partial(tp);
1488 	tp->retransmit_skb_hint = NULL;
1489 }
1490 
1491 union tcp_md5_addr {
1492 	struct in_addr  a4;
1493 #if IS_ENABLED(CONFIG_IPV6)
1494 	struct in6_addr	a6;
1495 #endif
1496 };
1497 
1498 /* - key database */
1499 struct tcp_md5sig_key {
1500 	struct hlist_node	node;
1501 	u8			keylen;
1502 	u8			family; /* AF_INET or AF_INET6 */
1503 	union tcp_md5_addr	addr;
1504 	u8			prefixlen;
1505 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1506 	struct rcu_head		rcu;
1507 };
1508 
1509 /* - sock block */
1510 struct tcp_md5sig_info {
1511 	struct hlist_head	head;
1512 	struct rcu_head		rcu;
1513 };
1514 
1515 /* - pseudo header */
1516 struct tcp4_pseudohdr {
1517 	__be32		saddr;
1518 	__be32		daddr;
1519 	__u8		pad;
1520 	__u8		protocol;
1521 	__be16		len;
1522 };
1523 
1524 struct tcp6_pseudohdr {
1525 	struct in6_addr	saddr;
1526 	struct in6_addr daddr;
1527 	__be32		len;
1528 	__be32		protocol;	/* including padding */
1529 };
1530 
1531 union tcp_md5sum_block {
1532 	struct tcp4_pseudohdr ip4;
1533 #if IS_ENABLED(CONFIG_IPV6)
1534 	struct tcp6_pseudohdr ip6;
1535 #endif
1536 };
1537 
1538 /* - pool: digest algorithm, hash description and scratch buffer */
1539 struct tcp_md5sig_pool {
1540 	struct ahash_request	*md5_req;
1541 	void			*scratch;
1542 };
1543 
1544 /* - functions */
1545 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1546 			const struct sock *sk, const struct sk_buff *skb);
1547 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1548 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1549 		   gfp_t gfp);
1550 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1551 		   int family, u8 prefixlen);
1552 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1553 					 const struct sock *addr_sk);
1554 
1555 #ifdef CONFIG_TCP_MD5SIG
1556 #include <linux/jump_label.h>
1557 extern struct static_key_false tcp_md5_needed;
1558 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1559 					   const union tcp_md5_addr *addr,
1560 					   int family);
1561 static inline struct tcp_md5sig_key *
1562 tcp_md5_do_lookup(const struct sock *sk,
1563 		  const union tcp_md5_addr *addr,
1564 		  int family)
1565 {
1566 	if (!static_branch_unlikely(&tcp_md5_needed))
1567 		return NULL;
1568 	return __tcp_md5_do_lookup(sk, addr, family);
1569 }
1570 
1571 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1572 #else
1573 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1574 					 const union tcp_md5_addr *addr,
1575 					 int family)
1576 {
1577 	return NULL;
1578 }
1579 #define tcp_twsk_md5_key(twsk)	NULL
1580 #endif
1581 
1582 bool tcp_alloc_md5sig_pool(void);
1583 
1584 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1585 static inline void tcp_put_md5sig_pool(void)
1586 {
1587 	local_bh_enable();
1588 }
1589 
1590 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1591 			  unsigned int header_len);
1592 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1593 		     const struct tcp_md5sig_key *key);
1594 
1595 /* From tcp_fastopen.c */
1596 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1597 			    struct tcp_fastopen_cookie *cookie);
1598 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1599 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1600 			    u16 try_exp);
1601 struct tcp_fastopen_request {
1602 	/* Fast Open cookie. Size 0 means a cookie request */
1603 	struct tcp_fastopen_cookie	cookie;
1604 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1605 	size_t				size;
1606 	int				copied;	/* queued in tcp_connect() */
1607 	struct ubuf_info		*uarg;
1608 };
1609 void tcp_free_fastopen_req(struct tcp_sock *tp);
1610 void tcp_fastopen_destroy_cipher(struct sock *sk);
1611 void tcp_fastopen_ctx_destroy(struct net *net);
1612 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1613 			      void *key, unsigned int len);
1614 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1615 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1616 			      struct request_sock *req,
1617 			      struct tcp_fastopen_cookie *foc,
1618 			      const struct dst_entry *dst);
1619 void tcp_fastopen_init_key_once(struct net *net);
1620 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1621 			     struct tcp_fastopen_cookie *cookie);
1622 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1623 #define TCP_FASTOPEN_KEY_LENGTH 16
1624 
1625 /* Fastopen key context */
1626 struct tcp_fastopen_context {
1627 	struct crypto_cipher	*tfm;
1628 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1629 	struct rcu_head		rcu;
1630 };
1631 
1632 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1633 void tcp_fastopen_active_disable(struct sock *sk);
1634 bool tcp_fastopen_active_should_disable(struct sock *sk);
1635 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1636 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1637 
1638 /* Latencies incurred by various limits for a sender. They are
1639  * chronograph-like stats that are mutually exclusive.
1640  */
1641 enum tcp_chrono {
1642 	TCP_CHRONO_UNSPEC,
1643 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1644 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1645 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1646 	__TCP_CHRONO_MAX,
1647 };
1648 
1649 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1650 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1651 
1652 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1653  * the same memory storage than skb->destructor/_skb_refdst
1654  */
1655 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1656 {
1657 	skb->destructor = NULL;
1658 	skb->_skb_refdst = 0UL;
1659 }
1660 
1661 #define tcp_skb_tsorted_save(skb) {		\
1662 	unsigned long _save = skb->_skb_refdst;	\
1663 	skb->_skb_refdst = 0UL;
1664 
1665 #define tcp_skb_tsorted_restore(skb)		\
1666 	skb->_skb_refdst = _save;		\
1667 }
1668 
1669 void tcp_write_queue_purge(struct sock *sk);
1670 
1671 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1672 {
1673 	return skb_rb_first(&sk->tcp_rtx_queue);
1674 }
1675 
1676 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1677 {
1678 	return skb_peek(&sk->sk_write_queue);
1679 }
1680 
1681 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1682 {
1683 	return skb_peek_tail(&sk->sk_write_queue);
1684 }
1685 
1686 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1687 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1688 
1689 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1690 {
1691 	return skb_peek(&sk->sk_write_queue);
1692 }
1693 
1694 static inline bool tcp_skb_is_last(const struct sock *sk,
1695 				   const struct sk_buff *skb)
1696 {
1697 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1698 }
1699 
1700 static inline bool tcp_write_queue_empty(const struct sock *sk)
1701 {
1702 	return skb_queue_empty(&sk->sk_write_queue);
1703 }
1704 
1705 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1706 {
1707 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1708 }
1709 
1710 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1711 {
1712 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1713 }
1714 
1715 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1716 {
1717 	__skb_queue_tail(&sk->sk_write_queue, skb);
1718 
1719 	/* Queue it, remembering where we must start sending. */
1720 	if (sk->sk_write_queue.next == skb)
1721 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1722 }
1723 
1724 /* Insert new before skb on the write queue of sk.  */
1725 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1726 						  struct sk_buff *skb,
1727 						  struct sock *sk)
1728 {
1729 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1730 }
1731 
1732 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1733 {
1734 	tcp_skb_tsorted_anchor_cleanup(skb);
1735 	__skb_unlink(skb, &sk->sk_write_queue);
1736 }
1737 
1738 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1739 
1740 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1741 {
1742 	tcp_skb_tsorted_anchor_cleanup(skb);
1743 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1744 }
1745 
1746 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1747 {
1748 	list_del(&skb->tcp_tsorted_anchor);
1749 	tcp_rtx_queue_unlink(skb, sk);
1750 	sk_wmem_free_skb(sk, skb);
1751 }
1752 
1753 static inline void tcp_push_pending_frames(struct sock *sk)
1754 {
1755 	if (tcp_send_head(sk)) {
1756 		struct tcp_sock *tp = tcp_sk(sk);
1757 
1758 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1759 	}
1760 }
1761 
1762 /* Start sequence of the skb just after the highest skb with SACKed
1763  * bit, valid only if sacked_out > 0 or when the caller has ensured
1764  * validity by itself.
1765  */
1766 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1767 {
1768 	if (!tp->sacked_out)
1769 		return tp->snd_una;
1770 
1771 	if (tp->highest_sack == NULL)
1772 		return tp->snd_nxt;
1773 
1774 	return TCP_SKB_CB(tp->highest_sack)->seq;
1775 }
1776 
1777 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1778 {
1779 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1780 }
1781 
1782 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1783 {
1784 	return tcp_sk(sk)->highest_sack;
1785 }
1786 
1787 static inline void tcp_highest_sack_reset(struct sock *sk)
1788 {
1789 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1790 }
1791 
1792 /* Called when old skb is about to be deleted and replaced by new skb */
1793 static inline void tcp_highest_sack_replace(struct sock *sk,
1794 					    struct sk_buff *old,
1795 					    struct sk_buff *new)
1796 {
1797 	if (old == tcp_highest_sack(sk))
1798 		tcp_sk(sk)->highest_sack = new;
1799 }
1800 
1801 /* This helper checks if socket has IP_TRANSPARENT set */
1802 static inline bool inet_sk_transparent(const struct sock *sk)
1803 {
1804 	switch (sk->sk_state) {
1805 	case TCP_TIME_WAIT:
1806 		return inet_twsk(sk)->tw_transparent;
1807 	case TCP_NEW_SYN_RECV:
1808 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1809 	}
1810 	return inet_sk(sk)->transparent;
1811 }
1812 
1813 /* Determines whether this is a thin stream (which may suffer from
1814  * increased latency). Used to trigger latency-reducing mechanisms.
1815  */
1816 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1817 {
1818 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1819 }
1820 
1821 /* /proc */
1822 enum tcp_seq_states {
1823 	TCP_SEQ_STATE_LISTENING,
1824 	TCP_SEQ_STATE_ESTABLISHED,
1825 };
1826 
1827 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1828 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1829 void tcp_seq_stop(struct seq_file *seq, void *v);
1830 
1831 struct tcp_seq_afinfo {
1832 	sa_family_t			family;
1833 };
1834 
1835 struct tcp_iter_state {
1836 	struct seq_net_private	p;
1837 	enum tcp_seq_states	state;
1838 	struct sock		*syn_wait_sk;
1839 	int			bucket, offset, sbucket, num;
1840 	loff_t			last_pos;
1841 };
1842 
1843 extern struct request_sock_ops tcp_request_sock_ops;
1844 extern struct request_sock_ops tcp6_request_sock_ops;
1845 
1846 void tcp_v4_destroy_sock(struct sock *sk);
1847 
1848 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1849 				netdev_features_t features);
1850 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1851 int tcp_gro_complete(struct sk_buff *skb);
1852 
1853 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1854 
1855 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1856 {
1857 	struct net *net = sock_net((struct sock *)tp);
1858 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1859 }
1860 
1861 /* @wake is one when sk_stream_write_space() calls us.
1862  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1863  * This mimics the strategy used in sock_def_write_space().
1864  */
1865 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1866 {
1867 	const struct tcp_sock *tp = tcp_sk(sk);
1868 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1869 
1870 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1871 }
1872 
1873 #ifdef CONFIG_PROC_FS
1874 int tcp4_proc_init(void);
1875 void tcp4_proc_exit(void);
1876 #endif
1877 
1878 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1879 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1880 		     const struct tcp_request_sock_ops *af_ops,
1881 		     struct sock *sk, struct sk_buff *skb);
1882 
1883 /* TCP af-specific functions */
1884 struct tcp_sock_af_ops {
1885 #ifdef CONFIG_TCP_MD5SIG
1886 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1887 						const struct sock *addr_sk);
1888 	int		(*calc_md5_hash)(char *location,
1889 					 const struct tcp_md5sig_key *md5,
1890 					 const struct sock *sk,
1891 					 const struct sk_buff *skb);
1892 	int		(*md5_parse)(struct sock *sk,
1893 				     int optname,
1894 				     char __user *optval,
1895 				     int optlen);
1896 #endif
1897 };
1898 
1899 struct tcp_request_sock_ops {
1900 	u16 mss_clamp;
1901 #ifdef CONFIG_TCP_MD5SIG
1902 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1903 						 const struct sock *addr_sk);
1904 	int		(*calc_md5_hash) (char *location,
1905 					  const struct tcp_md5sig_key *md5,
1906 					  const struct sock *sk,
1907 					  const struct sk_buff *skb);
1908 #endif
1909 	void (*init_req)(struct request_sock *req,
1910 			 const struct sock *sk_listener,
1911 			 struct sk_buff *skb);
1912 #ifdef CONFIG_SYN_COOKIES
1913 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1914 				 __u16 *mss);
1915 #endif
1916 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1917 				       const struct request_sock *req);
1918 	u32 (*init_seq)(const struct sk_buff *skb);
1919 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1920 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1921 			   struct flowi *fl, struct request_sock *req,
1922 			   struct tcp_fastopen_cookie *foc,
1923 			   enum tcp_synack_type synack_type);
1924 };
1925 
1926 #ifdef CONFIG_SYN_COOKIES
1927 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1928 					 const struct sock *sk, struct sk_buff *skb,
1929 					 __u16 *mss)
1930 {
1931 	tcp_synq_overflow(sk);
1932 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1933 	return ops->cookie_init_seq(skb, mss);
1934 }
1935 #else
1936 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1937 					 const struct sock *sk, struct sk_buff *skb,
1938 					 __u16 *mss)
1939 {
1940 	return 0;
1941 }
1942 #endif
1943 
1944 int tcpv4_offload_init(void);
1945 
1946 void tcp_v4_init(void);
1947 void tcp_init(void);
1948 
1949 /* tcp_recovery.c */
1950 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1951 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1952 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1953 				u32 reo_wnd);
1954 extern void tcp_rack_mark_lost(struct sock *sk);
1955 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1956 			     u64 xmit_time);
1957 extern void tcp_rack_reo_timeout(struct sock *sk);
1958 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1959 
1960 /* At how many usecs into the future should the RTO fire? */
1961 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1962 {
1963 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1964 	u32 rto = inet_csk(sk)->icsk_rto;
1965 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1966 
1967 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1968 }
1969 
1970 /*
1971  * Save and compile IPv4 options, return a pointer to it
1972  */
1973 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1974 							 struct sk_buff *skb)
1975 {
1976 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1977 	struct ip_options_rcu *dopt = NULL;
1978 
1979 	if (opt->optlen) {
1980 		int opt_size = sizeof(*dopt) + opt->optlen;
1981 
1982 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1983 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1984 			kfree(dopt);
1985 			dopt = NULL;
1986 		}
1987 	}
1988 	return dopt;
1989 }
1990 
1991 /* locally generated TCP pure ACKs have skb->truesize == 2
1992  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1993  * This is much faster than dissecting the packet to find out.
1994  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1995  */
1996 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1997 {
1998 	return skb->truesize == 2;
1999 }
2000 
2001 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2002 {
2003 	skb->truesize = 2;
2004 }
2005 
2006 static inline int tcp_inq(struct sock *sk)
2007 {
2008 	struct tcp_sock *tp = tcp_sk(sk);
2009 	int answ;
2010 
2011 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2012 		answ = 0;
2013 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2014 		   !tp->urg_data ||
2015 		   before(tp->urg_seq, tp->copied_seq) ||
2016 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2017 
2018 		answ = tp->rcv_nxt - tp->copied_seq;
2019 
2020 		/* Subtract 1, if FIN was received */
2021 		if (answ && sock_flag(sk, SOCK_DONE))
2022 			answ--;
2023 	} else {
2024 		answ = tp->urg_seq - tp->copied_seq;
2025 	}
2026 
2027 	return answ;
2028 }
2029 
2030 int tcp_peek_len(struct socket *sock);
2031 
2032 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2033 {
2034 	u16 segs_in;
2035 
2036 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2037 	tp->segs_in += segs_in;
2038 	if (skb->len > tcp_hdrlen(skb))
2039 		tp->data_segs_in += segs_in;
2040 }
2041 
2042 /*
2043  * TCP listen path runs lockless.
2044  * We forced "struct sock" to be const qualified to make sure
2045  * we don't modify one of its field by mistake.
2046  * Here, we increment sk_drops which is an atomic_t, so we can safely
2047  * make sock writable again.
2048  */
2049 static inline void tcp_listendrop(const struct sock *sk)
2050 {
2051 	atomic_inc(&((struct sock *)sk)->sk_drops);
2052 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2053 }
2054 
2055 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2056 
2057 /*
2058  * Interface for adding Upper Level Protocols over TCP
2059  */
2060 
2061 #define TCP_ULP_NAME_MAX	16
2062 #define TCP_ULP_MAX		128
2063 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2064 
2065 struct tcp_ulp_ops {
2066 	struct list_head	list;
2067 
2068 	/* initialize ulp */
2069 	int (*init)(struct sock *sk);
2070 	/* cleanup ulp */
2071 	void (*release)(struct sock *sk);
2072 
2073 	char		name[TCP_ULP_NAME_MAX];
2074 	struct module	*owner;
2075 };
2076 int tcp_register_ulp(struct tcp_ulp_ops *type);
2077 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2078 int tcp_set_ulp(struct sock *sk, const char *name);
2079 void tcp_get_available_ulp(char *buf, size_t len);
2080 void tcp_cleanup_ulp(struct sock *sk);
2081 
2082 #define MODULE_ALIAS_TCP_ULP(name)				\
2083 	__MODULE_INFO(alias, alias_userspace, name);		\
2084 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2085 
2086 struct sk_msg;
2087 struct sk_psock;
2088 
2089 int tcp_bpf_init(struct sock *sk);
2090 void tcp_bpf_reinit(struct sock *sk);
2091 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2092 			  int flags);
2093 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2094 		    int nonblock, int flags, int *addr_len);
2095 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2096 		      struct msghdr *msg, int len, int flags);
2097 
2098 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2099  * is < 0, then the BPF op failed (for example if the loaded BPF
2100  * program does not support the chosen operation or there is no BPF
2101  * program loaded).
2102  */
2103 #ifdef CONFIG_BPF
2104 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2105 {
2106 	struct bpf_sock_ops_kern sock_ops;
2107 	int ret;
2108 
2109 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2110 	if (sk_fullsock(sk)) {
2111 		sock_ops.is_fullsock = 1;
2112 		sock_owned_by_me(sk);
2113 	}
2114 
2115 	sock_ops.sk = sk;
2116 	sock_ops.op = op;
2117 	if (nargs > 0)
2118 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2119 
2120 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2121 	if (ret == 0)
2122 		ret = sock_ops.reply;
2123 	else
2124 		ret = -1;
2125 	return ret;
2126 }
2127 
2128 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2129 {
2130 	u32 args[2] = {arg1, arg2};
2131 
2132 	return tcp_call_bpf(sk, op, 2, args);
2133 }
2134 
2135 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2136 				    u32 arg3)
2137 {
2138 	u32 args[3] = {arg1, arg2, arg3};
2139 
2140 	return tcp_call_bpf(sk, op, 3, args);
2141 }
2142 
2143 #else
2144 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2145 {
2146 	return -EPERM;
2147 }
2148 
2149 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2150 {
2151 	return -EPERM;
2152 }
2153 
2154 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2155 				    u32 arg3)
2156 {
2157 	return -EPERM;
2158 }
2159 
2160 #endif
2161 
2162 static inline u32 tcp_timeout_init(struct sock *sk)
2163 {
2164 	int timeout;
2165 
2166 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2167 
2168 	if (timeout <= 0)
2169 		timeout = TCP_TIMEOUT_INIT;
2170 	return timeout;
2171 }
2172 
2173 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2174 {
2175 	int rwnd;
2176 
2177 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2178 
2179 	if (rwnd < 0)
2180 		rwnd = 0;
2181 	return rwnd;
2182 }
2183 
2184 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2185 {
2186 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2187 }
2188 
2189 #if IS_ENABLED(CONFIG_SMC)
2190 extern struct static_key_false tcp_have_smc;
2191 #endif
2192 
2193 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2194 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2195 			     void (*cad)(struct sock *sk, u32 ack_seq));
2196 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2197 void clean_acked_data_flush(void);
2198 #endif
2199 
2200 #endif	/* _TCP_H */
2201