1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 #include <linux/net_mm.h> 49 50 extern struct inet_hashinfo tcp_hashinfo; 51 52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 53 int tcp_orphan_count_sum(void); 54 55 void tcp_time_wait(struct sock *sk, int state, int timeo); 56 57 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 58 #define MAX_TCP_OPTION_SPACE 40 59 #define TCP_MIN_SND_MSS 48 60 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 61 62 /* 63 * Never offer a window over 32767 without using window scaling. Some 64 * poor stacks do signed 16bit maths! 65 */ 66 #define MAX_TCP_WINDOW 32767U 67 68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 69 #define TCP_MIN_MSS 88U 70 71 /* The initial MTU to use for probing */ 72 #define TCP_BASE_MSS 1024 73 74 /* probing interval, default to 10 minutes as per RFC4821 */ 75 #define TCP_PROBE_INTERVAL 600 76 77 /* Specify interval when tcp mtu probing will stop */ 78 #define TCP_PROBE_THRESHOLD 8 79 80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 81 #define TCP_FASTRETRANS_THRESH 3 82 83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 84 #define TCP_MAX_QUICKACKS 16U 85 86 /* Maximal number of window scale according to RFC1323 */ 87 #define TCP_MAX_WSCALE 14U 88 89 /* urg_data states */ 90 #define TCP_URG_VALID 0x0100 91 #define TCP_URG_NOTYET 0x0200 92 #define TCP_URG_READ 0x0400 93 94 #define TCP_RETR1 3 /* 95 * This is how many retries it does before it 96 * tries to figure out if the gateway is 97 * down. Minimal RFC value is 3; it corresponds 98 * to ~3sec-8min depending on RTO. 99 */ 100 101 #define TCP_RETR2 15 /* 102 * This should take at least 103 * 90 minutes to time out. 104 * RFC1122 says that the limit is 100 sec. 105 * 15 is ~13-30min depending on RTO. 106 */ 107 108 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 109 * when active opening a connection. 110 * RFC1122 says the minimum retry MUST 111 * be at least 180secs. Nevertheless 112 * this value is corresponding to 113 * 63secs of retransmission with the 114 * current initial RTO. 115 */ 116 117 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 118 * when passive opening a connection. 119 * This is corresponding to 31secs of 120 * retransmission with the current 121 * initial RTO. 122 */ 123 124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 125 * state, about 60 seconds */ 126 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 127 /* BSD style FIN_WAIT2 deadlock breaker. 128 * It used to be 3min, new value is 60sec, 129 * to combine FIN-WAIT-2 timeout with 130 * TIME-WAIT timer. 131 */ 132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 133 134 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 135 #if HZ >= 100 136 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 137 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 138 #else 139 #define TCP_DELACK_MIN 4U 140 #define TCP_ATO_MIN 4U 141 #endif 142 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 143 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 144 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 145 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 146 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 147 * used as a fallback RTO for the 148 * initial data transmission if no 149 * valid RTT sample has been acquired, 150 * most likely due to retrans in 3WHS. 151 */ 152 153 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 154 * for local resources. 155 */ 156 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 157 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 158 #define TCP_KEEPALIVE_INTVL (75*HZ) 159 160 #define MAX_TCP_KEEPIDLE 32767 161 #define MAX_TCP_KEEPINTVL 32767 162 #define MAX_TCP_KEEPCNT 127 163 #define MAX_TCP_SYNCNT 127 164 165 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 166 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 167 * after this time. It should be equal 168 * (or greater than) TCP_TIMEWAIT_LEN 169 * to provide reliability equal to one 170 * provided by timewait state. 171 */ 172 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 173 * timestamps. It must be less than 174 * minimal timewait lifetime. 175 */ 176 /* 177 * TCP option 178 */ 179 180 #define TCPOPT_NOP 1 /* Padding */ 181 #define TCPOPT_EOL 0 /* End of options */ 182 #define TCPOPT_MSS 2 /* Segment size negotiating */ 183 #define TCPOPT_WINDOW 3 /* Window scaling */ 184 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 185 #define TCPOPT_SACK 5 /* SACK Block */ 186 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 187 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 188 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 189 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 190 #define TCPOPT_EXP 254 /* Experimental */ 191 /* Magic number to be after the option value for sharing TCP 192 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 193 */ 194 #define TCPOPT_FASTOPEN_MAGIC 0xF989 195 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 196 197 /* 198 * TCP option lengths 199 */ 200 201 #define TCPOLEN_MSS 4 202 #define TCPOLEN_WINDOW 3 203 #define TCPOLEN_SACK_PERM 2 204 #define TCPOLEN_TIMESTAMP 10 205 #define TCPOLEN_MD5SIG 18 206 #define TCPOLEN_FASTOPEN_BASE 2 207 #define TCPOLEN_EXP_FASTOPEN_BASE 4 208 #define TCPOLEN_EXP_SMC_BASE 6 209 210 /* But this is what stacks really send out. */ 211 #define TCPOLEN_TSTAMP_ALIGNED 12 212 #define TCPOLEN_WSCALE_ALIGNED 4 213 #define TCPOLEN_SACKPERM_ALIGNED 4 214 #define TCPOLEN_SACK_BASE 2 215 #define TCPOLEN_SACK_BASE_ALIGNED 4 216 #define TCPOLEN_SACK_PERBLOCK 8 217 #define TCPOLEN_MD5SIG_ALIGNED 20 218 #define TCPOLEN_MSS_ALIGNED 4 219 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 220 221 /* Flags in tp->nonagle */ 222 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 223 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 224 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 225 226 /* TCP thin-stream limits */ 227 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 228 229 /* TCP initial congestion window as per rfc6928 */ 230 #define TCP_INIT_CWND 10 231 232 /* Bit Flags for sysctl_tcp_fastopen */ 233 #define TFO_CLIENT_ENABLE 1 234 #define TFO_SERVER_ENABLE 2 235 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 236 237 /* Accept SYN data w/o any cookie option */ 238 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 239 240 /* Force enable TFO on all listeners, i.e., not requiring the 241 * TCP_FASTOPEN socket option. 242 */ 243 #define TFO_SERVER_WO_SOCKOPT1 0x400 244 245 246 /* sysctl variables for tcp */ 247 extern int sysctl_tcp_max_orphans; 248 extern long sysctl_tcp_mem[3]; 249 250 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 251 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 252 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 253 254 extern atomic_long_t tcp_memory_allocated; 255 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 256 257 extern struct percpu_counter tcp_sockets_allocated; 258 extern unsigned long tcp_memory_pressure; 259 260 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 261 static inline bool tcp_under_memory_pressure(const struct sock *sk) 262 { 263 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 264 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 265 return true; 266 267 return READ_ONCE(tcp_memory_pressure); 268 } 269 /* 270 * The next routines deal with comparing 32 bit unsigned ints 271 * and worry about wraparound (automatic with unsigned arithmetic). 272 */ 273 274 static inline bool before(__u32 seq1, __u32 seq2) 275 { 276 return (__s32)(seq1-seq2) < 0; 277 } 278 #define after(seq2, seq1) before(seq1, seq2) 279 280 /* is s2<=s1<=s3 ? */ 281 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 282 { 283 return seq3 - seq2 >= seq1 - seq2; 284 } 285 286 static inline bool tcp_out_of_memory(struct sock *sk) 287 { 288 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 289 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 290 return true; 291 return false; 292 } 293 294 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 295 { 296 sk_wmem_queued_add(sk, -skb->truesize); 297 if (!skb_zcopy_pure(skb)) 298 sk_mem_uncharge(sk, skb->truesize); 299 else 300 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 301 __kfree_skb(skb); 302 } 303 304 void sk_forced_mem_schedule(struct sock *sk, int size); 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 330 size_t size, struct ubuf_info *uarg); 331 void tcp_splice_eof(struct socket *sock); 332 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 333 int flags); 334 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 335 size_t size, int flags); 336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 337 int tcp_wmem_schedule(struct sock *sk, int copy); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 void tcp_twsk_purge(struct list_head *net_exit_list, int family); 351 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 352 struct pipe_inode_info *pipe, size_t len, 353 unsigned int flags); 354 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 355 bool force_schedule); 356 357 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 358 static inline void tcp_dec_quickack_mode(struct sock *sk, 359 const unsigned int pkts) 360 { 361 struct inet_connection_sock *icsk = inet_csk(sk); 362 363 if (icsk->icsk_ack.quick) { 364 if (pkts >= icsk->icsk_ack.quick) { 365 icsk->icsk_ack.quick = 0; 366 /* Leaving quickack mode we deflate ATO. */ 367 icsk->icsk_ack.ato = TCP_ATO_MIN; 368 } else 369 icsk->icsk_ack.quick -= pkts; 370 } 371 } 372 373 #define TCP_ECN_OK 1 374 #define TCP_ECN_QUEUE_CWR 2 375 #define TCP_ECN_DEMAND_CWR 4 376 #define TCP_ECN_SEEN 8 377 378 enum tcp_tw_status { 379 TCP_TW_SUCCESS = 0, 380 TCP_TW_RST = 1, 381 TCP_TW_ACK = 2, 382 TCP_TW_SYN = 3 383 }; 384 385 386 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 387 struct sk_buff *skb, 388 const struct tcphdr *th); 389 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 390 struct request_sock *req, bool fastopen, 391 bool *lost_race); 392 int tcp_child_process(struct sock *parent, struct sock *child, 393 struct sk_buff *skb); 394 void tcp_enter_loss(struct sock *sk); 395 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 396 void tcp_clear_retrans(struct tcp_sock *tp); 397 void tcp_update_metrics(struct sock *sk); 398 void tcp_init_metrics(struct sock *sk); 399 void tcp_metrics_init(void); 400 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 401 void __tcp_close(struct sock *sk, long timeout); 402 void tcp_close(struct sock *sk, long timeout); 403 void tcp_init_sock(struct sock *sk); 404 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 405 __poll_t tcp_poll(struct file *file, struct socket *sock, 406 struct poll_table_struct *wait); 407 int do_tcp_getsockopt(struct sock *sk, int level, 408 int optname, sockptr_t optval, sockptr_t optlen); 409 int tcp_getsockopt(struct sock *sk, int level, int optname, 410 char __user *optval, int __user *optlen); 411 bool tcp_bpf_bypass_getsockopt(int level, int optname); 412 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 413 sockptr_t optval, unsigned int optlen); 414 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 415 unsigned int optlen); 416 void tcp_set_keepalive(struct sock *sk, int val); 417 void tcp_syn_ack_timeout(const struct request_sock *req); 418 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 419 int flags, int *addr_len); 420 int tcp_set_rcvlowat(struct sock *sk, int val); 421 int tcp_set_window_clamp(struct sock *sk, int val); 422 void tcp_update_recv_tstamps(struct sk_buff *skb, 423 struct scm_timestamping_internal *tss); 424 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 425 struct scm_timestamping_internal *tss); 426 void tcp_data_ready(struct sock *sk); 427 #ifdef CONFIG_MMU 428 int tcp_mmap(struct file *file, struct socket *sock, 429 struct vm_area_struct *vma); 430 #endif 431 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 432 struct tcp_options_received *opt_rx, 433 int estab, struct tcp_fastopen_cookie *foc); 434 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 435 436 /* 437 * BPF SKB-less helpers 438 */ 439 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 440 struct tcphdr *th, u32 *cookie); 441 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 442 struct tcphdr *th, u32 *cookie); 443 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 444 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 445 const struct tcp_request_sock_ops *af_ops, 446 struct sock *sk, struct tcphdr *th); 447 /* 448 * TCP v4 functions exported for the inet6 API 449 */ 450 451 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 452 void tcp_v4_mtu_reduced(struct sock *sk); 453 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 454 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 455 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 456 struct sock *tcp_create_openreq_child(const struct sock *sk, 457 struct request_sock *req, 458 struct sk_buff *skb); 459 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 460 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 461 struct request_sock *req, 462 struct dst_entry *dst, 463 struct request_sock *req_unhash, 464 bool *own_req); 465 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 466 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 467 int tcp_connect(struct sock *sk); 468 enum tcp_synack_type { 469 TCP_SYNACK_NORMAL, 470 TCP_SYNACK_FASTOPEN, 471 TCP_SYNACK_COOKIE, 472 }; 473 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 474 struct request_sock *req, 475 struct tcp_fastopen_cookie *foc, 476 enum tcp_synack_type synack_type, 477 struct sk_buff *syn_skb); 478 int tcp_disconnect(struct sock *sk, int flags); 479 480 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 481 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 482 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 483 484 /* From syncookies.c */ 485 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 486 struct request_sock *req, 487 struct dst_entry *dst, u32 tsoff); 488 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 489 u32 cookie); 490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 492 const struct tcp_request_sock_ops *af_ops, 493 struct sock *sk, struct sk_buff *skb); 494 #ifdef CONFIG_SYN_COOKIES 495 496 /* Syncookies use a monotonic timer which increments every 60 seconds. 497 * This counter is used both as a hash input and partially encoded into 498 * the cookie value. A cookie is only validated further if the delta 499 * between the current counter value and the encoded one is less than this, 500 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 501 * the counter advances immediately after a cookie is generated). 502 */ 503 #define MAX_SYNCOOKIE_AGE 2 504 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 505 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 506 507 /* syncookies: remember time of last synqueue overflow 508 * But do not dirty this field too often (once per second is enough) 509 * It is racy as we do not hold a lock, but race is very minor. 510 */ 511 static inline void tcp_synq_overflow(const struct sock *sk) 512 { 513 unsigned int last_overflow; 514 unsigned int now = jiffies; 515 516 if (sk->sk_reuseport) { 517 struct sock_reuseport *reuse; 518 519 reuse = rcu_dereference(sk->sk_reuseport_cb); 520 if (likely(reuse)) { 521 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 522 if (!time_between32(now, last_overflow, 523 last_overflow + HZ)) 524 WRITE_ONCE(reuse->synq_overflow_ts, now); 525 return; 526 } 527 } 528 529 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 530 if (!time_between32(now, last_overflow, last_overflow + HZ)) 531 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 532 } 533 534 /* syncookies: no recent synqueue overflow on this listening socket? */ 535 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 536 { 537 unsigned int last_overflow; 538 unsigned int now = jiffies; 539 540 if (sk->sk_reuseport) { 541 struct sock_reuseport *reuse; 542 543 reuse = rcu_dereference(sk->sk_reuseport_cb); 544 if (likely(reuse)) { 545 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 546 return !time_between32(now, last_overflow - HZ, 547 last_overflow + 548 TCP_SYNCOOKIE_VALID); 549 } 550 } 551 552 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 553 554 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 555 * then we're under synflood. However, we have to use 556 * 'last_overflow - HZ' as lower bound. That's because a concurrent 557 * tcp_synq_overflow() could update .ts_recent_stamp after we read 558 * jiffies but before we store .ts_recent_stamp into last_overflow, 559 * which could lead to rejecting a valid syncookie. 560 */ 561 return !time_between32(now, last_overflow - HZ, 562 last_overflow + TCP_SYNCOOKIE_VALID); 563 } 564 565 static inline u32 tcp_cookie_time(void) 566 { 567 u64 val = get_jiffies_64(); 568 569 do_div(val, TCP_SYNCOOKIE_PERIOD); 570 return val; 571 } 572 573 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 574 u16 *mssp); 575 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 576 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 577 bool cookie_timestamp_decode(const struct net *net, 578 struct tcp_options_received *opt); 579 bool cookie_ecn_ok(const struct tcp_options_received *opt, 580 const struct net *net, const struct dst_entry *dst); 581 582 /* From net/ipv6/syncookies.c */ 583 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 584 u32 cookie); 585 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 586 587 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 588 const struct tcphdr *th, u16 *mssp); 589 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 590 #endif 591 /* tcp_output.c */ 592 593 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 594 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 595 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 596 int nonagle); 597 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 598 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 599 void tcp_retransmit_timer(struct sock *sk); 600 void tcp_xmit_retransmit_queue(struct sock *); 601 void tcp_simple_retransmit(struct sock *); 602 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 603 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 604 enum tcp_queue { 605 TCP_FRAG_IN_WRITE_QUEUE, 606 TCP_FRAG_IN_RTX_QUEUE, 607 }; 608 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 609 struct sk_buff *skb, u32 len, 610 unsigned int mss_now, gfp_t gfp); 611 612 void tcp_send_probe0(struct sock *); 613 void tcp_send_partial(struct sock *); 614 int tcp_write_wakeup(struct sock *, int mib); 615 void tcp_send_fin(struct sock *sk); 616 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 617 int tcp_send_synack(struct sock *); 618 void tcp_push_one(struct sock *, unsigned int mss_now); 619 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 620 void tcp_send_ack(struct sock *sk); 621 void tcp_send_delayed_ack(struct sock *sk); 622 void tcp_send_loss_probe(struct sock *sk); 623 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 624 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 625 const struct sk_buff *next_skb); 626 627 /* tcp_input.c */ 628 void tcp_rearm_rto(struct sock *sk); 629 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 630 void tcp_reset(struct sock *sk, struct sk_buff *skb); 631 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 632 void tcp_fin(struct sock *sk); 633 void tcp_check_space(struct sock *sk); 634 void tcp_sack_compress_send_ack(struct sock *sk); 635 636 /* tcp_timer.c */ 637 void tcp_init_xmit_timers(struct sock *); 638 static inline void tcp_clear_xmit_timers(struct sock *sk) 639 { 640 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 641 __sock_put(sk); 642 643 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 644 __sock_put(sk); 645 646 inet_csk_clear_xmit_timers(sk); 647 } 648 649 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 650 unsigned int tcp_current_mss(struct sock *sk); 651 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 652 653 /* Bound MSS / TSO packet size with the half of the window */ 654 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 655 { 656 int cutoff; 657 658 /* When peer uses tiny windows, there is no use in packetizing 659 * to sub-MSS pieces for the sake of SWS or making sure there 660 * are enough packets in the pipe for fast recovery. 661 * 662 * On the other hand, for extremely large MSS devices, handling 663 * smaller than MSS windows in this way does make sense. 664 */ 665 if (tp->max_window > TCP_MSS_DEFAULT) 666 cutoff = (tp->max_window >> 1); 667 else 668 cutoff = tp->max_window; 669 670 if (cutoff && pktsize > cutoff) 671 return max_t(int, cutoff, 68U - tp->tcp_header_len); 672 else 673 return pktsize; 674 } 675 676 /* tcp.c */ 677 void tcp_get_info(struct sock *, struct tcp_info *); 678 679 /* Read 'sendfile()'-style from a TCP socket */ 680 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 681 sk_read_actor_t recv_actor); 682 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 683 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 684 void tcp_read_done(struct sock *sk, size_t len); 685 686 void tcp_initialize_rcv_mss(struct sock *sk); 687 688 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 689 int tcp_mss_to_mtu(struct sock *sk, int mss); 690 void tcp_mtup_init(struct sock *sk); 691 692 static inline void tcp_bound_rto(const struct sock *sk) 693 { 694 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 695 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 696 } 697 698 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 699 { 700 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 701 } 702 703 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 704 { 705 /* mptcp hooks are only on the slow path */ 706 if (sk_is_mptcp((struct sock *)tp)) 707 return; 708 709 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 710 ntohl(TCP_FLAG_ACK) | 711 snd_wnd); 712 } 713 714 static inline void tcp_fast_path_on(struct tcp_sock *tp) 715 { 716 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 717 } 718 719 static inline void tcp_fast_path_check(struct sock *sk) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 723 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 724 tp->rcv_wnd && 725 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 726 !tp->urg_data) 727 tcp_fast_path_on(tp); 728 } 729 730 /* Compute the actual rto_min value */ 731 static inline u32 tcp_rto_min(struct sock *sk) 732 { 733 const struct dst_entry *dst = __sk_dst_get(sk); 734 u32 rto_min = inet_csk(sk)->icsk_rto_min; 735 736 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 737 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 738 return rto_min; 739 } 740 741 static inline u32 tcp_rto_min_us(struct sock *sk) 742 { 743 return jiffies_to_usecs(tcp_rto_min(sk)); 744 } 745 746 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 747 { 748 return dst_metric_locked(dst, RTAX_CC_ALGO); 749 } 750 751 /* Minimum RTT in usec. ~0 means not available. */ 752 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 753 { 754 return minmax_get(&tp->rtt_min); 755 } 756 757 /* Compute the actual receive window we are currently advertising. 758 * Rcv_nxt can be after the window if our peer push more data 759 * than the offered window. 760 */ 761 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 762 { 763 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 764 765 if (win < 0) 766 win = 0; 767 return (u32) win; 768 } 769 770 /* Choose a new window, without checks for shrinking, and without 771 * scaling applied to the result. The caller does these things 772 * if necessary. This is a "raw" window selection. 773 */ 774 u32 __tcp_select_window(struct sock *sk); 775 776 void tcp_send_window_probe(struct sock *sk); 777 778 /* TCP uses 32bit jiffies to save some space. 779 * Note that this is different from tcp_time_stamp, which 780 * historically has been the same until linux-4.13. 781 */ 782 #define tcp_jiffies32 ((u32)jiffies) 783 784 /* 785 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 786 * It is no longer tied to jiffies, but to 1 ms clock. 787 * Note: double check if you want to use tcp_jiffies32 instead of this. 788 */ 789 #define TCP_TS_HZ 1000 790 791 static inline u64 tcp_clock_ns(void) 792 { 793 return ktime_get_ns(); 794 } 795 796 static inline u64 tcp_clock_us(void) 797 { 798 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 799 } 800 801 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 802 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 803 { 804 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 805 } 806 807 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 808 static inline u32 tcp_ns_to_ts(u64 ns) 809 { 810 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 811 } 812 813 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 814 static inline u32 tcp_time_stamp_raw(void) 815 { 816 return tcp_ns_to_ts(tcp_clock_ns()); 817 } 818 819 void tcp_mstamp_refresh(struct tcp_sock *tp); 820 821 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 822 { 823 return max_t(s64, t1 - t0, 0); 824 } 825 826 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 827 { 828 return tcp_ns_to_ts(skb->skb_mstamp_ns); 829 } 830 831 /* provide the departure time in us unit */ 832 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 833 { 834 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 835 } 836 837 838 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 839 840 #define TCPHDR_FIN 0x01 841 #define TCPHDR_SYN 0x02 842 #define TCPHDR_RST 0x04 843 #define TCPHDR_PSH 0x08 844 #define TCPHDR_ACK 0x10 845 #define TCPHDR_URG 0x20 846 #define TCPHDR_ECE 0x40 847 #define TCPHDR_CWR 0x80 848 849 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 850 851 /* This is what the send packet queuing engine uses to pass 852 * TCP per-packet control information to the transmission code. 853 * We also store the host-order sequence numbers in here too. 854 * This is 44 bytes if IPV6 is enabled. 855 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 856 */ 857 struct tcp_skb_cb { 858 __u32 seq; /* Starting sequence number */ 859 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 860 union { 861 /* Note : tcp_tw_isn is used in input path only 862 * (isn chosen by tcp_timewait_state_process()) 863 * 864 * tcp_gso_segs/size are used in write queue only, 865 * cf tcp_skb_pcount()/tcp_skb_mss() 866 */ 867 __u32 tcp_tw_isn; 868 struct { 869 u16 tcp_gso_segs; 870 u16 tcp_gso_size; 871 }; 872 }; 873 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 874 875 __u8 sacked; /* State flags for SACK. */ 876 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 877 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 878 #define TCPCB_LOST 0x04 /* SKB is lost */ 879 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 880 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 881 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 882 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 883 TCPCB_REPAIRED) 884 885 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 886 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 887 eor:1, /* Is skb MSG_EOR marked? */ 888 has_rxtstamp:1, /* SKB has a RX timestamp */ 889 unused:5; 890 __u32 ack_seq; /* Sequence number ACK'd */ 891 union { 892 struct { 893 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 894 /* There is space for up to 24 bytes */ 895 __u32 is_app_limited:1, /* cwnd not fully used? */ 896 delivered_ce:20, 897 unused:11; 898 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 899 __u32 delivered; 900 /* start of send pipeline phase */ 901 u64 first_tx_mstamp; 902 /* when we reached the "delivered" count */ 903 u64 delivered_mstamp; 904 } tx; /* only used for outgoing skbs */ 905 union { 906 struct inet_skb_parm h4; 907 #if IS_ENABLED(CONFIG_IPV6) 908 struct inet6_skb_parm h6; 909 #endif 910 } header; /* For incoming skbs */ 911 }; 912 }; 913 914 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 915 916 extern const struct inet_connection_sock_af_ops ipv4_specific; 917 918 #if IS_ENABLED(CONFIG_IPV6) 919 /* This is the variant of inet6_iif() that must be used by TCP, 920 * as TCP moves IP6CB into a different location in skb->cb[] 921 */ 922 static inline int tcp_v6_iif(const struct sk_buff *skb) 923 { 924 return TCP_SKB_CB(skb)->header.h6.iif; 925 } 926 927 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 928 { 929 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 930 931 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 932 } 933 934 /* TCP_SKB_CB reference means this can not be used from early demux */ 935 static inline int tcp_v6_sdif(const struct sk_buff *skb) 936 { 937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 938 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 939 return TCP_SKB_CB(skb)->header.h6.iif; 940 #endif 941 return 0; 942 } 943 944 extern const struct inet_connection_sock_af_ops ipv6_specific; 945 946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 947 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 948 void tcp_v6_early_demux(struct sk_buff *skb); 949 950 #endif 951 952 /* TCP_SKB_CB reference means this can not be used from early demux */ 953 static inline int tcp_v4_sdif(struct sk_buff *skb) 954 { 955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 956 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 957 return TCP_SKB_CB(skb)->header.h4.iif; 958 #endif 959 return 0; 960 } 961 962 /* Due to TSO, an SKB can be composed of multiple actual 963 * packets. To keep these tracked properly, we use this. 964 */ 965 static inline int tcp_skb_pcount(const struct sk_buff *skb) 966 { 967 return TCP_SKB_CB(skb)->tcp_gso_segs; 968 } 969 970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 971 { 972 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 973 } 974 975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 976 { 977 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 978 } 979 980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 981 static inline int tcp_skb_mss(const struct sk_buff *skb) 982 { 983 return TCP_SKB_CB(skb)->tcp_gso_size; 984 } 985 986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 987 { 988 return likely(!TCP_SKB_CB(skb)->eor); 989 } 990 991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 992 const struct sk_buff *from) 993 { 994 return likely(tcp_skb_can_collapse_to(to) && 995 mptcp_skb_can_collapse(to, from) && 996 skb_pure_zcopy_same(to, from)); 997 } 998 999 /* Events passed to congestion control interface */ 1000 enum tcp_ca_event { 1001 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1002 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1003 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1004 CA_EVENT_LOSS, /* loss timeout */ 1005 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1006 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1007 }; 1008 1009 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1010 enum tcp_ca_ack_event_flags { 1011 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1012 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1013 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1014 }; 1015 1016 /* 1017 * Interface for adding new TCP congestion control handlers 1018 */ 1019 #define TCP_CA_NAME_MAX 16 1020 #define TCP_CA_MAX 128 1021 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1022 1023 #define TCP_CA_UNSPEC 0 1024 1025 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1026 #define TCP_CONG_NON_RESTRICTED 0x1 1027 /* Requires ECN/ECT set on all packets */ 1028 #define TCP_CONG_NEEDS_ECN 0x2 1029 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1030 1031 union tcp_cc_info; 1032 1033 struct ack_sample { 1034 u32 pkts_acked; 1035 s32 rtt_us; 1036 u32 in_flight; 1037 }; 1038 1039 /* A rate sample measures the number of (original/retransmitted) data 1040 * packets delivered "delivered" over an interval of time "interval_us". 1041 * The tcp_rate.c code fills in the rate sample, and congestion 1042 * control modules that define a cong_control function to run at the end 1043 * of ACK processing can optionally chose to consult this sample when 1044 * setting cwnd and pacing rate. 1045 * A sample is invalid if "delivered" or "interval_us" is negative. 1046 */ 1047 struct rate_sample { 1048 u64 prior_mstamp; /* starting timestamp for interval */ 1049 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1050 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1051 s32 delivered; /* number of packets delivered over interval */ 1052 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1053 long interval_us; /* time for tp->delivered to incr "delivered" */ 1054 u32 snd_interval_us; /* snd interval for delivered packets */ 1055 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1056 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1057 int losses; /* number of packets marked lost upon ACK */ 1058 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1059 u32 prior_in_flight; /* in flight before this ACK */ 1060 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1061 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1062 bool is_retrans; /* is sample from retransmission? */ 1063 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1064 }; 1065 1066 struct tcp_congestion_ops { 1067 /* fast path fields are put first to fill one cache line */ 1068 1069 /* return slow start threshold (required) */ 1070 u32 (*ssthresh)(struct sock *sk); 1071 1072 /* do new cwnd calculation (required) */ 1073 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1074 1075 /* call before changing ca_state (optional) */ 1076 void (*set_state)(struct sock *sk, u8 new_state); 1077 1078 /* call when cwnd event occurs (optional) */ 1079 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1080 1081 /* call when ack arrives (optional) */ 1082 void (*in_ack_event)(struct sock *sk, u32 flags); 1083 1084 /* hook for packet ack accounting (optional) */ 1085 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1086 1087 /* override sysctl_tcp_min_tso_segs */ 1088 u32 (*min_tso_segs)(struct sock *sk); 1089 1090 /* call when packets are delivered to update cwnd and pacing rate, 1091 * after all the ca_state processing. (optional) 1092 */ 1093 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1094 1095 1096 /* new value of cwnd after loss (required) */ 1097 u32 (*undo_cwnd)(struct sock *sk); 1098 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1099 u32 (*sndbuf_expand)(struct sock *sk); 1100 1101 /* control/slow paths put last */ 1102 /* get info for inet_diag (optional) */ 1103 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1104 union tcp_cc_info *info); 1105 1106 char name[TCP_CA_NAME_MAX]; 1107 struct module *owner; 1108 struct list_head list; 1109 u32 key; 1110 u32 flags; 1111 1112 /* initialize private data (optional) */ 1113 void (*init)(struct sock *sk); 1114 /* cleanup private data (optional) */ 1115 void (*release)(struct sock *sk); 1116 } ____cacheline_aligned_in_smp; 1117 1118 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1119 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1120 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1121 struct tcp_congestion_ops *old_type); 1122 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1123 1124 void tcp_assign_congestion_control(struct sock *sk); 1125 void tcp_init_congestion_control(struct sock *sk); 1126 void tcp_cleanup_congestion_control(struct sock *sk); 1127 int tcp_set_default_congestion_control(struct net *net, const char *name); 1128 void tcp_get_default_congestion_control(struct net *net, char *name); 1129 void tcp_get_available_congestion_control(char *buf, size_t len); 1130 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1131 int tcp_set_allowed_congestion_control(char *allowed); 1132 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1133 bool cap_net_admin); 1134 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1135 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1136 1137 u32 tcp_reno_ssthresh(struct sock *sk); 1138 u32 tcp_reno_undo_cwnd(struct sock *sk); 1139 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1140 extern struct tcp_congestion_ops tcp_reno; 1141 1142 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1143 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1144 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1145 #ifdef CONFIG_INET 1146 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1147 #else 1148 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1149 { 1150 return NULL; 1151 } 1152 #endif 1153 1154 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1155 { 1156 const struct inet_connection_sock *icsk = inet_csk(sk); 1157 1158 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1159 } 1160 1161 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1162 { 1163 const struct inet_connection_sock *icsk = inet_csk(sk); 1164 1165 if (icsk->icsk_ca_ops->cwnd_event) 1166 icsk->icsk_ca_ops->cwnd_event(sk, event); 1167 } 1168 1169 /* From tcp_cong.c */ 1170 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1171 1172 /* From tcp_rate.c */ 1173 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1174 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1175 struct rate_sample *rs); 1176 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1177 bool is_sack_reneg, struct rate_sample *rs); 1178 void tcp_rate_check_app_limited(struct sock *sk); 1179 1180 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1181 { 1182 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1183 } 1184 1185 /* These functions determine how the current flow behaves in respect of SACK 1186 * handling. SACK is negotiated with the peer, and therefore it can vary 1187 * between different flows. 1188 * 1189 * tcp_is_sack - SACK enabled 1190 * tcp_is_reno - No SACK 1191 */ 1192 static inline int tcp_is_sack(const struct tcp_sock *tp) 1193 { 1194 return likely(tp->rx_opt.sack_ok); 1195 } 1196 1197 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1198 { 1199 return !tcp_is_sack(tp); 1200 } 1201 1202 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1203 { 1204 return tp->sacked_out + tp->lost_out; 1205 } 1206 1207 /* This determines how many packets are "in the network" to the best 1208 * of our knowledge. In many cases it is conservative, but where 1209 * detailed information is available from the receiver (via SACK 1210 * blocks etc.) we can make more aggressive calculations. 1211 * 1212 * Use this for decisions involving congestion control, use just 1213 * tp->packets_out to determine if the send queue is empty or not. 1214 * 1215 * Read this equation as: 1216 * 1217 * "Packets sent once on transmission queue" MINUS 1218 * "Packets left network, but not honestly ACKed yet" PLUS 1219 * "Packets fast retransmitted" 1220 */ 1221 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1222 { 1223 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1224 } 1225 1226 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1227 1228 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1229 { 1230 return tp->snd_cwnd; 1231 } 1232 1233 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1234 { 1235 WARN_ON_ONCE((int)val <= 0); 1236 tp->snd_cwnd = val; 1237 } 1238 1239 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1240 { 1241 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1242 } 1243 1244 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1245 { 1246 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1247 } 1248 1249 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1250 { 1251 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1252 (1 << inet_csk(sk)->icsk_ca_state); 1253 } 1254 1255 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1256 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1257 * ssthresh. 1258 */ 1259 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1260 { 1261 const struct tcp_sock *tp = tcp_sk(sk); 1262 1263 if (tcp_in_cwnd_reduction(sk)) 1264 return tp->snd_ssthresh; 1265 else 1266 return max(tp->snd_ssthresh, 1267 ((tcp_snd_cwnd(tp) >> 1) + 1268 (tcp_snd_cwnd(tp) >> 2))); 1269 } 1270 1271 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1272 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1273 1274 void tcp_enter_cwr(struct sock *sk); 1275 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1276 1277 /* The maximum number of MSS of available cwnd for which TSO defers 1278 * sending if not using sysctl_tcp_tso_win_divisor. 1279 */ 1280 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1281 { 1282 return 3; 1283 } 1284 1285 /* Returns end sequence number of the receiver's advertised window */ 1286 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1287 { 1288 return tp->snd_una + tp->snd_wnd; 1289 } 1290 1291 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1292 * flexible approach. The RFC suggests cwnd should not be raised unless 1293 * it was fully used previously. And that's exactly what we do in 1294 * congestion avoidance mode. But in slow start we allow cwnd to grow 1295 * as long as the application has used half the cwnd. 1296 * Example : 1297 * cwnd is 10 (IW10), but application sends 9 frames. 1298 * We allow cwnd to reach 18 when all frames are ACKed. 1299 * This check is safe because it's as aggressive as slow start which already 1300 * risks 100% overshoot. The advantage is that we discourage application to 1301 * either send more filler packets or data to artificially blow up the cwnd 1302 * usage, and allow application-limited process to probe bw more aggressively. 1303 */ 1304 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1305 { 1306 const struct tcp_sock *tp = tcp_sk(sk); 1307 1308 if (tp->is_cwnd_limited) 1309 return true; 1310 1311 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1312 if (tcp_in_slow_start(tp)) 1313 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1314 1315 return false; 1316 } 1317 1318 /* BBR congestion control needs pacing. 1319 * Same remark for SO_MAX_PACING_RATE. 1320 * sch_fq packet scheduler is efficiently handling pacing, 1321 * but is not always installed/used. 1322 * Return true if TCP stack should pace packets itself. 1323 */ 1324 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1325 { 1326 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1327 } 1328 1329 /* Estimates in how many jiffies next packet for this flow can be sent. 1330 * Scheduling a retransmit timer too early would be silly. 1331 */ 1332 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1333 { 1334 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1335 1336 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1337 } 1338 1339 static inline void tcp_reset_xmit_timer(struct sock *sk, 1340 const int what, 1341 unsigned long when, 1342 const unsigned long max_when) 1343 { 1344 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1345 max_when); 1346 } 1347 1348 /* Something is really bad, we could not queue an additional packet, 1349 * because qdisc is full or receiver sent a 0 window, or we are paced. 1350 * We do not want to add fuel to the fire, or abort too early, 1351 * so make sure the timer we arm now is at least 200ms in the future, 1352 * regardless of current icsk_rto value (as it could be ~2ms) 1353 */ 1354 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1355 { 1356 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1357 } 1358 1359 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1360 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1361 unsigned long max_when) 1362 { 1363 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1364 inet_csk(sk)->icsk_backoff); 1365 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1366 1367 return (unsigned long)min_t(u64, when, max_when); 1368 } 1369 1370 static inline void tcp_check_probe_timer(struct sock *sk) 1371 { 1372 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1373 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1374 tcp_probe0_base(sk), TCP_RTO_MAX); 1375 } 1376 1377 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1378 { 1379 tp->snd_wl1 = seq; 1380 } 1381 1382 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1383 { 1384 tp->snd_wl1 = seq; 1385 } 1386 1387 /* 1388 * Calculate(/check) TCP checksum 1389 */ 1390 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1391 __be32 daddr, __wsum base) 1392 { 1393 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1394 } 1395 1396 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1397 { 1398 return !skb_csum_unnecessary(skb) && 1399 __skb_checksum_complete(skb); 1400 } 1401 1402 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1403 enum skb_drop_reason *reason); 1404 1405 1406 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1407 void tcp_set_state(struct sock *sk, int state); 1408 void tcp_done(struct sock *sk); 1409 int tcp_abort(struct sock *sk, int err); 1410 1411 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1412 { 1413 rx_opt->dsack = 0; 1414 rx_opt->num_sacks = 0; 1415 } 1416 1417 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1418 1419 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1420 { 1421 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1422 struct tcp_sock *tp = tcp_sk(sk); 1423 s32 delta; 1424 1425 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1426 tp->packets_out || ca_ops->cong_control) 1427 return; 1428 delta = tcp_jiffies32 - tp->lsndtime; 1429 if (delta > inet_csk(sk)->icsk_rto) 1430 tcp_cwnd_restart(sk, delta); 1431 } 1432 1433 /* Determine a window scaling and initial window to offer. */ 1434 void tcp_select_initial_window(const struct sock *sk, int __space, 1435 __u32 mss, __u32 *rcv_wnd, 1436 __u32 *window_clamp, int wscale_ok, 1437 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1438 1439 static inline int tcp_win_from_space(const struct sock *sk, int space) 1440 { 1441 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale); 1442 1443 return tcp_adv_win_scale <= 0 ? 1444 (space>>(-tcp_adv_win_scale)) : 1445 space - (space>>tcp_adv_win_scale); 1446 } 1447 1448 /* Note: caller must be prepared to deal with negative returns */ 1449 static inline int tcp_space(const struct sock *sk) 1450 { 1451 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1452 READ_ONCE(sk->sk_backlog.len) - 1453 atomic_read(&sk->sk_rmem_alloc)); 1454 } 1455 1456 static inline int tcp_full_space(const struct sock *sk) 1457 { 1458 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1459 } 1460 1461 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1462 { 1463 int unused_mem = sk_unused_reserved_mem(sk); 1464 struct tcp_sock *tp = tcp_sk(sk); 1465 1466 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1467 if (unused_mem) 1468 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1469 tcp_win_from_space(sk, unused_mem)); 1470 } 1471 1472 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1473 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1474 1475 1476 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1477 * If 87.5 % (7/8) of the space has been consumed, we want to override 1478 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1479 * len/truesize ratio. 1480 */ 1481 static inline bool tcp_rmem_pressure(const struct sock *sk) 1482 { 1483 int rcvbuf, threshold; 1484 1485 if (tcp_under_memory_pressure(sk)) 1486 return true; 1487 1488 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1489 threshold = rcvbuf - (rcvbuf >> 3); 1490 1491 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1492 } 1493 1494 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1495 { 1496 const struct tcp_sock *tp = tcp_sk(sk); 1497 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1498 1499 if (avail <= 0) 1500 return false; 1501 1502 return (avail >= target) || tcp_rmem_pressure(sk) || 1503 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1504 } 1505 1506 extern void tcp_openreq_init_rwin(struct request_sock *req, 1507 const struct sock *sk_listener, 1508 const struct dst_entry *dst); 1509 1510 void tcp_enter_memory_pressure(struct sock *sk); 1511 void tcp_leave_memory_pressure(struct sock *sk); 1512 1513 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1514 { 1515 struct net *net = sock_net((struct sock *)tp); 1516 1517 return tp->keepalive_intvl ? : 1518 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1519 } 1520 1521 static inline int keepalive_time_when(const struct tcp_sock *tp) 1522 { 1523 struct net *net = sock_net((struct sock *)tp); 1524 1525 return tp->keepalive_time ? : 1526 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1527 } 1528 1529 static inline int keepalive_probes(const struct tcp_sock *tp) 1530 { 1531 struct net *net = sock_net((struct sock *)tp); 1532 1533 return tp->keepalive_probes ? : 1534 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1535 } 1536 1537 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1538 { 1539 const struct inet_connection_sock *icsk = &tp->inet_conn; 1540 1541 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1542 tcp_jiffies32 - tp->rcv_tstamp); 1543 } 1544 1545 static inline int tcp_fin_time(const struct sock *sk) 1546 { 1547 int fin_timeout = tcp_sk(sk)->linger2 ? : 1548 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1549 const int rto = inet_csk(sk)->icsk_rto; 1550 1551 if (fin_timeout < (rto << 2) - (rto >> 1)) 1552 fin_timeout = (rto << 2) - (rto >> 1); 1553 1554 return fin_timeout; 1555 } 1556 1557 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1558 int paws_win) 1559 { 1560 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1561 return true; 1562 if (unlikely(!time_before32(ktime_get_seconds(), 1563 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1564 return true; 1565 /* 1566 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1567 * then following tcp messages have valid values. Ignore 0 value, 1568 * or else 'negative' tsval might forbid us to accept their packets. 1569 */ 1570 if (!rx_opt->ts_recent) 1571 return true; 1572 return false; 1573 } 1574 1575 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1576 int rst) 1577 { 1578 if (tcp_paws_check(rx_opt, 0)) 1579 return false; 1580 1581 /* RST segments are not recommended to carry timestamp, 1582 and, if they do, it is recommended to ignore PAWS because 1583 "their cleanup function should take precedence over timestamps." 1584 Certainly, it is mistake. It is necessary to understand the reasons 1585 of this constraint to relax it: if peer reboots, clock may go 1586 out-of-sync and half-open connections will not be reset. 1587 Actually, the problem would be not existing if all 1588 the implementations followed draft about maintaining clock 1589 via reboots. Linux-2.2 DOES NOT! 1590 1591 However, we can relax time bounds for RST segments to MSL. 1592 */ 1593 if (rst && !time_before32(ktime_get_seconds(), 1594 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1595 return false; 1596 return true; 1597 } 1598 1599 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1600 int mib_idx, u32 *last_oow_ack_time); 1601 1602 static inline void tcp_mib_init(struct net *net) 1603 { 1604 /* See RFC 2012 */ 1605 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1606 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1607 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1608 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1609 } 1610 1611 /* from STCP */ 1612 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1613 { 1614 tp->lost_skb_hint = NULL; 1615 } 1616 1617 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1618 { 1619 tcp_clear_retrans_hints_partial(tp); 1620 tp->retransmit_skb_hint = NULL; 1621 } 1622 1623 union tcp_md5_addr { 1624 struct in_addr a4; 1625 #if IS_ENABLED(CONFIG_IPV6) 1626 struct in6_addr a6; 1627 #endif 1628 }; 1629 1630 /* - key database */ 1631 struct tcp_md5sig_key { 1632 struct hlist_node node; 1633 u8 keylen; 1634 u8 family; /* AF_INET or AF_INET6 */ 1635 u8 prefixlen; 1636 u8 flags; 1637 union tcp_md5_addr addr; 1638 int l3index; /* set if key added with L3 scope */ 1639 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1640 struct rcu_head rcu; 1641 }; 1642 1643 /* - sock block */ 1644 struct tcp_md5sig_info { 1645 struct hlist_head head; 1646 struct rcu_head rcu; 1647 }; 1648 1649 /* - pseudo header */ 1650 struct tcp4_pseudohdr { 1651 __be32 saddr; 1652 __be32 daddr; 1653 __u8 pad; 1654 __u8 protocol; 1655 __be16 len; 1656 }; 1657 1658 struct tcp6_pseudohdr { 1659 struct in6_addr saddr; 1660 struct in6_addr daddr; 1661 __be32 len; 1662 __be32 protocol; /* including padding */ 1663 }; 1664 1665 union tcp_md5sum_block { 1666 struct tcp4_pseudohdr ip4; 1667 #if IS_ENABLED(CONFIG_IPV6) 1668 struct tcp6_pseudohdr ip6; 1669 #endif 1670 }; 1671 1672 /* - pool: digest algorithm, hash description and scratch buffer */ 1673 struct tcp_md5sig_pool { 1674 struct ahash_request *md5_req; 1675 void *scratch; 1676 }; 1677 1678 /* - functions */ 1679 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1680 const struct sock *sk, const struct sk_buff *skb); 1681 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1682 int family, u8 prefixlen, int l3index, u8 flags, 1683 const u8 *newkey, u8 newkeylen); 1684 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1685 int family, u8 prefixlen, int l3index, 1686 struct tcp_md5sig_key *key); 1687 1688 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1689 int family, u8 prefixlen, int l3index, u8 flags); 1690 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1691 const struct sock *addr_sk); 1692 1693 #ifdef CONFIG_TCP_MD5SIG 1694 #include <linux/jump_label.h> 1695 extern struct static_key_false_deferred tcp_md5_needed; 1696 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1697 const union tcp_md5_addr *addr, 1698 int family); 1699 static inline struct tcp_md5sig_key * 1700 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1701 const union tcp_md5_addr *addr, int family) 1702 { 1703 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1704 return NULL; 1705 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1706 } 1707 1708 enum skb_drop_reason 1709 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1710 const void *saddr, const void *daddr, 1711 int family, int dif, int sdif); 1712 1713 1714 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1715 #else 1716 static inline struct tcp_md5sig_key * 1717 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1718 const union tcp_md5_addr *addr, int family) 1719 { 1720 return NULL; 1721 } 1722 1723 static inline enum skb_drop_reason 1724 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1725 const void *saddr, const void *daddr, 1726 int family, int dif, int sdif) 1727 { 1728 return SKB_NOT_DROPPED_YET; 1729 } 1730 #define tcp_twsk_md5_key(twsk) NULL 1731 #endif 1732 1733 bool tcp_alloc_md5sig_pool(void); 1734 1735 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1736 static inline void tcp_put_md5sig_pool(void) 1737 { 1738 local_bh_enable(); 1739 } 1740 1741 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1742 unsigned int header_len); 1743 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1744 const struct tcp_md5sig_key *key); 1745 1746 /* From tcp_fastopen.c */ 1747 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1748 struct tcp_fastopen_cookie *cookie); 1749 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1750 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1751 u16 try_exp); 1752 struct tcp_fastopen_request { 1753 /* Fast Open cookie. Size 0 means a cookie request */ 1754 struct tcp_fastopen_cookie cookie; 1755 struct msghdr *data; /* data in MSG_FASTOPEN */ 1756 size_t size; 1757 int copied; /* queued in tcp_connect() */ 1758 struct ubuf_info *uarg; 1759 }; 1760 void tcp_free_fastopen_req(struct tcp_sock *tp); 1761 void tcp_fastopen_destroy_cipher(struct sock *sk); 1762 void tcp_fastopen_ctx_destroy(struct net *net); 1763 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1764 void *primary_key, void *backup_key); 1765 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1766 u64 *key); 1767 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1768 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1769 struct request_sock *req, 1770 struct tcp_fastopen_cookie *foc, 1771 const struct dst_entry *dst); 1772 void tcp_fastopen_init_key_once(struct net *net); 1773 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1774 struct tcp_fastopen_cookie *cookie); 1775 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1776 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1777 #define TCP_FASTOPEN_KEY_MAX 2 1778 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1779 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1780 1781 /* Fastopen key context */ 1782 struct tcp_fastopen_context { 1783 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1784 int num; 1785 struct rcu_head rcu; 1786 }; 1787 1788 void tcp_fastopen_active_disable(struct sock *sk); 1789 bool tcp_fastopen_active_should_disable(struct sock *sk); 1790 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1791 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1792 1793 /* Caller needs to wrap with rcu_read_(un)lock() */ 1794 static inline 1795 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1796 { 1797 struct tcp_fastopen_context *ctx; 1798 1799 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1800 if (!ctx) 1801 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1802 return ctx; 1803 } 1804 1805 static inline 1806 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1807 const struct tcp_fastopen_cookie *orig) 1808 { 1809 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1810 orig->len == foc->len && 1811 !memcmp(orig->val, foc->val, foc->len)) 1812 return true; 1813 return false; 1814 } 1815 1816 static inline 1817 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1818 { 1819 return ctx->num; 1820 } 1821 1822 /* Latencies incurred by various limits for a sender. They are 1823 * chronograph-like stats that are mutually exclusive. 1824 */ 1825 enum tcp_chrono { 1826 TCP_CHRONO_UNSPEC, 1827 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1828 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1829 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1830 __TCP_CHRONO_MAX, 1831 }; 1832 1833 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1834 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1835 1836 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1837 * the same memory storage than skb->destructor/_skb_refdst 1838 */ 1839 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1840 { 1841 skb->destructor = NULL; 1842 skb->_skb_refdst = 0UL; 1843 } 1844 1845 #define tcp_skb_tsorted_save(skb) { \ 1846 unsigned long _save = skb->_skb_refdst; \ 1847 skb->_skb_refdst = 0UL; 1848 1849 #define tcp_skb_tsorted_restore(skb) \ 1850 skb->_skb_refdst = _save; \ 1851 } 1852 1853 void tcp_write_queue_purge(struct sock *sk); 1854 1855 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1856 { 1857 return skb_rb_first(&sk->tcp_rtx_queue); 1858 } 1859 1860 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1861 { 1862 return skb_rb_last(&sk->tcp_rtx_queue); 1863 } 1864 1865 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1866 { 1867 return skb_peek_tail(&sk->sk_write_queue); 1868 } 1869 1870 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1871 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1872 1873 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1874 { 1875 return skb_peek(&sk->sk_write_queue); 1876 } 1877 1878 static inline bool tcp_skb_is_last(const struct sock *sk, 1879 const struct sk_buff *skb) 1880 { 1881 return skb_queue_is_last(&sk->sk_write_queue, skb); 1882 } 1883 1884 /** 1885 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1886 * @sk: socket 1887 * 1888 * Since the write queue can have a temporary empty skb in it, 1889 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1890 */ 1891 static inline bool tcp_write_queue_empty(const struct sock *sk) 1892 { 1893 const struct tcp_sock *tp = tcp_sk(sk); 1894 1895 return tp->write_seq == tp->snd_nxt; 1896 } 1897 1898 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1899 { 1900 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1901 } 1902 1903 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1904 { 1905 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1906 } 1907 1908 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1909 { 1910 __skb_queue_tail(&sk->sk_write_queue, skb); 1911 1912 /* Queue it, remembering where we must start sending. */ 1913 if (sk->sk_write_queue.next == skb) 1914 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1915 } 1916 1917 /* Insert new before skb on the write queue of sk. */ 1918 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1919 struct sk_buff *skb, 1920 struct sock *sk) 1921 { 1922 __skb_queue_before(&sk->sk_write_queue, skb, new); 1923 } 1924 1925 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1926 { 1927 tcp_skb_tsorted_anchor_cleanup(skb); 1928 __skb_unlink(skb, &sk->sk_write_queue); 1929 } 1930 1931 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1932 1933 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1934 { 1935 tcp_skb_tsorted_anchor_cleanup(skb); 1936 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1937 } 1938 1939 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1940 { 1941 list_del(&skb->tcp_tsorted_anchor); 1942 tcp_rtx_queue_unlink(skb, sk); 1943 tcp_wmem_free_skb(sk, skb); 1944 } 1945 1946 static inline void tcp_push_pending_frames(struct sock *sk) 1947 { 1948 if (tcp_send_head(sk)) { 1949 struct tcp_sock *tp = tcp_sk(sk); 1950 1951 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1952 } 1953 } 1954 1955 /* Start sequence of the skb just after the highest skb with SACKed 1956 * bit, valid only if sacked_out > 0 or when the caller has ensured 1957 * validity by itself. 1958 */ 1959 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1960 { 1961 if (!tp->sacked_out) 1962 return tp->snd_una; 1963 1964 if (tp->highest_sack == NULL) 1965 return tp->snd_nxt; 1966 1967 return TCP_SKB_CB(tp->highest_sack)->seq; 1968 } 1969 1970 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1971 { 1972 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1973 } 1974 1975 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1976 { 1977 return tcp_sk(sk)->highest_sack; 1978 } 1979 1980 static inline void tcp_highest_sack_reset(struct sock *sk) 1981 { 1982 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1983 } 1984 1985 /* Called when old skb is about to be deleted and replaced by new skb */ 1986 static inline void tcp_highest_sack_replace(struct sock *sk, 1987 struct sk_buff *old, 1988 struct sk_buff *new) 1989 { 1990 if (old == tcp_highest_sack(sk)) 1991 tcp_sk(sk)->highest_sack = new; 1992 } 1993 1994 /* This helper checks if socket has IP_TRANSPARENT set */ 1995 static inline bool inet_sk_transparent(const struct sock *sk) 1996 { 1997 switch (sk->sk_state) { 1998 case TCP_TIME_WAIT: 1999 return inet_twsk(sk)->tw_transparent; 2000 case TCP_NEW_SYN_RECV: 2001 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2002 } 2003 return inet_sk(sk)->transparent; 2004 } 2005 2006 /* Determines whether this is a thin stream (which may suffer from 2007 * increased latency). Used to trigger latency-reducing mechanisms. 2008 */ 2009 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2010 { 2011 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2012 } 2013 2014 /* /proc */ 2015 enum tcp_seq_states { 2016 TCP_SEQ_STATE_LISTENING, 2017 TCP_SEQ_STATE_ESTABLISHED, 2018 }; 2019 2020 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2021 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2022 void tcp_seq_stop(struct seq_file *seq, void *v); 2023 2024 struct tcp_seq_afinfo { 2025 sa_family_t family; 2026 }; 2027 2028 struct tcp_iter_state { 2029 struct seq_net_private p; 2030 enum tcp_seq_states state; 2031 struct sock *syn_wait_sk; 2032 int bucket, offset, sbucket, num; 2033 loff_t last_pos; 2034 }; 2035 2036 extern struct request_sock_ops tcp_request_sock_ops; 2037 extern struct request_sock_ops tcp6_request_sock_ops; 2038 2039 void tcp_v4_destroy_sock(struct sock *sk); 2040 2041 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2042 netdev_features_t features); 2043 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2044 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2045 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2046 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2047 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2048 void tcp_gro_complete(struct sk_buff *skb); 2049 2050 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2051 2052 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2053 { 2054 struct net *net = sock_net((struct sock *)tp); 2055 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2056 } 2057 2058 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2059 2060 #ifdef CONFIG_PROC_FS 2061 int tcp4_proc_init(void); 2062 void tcp4_proc_exit(void); 2063 #endif 2064 2065 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2066 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2067 const struct tcp_request_sock_ops *af_ops, 2068 struct sock *sk, struct sk_buff *skb); 2069 2070 /* TCP af-specific functions */ 2071 struct tcp_sock_af_ops { 2072 #ifdef CONFIG_TCP_MD5SIG 2073 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2074 const struct sock *addr_sk); 2075 int (*calc_md5_hash)(char *location, 2076 const struct tcp_md5sig_key *md5, 2077 const struct sock *sk, 2078 const struct sk_buff *skb); 2079 int (*md5_parse)(struct sock *sk, 2080 int optname, 2081 sockptr_t optval, 2082 int optlen); 2083 #endif 2084 }; 2085 2086 struct tcp_request_sock_ops { 2087 u16 mss_clamp; 2088 #ifdef CONFIG_TCP_MD5SIG 2089 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2090 const struct sock *addr_sk); 2091 int (*calc_md5_hash) (char *location, 2092 const struct tcp_md5sig_key *md5, 2093 const struct sock *sk, 2094 const struct sk_buff *skb); 2095 #endif 2096 #ifdef CONFIG_SYN_COOKIES 2097 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2098 __u16 *mss); 2099 #endif 2100 struct dst_entry *(*route_req)(const struct sock *sk, 2101 struct sk_buff *skb, 2102 struct flowi *fl, 2103 struct request_sock *req); 2104 u32 (*init_seq)(const struct sk_buff *skb); 2105 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2106 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2107 struct flowi *fl, struct request_sock *req, 2108 struct tcp_fastopen_cookie *foc, 2109 enum tcp_synack_type synack_type, 2110 struct sk_buff *syn_skb); 2111 }; 2112 2113 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2114 #if IS_ENABLED(CONFIG_IPV6) 2115 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2116 #endif 2117 2118 #ifdef CONFIG_SYN_COOKIES 2119 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2120 const struct sock *sk, struct sk_buff *skb, 2121 __u16 *mss) 2122 { 2123 tcp_synq_overflow(sk); 2124 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2125 return ops->cookie_init_seq(skb, mss); 2126 } 2127 #else 2128 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2129 const struct sock *sk, struct sk_buff *skb, 2130 __u16 *mss) 2131 { 2132 return 0; 2133 } 2134 #endif 2135 2136 int tcpv4_offload_init(void); 2137 2138 void tcp_v4_init(void); 2139 void tcp_init(void); 2140 2141 /* tcp_recovery.c */ 2142 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2143 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2144 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2145 u32 reo_wnd); 2146 extern bool tcp_rack_mark_lost(struct sock *sk); 2147 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2148 u64 xmit_time); 2149 extern void tcp_rack_reo_timeout(struct sock *sk); 2150 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2151 2152 /* tcp_plb.c */ 2153 2154 /* 2155 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2156 * expects cong_ratio which represents fraction of traffic that experienced 2157 * congestion over a single RTT. In order to avoid floating point operations, 2158 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2159 */ 2160 #define TCP_PLB_SCALE 8 2161 2162 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2163 struct tcp_plb_state { 2164 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2165 unused:3; 2166 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2167 }; 2168 2169 static inline void tcp_plb_init(const struct sock *sk, 2170 struct tcp_plb_state *plb) 2171 { 2172 plb->consec_cong_rounds = 0; 2173 plb->pause_until = 0; 2174 } 2175 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2176 const int cong_ratio); 2177 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2178 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2179 2180 /* At how many usecs into the future should the RTO fire? */ 2181 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2182 { 2183 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2184 u32 rto = inet_csk(sk)->icsk_rto; 2185 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2186 2187 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2188 } 2189 2190 /* 2191 * Save and compile IPv4 options, return a pointer to it 2192 */ 2193 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2194 struct sk_buff *skb) 2195 { 2196 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2197 struct ip_options_rcu *dopt = NULL; 2198 2199 if (opt->optlen) { 2200 int opt_size = sizeof(*dopt) + opt->optlen; 2201 2202 dopt = kmalloc(opt_size, GFP_ATOMIC); 2203 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2204 kfree(dopt); 2205 dopt = NULL; 2206 } 2207 } 2208 return dopt; 2209 } 2210 2211 /* locally generated TCP pure ACKs have skb->truesize == 2 2212 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2213 * This is much faster than dissecting the packet to find out. 2214 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2215 */ 2216 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2217 { 2218 return skb->truesize == 2; 2219 } 2220 2221 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2222 { 2223 skb->truesize = 2; 2224 } 2225 2226 static inline int tcp_inq(struct sock *sk) 2227 { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 int answ; 2230 2231 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2232 answ = 0; 2233 } else if (sock_flag(sk, SOCK_URGINLINE) || 2234 !tp->urg_data || 2235 before(tp->urg_seq, tp->copied_seq) || 2236 !before(tp->urg_seq, tp->rcv_nxt)) { 2237 2238 answ = tp->rcv_nxt - tp->copied_seq; 2239 2240 /* Subtract 1, if FIN was received */ 2241 if (answ && sock_flag(sk, SOCK_DONE)) 2242 answ--; 2243 } else { 2244 answ = tp->urg_seq - tp->copied_seq; 2245 } 2246 2247 return answ; 2248 } 2249 2250 int tcp_peek_len(struct socket *sock); 2251 2252 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2253 { 2254 u16 segs_in; 2255 2256 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2257 2258 /* We update these fields while other threads might 2259 * read them from tcp_get_info() 2260 */ 2261 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2262 if (skb->len > tcp_hdrlen(skb)) 2263 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2264 } 2265 2266 /* 2267 * TCP listen path runs lockless. 2268 * We forced "struct sock" to be const qualified to make sure 2269 * we don't modify one of its field by mistake. 2270 * Here, we increment sk_drops which is an atomic_t, so we can safely 2271 * make sock writable again. 2272 */ 2273 static inline void tcp_listendrop(const struct sock *sk) 2274 { 2275 atomic_inc(&((struct sock *)sk)->sk_drops); 2276 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2277 } 2278 2279 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2280 2281 /* 2282 * Interface for adding Upper Level Protocols over TCP 2283 */ 2284 2285 #define TCP_ULP_NAME_MAX 16 2286 #define TCP_ULP_MAX 128 2287 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2288 2289 struct tcp_ulp_ops { 2290 struct list_head list; 2291 2292 /* initialize ulp */ 2293 int (*init)(struct sock *sk); 2294 /* update ulp */ 2295 void (*update)(struct sock *sk, struct proto *p, 2296 void (*write_space)(struct sock *sk)); 2297 /* cleanup ulp */ 2298 void (*release)(struct sock *sk); 2299 /* diagnostic */ 2300 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2301 size_t (*get_info_size)(const struct sock *sk); 2302 /* clone ulp */ 2303 void (*clone)(const struct request_sock *req, struct sock *newsk, 2304 const gfp_t priority); 2305 2306 char name[TCP_ULP_NAME_MAX]; 2307 struct module *owner; 2308 }; 2309 int tcp_register_ulp(struct tcp_ulp_ops *type); 2310 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2311 int tcp_set_ulp(struct sock *sk, const char *name); 2312 void tcp_get_available_ulp(char *buf, size_t len); 2313 void tcp_cleanup_ulp(struct sock *sk); 2314 void tcp_update_ulp(struct sock *sk, struct proto *p, 2315 void (*write_space)(struct sock *sk)); 2316 2317 #define MODULE_ALIAS_TCP_ULP(name) \ 2318 __MODULE_INFO(alias, alias_userspace, name); \ 2319 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2320 2321 #ifdef CONFIG_NET_SOCK_MSG 2322 struct sk_msg; 2323 struct sk_psock; 2324 2325 #ifdef CONFIG_BPF_SYSCALL 2326 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2327 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2328 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2329 #endif /* CONFIG_BPF_SYSCALL */ 2330 2331 #ifdef CONFIG_INET 2332 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2333 #else 2334 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2335 { 2336 } 2337 #endif 2338 2339 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2340 struct sk_msg *msg, u32 bytes, int flags); 2341 #endif /* CONFIG_NET_SOCK_MSG */ 2342 2343 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2344 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2345 { 2346 } 2347 #endif 2348 2349 #ifdef CONFIG_CGROUP_BPF 2350 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2351 struct sk_buff *skb, 2352 unsigned int end_offset) 2353 { 2354 skops->skb = skb; 2355 skops->skb_data_end = skb->data + end_offset; 2356 } 2357 #else 2358 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2359 struct sk_buff *skb, 2360 unsigned int end_offset) 2361 { 2362 } 2363 #endif 2364 2365 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2366 * is < 0, then the BPF op failed (for example if the loaded BPF 2367 * program does not support the chosen operation or there is no BPF 2368 * program loaded). 2369 */ 2370 #ifdef CONFIG_BPF 2371 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2372 { 2373 struct bpf_sock_ops_kern sock_ops; 2374 int ret; 2375 2376 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2377 if (sk_fullsock(sk)) { 2378 sock_ops.is_fullsock = 1; 2379 sock_owned_by_me(sk); 2380 } 2381 2382 sock_ops.sk = sk; 2383 sock_ops.op = op; 2384 if (nargs > 0) 2385 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2386 2387 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2388 if (ret == 0) 2389 ret = sock_ops.reply; 2390 else 2391 ret = -1; 2392 return ret; 2393 } 2394 2395 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2396 { 2397 u32 args[2] = {arg1, arg2}; 2398 2399 return tcp_call_bpf(sk, op, 2, args); 2400 } 2401 2402 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2403 u32 arg3) 2404 { 2405 u32 args[3] = {arg1, arg2, arg3}; 2406 2407 return tcp_call_bpf(sk, op, 3, args); 2408 } 2409 2410 #else 2411 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2412 { 2413 return -EPERM; 2414 } 2415 2416 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2417 { 2418 return -EPERM; 2419 } 2420 2421 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2422 u32 arg3) 2423 { 2424 return -EPERM; 2425 } 2426 2427 #endif 2428 2429 static inline u32 tcp_timeout_init(struct sock *sk) 2430 { 2431 int timeout; 2432 2433 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2434 2435 if (timeout <= 0) 2436 timeout = TCP_TIMEOUT_INIT; 2437 return min_t(int, timeout, TCP_RTO_MAX); 2438 } 2439 2440 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2441 { 2442 int rwnd; 2443 2444 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2445 2446 if (rwnd < 0) 2447 rwnd = 0; 2448 return rwnd; 2449 } 2450 2451 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2452 { 2453 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2454 } 2455 2456 static inline void tcp_bpf_rtt(struct sock *sk) 2457 { 2458 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2459 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2460 } 2461 2462 #if IS_ENABLED(CONFIG_SMC) 2463 extern struct static_key_false tcp_have_smc; 2464 #endif 2465 2466 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2467 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2468 void (*cad)(struct sock *sk, u32 ack_seq)); 2469 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2470 void clean_acked_data_flush(void); 2471 #endif 2472 2473 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2474 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2475 const struct tcp_sock *tp) 2476 { 2477 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2478 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2479 } 2480 2481 /* Compute Earliest Departure Time for some control packets 2482 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2483 */ 2484 static inline u64 tcp_transmit_time(const struct sock *sk) 2485 { 2486 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2487 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2488 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2489 2490 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2491 } 2492 return 0; 2493 } 2494 2495 #endif /* _TCP_H */ 2496