xref: /openbmc/linux/include/net/tcp.h (revision d2ba09c1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
338 			 const struct tcphdr *th);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 int tcp_mmap(struct file *file, struct socket *sock,
409 	     struct vm_area_struct *vma);
410 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
411 		       struct tcp_options_received *opt_rx,
412 		       int estab, struct tcp_fastopen_cookie *foc);
413 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
414 
415 /*
416  *	TCP v4 functions exported for the inet6 API
417  */
418 
419 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
420 void tcp_v4_mtu_reduced(struct sock *sk);
421 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
422 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
423 struct sock *tcp_create_openreq_child(const struct sock *sk,
424 				      struct request_sock *req,
425 				      struct sk_buff *skb);
426 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
427 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
428 				  struct request_sock *req,
429 				  struct dst_entry *dst,
430 				  struct request_sock *req_unhash,
431 				  bool *own_req);
432 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
433 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
434 int tcp_connect(struct sock *sk);
435 enum tcp_synack_type {
436 	TCP_SYNACK_NORMAL,
437 	TCP_SYNACK_FASTOPEN,
438 	TCP_SYNACK_COOKIE,
439 };
440 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
441 				struct request_sock *req,
442 				struct tcp_fastopen_cookie *foc,
443 				enum tcp_synack_type synack_type);
444 int tcp_disconnect(struct sock *sk, int flags);
445 
446 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
447 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
448 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
449 
450 /* From syncookies.c */
451 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
452 				 struct request_sock *req,
453 				 struct dst_entry *dst, u32 tsoff);
454 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
455 		      u32 cookie);
456 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
457 #ifdef CONFIG_SYN_COOKIES
458 
459 /* Syncookies use a monotonic timer which increments every 60 seconds.
460  * This counter is used both as a hash input and partially encoded into
461  * the cookie value.  A cookie is only validated further if the delta
462  * between the current counter value and the encoded one is less than this,
463  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
464  * the counter advances immediately after a cookie is generated).
465  */
466 #define MAX_SYNCOOKIE_AGE	2
467 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
468 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
469 
470 /* syncookies: remember time of last synqueue overflow
471  * But do not dirty this field too often (once per second is enough)
472  * It is racy as we do not hold a lock, but race is very minor.
473  */
474 static inline void tcp_synq_overflow(const struct sock *sk)
475 {
476 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
477 	unsigned long now = jiffies;
478 
479 	if (time_after(now, last_overflow + HZ))
480 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
481 }
482 
483 /* syncookies: no recent synqueue overflow on this listening socket? */
484 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
485 {
486 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
487 
488 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
489 }
490 
491 static inline u32 tcp_cookie_time(void)
492 {
493 	u64 val = get_jiffies_64();
494 
495 	do_div(val, TCP_SYNCOOKIE_PERIOD);
496 	return val;
497 }
498 
499 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
500 			      u16 *mssp);
501 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
502 u64 cookie_init_timestamp(struct request_sock *req);
503 bool cookie_timestamp_decode(const struct net *net,
504 			     struct tcp_options_received *opt);
505 bool cookie_ecn_ok(const struct tcp_options_received *opt,
506 		   const struct net *net, const struct dst_entry *dst);
507 
508 /* From net/ipv6/syncookies.c */
509 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
510 		      u32 cookie);
511 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
512 
513 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
514 			      const struct tcphdr *th, u16 *mssp);
515 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
516 #endif
517 /* tcp_output.c */
518 
519 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
520 			       int nonagle);
521 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
523 void tcp_retransmit_timer(struct sock *sk);
524 void tcp_xmit_retransmit_queue(struct sock *);
525 void tcp_simple_retransmit(struct sock *);
526 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
527 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
528 enum tcp_queue {
529 	TCP_FRAG_IN_WRITE_QUEUE,
530 	TCP_FRAG_IN_RTX_QUEUE,
531 };
532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
533 		 struct sk_buff *skb, u32 len,
534 		 unsigned int mss_now, gfp_t gfp);
535 
536 void tcp_send_probe0(struct sock *);
537 void tcp_send_partial(struct sock *);
538 int tcp_write_wakeup(struct sock *, int mib);
539 void tcp_send_fin(struct sock *sk);
540 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
541 int tcp_send_synack(struct sock *);
542 void tcp_push_one(struct sock *, unsigned int mss_now);
543 void tcp_send_ack(struct sock *sk);
544 void tcp_send_delayed_ack(struct sock *sk);
545 void tcp_send_loss_probe(struct sock *sk);
546 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
547 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
548 			     const struct sk_buff *next_skb);
549 
550 /* tcp_input.c */
551 void tcp_rearm_rto(struct sock *sk);
552 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
553 void tcp_reset(struct sock *sk);
554 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
555 void tcp_fin(struct sock *sk);
556 
557 /* tcp_timer.c */
558 void tcp_init_xmit_timers(struct sock *);
559 static inline void tcp_clear_xmit_timers(struct sock *sk)
560 {
561 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
562 		__sock_put(sk);
563 
564 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
565 		__sock_put(sk);
566 
567 	inet_csk_clear_xmit_timers(sk);
568 }
569 
570 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
571 unsigned int tcp_current_mss(struct sock *sk);
572 
573 /* Bound MSS / TSO packet size with the half of the window */
574 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
575 {
576 	int cutoff;
577 
578 	/* When peer uses tiny windows, there is no use in packetizing
579 	 * to sub-MSS pieces for the sake of SWS or making sure there
580 	 * are enough packets in the pipe for fast recovery.
581 	 *
582 	 * On the other hand, for extremely large MSS devices, handling
583 	 * smaller than MSS windows in this way does make sense.
584 	 */
585 	if (tp->max_window > TCP_MSS_DEFAULT)
586 		cutoff = (tp->max_window >> 1);
587 	else
588 		cutoff = tp->max_window;
589 
590 	if (cutoff && pktsize > cutoff)
591 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
592 	else
593 		return pktsize;
594 }
595 
596 /* tcp.c */
597 void tcp_get_info(struct sock *, struct tcp_info *);
598 
599 /* Read 'sendfile()'-style from a TCP socket */
600 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
601 		  sk_read_actor_t recv_actor);
602 
603 void tcp_initialize_rcv_mss(struct sock *sk);
604 
605 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
606 int tcp_mss_to_mtu(struct sock *sk, int mss);
607 void tcp_mtup_init(struct sock *sk);
608 void tcp_init_buffer_space(struct sock *sk);
609 
610 static inline void tcp_bound_rto(const struct sock *sk)
611 {
612 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
613 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
614 }
615 
616 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
617 {
618 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
619 }
620 
621 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
622 {
623 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
624 			       ntohl(TCP_FLAG_ACK) |
625 			       snd_wnd);
626 }
627 
628 static inline void tcp_fast_path_on(struct tcp_sock *tp)
629 {
630 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
631 }
632 
633 static inline void tcp_fast_path_check(struct sock *sk)
634 {
635 	struct tcp_sock *tp = tcp_sk(sk);
636 
637 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
638 	    tp->rcv_wnd &&
639 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
640 	    !tp->urg_data)
641 		tcp_fast_path_on(tp);
642 }
643 
644 /* Compute the actual rto_min value */
645 static inline u32 tcp_rto_min(struct sock *sk)
646 {
647 	const struct dst_entry *dst = __sk_dst_get(sk);
648 	u32 rto_min = TCP_RTO_MIN;
649 
650 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
651 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
652 	return rto_min;
653 }
654 
655 static inline u32 tcp_rto_min_us(struct sock *sk)
656 {
657 	return jiffies_to_usecs(tcp_rto_min(sk));
658 }
659 
660 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
661 {
662 	return dst_metric_locked(dst, RTAX_CC_ALGO);
663 }
664 
665 /* Minimum RTT in usec. ~0 means not available. */
666 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
667 {
668 	return minmax_get(&tp->rtt_min);
669 }
670 
671 /* Compute the actual receive window we are currently advertising.
672  * Rcv_nxt can be after the window if our peer push more data
673  * than the offered window.
674  */
675 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
676 {
677 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
678 
679 	if (win < 0)
680 		win = 0;
681 	return (u32) win;
682 }
683 
684 /* Choose a new window, without checks for shrinking, and without
685  * scaling applied to the result.  The caller does these things
686  * if necessary.  This is a "raw" window selection.
687  */
688 u32 __tcp_select_window(struct sock *sk);
689 
690 void tcp_send_window_probe(struct sock *sk);
691 
692 /* TCP uses 32bit jiffies to save some space.
693  * Note that this is different from tcp_time_stamp, which
694  * historically has been the same until linux-4.13.
695  */
696 #define tcp_jiffies32 ((u32)jiffies)
697 
698 /*
699  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
700  * It is no longer tied to jiffies, but to 1 ms clock.
701  * Note: double check if you want to use tcp_jiffies32 instead of this.
702  */
703 #define TCP_TS_HZ	1000
704 
705 static inline u64 tcp_clock_ns(void)
706 {
707 	return local_clock();
708 }
709 
710 static inline u64 tcp_clock_us(void)
711 {
712 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
713 }
714 
715 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
716 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
717 {
718 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
719 }
720 
721 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
722 static inline u32 tcp_time_stamp_raw(void)
723 {
724 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
725 }
726 
727 
728 /* Refresh 1us clock of a TCP socket,
729  * ensuring monotically increasing values.
730  */
731 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
732 {
733 	u64 val = tcp_clock_us();
734 
735 	if (val > tp->tcp_mstamp)
736 		tp->tcp_mstamp = val;
737 }
738 
739 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
740 {
741 	return max_t(s64, t1 - t0, 0);
742 }
743 
744 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
745 {
746 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 
750 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
751 
752 #define TCPHDR_FIN 0x01
753 #define TCPHDR_SYN 0x02
754 #define TCPHDR_RST 0x04
755 #define TCPHDR_PSH 0x08
756 #define TCPHDR_ACK 0x10
757 #define TCPHDR_URG 0x20
758 #define TCPHDR_ECE 0x40
759 #define TCPHDR_CWR 0x80
760 
761 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
762 
763 /* This is what the send packet queuing engine uses to pass
764  * TCP per-packet control information to the transmission code.
765  * We also store the host-order sequence numbers in here too.
766  * This is 44 bytes if IPV6 is enabled.
767  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
768  */
769 struct tcp_skb_cb {
770 	__u32		seq;		/* Starting sequence number	*/
771 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
772 	union {
773 		/* Note : tcp_tw_isn is used in input path only
774 		 *	  (isn chosen by tcp_timewait_state_process())
775 		 *
776 		 * 	  tcp_gso_segs/size are used in write queue only,
777 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
778 		 */
779 		__u32		tcp_tw_isn;
780 		struct {
781 			u16	tcp_gso_segs;
782 			u16	tcp_gso_size;
783 		};
784 	};
785 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
786 
787 	__u8		sacked;		/* State flags for SACK.	*/
788 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
789 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
790 #define TCPCB_LOST		0x04	/* SKB is lost			*/
791 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
792 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
793 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
794 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
795 				TCPCB_REPAIRED)
796 
797 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
798 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
799 			eor:1,		/* Is skb MSG_EOR marked? */
800 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
801 			unused:5;
802 	__u32		ack_seq;	/* Sequence number ACK'd	*/
803 	union {
804 		struct {
805 			/* There is space for up to 24 bytes */
806 			__u32 in_flight:30,/* Bytes in flight at transmit */
807 			      is_app_limited:1, /* cwnd not fully used? */
808 			      unused:1;
809 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
810 			__u32 delivered;
811 			/* start of send pipeline phase */
812 			u64 first_tx_mstamp;
813 			/* when we reached the "delivered" count */
814 			u64 delivered_mstamp;
815 		} tx;   /* only used for outgoing skbs */
816 		union {
817 			struct inet_skb_parm	h4;
818 #if IS_ENABLED(CONFIG_IPV6)
819 			struct inet6_skb_parm	h6;
820 #endif
821 		} header;	/* For incoming skbs */
822 		struct {
823 			__u32 flags;
824 			struct sock *sk_redir;
825 			void *data_end;
826 		} bpf;
827 	};
828 };
829 
830 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
831 
832 
833 #if IS_ENABLED(CONFIG_IPV6)
834 /* This is the variant of inet6_iif() that must be used by TCP,
835  * as TCP moves IP6CB into a different location in skb->cb[]
836  */
837 static inline int tcp_v6_iif(const struct sk_buff *skb)
838 {
839 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
840 
841 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
842 }
843 
844 /* TCP_SKB_CB reference means this can not be used from early demux */
845 static inline int tcp_v6_sdif(const struct sk_buff *skb)
846 {
847 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
848 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
849 		return TCP_SKB_CB(skb)->header.h6.iif;
850 #endif
851 	return 0;
852 }
853 #endif
854 
855 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
856 {
857 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
858 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
859 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
860 		return true;
861 #endif
862 	return false;
863 }
864 
865 /* TCP_SKB_CB reference means this can not be used from early demux */
866 static inline int tcp_v4_sdif(struct sk_buff *skb)
867 {
868 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
869 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
870 		return TCP_SKB_CB(skb)->header.h4.iif;
871 #endif
872 	return 0;
873 }
874 
875 /* Due to TSO, an SKB can be composed of multiple actual
876  * packets.  To keep these tracked properly, we use this.
877  */
878 static inline int tcp_skb_pcount(const struct sk_buff *skb)
879 {
880 	return TCP_SKB_CB(skb)->tcp_gso_segs;
881 }
882 
883 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
884 {
885 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
886 }
887 
888 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
889 {
890 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
891 }
892 
893 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
894 static inline int tcp_skb_mss(const struct sk_buff *skb)
895 {
896 	return TCP_SKB_CB(skb)->tcp_gso_size;
897 }
898 
899 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
900 {
901 	return likely(!TCP_SKB_CB(skb)->eor);
902 }
903 
904 /* Events passed to congestion control interface */
905 enum tcp_ca_event {
906 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
907 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
908 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
909 	CA_EVENT_LOSS,		/* loss timeout */
910 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
911 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
912 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
913 	CA_EVENT_NON_DELAYED_ACK,
914 };
915 
916 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
917 enum tcp_ca_ack_event_flags {
918 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
919 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
920 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
921 };
922 
923 /*
924  * Interface for adding new TCP congestion control handlers
925  */
926 #define TCP_CA_NAME_MAX	16
927 #define TCP_CA_MAX	128
928 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
929 
930 #define TCP_CA_UNSPEC	0
931 
932 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
933 #define TCP_CONG_NON_RESTRICTED 0x1
934 /* Requires ECN/ECT set on all packets */
935 #define TCP_CONG_NEEDS_ECN	0x2
936 
937 union tcp_cc_info;
938 
939 struct ack_sample {
940 	u32 pkts_acked;
941 	s32 rtt_us;
942 	u32 in_flight;
943 };
944 
945 /* A rate sample measures the number of (original/retransmitted) data
946  * packets delivered "delivered" over an interval of time "interval_us".
947  * The tcp_rate.c code fills in the rate sample, and congestion
948  * control modules that define a cong_control function to run at the end
949  * of ACK processing can optionally chose to consult this sample when
950  * setting cwnd and pacing rate.
951  * A sample is invalid if "delivered" or "interval_us" is negative.
952  */
953 struct rate_sample {
954 	u64  prior_mstamp; /* starting timestamp for interval */
955 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
956 	s32  delivered;		/* number of packets delivered over interval */
957 	long interval_us;	/* time for tp->delivered to incr "delivered" */
958 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
959 	int  losses;		/* number of packets marked lost upon ACK */
960 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
961 	u32  prior_in_flight;	/* in flight before this ACK */
962 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
963 	bool is_retrans;	/* is sample from retransmission? */
964 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
965 };
966 
967 struct tcp_congestion_ops {
968 	struct list_head	list;
969 	u32 key;
970 	u32 flags;
971 
972 	/* initialize private data (optional) */
973 	void (*init)(struct sock *sk);
974 	/* cleanup private data  (optional) */
975 	void (*release)(struct sock *sk);
976 
977 	/* return slow start threshold (required) */
978 	u32 (*ssthresh)(struct sock *sk);
979 	/* do new cwnd calculation (required) */
980 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
981 	/* call before changing ca_state (optional) */
982 	void (*set_state)(struct sock *sk, u8 new_state);
983 	/* call when cwnd event occurs (optional) */
984 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
985 	/* call when ack arrives (optional) */
986 	void (*in_ack_event)(struct sock *sk, u32 flags);
987 	/* new value of cwnd after loss (required) */
988 	u32  (*undo_cwnd)(struct sock *sk);
989 	/* hook for packet ack accounting (optional) */
990 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
991 	/* override sysctl_tcp_min_tso_segs */
992 	u32 (*min_tso_segs)(struct sock *sk);
993 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
994 	u32 (*sndbuf_expand)(struct sock *sk);
995 	/* call when packets are delivered to update cwnd and pacing rate,
996 	 * after all the ca_state processing. (optional)
997 	 */
998 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
999 	/* get info for inet_diag (optional) */
1000 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1001 			   union tcp_cc_info *info);
1002 
1003 	char 		name[TCP_CA_NAME_MAX];
1004 	struct module 	*owner;
1005 };
1006 
1007 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1008 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1009 
1010 void tcp_assign_congestion_control(struct sock *sk);
1011 void tcp_init_congestion_control(struct sock *sk);
1012 void tcp_cleanup_congestion_control(struct sock *sk);
1013 int tcp_set_default_congestion_control(struct net *net, const char *name);
1014 void tcp_get_default_congestion_control(struct net *net, char *name);
1015 void tcp_get_available_congestion_control(char *buf, size_t len);
1016 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1017 int tcp_set_allowed_congestion_control(char *allowed);
1018 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1019 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1020 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1021 
1022 u32 tcp_reno_ssthresh(struct sock *sk);
1023 u32 tcp_reno_undo_cwnd(struct sock *sk);
1024 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1025 extern struct tcp_congestion_ops tcp_reno;
1026 
1027 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1028 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1029 #ifdef CONFIG_INET
1030 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1031 #else
1032 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1033 {
1034 	return NULL;
1035 }
1036 #endif
1037 
1038 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1039 {
1040 	const struct inet_connection_sock *icsk = inet_csk(sk);
1041 
1042 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1043 }
1044 
1045 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1046 {
1047 	struct inet_connection_sock *icsk = inet_csk(sk);
1048 
1049 	if (icsk->icsk_ca_ops->set_state)
1050 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1051 	icsk->icsk_ca_state = ca_state;
1052 }
1053 
1054 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1055 {
1056 	const struct inet_connection_sock *icsk = inet_csk(sk);
1057 
1058 	if (icsk->icsk_ca_ops->cwnd_event)
1059 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1060 }
1061 
1062 /* From tcp_rate.c */
1063 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1064 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1065 			    struct rate_sample *rs);
1066 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1067 		  bool is_sack_reneg, struct rate_sample *rs);
1068 void tcp_rate_check_app_limited(struct sock *sk);
1069 
1070 /* These functions determine how the current flow behaves in respect of SACK
1071  * handling. SACK is negotiated with the peer, and therefore it can vary
1072  * between different flows.
1073  *
1074  * tcp_is_sack - SACK enabled
1075  * tcp_is_reno - No SACK
1076  */
1077 static inline int tcp_is_sack(const struct tcp_sock *tp)
1078 {
1079 	return tp->rx_opt.sack_ok;
1080 }
1081 
1082 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1083 {
1084 	return !tcp_is_sack(tp);
1085 }
1086 
1087 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1088 {
1089 	return tp->sacked_out + tp->lost_out;
1090 }
1091 
1092 /* This determines how many packets are "in the network" to the best
1093  * of our knowledge.  In many cases it is conservative, but where
1094  * detailed information is available from the receiver (via SACK
1095  * blocks etc.) we can make more aggressive calculations.
1096  *
1097  * Use this for decisions involving congestion control, use just
1098  * tp->packets_out to determine if the send queue is empty or not.
1099  *
1100  * Read this equation as:
1101  *
1102  *	"Packets sent once on transmission queue" MINUS
1103  *	"Packets left network, but not honestly ACKed yet" PLUS
1104  *	"Packets fast retransmitted"
1105  */
1106 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1107 {
1108 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1109 }
1110 
1111 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1112 
1113 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1114 {
1115 	return tp->snd_cwnd < tp->snd_ssthresh;
1116 }
1117 
1118 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1119 {
1120 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1121 }
1122 
1123 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1124 {
1125 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1126 	       (1 << inet_csk(sk)->icsk_ca_state);
1127 }
1128 
1129 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1130  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1131  * ssthresh.
1132  */
1133 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1134 {
1135 	const struct tcp_sock *tp = tcp_sk(sk);
1136 
1137 	if (tcp_in_cwnd_reduction(sk))
1138 		return tp->snd_ssthresh;
1139 	else
1140 		return max(tp->snd_ssthresh,
1141 			   ((tp->snd_cwnd >> 1) +
1142 			    (tp->snd_cwnd >> 2)));
1143 }
1144 
1145 /* Use define here intentionally to get WARN_ON location shown at the caller */
1146 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1147 
1148 void tcp_enter_cwr(struct sock *sk);
1149 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1150 
1151 /* The maximum number of MSS of available cwnd for which TSO defers
1152  * sending if not using sysctl_tcp_tso_win_divisor.
1153  */
1154 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1155 {
1156 	return 3;
1157 }
1158 
1159 /* Returns end sequence number of the receiver's advertised window */
1160 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1161 {
1162 	return tp->snd_una + tp->snd_wnd;
1163 }
1164 
1165 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1166  * flexible approach. The RFC suggests cwnd should not be raised unless
1167  * it was fully used previously. And that's exactly what we do in
1168  * congestion avoidance mode. But in slow start we allow cwnd to grow
1169  * as long as the application has used half the cwnd.
1170  * Example :
1171  *    cwnd is 10 (IW10), but application sends 9 frames.
1172  *    We allow cwnd to reach 18 when all frames are ACKed.
1173  * This check is safe because it's as aggressive as slow start which already
1174  * risks 100% overshoot. The advantage is that we discourage application to
1175  * either send more filler packets or data to artificially blow up the cwnd
1176  * usage, and allow application-limited process to probe bw more aggressively.
1177  */
1178 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1179 {
1180 	const struct tcp_sock *tp = tcp_sk(sk);
1181 
1182 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1183 	if (tcp_in_slow_start(tp))
1184 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1185 
1186 	return tp->is_cwnd_limited;
1187 }
1188 
1189 /* Something is really bad, we could not queue an additional packet,
1190  * because qdisc is full or receiver sent a 0 window.
1191  * We do not want to add fuel to the fire, or abort too early,
1192  * so make sure the timer we arm now is at least 200ms in the future,
1193  * regardless of current icsk_rto value (as it could be ~2ms)
1194  */
1195 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1196 {
1197 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1198 }
1199 
1200 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1201 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1202 					    unsigned long max_when)
1203 {
1204 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1205 
1206 	return (unsigned long)min_t(u64, when, max_when);
1207 }
1208 
1209 static inline void tcp_check_probe_timer(struct sock *sk)
1210 {
1211 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1212 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1213 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1214 }
1215 
1216 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1217 {
1218 	tp->snd_wl1 = seq;
1219 }
1220 
1221 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1222 {
1223 	tp->snd_wl1 = seq;
1224 }
1225 
1226 /*
1227  * Calculate(/check) TCP checksum
1228  */
1229 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1230 				   __be32 daddr, __wsum base)
1231 {
1232 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1233 }
1234 
1235 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1236 {
1237 	return __skb_checksum_complete(skb);
1238 }
1239 
1240 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1241 {
1242 	return !skb_csum_unnecessary(skb) &&
1243 		__tcp_checksum_complete(skb);
1244 }
1245 
1246 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1247 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1248 
1249 #undef STATE_TRACE
1250 
1251 #ifdef STATE_TRACE
1252 static const char *statename[]={
1253 	"Unused","Established","Syn Sent","Syn Recv",
1254 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1255 	"Close Wait","Last ACK","Listen","Closing"
1256 };
1257 #endif
1258 void tcp_set_state(struct sock *sk, int state);
1259 
1260 void tcp_done(struct sock *sk);
1261 
1262 int tcp_abort(struct sock *sk, int err);
1263 
1264 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1265 {
1266 	rx_opt->dsack = 0;
1267 	rx_opt->num_sacks = 0;
1268 }
1269 
1270 u32 tcp_default_init_rwnd(u32 mss);
1271 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1272 
1273 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1274 {
1275 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1276 	struct tcp_sock *tp = tcp_sk(sk);
1277 	s32 delta;
1278 
1279 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1280 	    ca_ops->cong_control)
1281 		return;
1282 	delta = tcp_jiffies32 - tp->lsndtime;
1283 	if (delta > inet_csk(sk)->icsk_rto)
1284 		tcp_cwnd_restart(sk, delta);
1285 }
1286 
1287 /* Determine a window scaling and initial window to offer. */
1288 void tcp_select_initial_window(const struct sock *sk, int __space,
1289 			       __u32 mss, __u32 *rcv_wnd,
1290 			       __u32 *window_clamp, int wscale_ok,
1291 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1292 
1293 static inline int tcp_win_from_space(const struct sock *sk, int space)
1294 {
1295 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1296 
1297 	return tcp_adv_win_scale <= 0 ?
1298 		(space>>(-tcp_adv_win_scale)) :
1299 		space - (space>>tcp_adv_win_scale);
1300 }
1301 
1302 /* Note: caller must be prepared to deal with negative returns */
1303 static inline int tcp_space(const struct sock *sk)
1304 {
1305 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1306 				  atomic_read(&sk->sk_rmem_alloc));
1307 }
1308 
1309 static inline int tcp_full_space(const struct sock *sk)
1310 {
1311 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1312 }
1313 
1314 extern void tcp_openreq_init_rwin(struct request_sock *req,
1315 				  const struct sock *sk_listener,
1316 				  const struct dst_entry *dst);
1317 
1318 void tcp_enter_memory_pressure(struct sock *sk);
1319 void tcp_leave_memory_pressure(struct sock *sk);
1320 
1321 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1322 {
1323 	struct net *net = sock_net((struct sock *)tp);
1324 
1325 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1326 }
1327 
1328 static inline int keepalive_time_when(const struct tcp_sock *tp)
1329 {
1330 	struct net *net = sock_net((struct sock *)tp);
1331 
1332 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1333 }
1334 
1335 static inline int keepalive_probes(const struct tcp_sock *tp)
1336 {
1337 	struct net *net = sock_net((struct sock *)tp);
1338 
1339 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1340 }
1341 
1342 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1343 {
1344 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1345 
1346 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1347 			  tcp_jiffies32 - tp->rcv_tstamp);
1348 }
1349 
1350 static inline int tcp_fin_time(const struct sock *sk)
1351 {
1352 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1353 	const int rto = inet_csk(sk)->icsk_rto;
1354 
1355 	if (fin_timeout < (rto << 2) - (rto >> 1))
1356 		fin_timeout = (rto << 2) - (rto >> 1);
1357 
1358 	return fin_timeout;
1359 }
1360 
1361 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1362 				  int paws_win)
1363 {
1364 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1365 		return true;
1366 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1367 		return true;
1368 	/*
1369 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1370 	 * then following tcp messages have valid values. Ignore 0 value,
1371 	 * or else 'negative' tsval might forbid us to accept their packets.
1372 	 */
1373 	if (!rx_opt->ts_recent)
1374 		return true;
1375 	return false;
1376 }
1377 
1378 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1379 				   int rst)
1380 {
1381 	if (tcp_paws_check(rx_opt, 0))
1382 		return false;
1383 
1384 	/* RST segments are not recommended to carry timestamp,
1385 	   and, if they do, it is recommended to ignore PAWS because
1386 	   "their cleanup function should take precedence over timestamps."
1387 	   Certainly, it is mistake. It is necessary to understand the reasons
1388 	   of this constraint to relax it: if peer reboots, clock may go
1389 	   out-of-sync and half-open connections will not be reset.
1390 	   Actually, the problem would be not existing if all
1391 	   the implementations followed draft about maintaining clock
1392 	   via reboots. Linux-2.2 DOES NOT!
1393 
1394 	   However, we can relax time bounds for RST segments to MSL.
1395 	 */
1396 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1397 		return false;
1398 	return true;
1399 }
1400 
1401 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1402 			  int mib_idx, u32 *last_oow_ack_time);
1403 
1404 static inline void tcp_mib_init(struct net *net)
1405 {
1406 	/* See RFC 2012 */
1407 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1408 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1409 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1410 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1411 }
1412 
1413 /* from STCP */
1414 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1415 {
1416 	tp->lost_skb_hint = NULL;
1417 }
1418 
1419 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1420 {
1421 	tcp_clear_retrans_hints_partial(tp);
1422 	tp->retransmit_skb_hint = NULL;
1423 }
1424 
1425 union tcp_md5_addr {
1426 	struct in_addr  a4;
1427 #if IS_ENABLED(CONFIG_IPV6)
1428 	struct in6_addr	a6;
1429 #endif
1430 };
1431 
1432 /* - key database */
1433 struct tcp_md5sig_key {
1434 	struct hlist_node	node;
1435 	u8			keylen;
1436 	u8			family; /* AF_INET or AF_INET6 */
1437 	union tcp_md5_addr	addr;
1438 	u8			prefixlen;
1439 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1440 	struct rcu_head		rcu;
1441 };
1442 
1443 /* - sock block */
1444 struct tcp_md5sig_info {
1445 	struct hlist_head	head;
1446 	struct rcu_head		rcu;
1447 };
1448 
1449 /* - pseudo header */
1450 struct tcp4_pseudohdr {
1451 	__be32		saddr;
1452 	__be32		daddr;
1453 	__u8		pad;
1454 	__u8		protocol;
1455 	__be16		len;
1456 };
1457 
1458 struct tcp6_pseudohdr {
1459 	struct in6_addr	saddr;
1460 	struct in6_addr daddr;
1461 	__be32		len;
1462 	__be32		protocol;	/* including padding */
1463 };
1464 
1465 union tcp_md5sum_block {
1466 	struct tcp4_pseudohdr ip4;
1467 #if IS_ENABLED(CONFIG_IPV6)
1468 	struct tcp6_pseudohdr ip6;
1469 #endif
1470 };
1471 
1472 /* - pool: digest algorithm, hash description and scratch buffer */
1473 struct tcp_md5sig_pool {
1474 	struct ahash_request	*md5_req;
1475 	void			*scratch;
1476 };
1477 
1478 /* - functions */
1479 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1480 			const struct sock *sk, const struct sk_buff *skb);
1481 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1482 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1483 		   gfp_t gfp);
1484 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1485 		   int family, u8 prefixlen);
1486 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1487 					 const struct sock *addr_sk);
1488 
1489 #ifdef CONFIG_TCP_MD5SIG
1490 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1491 					 const union tcp_md5_addr *addr,
1492 					 int family);
1493 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1494 #else
1495 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1496 					 const union tcp_md5_addr *addr,
1497 					 int family)
1498 {
1499 	return NULL;
1500 }
1501 #define tcp_twsk_md5_key(twsk)	NULL
1502 #endif
1503 
1504 bool tcp_alloc_md5sig_pool(void);
1505 
1506 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1507 static inline void tcp_put_md5sig_pool(void)
1508 {
1509 	local_bh_enable();
1510 }
1511 
1512 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1513 			  unsigned int header_len);
1514 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1515 		     const struct tcp_md5sig_key *key);
1516 
1517 /* From tcp_fastopen.c */
1518 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1519 			    struct tcp_fastopen_cookie *cookie);
1520 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1521 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1522 			    u16 try_exp);
1523 struct tcp_fastopen_request {
1524 	/* Fast Open cookie. Size 0 means a cookie request */
1525 	struct tcp_fastopen_cookie	cookie;
1526 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1527 	size_t				size;
1528 	int				copied;	/* queued in tcp_connect() */
1529 };
1530 void tcp_free_fastopen_req(struct tcp_sock *tp);
1531 void tcp_fastopen_destroy_cipher(struct sock *sk);
1532 void tcp_fastopen_ctx_destroy(struct net *net);
1533 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1534 			      void *key, unsigned int len);
1535 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1536 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1537 			      struct request_sock *req,
1538 			      struct tcp_fastopen_cookie *foc,
1539 			      const struct dst_entry *dst);
1540 void tcp_fastopen_init_key_once(struct net *net);
1541 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1542 			     struct tcp_fastopen_cookie *cookie);
1543 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1544 #define TCP_FASTOPEN_KEY_LENGTH 16
1545 
1546 /* Fastopen key context */
1547 struct tcp_fastopen_context {
1548 	struct crypto_cipher	*tfm;
1549 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1550 	struct rcu_head		rcu;
1551 };
1552 
1553 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1554 void tcp_fastopen_active_disable(struct sock *sk);
1555 bool tcp_fastopen_active_should_disable(struct sock *sk);
1556 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1557 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1558 
1559 /* Latencies incurred by various limits for a sender. They are
1560  * chronograph-like stats that are mutually exclusive.
1561  */
1562 enum tcp_chrono {
1563 	TCP_CHRONO_UNSPEC,
1564 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1565 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1566 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1567 	__TCP_CHRONO_MAX,
1568 };
1569 
1570 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1571 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1572 
1573 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1574  * the same memory storage than skb->destructor/_skb_refdst
1575  */
1576 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1577 {
1578 	skb->destructor = NULL;
1579 	skb->_skb_refdst = 0UL;
1580 }
1581 
1582 #define tcp_skb_tsorted_save(skb) {		\
1583 	unsigned long _save = skb->_skb_refdst;	\
1584 	skb->_skb_refdst = 0UL;
1585 
1586 #define tcp_skb_tsorted_restore(skb)		\
1587 	skb->_skb_refdst = _save;		\
1588 }
1589 
1590 void tcp_write_queue_purge(struct sock *sk);
1591 
1592 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1593 {
1594 	return skb_rb_first(&sk->tcp_rtx_queue);
1595 }
1596 
1597 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1598 {
1599 	return skb_peek(&sk->sk_write_queue);
1600 }
1601 
1602 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1603 {
1604 	return skb_peek_tail(&sk->sk_write_queue);
1605 }
1606 
1607 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1608 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1609 
1610 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1611 {
1612 	return skb_peek(&sk->sk_write_queue);
1613 }
1614 
1615 static inline bool tcp_skb_is_last(const struct sock *sk,
1616 				   const struct sk_buff *skb)
1617 {
1618 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1619 }
1620 
1621 static inline bool tcp_write_queue_empty(const struct sock *sk)
1622 {
1623 	return skb_queue_empty(&sk->sk_write_queue);
1624 }
1625 
1626 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1627 {
1628 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1629 }
1630 
1631 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1632 {
1633 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1634 }
1635 
1636 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1637 {
1638 	if (tcp_write_queue_empty(sk))
1639 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1640 }
1641 
1642 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1643 {
1644 	__skb_queue_tail(&sk->sk_write_queue, skb);
1645 }
1646 
1647 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1648 {
1649 	__tcp_add_write_queue_tail(sk, skb);
1650 
1651 	/* Queue it, remembering where we must start sending. */
1652 	if (sk->sk_write_queue.next == skb)
1653 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1654 }
1655 
1656 /* Insert new before skb on the write queue of sk.  */
1657 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1658 						  struct sk_buff *skb,
1659 						  struct sock *sk)
1660 {
1661 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1662 }
1663 
1664 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1665 {
1666 	tcp_skb_tsorted_anchor_cleanup(skb);
1667 	__skb_unlink(skb, &sk->sk_write_queue);
1668 }
1669 
1670 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1671 
1672 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1673 {
1674 	tcp_skb_tsorted_anchor_cleanup(skb);
1675 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1676 }
1677 
1678 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1679 {
1680 	list_del(&skb->tcp_tsorted_anchor);
1681 	tcp_rtx_queue_unlink(skb, sk);
1682 	sk_wmem_free_skb(sk, skb);
1683 }
1684 
1685 static inline void tcp_push_pending_frames(struct sock *sk)
1686 {
1687 	if (tcp_send_head(sk)) {
1688 		struct tcp_sock *tp = tcp_sk(sk);
1689 
1690 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1691 	}
1692 }
1693 
1694 /* Start sequence of the skb just after the highest skb with SACKed
1695  * bit, valid only if sacked_out > 0 or when the caller has ensured
1696  * validity by itself.
1697  */
1698 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1699 {
1700 	if (!tp->sacked_out)
1701 		return tp->snd_una;
1702 
1703 	if (tp->highest_sack == NULL)
1704 		return tp->snd_nxt;
1705 
1706 	return TCP_SKB_CB(tp->highest_sack)->seq;
1707 }
1708 
1709 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1710 {
1711 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1712 }
1713 
1714 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1715 {
1716 	return tcp_sk(sk)->highest_sack;
1717 }
1718 
1719 static inline void tcp_highest_sack_reset(struct sock *sk)
1720 {
1721 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1722 }
1723 
1724 /* Called when old skb is about to be deleted and replaced by new skb */
1725 static inline void tcp_highest_sack_replace(struct sock *sk,
1726 					    struct sk_buff *old,
1727 					    struct sk_buff *new)
1728 {
1729 	if (old == tcp_highest_sack(sk))
1730 		tcp_sk(sk)->highest_sack = new;
1731 }
1732 
1733 /* This helper checks if socket has IP_TRANSPARENT set */
1734 static inline bool inet_sk_transparent(const struct sock *sk)
1735 {
1736 	switch (sk->sk_state) {
1737 	case TCP_TIME_WAIT:
1738 		return inet_twsk(sk)->tw_transparent;
1739 	case TCP_NEW_SYN_RECV:
1740 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1741 	}
1742 	return inet_sk(sk)->transparent;
1743 }
1744 
1745 /* Determines whether this is a thin stream (which may suffer from
1746  * increased latency). Used to trigger latency-reducing mechanisms.
1747  */
1748 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1749 {
1750 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1751 }
1752 
1753 /* /proc */
1754 enum tcp_seq_states {
1755 	TCP_SEQ_STATE_LISTENING,
1756 	TCP_SEQ_STATE_ESTABLISHED,
1757 };
1758 
1759 int tcp_seq_open(struct inode *inode, struct file *file);
1760 
1761 struct tcp_seq_afinfo {
1762 	char				*name;
1763 	sa_family_t			family;
1764 	const struct file_operations	*seq_fops;
1765 	struct seq_operations		seq_ops;
1766 };
1767 
1768 struct tcp_iter_state {
1769 	struct seq_net_private	p;
1770 	sa_family_t		family;
1771 	enum tcp_seq_states	state;
1772 	struct sock		*syn_wait_sk;
1773 	int			bucket, offset, sbucket, num;
1774 	loff_t			last_pos;
1775 };
1776 
1777 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1778 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1779 
1780 extern struct request_sock_ops tcp_request_sock_ops;
1781 extern struct request_sock_ops tcp6_request_sock_ops;
1782 
1783 void tcp_v4_destroy_sock(struct sock *sk);
1784 
1785 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1786 				netdev_features_t features);
1787 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1788 int tcp_gro_complete(struct sk_buff *skb);
1789 
1790 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1791 
1792 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1793 {
1794 	struct net *net = sock_net((struct sock *)tp);
1795 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1796 }
1797 
1798 static inline bool tcp_stream_memory_free(const struct sock *sk)
1799 {
1800 	const struct tcp_sock *tp = tcp_sk(sk);
1801 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1802 
1803 	return notsent_bytes < tcp_notsent_lowat(tp);
1804 }
1805 
1806 #ifdef CONFIG_PROC_FS
1807 int tcp4_proc_init(void);
1808 void tcp4_proc_exit(void);
1809 #endif
1810 
1811 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1812 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1813 		     const struct tcp_request_sock_ops *af_ops,
1814 		     struct sock *sk, struct sk_buff *skb);
1815 
1816 /* TCP af-specific functions */
1817 struct tcp_sock_af_ops {
1818 #ifdef CONFIG_TCP_MD5SIG
1819 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1820 						const struct sock *addr_sk);
1821 	int		(*calc_md5_hash)(char *location,
1822 					 const struct tcp_md5sig_key *md5,
1823 					 const struct sock *sk,
1824 					 const struct sk_buff *skb);
1825 	int		(*md5_parse)(struct sock *sk,
1826 				     int optname,
1827 				     char __user *optval,
1828 				     int optlen);
1829 #endif
1830 };
1831 
1832 struct tcp_request_sock_ops {
1833 	u16 mss_clamp;
1834 #ifdef CONFIG_TCP_MD5SIG
1835 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1836 						 const struct sock *addr_sk);
1837 	int		(*calc_md5_hash) (char *location,
1838 					  const struct tcp_md5sig_key *md5,
1839 					  const struct sock *sk,
1840 					  const struct sk_buff *skb);
1841 #endif
1842 	void (*init_req)(struct request_sock *req,
1843 			 const struct sock *sk_listener,
1844 			 struct sk_buff *skb);
1845 #ifdef CONFIG_SYN_COOKIES
1846 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1847 				 __u16 *mss);
1848 #endif
1849 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1850 				       const struct request_sock *req);
1851 	u32 (*init_seq)(const struct sk_buff *skb);
1852 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1853 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1854 			   struct flowi *fl, struct request_sock *req,
1855 			   struct tcp_fastopen_cookie *foc,
1856 			   enum tcp_synack_type synack_type);
1857 };
1858 
1859 #ifdef CONFIG_SYN_COOKIES
1860 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1861 					 const struct sock *sk, struct sk_buff *skb,
1862 					 __u16 *mss)
1863 {
1864 	tcp_synq_overflow(sk);
1865 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1866 	return ops->cookie_init_seq(skb, mss);
1867 }
1868 #else
1869 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1870 					 const struct sock *sk, struct sk_buff *skb,
1871 					 __u16 *mss)
1872 {
1873 	return 0;
1874 }
1875 #endif
1876 
1877 int tcpv4_offload_init(void);
1878 
1879 void tcp_v4_init(void);
1880 void tcp_init(void);
1881 
1882 /* tcp_recovery.c */
1883 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1884 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1885 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1886 				u32 reo_wnd);
1887 extern void tcp_rack_mark_lost(struct sock *sk);
1888 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1889 			     u64 xmit_time);
1890 extern void tcp_rack_reo_timeout(struct sock *sk);
1891 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1892 
1893 /* At how many usecs into the future should the RTO fire? */
1894 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1895 {
1896 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1897 	u32 rto = inet_csk(sk)->icsk_rto;
1898 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1899 
1900 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1901 }
1902 
1903 /*
1904  * Save and compile IPv4 options, return a pointer to it
1905  */
1906 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1907 							 struct sk_buff *skb)
1908 {
1909 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1910 	struct ip_options_rcu *dopt = NULL;
1911 
1912 	if (opt->optlen) {
1913 		int opt_size = sizeof(*dopt) + opt->optlen;
1914 
1915 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1916 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1917 			kfree(dopt);
1918 			dopt = NULL;
1919 		}
1920 	}
1921 	return dopt;
1922 }
1923 
1924 /* locally generated TCP pure ACKs have skb->truesize == 2
1925  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1926  * This is much faster than dissecting the packet to find out.
1927  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1928  */
1929 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1930 {
1931 	return skb->truesize == 2;
1932 }
1933 
1934 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1935 {
1936 	skb->truesize = 2;
1937 }
1938 
1939 static inline int tcp_inq(struct sock *sk)
1940 {
1941 	struct tcp_sock *tp = tcp_sk(sk);
1942 	int answ;
1943 
1944 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1945 		answ = 0;
1946 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1947 		   !tp->urg_data ||
1948 		   before(tp->urg_seq, tp->copied_seq) ||
1949 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1950 
1951 		answ = tp->rcv_nxt - tp->copied_seq;
1952 
1953 		/* Subtract 1, if FIN was received */
1954 		if (answ && sock_flag(sk, SOCK_DONE))
1955 			answ--;
1956 	} else {
1957 		answ = tp->urg_seq - tp->copied_seq;
1958 	}
1959 
1960 	return answ;
1961 }
1962 
1963 int tcp_peek_len(struct socket *sock);
1964 
1965 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1966 {
1967 	u16 segs_in;
1968 
1969 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1970 	tp->segs_in += segs_in;
1971 	if (skb->len > tcp_hdrlen(skb))
1972 		tp->data_segs_in += segs_in;
1973 }
1974 
1975 /*
1976  * TCP listen path runs lockless.
1977  * We forced "struct sock" to be const qualified to make sure
1978  * we don't modify one of its field by mistake.
1979  * Here, we increment sk_drops which is an atomic_t, so we can safely
1980  * make sock writable again.
1981  */
1982 static inline void tcp_listendrop(const struct sock *sk)
1983 {
1984 	atomic_inc(&((struct sock *)sk)->sk_drops);
1985 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1986 }
1987 
1988 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1989 
1990 /*
1991  * Interface for adding Upper Level Protocols over TCP
1992  */
1993 
1994 #define TCP_ULP_NAME_MAX	16
1995 #define TCP_ULP_MAX		128
1996 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1997 
1998 enum {
1999 	TCP_ULP_TLS,
2000 	TCP_ULP_BPF,
2001 };
2002 
2003 struct tcp_ulp_ops {
2004 	struct list_head	list;
2005 
2006 	/* initialize ulp */
2007 	int (*init)(struct sock *sk);
2008 	/* cleanup ulp */
2009 	void (*release)(struct sock *sk);
2010 
2011 	int		uid;
2012 	char		name[TCP_ULP_NAME_MAX];
2013 	bool		user_visible;
2014 	struct module	*owner;
2015 };
2016 int tcp_register_ulp(struct tcp_ulp_ops *type);
2017 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2018 int tcp_set_ulp(struct sock *sk, const char *name);
2019 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2020 void tcp_get_available_ulp(char *buf, size_t len);
2021 void tcp_cleanup_ulp(struct sock *sk);
2022 
2023 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2024  * is < 0, then the BPF op failed (for example if the loaded BPF
2025  * program does not support the chosen operation or there is no BPF
2026  * program loaded).
2027  */
2028 #ifdef CONFIG_BPF
2029 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2030 {
2031 	struct bpf_sock_ops_kern sock_ops;
2032 	int ret;
2033 
2034 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2035 	if (sk_fullsock(sk)) {
2036 		sock_ops.is_fullsock = 1;
2037 		sock_owned_by_me(sk);
2038 	}
2039 
2040 	sock_ops.sk = sk;
2041 	sock_ops.op = op;
2042 	if (nargs > 0)
2043 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2044 
2045 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2046 	if (ret == 0)
2047 		ret = sock_ops.reply;
2048 	else
2049 		ret = -1;
2050 	return ret;
2051 }
2052 
2053 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2054 {
2055 	u32 args[2] = {arg1, arg2};
2056 
2057 	return tcp_call_bpf(sk, op, 2, args);
2058 }
2059 
2060 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2061 				    u32 arg3)
2062 {
2063 	u32 args[3] = {arg1, arg2, arg3};
2064 
2065 	return tcp_call_bpf(sk, op, 3, args);
2066 }
2067 
2068 #else
2069 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2070 {
2071 	return -EPERM;
2072 }
2073 
2074 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2075 {
2076 	return -EPERM;
2077 }
2078 
2079 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2080 				    u32 arg3)
2081 {
2082 	return -EPERM;
2083 }
2084 
2085 #endif
2086 
2087 static inline u32 tcp_timeout_init(struct sock *sk)
2088 {
2089 	int timeout;
2090 
2091 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2092 
2093 	if (timeout <= 0)
2094 		timeout = TCP_TIMEOUT_INIT;
2095 	return timeout;
2096 }
2097 
2098 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2099 {
2100 	int rwnd;
2101 
2102 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2103 
2104 	if (rwnd < 0)
2105 		rwnd = 0;
2106 	return rwnd;
2107 }
2108 
2109 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2110 {
2111 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2112 }
2113 
2114 #if IS_ENABLED(CONFIG_SMC)
2115 extern struct static_key_false tcp_have_smc;
2116 #endif
2117 
2118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2120 			     void (*cad)(struct sock *sk, u32 ack_seq));
2121 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2122 
2123 #endif
2124 
2125 #endif	/* _TCP_H */
2126