1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 52 int tcp_orphan_count_sum(void); 53 54 void tcp_time_wait(struct sock *sk, int state, int timeo); 55 56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 57 #define MAX_TCP_OPTION_SPACE 40 58 #define TCP_MIN_SND_MSS 48 59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 60 61 /* 62 * Never offer a window over 32767 without using window scaling. Some 63 * poor stacks do signed 16bit maths! 64 */ 65 #define MAX_TCP_WINDOW 32767U 66 67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 68 #define TCP_MIN_MSS 88U 69 70 /* The initial MTU to use for probing */ 71 #define TCP_BASE_MSS 1024 72 73 /* probing interval, default to 10 minutes as per RFC4821 */ 74 #define TCP_PROBE_INTERVAL 600 75 76 /* Specify interval when tcp mtu probing will stop */ 77 #define TCP_PROBE_THRESHOLD 8 78 79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 80 #define TCP_FASTRETRANS_THRESH 3 81 82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 83 #define TCP_MAX_QUICKACKS 16U 84 85 /* Maximal number of window scale according to RFC1323 */ 86 #define TCP_MAX_WSCALE 14U 87 88 /* urg_data states */ 89 #define TCP_URG_VALID 0x0100 90 #define TCP_URG_NOTYET 0x0200 91 #define TCP_URG_READ 0x0400 92 93 #define TCP_RETR1 3 /* 94 * This is how many retries it does before it 95 * tries to figure out if the gateway is 96 * down. Minimal RFC value is 3; it corresponds 97 * to ~3sec-8min depending on RTO. 98 */ 99 100 #define TCP_RETR2 15 /* 101 * This should take at least 102 * 90 minutes to time out. 103 * RFC1122 says that the limit is 100 sec. 104 * 15 is ~13-30min depending on RTO. 105 */ 106 107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 108 * when active opening a connection. 109 * RFC1122 says the minimum retry MUST 110 * be at least 180secs. Nevertheless 111 * this value is corresponding to 112 * 63secs of retransmission with the 113 * current initial RTO. 114 */ 115 116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 117 * when passive opening a connection. 118 * This is corresponding to 31secs of 119 * retransmission with the current 120 * initial RTO. 121 */ 122 123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 124 * state, about 60 seconds */ 125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 126 /* BSD style FIN_WAIT2 deadlock breaker. 127 * It used to be 3min, new value is 60sec, 128 * to combine FIN-WAIT-2 timeout with 129 * TIME-WAIT timer. 130 */ 131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 132 133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 134 #if HZ >= 100 135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 136 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 137 #else 138 #define TCP_DELACK_MIN 4U 139 #define TCP_ATO_MIN 4U 140 #endif 141 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 142 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 146 * used as a fallback RTO for the 147 * initial data transmission if no 148 * valid RTT sample has been acquired, 149 * most likely due to retrans in 3WHS. 150 */ 151 152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 153 * for local resources. 154 */ 155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 157 #define TCP_KEEPALIVE_INTVL (75*HZ) 158 159 #define MAX_TCP_KEEPIDLE 32767 160 #define MAX_TCP_KEEPINTVL 32767 161 #define MAX_TCP_KEEPCNT 127 162 #define MAX_TCP_SYNCNT 127 163 164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 165 166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 168 * after this time. It should be equal 169 * (or greater than) TCP_TIMEWAIT_LEN 170 * to provide reliability equal to one 171 * provided by timewait state. 172 */ 173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 174 * timestamps. It must be less than 175 * minimal timewait lifetime. 176 */ 177 /* 178 * TCP option 179 */ 180 181 #define TCPOPT_NOP 1 /* Padding */ 182 #define TCPOPT_EOL 0 /* End of options */ 183 #define TCPOPT_MSS 2 /* Segment size negotiating */ 184 #define TCPOPT_WINDOW 3 /* Window scaling */ 185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 186 #define TCPOPT_SACK 5 /* SACK Block */ 187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 189 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 190 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 191 #define TCPOPT_EXP 254 /* Experimental */ 192 /* Magic number to be after the option value for sharing TCP 193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 194 */ 195 #define TCPOPT_FASTOPEN_MAGIC 0xF989 196 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 197 198 /* 199 * TCP option lengths 200 */ 201 202 #define TCPOLEN_MSS 4 203 #define TCPOLEN_WINDOW 3 204 #define TCPOLEN_SACK_PERM 2 205 #define TCPOLEN_TIMESTAMP 10 206 #define TCPOLEN_MD5SIG 18 207 #define TCPOLEN_FASTOPEN_BASE 2 208 #define TCPOLEN_EXP_FASTOPEN_BASE 4 209 #define TCPOLEN_EXP_SMC_BASE 6 210 211 /* But this is what stacks really send out. */ 212 #define TCPOLEN_TSTAMP_ALIGNED 12 213 #define TCPOLEN_WSCALE_ALIGNED 4 214 #define TCPOLEN_SACKPERM_ALIGNED 4 215 #define TCPOLEN_SACK_BASE 2 216 #define TCPOLEN_SACK_BASE_ALIGNED 4 217 #define TCPOLEN_SACK_PERBLOCK 8 218 #define TCPOLEN_MD5SIG_ALIGNED 20 219 #define TCPOLEN_MSS_ALIGNED 4 220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 221 222 /* Flags in tp->nonagle */ 223 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 224 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 225 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 226 227 /* TCP thin-stream limits */ 228 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 229 230 /* TCP initial congestion window as per rfc6928 */ 231 #define TCP_INIT_CWND 10 232 233 /* Bit Flags for sysctl_tcp_fastopen */ 234 #define TFO_CLIENT_ENABLE 1 235 #define TFO_SERVER_ENABLE 2 236 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 237 238 /* Accept SYN data w/o any cookie option */ 239 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 240 241 /* Force enable TFO on all listeners, i.e., not requiring the 242 * TCP_FASTOPEN socket option. 243 */ 244 #define TFO_SERVER_WO_SOCKOPT1 0x400 245 246 247 /* sysctl variables for tcp */ 248 extern int sysctl_tcp_max_orphans; 249 extern long sysctl_tcp_mem[3]; 250 251 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 252 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 253 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 254 255 extern atomic_long_t tcp_memory_allocated; 256 extern struct percpu_counter tcp_sockets_allocated; 257 extern unsigned long tcp_memory_pressure; 258 259 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 260 static inline bool tcp_under_memory_pressure(const struct sock *sk) 261 { 262 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 263 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 264 return true; 265 266 return READ_ONCE(tcp_memory_pressure); 267 } 268 /* 269 * The next routines deal with comparing 32 bit unsigned ints 270 * and worry about wraparound (automatic with unsigned arithmetic). 271 */ 272 273 static inline bool before(__u32 seq1, __u32 seq2) 274 { 275 return (__s32)(seq1-seq2) < 0; 276 } 277 #define after(seq2, seq1) before(seq1, seq2) 278 279 /* is s2<=s1<=s3 ? */ 280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 281 { 282 return seq3 - seq2 >= seq1 - seq2; 283 } 284 285 static inline bool tcp_out_of_memory(struct sock *sk) 286 { 287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 289 return true; 290 return false; 291 } 292 293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 294 { 295 sk_wmem_queued_add(sk, -skb->truesize); 296 if (!skb_zcopy_pure(skb)) 297 sk_mem_uncharge(sk, skb->truesize); 298 else 299 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 300 __kfree_skb(skb); 301 } 302 303 void sk_forced_mem_schedule(struct sock *sk, int size); 304 305 bool tcp_check_oom(struct sock *sk, int shift); 306 307 308 extern struct proto tcp_prot; 309 310 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 311 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 314 315 void tcp_tasklet_init(void); 316 317 int tcp_v4_err(struct sk_buff *skb, u32); 318 319 void tcp_shutdown(struct sock *sk, int how); 320 321 int tcp_v4_early_demux(struct sk_buff *skb); 322 int tcp_v4_rcv(struct sk_buff *skb); 323 324 void tcp_remove_empty_skb(struct sock *sk); 325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 329 int flags); 330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 331 size_t size, int flags); 332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 333 size_t size, int flags); 334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 336 int size_goal); 337 void tcp_release_cb(struct sock *sk); 338 void tcp_wfree(struct sk_buff *skb); 339 void tcp_write_timer_handler(struct sock *sk); 340 void tcp_delack_timer_handler(struct sock *sk); 341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 344 void tcp_rcv_space_adjust(struct sock *sk); 345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 346 void tcp_twsk_destructor(struct sock *sk); 347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 348 struct pipe_inode_info *pipe, size_t len, 349 unsigned int flags); 350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 351 bool force_schedule); 352 353 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 354 static inline void tcp_dec_quickack_mode(struct sock *sk, 355 const unsigned int pkts) 356 { 357 struct inet_connection_sock *icsk = inet_csk(sk); 358 359 if (icsk->icsk_ack.quick) { 360 if (pkts >= icsk->icsk_ack.quick) { 361 icsk->icsk_ack.quick = 0; 362 /* Leaving quickack mode we deflate ATO. */ 363 icsk->icsk_ack.ato = TCP_ATO_MIN; 364 } else 365 icsk->icsk_ack.quick -= pkts; 366 } 367 } 368 369 #define TCP_ECN_OK 1 370 #define TCP_ECN_QUEUE_CWR 2 371 #define TCP_ECN_DEMAND_CWR 4 372 #define TCP_ECN_SEEN 8 373 374 enum tcp_tw_status { 375 TCP_TW_SUCCESS = 0, 376 TCP_TW_RST = 1, 377 TCP_TW_ACK = 2, 378 TCP_TW_SYN = 3 379 }; 380 381 382 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 383 struct sk_buff *skb, 384 const struct tcphdr *th); 385 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 386 struct request_sock *req, bool fastopen, 387 bool *lost_race); 388 int tcp_child_process(struct sock *parent, struct sock *child, 389 struct sk_buff *skb); 390 void tcp_enter_loss(struct sock *sk); 391 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 392 void tcp_clear_retrans(struct tcp_sock *tp); 393 void tcp_update_metrics(struct sock *sk); 394 void tcp_init_metrics(struct sock *sk); 395 void tcp_metrics_init(void); 396 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 397 void __tcp_close(struct sock *sk, long timeout); 398 void tcp_close(struct sock *sk, long timeout); 399 void tcp_init_sock(struct sock *sk); 400 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 401 __poll_t tcp_poll(struct file *file, struct socket *sock, 402 struct poll_table_struct *wait); 403 int tcp_getsockopt(struct sock *sk, int level, int optname, 404 char __user *optval, int __user *optlen); 405 bool tcp_bpf_bypass_getsockopt(int level, int optname); 406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 407 unsigned int optlen); 408 void tcp_set_keepalive(struct sock *sk, int val); 409 void tcp_syn_ack_timeout(const struct request_sock *req); 410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 411 int flags, int *addr_len); 412 int tcp_set_rcvlowat(struct sock *sk, int val); 413 int tcp_set_window_clamp(struct sock *sk, int val); 414 void tcp_update_recv_tstamps(struct sk_buff *skb, 415 struct scm_timestamping_internal *tss); 416 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 417 struct scm_timestamping_internal *tss); 418 void tcp_data_ready(struct sock *sk); 419 #ifdef CONFIG_MMU 420 int tcp_mmap(struct file *file, struct socket *sock, 421 struct vm_area_struct *vma); 422 #endif 423 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 424 struct tcp_options_received *opt_rx, 425 int estab, struct tcp_fastopen_cookie *foc); 426 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 427 428 /* 429 * BPF SKB-less helpers 430 */ 431 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 432 struct tcphdr *th, u32 *cookie); 433 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 434 struct tcphdr *th, u32 *cookie); 435 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 436 const struct tcp_request_sock_ops *af_ops, 437 struct sock *sk, struct tcphdr *th); 438 /* 439 * TCP v4 functions exported for the inet6 API 440 */ 441 442 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 443 void tcp_v4_mtu_reduced(struct sock *sk); 444 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 445 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 447 struct sock *tcp_create_openreq_child(const struct sock *sk, 448 struct request_sock *req, 449 struct sk_buff *skb); 450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 452 struct request_sock *req, 453 struct dst_entry *dst, 454 struct request_sock *req_unhash, 455 bool *own_req); 456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 458 int tcp_connect(struct sock *sk); 459 enum tcp_synack_type { 460 TCP_SYNACK_NORMAL, 461 TCP_SYNACK_FASTOPEN, 462 TCP_SYNACK_COOKIE, 463 }; 464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 465 struct request_sock *req, 466 struct tcp_fastopen_cookie *foc, 467 enum tcp_synack_type synack_type, 468 struct sk_buff *syn_skb); 469 int tcp_disconnect(struct sock *sk, int flags); 470 471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 472 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 473 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 474 475 /* From syncookies.c */ 476 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 477 struct request_sock *req, 478 struct dst_entry *dst, u32 tsoff); 479 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 480 u32 cookie); 481 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 482 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 483 struct sock *sk, struct sk_buff *skb); 484 #ifdef CONFIG_SYN_COOKIES 485 486 /* Syncookies use a monotonic timer which increments every 60 seconds. 487 * This counter is used both as a hash input and partially encoded into 488 * the cookie value. A cookie is only validated further if the delta 489 * between the current counter value and the encoded one is less than this, 490 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 491 * the counter advances immediately after a cookie is generated). 492 */ 493 #define MAX_SYNCOOKIE_AGE 2 494 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 495 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 496 497 /* syncookies: remember time of last synqueue overflow 498 * But do not dirty this field too often (once per second is enough) 499 * It is racy as we do not hold a lock, but race is very minor. 500 */ 501 static inline void tcp_synq_overflow(const struct sock *sk) 502 { 503 unsigned int last_overflow; 504 unsigned int now = jiffies; 505 506 if (sk->sk_reuseport) { 507 struct sock_reuseport *reuse; 508 509 reuse = rcu_dereference(sk->sk_reuseport_cb); 510 if (likely(reuse)) { 511 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 512 if (!time_between32(now, last_overflow, 513 last_overflow + HZ)) 514 WRITE_ONCE(reuse->synq_overflow_ts, now); 515 return; 516 } 517 } 518 519 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 520 if (!time_between32(now, last_overflow, last_overflow + HZ)) 521 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 522 } 523 524 /* syncookies: no recent synqueue overflow on this listening socket? */ 525 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 526 { 527 unsigned int last_overflow; 528 unsigned int now = jiffies; 529 530 if (sk->sk_reuseport) { 531 struct sock_reuseport *reuse; 532 533 reuse = rcu_dereference(sk->sk_reuseport_cb); 534 if (likely(reuse)) { 535 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 536 return !time_between32(now, last_overflow - HZ, 537 last_overflow + 538 TCP_SYNCOOKIE_VALID); 539 } 540 } 541 542 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 543 544 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 545 * then we're under synflood. However, we have to use 546 * 'last_overflow - HZ' as lower bound. That's because a concurrent 547 * tcp_synq_overflow() could update .ts_recent_stamp after we read 548 * jiffies but before we store .ts_recent_stamp into last_overflow, 549 * which could lead to rejecting a valid syncookie. 550 */ 551 return !time_between32(now, last_overflow - HZ, 552 last_overflow + TCP_SYNCOOKIE_VALID); 553 } 554 555 static inline u32 tcp_cookie_time(void) 556 { 557 u64 val = get_jiffies_64(); 558 559 do_div(val, TCP_SYNCOOKIE_PERIOD); 560 return val; 561 } 562 563 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 564 u16 *mssp); 565 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 566 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 567 bool cookie_timestamp_decode(const struct net *net, 568 struct tcp_options_received *opt); 569 bool cookie_ecn_ok(const struct tcp_options_received *opt, 570 const struct net *net, const struct dst_entry *dst); 571 572 /* From net/ipv6/syncookies.c */ 573 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 574 u32 cookie); 575 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 576 577 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 578 const struct tcphdr *th, u16 *mssp); 579 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 580 #endif 581 /* tcp_output.c */ 582 583 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 584 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 585 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 586 int nonagle); 587 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 588 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 589 void tcp_retransmit_timer(struct sock *sk); 590 void tcp_xmit_retransmit_queue(struct sock *); 591 void tcp_simple_retransmit(struct sock *); 592 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 593 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 594 enum tcp_queue { 595 TCP_FRAG_IN_WRITE_QUEUE, 596 TCP_FRAG_IN_RTX_QUEUE, 597 }; 598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 599 struct sk_buff *skb, u32 len, 600 unsigned int mss_now, gfp_t gfp); 601 602 void tcp_send_probe0(struct sock *); 603 void tcp_send_partial(struct sock *); 604 int tcp_write_wakeup(struct sock *, int mib); 605 void tcp_send_fin(struct sock *sk); 606 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 607 int tcp_send_synack(struct sock *); 608 void tcp_push_one(struct sock *, unsigned int mss_now); 609 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 610 void tcp_send_ack(struct sock *sk); 611 void tcp_send_delayed_ack(struct sock *sk); 612 void tcp_send_loss_probe(struct sock *sk); 613 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 614 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 615 const struct sk_buff *next_skb); 616 617 /* tcp_input.c */ 618 void tcp_rearm_rto(struct sock *sk); 619 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 620 void tcp_reset(struct sock *sk, struct sk_buff *skb); 621 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 622 void tcp_fin(struct sock *sk); 623 624 /* tcp_timer.c */ 625 void tcp_init_xmit_timers(struct sock *); 626 static inline void tcp_clear_xmit_timers(struct sock *sk) 627 { 628 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 629 __sock_put(sk); 630 631 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 632 __sock_put(sk); 633 634 inet_csk_clear_xmit_timers(sk); 635 } 636 637 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 638 unsigned int tcp_current_mss(struct sock *sk); 639 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 640 641 /* Bound MSS / TSO packet size with the half of the window */ 642 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 643 { 644 int cutoff; 645 646 /* When peer uses tiny windows, there is no use in packetizing 647 * to sub-MSS pieces for the sake of SWS or making sure there 648 * are enough packets in the pipe for fast recovery. 649 * 650 * On the other hand, for extremely large MSS devices, handling 651 * smaller than MSS windows in this way does make sense. 652 */ 653 if (tp->max_window > TCP_MSS_DEFAULT) 654 cutoff = (tp->max_window >> 1); 655 else 656 cutoff = tp->max_window; 657 658 if (cutoff && pktsize > cutoff) 659 return max_t(int, cutoff, 68U - tp->tcp_header_len); 660 else 661 return pktsize; 662 } 663 664 /* tcp.c */ 665 void tcp_get_info(struct sock *, struct tcp_info *); 666 667 /* Read 'sendfile()'-style from a TCP socket */ 668 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 669 sk_read_actor_t recv_actor); 670 671 void tcp_initialize_rcv_mss(struct sock *sk); 672 673 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 674 int tcp_mss_to_mtu(struct sock *sk, int mss); 675 void tcp_mtup_init(struct sock *sk); 676 677 static inline void tcp_bound_rto(const struct sock *sk) 678 { 679 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 680 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 681 } 682 683 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 684 { 685 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 686 } 687 688 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 689 { 690 /* mptcp hooks are only on the slow path */ 691 if (sk_is_mptcp((struct sock *)tp)) 692 return; 693 694 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 695 ntohl(TCP_FLAG_ACK) | 696 snd_wnd); 697 } 698 699 static inline void tcp_fast_path_on(struct tcp_sock *tp) 700 { 701 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 702 } 703 704 static inline void tcp_fast_path_check(struct sock *sk) 705 { 706 struct tcp_sock *tp = tcp_sk(sk); 707 708 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 709 tp->rcv_wnd && 710 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 711 !tp->urg_data) 712 tcp_fast_path_on(tp); 713 } 714 715 /* Compute the actual rto_min value */ 716 static inline u32 tcp_rto_min(struct sock *sk) 717 { 718 const struct dst_entry *dst = __sk_dst_get(sk); 719 u32 rto_min = inet_csk(sk)->icsk_rto_min; 720 721 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 722 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 723 return rto_min; 724 } 725 726 static inline u32 tcp_rto_min_us(struct sock *sk) 727 { 728 return jiffies_to_usecs(tcp_rto_min(sk)); 729 } 730 731 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 732 { 733 return dst_metric_locked(dst, RTAX_CC_ALGO); 734 } 735 736 /* Minimum RTT in usec. ~0 means not available. */ 737 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 738 { 739 return minmax_get(&tp->rtt_min); 740 } 741 742 /* Compute the actual receive window we are currently advertising. 743 * Rcv_nxt can be after the window if our peer push more data 744 * than the offered window. 745 */ 746 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 747 { 748 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 749 750 if (win < 0) 751 win = 0; 752 return (u32) win; 753 } 754 755 /* Choose a new window, without checks for shrinking, and without 756 * scaling applied to the result. The caller does these things 757 * if necessary. This is a "raw" window selection. 758 */ 759 u32 __tcp_select_window(struct sock *sk); 760 761 void tcp_send_window_probe(struct sock *sk); 762 763 /* TCP uses 32bit jiffies to save some space. 764 * Note that this is different from tcp_time_stamp, which 765 * historically has been the same until linux-4.13. 766 */ 767 #define tcp_jiffies32 ((u32)jiffies) 768 769 /* 770 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 771 * It is no longer tied to jiffies, but to 1 ms clock. 772 * Note: double check if you want to use tcp_jiffies32 instead of this. 773 */ 774 #define TCP_TS_HZ 1000 775 776 static inline u64 tcp_clock_ns(void) 777 { 778 return ktime_get_ns(); 779 } 780 781 static inline u64 tcp_clock_us(void) 782 { 783 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 784 } 785 786 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 787 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 788 { 789 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 790 } 791 792 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 793 static inline u32 tcp_ns_to_ts(u64 ns) 794 { 795 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 796 } 797 798 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 799 static inline u32 tcp_time_stamp_raw(void) 800 { 801 return tcp_ns_to_ts(tcp_clock_ns()); 802 } 803 804 void tcp_mstamp_refresh(struct tcp_sock *tp); 805 806 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 807 { 808 return max_t(s64, t1 - t0, 0); 809 } 810 811 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 812 { 813 return tcp_ns_to_ts(skb->skb_mstamp_ns); 814 } 815 816 /* provide the departure time in us unit */ 817 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 818 { 819 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 820 } 821 822 823 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 824 825 #define TCPHDR_FIN 0x01 826 #define TCPHDR_SYN 0x02 827 #define TCPHDR_RST 0x04 828 #define TCPHDR_PSH 0x08 829 #define TCPHDR_ACK 0x10 830 #define TCPHDR_URG 0x20 831 #define TCPHDR_ECE 0x40 832 #define TCPHDR_CWR 0x80 833 834 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 835 836 /* This is what the send packet queuing engine uses to pass 837 * TCP per-packet control information to the transmission code. 838 * We also store the host-order sequence numbers in here too. 839 * This is 44 bytes if IPV6 is enabled. 840 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 841 */ 842 struct tcp_skb_cb { 843 __u32 seq; /* Starting sequence number */ 844 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 845 union { 846 /* Note : tcp_tw_isn is used in input path only 847 * (isn chosen by tcp_timewait_state_process()) 848 * 849 * tcp_gso_segs/size are used in write queue only, 850 * cf tcp_skb_pcount()/tcp_skb_mss() 851 */ 852 __u32 tcp_tw_isn; 853 struct { 854 u16 tcp_gso_segs; 855 u16 tcp_gso_size; 856 }; 857 }; 858 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 859 860 __u8 sacked; /* State flags for SACK. */ 861 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 862 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 863 #define TCPCB_LOST 0x04 /* SKB is lost */ 864 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 865 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 866 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 867 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 868 TCPCB_REPAIRED) 869 870 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 871 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 872 eor:1, /* Is skb MSG_EOR marked? */ 873 has_rxtstamp:1, /* SKB has a RX timestamp */ 874 unused:5; 875 __u32 ack_seq; /* Sequence number ACK'd */ 876 union { 877 struct { 878 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 879 /* There is space for up to 24 bytes */ 880 __u32 is_app_limited:1, /* cwnd not fully used? */ 881 delivered_ce:20, 882 unused:11; 883 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 884 __u32 delivered; 885 /* start of send pipeline phase */ 886 u64 first_tx_mstamp; 887 /* when we reached the "delivered" count */ 888 u64 delivered_mstamp; 889 } tx; /* only used for outgoing skbs */ 890 union { 891 struct inet_skb_parm h4; 892 #if IS_ENABLED(CONFIG_IPV6) 893 struct inet6_skb_parm h6; 894 #endif 895 } header; /* For incoming skbs */ 896 }; 897 }; 898 899 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 900 901 extern const struct inet_connection_sock_af_ops ipv4_specific; 902 903 #if IS_ENABLED(CONFIG_IPV6) 904 /* This is the variant of inet6_iif() that must be used by TCP, 905 * as TCP moves IP6CB into a different location in skb->cb[] 906 */ 907 static inline int tcp_v6_iif(const struct sk_buff *skb) 908 { 909 return TCP_SKB_CB(skb)->header.h6.iif; 910 } 911 912 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 913 { 914 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 915 916 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 917 } 918 919 /* TCP_SKB_CB reference means this can not be used from early demux */ 920 static inline int tcp_v6_sdif(const struct sk_buff *skb) 921 { 922 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 923 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 924 return TCP_SKB_CB(skb)->header.h6.iif; 925 #endif 926 return 0; 927 } 928 929 extern const struct inet_connection_sock_af_ops ipv6_specific; 930 931 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 932 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 933 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 934 935 #endif 936 937 /* TCP_SKB_CB reference means this can not be used from early demux */ 938 static inline int tcp_v4_sdif(struct sk_buff *skb) 939 { 940 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 941 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 942 return TCP_SKB_CB(skb)->header.h4.iif; 943 #endif 944 return 0; 945 } 946 947 /* Due to TSO, an SKB can be composed of multiple actual 948 * packets. To keep these tracked properly, we use this. 949 */ 950 static inline int tcp_skb_pcount(const struct sk_buff *skb) 951 { 952 return TCP_SKB_CB(skb)->tcp_gso_segs; 953 } 954 955 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 956 { 957 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 958 } 959 960 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 961 { 962 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 963 } 964 965 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 966 static inline int tcp_skb_mss(const struct sk_buff *skb) 967 { 968 return TCP_SKB_CB(skb)->tcp_gso_size; 969 } 970 971 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 972 { 973 return likely(!TCP_SKB_CB(skb)->eor); 974 } 975 976 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 977 const struct sk_buff *from) 978 { 979 return likely(tcp_skb_can_collapse_to(to) && 980 mptcp_skb_can_collapse(to, from) && 981 skb_pure_zcopy_same(to, from)); 982 } 983 984 /* Events passed to congestion control interface */ 985 enum tcp_ca_event { 986 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 987 CA_EVENT_CWND_RESTART, /* congestion window restart */ 988 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 989 CA_EVENT_LOSS, /* loss timeout */ 990 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 991 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 992 }; 993 994 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 995 enum tcp_ca_ack_event_flags { 996 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 997 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 998 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 999 }; 1000 1001 /* 1002 * Interface for adding new TCP congestion control handlers 1003 */ 1004 #define TCP_CA_NAME_MAX 16 1005 #define TCP_CA_MAX 128 1006 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1007 1008 #define TCP_CA_UNSPEC 0 1009 1010 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1011 #define TCP_CONG_NON_RESTRICTED 0x1 1012 /* Requires ECN/ECT set on all packets */ 1013 #define TCP_CONG_NEEDS_ECN 0x2 1014 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1015 1016 union tcp_cc_info; 1017 1018 struct ack_sample { 1019 u32 pkts_acked; 1020 s32 rtt_us; 1021 u32 in_flight; 1022 }; 1023 1024 /* A rate sample measures the number of (original/retransmitted) data 1025 * packets delivered "delivered" over an interval of time "interval_us". 1026 * The tcp_rate.c code fills in the rate sample, and congestion 1027 * control modules that define a cong_control function to run at the end 1028 * of ACK processing can optionally chose to consult this sample when 1029 * setting cwnd and pacing rate. 1030 * A sample is invalid if "delivered" or "interval_us" is negative. 1031 */ 1032 struct rate_sample { 1033 u64 prior_mstamp; /* starting timestamp for interval */ 1034 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1035 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1036 s32 delivered; /* number of packets delivered over interval */ 1037 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1038 long interval_us; /* time for tp->delivered to incr "delivered" */ 1039 u32 snd_interval_us; /* snd interval for delivered packets */ 1040 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1041 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1042 int losses; /* number of packets marked lost upon ACK */ 1043 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1044 u32 prior_in_flight; /* in flight before this ACK */ 1045 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1046 bool is_retrans; /* is sample from retransmission? */ 1047 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1048 }; 1049 1050 struct tcp_congestion_ops { 1051 /* fast path fields are put first to fill one cache line */ 1052 1053 /* return slow start threshold (required) */ 1054 u32 (*ssthresh)(struct sock *sk); 1055 1056 /* do new cwnd calculation (required) */ 1057 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1058 1059 /* call before changing ca_state (optional) */ 1060 void (*set_state)(struct sock *sk, u8 new_state); 1061 1062 /* call when cwnd event occurs (optional) */ 1063 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1064 1065 /* call when ack arrives (optional) */ 1066 void (*in_ack_event)(struct sock *sk, u32 flags); 1067 1068 /* hook for packet ack accounting (optional) */ 1069 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1070 1071 /* override sysctl_tcp_min_tso_segs */ 1072 u32 (*min_tso_segs)(struct sock *sk); 1073 1074 /* call when packets are delivered to update cwnd and pacing rate, 1075 * after all the ca_state processing. (optional) 1076 */ 1077 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1078 1079 1080 /* new value of cwnd after loss (required) */ 1081 u32 (*undo_cwnd)(struct sock *sk); 1082 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1083 u32 (*sndbuf_expand)(struct sock *sk); 1084 1085 /* control/slow paths put last */ 1086 /* get info for inet_diag (optional) */ 1087 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1088 union tcp_cc_info *info); 1089 1090 char name[TCP_CA_NAME_MAX]; 1091 struct module *owner; 1092 struct list_head list; 1093 u32 key; 1094 u32 flags; 1095 1096 /* initialize private data (optional) */ 1097 void (*init)(struct sock *sk); 1098 /* cleanup private data (optional) */ 1099 void (*release)(struct sock *sk); 1100 } ____cacheline_aligned_in_smp; 1101 1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1104 1105 void tcp_assign_congestion_control(struct sock *sk); 1106 void tcp_init_congestion_control(struct sock *sk); 1107 void tcp_cleanup_congestion_control(struct sock *sk); 1108 int tcp_set_default_congestion_control(struct net *net, const char *name); 1109 void tcp_get_default_congestion_control(struct net *net, char *name); 1110 void tcp_get_available_congestion_control(char *buf, size_t len); 1111 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1112 int tcp_set_allowed_congestion_control(char *allowed); 1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1114 bool cap_net_admin); 1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1117 1118 u32 tcp_reno_ssthresh(struct sock *sk); 1119 u32 tcp_reno_undo_cwnd(struct sock *sk); 1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1121 extern struct tcp_congestion_ops tcp_reno; 1122 1123 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1126 #ifdef CONFIG_INET 1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1128 #else 1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1130 { 1131 return NULL; 1132 } 1133 #endif 1134 1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1136 { 1137 const struct inet_connection_sock *icsk = inet_csk(sk); 1138 1139 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1140 } 1141 1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1143 { 1144 struct inet_connection_sock *icsk = inet_csk(sk); 1145 1146 if (icsk->icsk_ca_ops->set_state) 1147 icsk->icsk_ca_ops->set_state(sk, ca_state); 1148 icsk->icsk_ca_state = ca_state; 1149 } 1150 1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1152 { 1153 const struct inet_connection_sock *icsk = inet_csk(sk); 1154 1155 if (icsk->icsk_ca_ops->cwnd_event) 1156 icsk->icsk_ca_ops->cwnd_event(sk, event); 1157 } 1158 1159 /* From tcp_rate.c */ 1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1162 struct rate_sample *rs); 1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1164 bool is_sack_reneg, struct rate_sample *rs); 1165 void tcp_rate_check_app_limited(struct sock *sk); 1166 1167 /* These functions determine how the current flow behaves in respect of SACK 1168 * handling. SACK is negotiated with the peer, and therefore it can vary 1169 * between different flows. 1170 * 1171 * tcp_is_sack - SACK enabled 1172 * tcp_is_reno - No SACK 1173 */ 1174 static inline int tcp_is_sack(const struct tcp_sock *tp) 1175 { 1176 return likely(tp->rx_opt.sack_ok); 1177 } 1178 1179 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1180 { 1181 return !tcp_is_sack(tp); 1182 } 1183 1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1185 { 1186 return tp->sacked_out + tp->lost_out; 1187 } 1188 1189 /* This determines how many packets are "in the network" to the best 1190 * of our knowledge. In many cases it is conservative, but where 1191 * detailed information is available from the receiver (via SACK 1192 * blocks etc.) we can make more aggressive calculations. 1193 * 1194 * Use this for decisions involving congestion control, use just 1195 * tp->packets_out to determine if the send queue is empty or not. 1196 * 1197 * Read this equation as: 1198 * 1199 * "Packets sent once on transmission queue" MINUS 1200 * "Packets left network, but not honestly ACKed yet" PLUS 1201 * "Packets fast retransmitted" 1202 */ 1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1204 { 1205 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1206 } 1207 1208 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1209 1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1211 { 1212 return tp->snd_cwnd < tp->snd_ssthresh; 1213 } 1214 1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1216 { 1217 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1218 } 1219 1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1221 { 1222 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1223 (1 << inet_csk(sk)->icsk_ca_state); 1224 } 1225 1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1227 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1228 * ssthresh. 1229 */ 1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1231 { 1232 const struct tcp_sock *tp = tcp_sk(sk); 1233 1234 if (tcp_in_cwnd_reduction(sk)) 1235 return tp->snd_ssthresh; 1236 else 1237 return max(tp->snd_ssthresh, 1238 ((tp->snd_cwnd >> 1) + 1239 (tp->snd_cwnd >> 2))); 1240 } 1241 1242 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1243 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1244 1245 void tcp_enter_cwr(struct sock *sk); 1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1247 1248 /* The maximum number of MSS of available cwnd for which TSO defers 1249 * sending if not using sysctl_tcp_tso_win_divisor. 1250 */ 1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1252 { 1253 return 3; 1254 } 1255 1256 /* Returns end sequence number of the receiver's advertised window */ 1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1258 { 1259 return tp->snd_una + tp->snd_wnd; 1260 } 1261 1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1263 * flexible approach. The RFC suggests cwnd should not be raised unless 1264 * it was fully used previously. And that's exactly what we do in 1265 * congestion avoidance mode. But in slow start we allow cwnd to grow 1266 * as long as the application has used half the cwnd. 1267 * Example : 1268 * cwnd is 10 (IW10), but application sends 9 frames. 1269 * We allow cwnd to reach 18 when all frames are ACKed. 1270 * This check is safe because it's as aggressive as slow start which already 1271 * risks 100% overshoot. The advantage is that we discourage application to 1272 * either send more filler packets or data to artificially blow up the cwnd 1273 * usage, and allow application-limited process to probe bw more aggressively. 1274 */ 1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1276 { 1277 const struct tcp_sock *tp = tcp_sk(sk); 1278 1279 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1280 if (tcp_in_slow_start(tp)) 1281 return tp->snd_cwnd < 2 * tp->max_packets_out; 1282 1283 return tp->is_cwnd_limited; 1284 } 1285 1286 /* BBR congestion control needs pacing. 1287 * Same remark for SO_MAX_PACING_RATE. 1288 * sch_fq packet scheduler is efficiently handling pacing, 1289 * but is not always installed/used. 1290 * Return true if TCP stack should pace packets itself. 1291 */ 1292 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1293 { 1294 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1295 } 1296 1297 /* Estimates in how many jiffies next packet for this flow can be sent. 1298 * Scheduling a retransmit timer too early would be silly. 1299 */ 1300 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1301 { 1302 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1303 1304 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1305 } 1306 1307 static inline void tcp_reset_xmit_timer(struct sock *sk, 1308 const int what, 1309 unsigned long when, 1310 const unsigned long max_when) 1311 { 1312 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1313 max_when); 1314 } 1315 1316 /* Something is really bad, we could not queue an additional packet, 1317 * because qdisc is full or receiver sent a 0 window, or we are paced. 1318 * We do not want to add fuel to the fire, or abort too early, 1319 * so make sure the timer we arm now is at least 200ms in the future, 1320 * regardless of current icsk_rto value (as it could be ~2ms) 1321 */ 1322 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1323 { 1324 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1325 } 1326 1327 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1328 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1329 unsigned long max_when) 1330 { 1331 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1332 inet_csk(sk)->icsk_backoff); 1333 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1334 1335 return (unsigned long)min_t(u64, when, max_when); 1336 } 1337 1338 static inline void tcp_check_probe_timer(struct sock *sk) 1339 { 1340 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1341 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1342 tcp_probe0_base(sk), TCP_RTO_MAX); 1343 } 1344 1345 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1346 { 1347 tp->snd_wl1 = seq; 1348 } 1349 1350 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1351 { 1352 tp->snd_wl1 = seq; 1353 } 1354 1355 /* 1356 * Calculate(/check) TCP checksum 1357 */ 1358 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1359 __be32 daddr, __wsum base) 1360 { 1361 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1362 } 1363 1364 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1365 { 1366 return !skb_csum_unnecessary(skb) && 1367 __skb_checksum_complete(skb); 1368 } 1369 1370 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1371 1372 #ifdef CONFIG_INET 1373 void __sk_defer_free_flush(struct sock *sk); 1374 1375 static inline void sk_defer_free_flush(struct sock *sk) 1376 { 1377 if (llist_empty(&sk->defer_list)) 1378 return; 1379 __sk_defer_free_flush(sk); 1380 } 1381 #else 1382 static inline void sk_defer_free_flush(struct sock *sk) {} 1383 #endif 1384 1385 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1386 void tcp_set_state(struct sock *sk, int state); 1387 void tcp_done(struct sock *sk); 1388 int tcp_abort(struct sock *sk, int err); 1389 1390 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1391 { 1392 rx_opt->dsack = 0; 1393 rx_opt->num_sacks = 0; 1394 } 1395 1396 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1397 1398 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1399 { 1400 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1401 struct tcp_sock *tp = tcp_sk(sk); 1402 s32 delta; 1403 1404 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1405 ca_ops->cong_control) 1406 return; 1407 delta = tcp_jiffies32 - tp->lsndtime; 1408 if (delta > inet_csk(sk)->icsk_rto) 1409 tcp_cwnd_restart(sk, delta); 1410 } 1411 1412 /* Determine a window scaling and initial window to offer. */ 1413 void tcp_select_initial_window(const struct sock *sk, int __space, 1414 __u32 mss, __u32 *rcv_wnd, 1415 __u32 *window_clamp, int wscale_ok, 1416 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1417 1418 static inline int tcp_win_from_space(const struct sock *sk, int space) 1419 { 1420 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1421 1422 return tcp_adv_win_scale <= 0 ? 1423 (space>>(-tcp_adv_win_scale)) : 1424 space - (space>>tcp_adv_win_scale); 1425 } 1426 1427 /* Note: caller must be prepared to deal with negative returns */ 1428 static inline int tcp_space(const struct sock *sk) 1429 { 1430 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1431 READ_ONCE(sk->sk_backlog.len) - 1432 atomic_read(&sk->sk_rmem_alloc)); 1433 } 1434 1435 static inline int tcp_full_space(const struct sock *sk) 1436 { 1437 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1438 } 1439 1440 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1441 { 1442 int unused_mem = sk_unused_reserved_mem(sk); 1443 struct tcp_sock *tp = tcp_sk(sk); 1444 1445 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1446 if (unused_mem) 1447 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1448 tcp_win_from_space(sk, unused_mem)); 1449 } 1450 1451 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1452 1453 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1454 * If 87.5 % (7/8) of the space has been consumed, we want to override 1455 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1456 * len/truesize ratio. 1457 */ 1458 static inline bool tcp_rmem_pressure(const struct sock *sk) 1459 { 1460 int rcvbuf, threshold; 1461 1462 if (tcp_under_memory_pressure(sk)) 1463 return true; 1464 1465 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1466 threshold = rcvbuf - (rcvbuf >> 3); 1467 1468 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1469 } 1470 1471 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1472 { 1473 const struct tcp_sock *tp = tcp_sk(sk); 1474 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1475 1476 if (avail <= 0) 1477 return false; 1478 1479 return (avail >= target) || tcp_rmem_pressure(sk) || 1480 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1481 } 1482 1483 extern void tcp_openreq_init_rwin(struct request_sock *req, 1484 const struct sock *sk_listener, 1485 const struct dst_entry *dst); 1486 1487 void tcp_enter_memory_pressure(struct sock *sk); 1488 void tcp_leave_memory_pressure(struct sock *sk); 1489 1490 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1491 { 1492 struct net *net = sock_net((struct sock *)tp); 1493 1494 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1495 } 1496 1497 static inline int keepalive_time_when(const struct tcp_sock *tp) 1498 { 1499 struct net *net = sock_net((struct sock *)tp); 1500 1501 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1502 } 1503 1504 static inline int keepalive_probes(const struct tcp_sock *tp) 1505 { 1506 struct net *net = sock_net((struct sock *)tp); 1507 1508 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1509 } 1510 1511 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1512 { 1513 const struct inet_connection_sock *icsk = &tp->inet_conn; 1514 1515 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1516 tcp_jiffies32 - tp->rcv_tstamp); 1517 } 1518 1519 static inline int tcp_fin_time(const struct sock *sk) 1520 { 1521 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1522 const int rto = inet_csk(sk)->icsk_rto; 1523 1524 if (fin_timeout < (rto << 2) - (rto >> 1)) 1525 fin_timeout = (rto << 2) - (rto >> 1); 1526 1527 return fin_timeout; 1528 } 1529 1530 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1531 int paws_win) 1532 { 1533 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1534 return true; 1535 if (unlikely(!time_before32(ktime_get_seconds(), 1536 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1537 return true; 1538 /* 1539 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1540 * then following tcp messages have valid values. Ignore 0 value, 1541 * or else 'negative' tsval might forbid us to accept their packets. 1542 */ 1543 if (!rx_opt->ts_recent) 1544 return true; 1545 return false; 1546 } 1547 1548 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1549 int rst) 1550 { 1551 if (tcp_paws_check(rx_opt, 0)) 1552 return false; 1553 1554 /* RST segments are not recommended to carry timestamp, 1555 and, if they do, it is recommended to ignore PAWS because 1556 "their cleanup function should take precedence over timestamps." 1557 Certainly, it is mistake. It is necessary to understand the reasons 1558 of this constraint to relax it: if peer reboots, clock may go 1559 out-of-sync and half-open connections will not be reset. 1560 Actually, the problem would be not existing if all 1561 the implementations followed draft about maintaining clock 1562 via reboots. Linux-2.2 DOES NOT! 1563 1564 However, we can relax time bounds for RST segments to MSL. 1565 */ 1566 if (rst && !time_before32(ktime_get_seconds(), 1567 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1568 return false; 1569 return true; 1570 } 1571 1572 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1573 int mib_idx, u32 *last_oow_ack_time); 1574 1575 static inline void tcp_mib_init(struct net *net) 1576 { 1577 /* See RFC 2012 */ 1578 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1579 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1580 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1581 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1582 } 1583 1584 /* from STCP */ 1585 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1586 { 1587 tp->lost_skb_hint = NULL; 1588 } 1589 1590 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1591 { 1592 tcp_clear_retrans_hints_partial(tp); 1593 tp->retransmit_skb_hint = NULL; 1594 } 1595 1596 union tcp_md5_addr { 1597 struct in_addr a4; 1598 #if IS_ENABLED(CONFIG_IPV6) 1599 struct in6_addr a6; 1600 #endif 1601 }; 1602 1603 /* - key database */ 1604 struct tcp_md5sig_key { 1605 struct hlist_node node; 1606 u8 keylen; 1607 u8 family; /* AF_INET or AF_INET6 */ 1608 u8 prefixlen; 1609 u8 flags; 1610 union tcp_md5_addr addr; 1611 int l3index; /* set if key added with L3 scope */ 1612 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1613 struct rcu_head rcu; 1614 }; 1615 1616 /* - sock block */ 1617 struct tcp_md5sig_info { 1618 struct hlist_head head; 1619 struct rcu_head rcu; 1620 }; 1621 1622 /* - pseudo header */ 1623 struct tcp4_pseudohdr { 1624 __be32 saddr; 1625 __be32 daddr; 1626 __u8 pad; 1627 __u8 protocol; 1628 __be16 len; 1629 }; 1630 1631 struct tcp6_pseudohdr { 1632 struct in6_addr saddr; 1633 struct in6_addr daddr; 1634 __be32 len; 1635 __be32 protocol; /* including padding */ 1636 }; 1637 1638 union tcp_md5sum_block { 1639 struct tcp4_pseudohdr ip4; 1640 #if IS_ENABLED(CONFIG_IPV6) 1641 struct tcp6_pseudohdr ip6; 1642 #endif 1643 }; 1644 1645 /* - pool: digest algorithm, hash description and scratch buffer */ 1646 struct tcp_md5sig_pool { 1647 struct ahash_request *md5_req; 1648 void *scratch; 1649 }; 1650 1651 /* - functions */ 1652 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1653 const struct sock *sk, const struct sk_buff *skb); 1654 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1655 int family, u8 prefixlen, int l3index, u8 flags, 1656 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1657 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1658 int family, u8 prefixlen, int l3index, u8 flags); 1659 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1660 const struct sock *addr_sk); 1661 1662 #ifdef CONFIG_TCP_MD5SIG 1663 #include <linux/jump_label.h> 1664 extern struct static_key_false tcp_md5_needed; 1665 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1666 const union tcp_md5_addr *addr, 1667 int family); 1668 static inline struct tcp_md5sig_key * 1669 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1670 const union tcp_md5_addr *addr, int family) 1671 { 1672 if (!static_branch_unlikely(&tcp_md5_needed)) 1673 return NULL; 1674 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1675 } 1676 1677 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1678 #else 1679 static inline struct tcp_md5sig_key * 1680 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1681 const union tcp_md5_addr *addr, int family) 1682 { 1683 return NULL; 1684 } 1685 #define tcp_twsk_md5_key(twsk) NULL 1686 #endif 1687 1688 bool tcp_alloc_md5sig_pool(void); 1689 1690 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1691 static inline void tcp_put_md5sig_pool(void) 1692 { 1693 local_bh_enable(); 1694 } 1695 1696 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1697 unsigned int header_len); 1698 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1699 const struct tcp_md5sig_key *key); 1700 1701 /* From tcp_fastopen.c */ 1702 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1703 struct tcp_fastopen_cookie *cookie); 1704 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1705 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1706 u16 try_exp); 1707 struct tcp_fastopen_request { 1708 /* Fast Open cookie. Size 0 means a cookie request */ 1709 struct tcp_fastopen_cookie cookie; 1710 struct msghdr *data; /* data in MSG_FASTOPEN */ 1711 size_t size; 1712 int copied; /* queued in tcp_connect() */ 1713 struct ubuf_info *uarg; 1714 }; 1715 void tcp_free_fastopen_req(struct tcp_sock *tp); 1716 void tcp_fastopen_destroy_cipher(struct sock *sk); 1717 void tcp_fastopen_ctx_destroy(struct net *net); 1718 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1719 void *primary_key, void *backup_key); 1720 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1721 u64 *key); 1722 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1723 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1724 struct request_sock *req, 1725 struct tcp_fastopen_cookie *foc, 1726 const struct dst_entry *dst); 1727 void tcp_fastopen_init_key_once(struct net *net); 1728 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1729 struct tcp_fastopen_cookie *cookie); 1730 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1731 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1732 #define TCP_FASTOPEN_KEY_MAX 2 1733 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1734 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1735 1736 /* Fastopen key context */ 1737 struct tcp_fastopen_context { 1738 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1739 int num; 1740 struct rcu_head rcu; 1741 }; 1742 1743 void tcp_fastopen_active_disable(struct sock *sk); 1744 bool tcp_fastopen_active_should_disable(struct sock *sk); 1745 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1746 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1747 1748 /* Caller needs to wrap with rcu_read_(un)lock() */ 1749 static inline 1750 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1751 { 1752 struct tcp_fastopen_context *ctx; 1753 1754 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1755 if (!ctx) 1756 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1757 return ctx; 1758 } 1759 1760 static inline 1761 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1762 const struct tcp_fastopen_cookie *orig) 1763 { 1764 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1765 orig->len == foc->len && 1766 !memcmp(orig->val, foc->val, foc->len)) 1767 return true; 1768 return false; 1769 } 1770 1771 static inline 1772 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1773 { 1774 return ctx->num; 1775 } 1776 1777 /* Latencies incurred by various limits for a sender. They are 1778 * chronograph-like stats that are mutually exclusive. 1779 */ 1780 enum tcp_chrono { 1781 TCP_CHRONO_UNSPEC, 1782 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1783 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1784 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1785 __TCP_CHRONO_MAX, 1786 }; 1787 1788 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1789 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1790 1791 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1792 * the same memory storage than skb->destructor/_skb_refdst 1793 */ 1794 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1795 { 1796 skb->destructor = NULL; 1797 skb->_skb_refdst = 0UL; 1798 } 1799 1800 #define tcp_skb_tsorted_save(skb) { \ 1801 unsigned long _save = skb->_skb_refdst; \ 1802 skb->_skb_refdst = 0UL; 1803 1804 #define tcp_skb_tsorted_restore(skb) \ 1805 skb->_skb_refdst = _save; \ 1806 } 1807 1808 void tcp_write_queue_purge(struct sock *sk); 1809 1810 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1811 { 1812 return skb_rb_first(&sk->tcp_rtx_queue); 1813 } 1814 1815 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1816 { 1817 return skb_rb_last(&sk->tcp_rtx_queue); 1818 } 1819 1820 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1821 { 1822 return skb_peek(&sk->sk_write_queue); 1823 } 1824 1825 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1826 { 1827 return skb_peek_tail(&sk->sk_write_queue); 1828 } 1829 1830 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1831 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1832 1833 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1834 { 1835 return skb_peek(&sk->sk_write_queue); 1836 } 1837 1838 static inline bool tcp_skb_is_last(const struct sock *sk, 1839 const struct sk_buff *skb) 1840 { 1841 return skb_queue_is_last(&sk->sk_write_queue, skb); 1842 } 1843 1844 /** 1845 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1846 * @sk: socket 1847 * 1848 * Since the write queue can have a temporary empty skb in it, 1849 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1850 */ 1851 static inline bool tcp_write_queue_empty(const struct sock *sk) 1852 { 1853 const struct tcp_sock *tp = tcp_sk(sk); 1854 1855 return tp->write_seq == tp->snd_nxt; 1856 } 1857 1858 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1859 { 1860 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1861 } 1862 1863 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1864 { 1865 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1866 } 1867 1868 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1869 { 1870 __skb_queue_tail(&sk->sk_write_queue, skb); 1871 1872 /* Queue it, remembering where we must start sending. */ 1873 if (sk->sk_write_queue.next == skb) 1874 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1875 } 1876 1877 /* Insert new before skb on the write queue of sk. */ 1878 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1879 struct sk_buff *skb, 1880 struct sock *sk) 1881 { 1882 __skb_queue_before(&sk->sk_write_queue, skb, new); 1883 } 1884 1885 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1886 { 1887 tcp_skb_tsorted_anchor_cleanup(skb); 1888 __skb_unlink(skb, &sk->sk_write_queue); 1889 } 1890 1891 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1892 1893 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1894 { 1895 tcp_skb_tsorted_anchor_cleanup(skb); 1896 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1897 } 1898 1899 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1900 { 1901 list_del(&skb->tcp_tsorted_anchor); 1902 tcp_rtx_queue_unlink(skb, sk); 1903 tcp_wmem_free_skb(sk, skb); 1904 } 1905 1906 static inline void tcp_push_pending_frames(struct sock *sk) 1907 { 1908 if (tcp_send_head(sk)) { 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 1911 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1912 } 1913 } 1914 1915 /* Start sequence of the skb just after the highest skb with SACKed 1916 * bit, valid only if sacked_out > 0 or when the caller has ensured 1917 * validity by itself. 1918 */ 1919 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1920 { 1921 if (!tp->sacked_out) 1922 return tp->snd_una; 1923 1924 if (tp->highest_sack == NULL) 1925 return tp->snd_nxt; 1926 1927 return TCP_SKB_CB(tp->highest_sack)->seq; 1928 } 1929 1930 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1931 { 1932 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1933 } 1934 1935 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1936 { 1937 return tcp_sk(sk)->highest_sack; 1938 } 1939 1940 static inline void tcp_highest_sack_reset(struct sock *sk) 1941 { 1942 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1943 } 1944 1945 /* Called when old skb is about to be deleted and replaced by new skb */ 1946 static inline void tcp_highest_sack_replace(struct sock *sk, 1947 struct sk_buff *old, 1948 struct sk_buff *new) 1949 { 1950 if (old == tcp_highest_sack(sk)) 1951 tcp_sk(sk)->highest_sack = new; 1952 } 1953 1954 /* This helper checks if socket has IP_TRANSPARENT set */ 1955 static inline bool inet_sk_transparent(const struct sock *sk) 1956 { 1957 switch (sk->sk_state) { 1958 case TCP_TIME_WAIT: 1959 return inet_twsk(sk)->tw_transparent; 1960 case TCP_NEW_SYN_RECV: 1961 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1962 } 1963 return inet_sk(sk)->transparent; 1964 } 1965 1966 /* Determines whether this is a thin stream (which may suffer from 1967 * increased latency). Used to trigger latency-reducing mechanisms. 1968 */ 1969 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1970 { 1971 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1972 } 1973 1974 /* /proc */ 1975 enum tcp_seq_states { 1976 TCP_SEQ_STATE_LISTENING, 1977 TCP_SEQ_STATE_ESTABLISHED, 1978 }; 1979 1980 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1981 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1982 void tcp_seq_stop(struct seq_file *seq, void *v); 1983 1984 struct tcp_seq_afinfo { 1985 sa_family_t family; 1986 }; 1987 1988 struct tcp_iter_state { 1989 struct seq_net_private p; 1990 enum tcp_seq_states state; 1991 struct sock *syn_wait_sk; 1992 int bucket, offset, sbucket, num; 1993 loff_t last_pos; 1994 }; 1995 1996 extern struct request_sock_ops tcp_request_sock_ops; 1997 extern struct request_sock_ops tcp6_request_sock_ops; 1998 1999 void tcp_v4_destroy_sock(struct sock *sk); 2000 2001 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2002 netdev_features_t features); 2003 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2004 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2005 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2006 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2007 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2008 int tcp_gro_complete(struct sk_buff *skb); 2009 2010 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2011 2012 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2013 { 2014 struct net *net = sock_net((struct sock *)tp); 2015 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 2016 } 2017 2018 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2019 2020 #ifdef CONFIG_PROC_FS 2021 int tcp4_proc_init(void); 2022 void tcp4_proc_exit(void); 2023 #endif 2024 2025 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2026 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2027 const struct tcp_request_sock_ops *af_ops, 2028 struct sock *sk, struct sk_buff *skb); 2029 2030 /* TCP af-specific functions */ 2031 struct tcp_sock_af_ops { 2032 #ifdef CONFIG_TCP_MD5SIG 2033 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2034 const struct sock *addr_sk); 2035 int (*calc_md5_hash)(char *location, 2036 const struct tcp_md5sig_key *md5, 2037 const struct sock *sk, 2038 const struct sk_buff *skb); 2039 int (*md5_parse)(struct sock *sk, 2040 int optname, 2041 sockptr_t optval, 2042 int optlen); 2043 #endif 2044 }; 2045 2046 struct tcp_request_sock_ops { 2047 u16 mss_clamp; 2048 #ifdef CONFIG_TCP_MD5SIG 2049 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2050 const struct sock *addr_sk); 2051 int (*calc_md5_hash) (char *location, 2052 const struct tcp_md5sig_key *md5, 2053 const struct sock *sk, 2054 const struct sk_buff *skb); 2055 #endif 2056 #ifdef CONFIG_SYN_COOKIES 2057 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2058 __u16 *mss); 2059 #endif 2060 struct dst_entry *(*route_req)(const struct sock *sk, 2061 struct sk_buff *skb, 2062 struct flowi *fl, 2063 struct request_sock *req); 2064 u32 (*init_seq)(const struct sk_buff *skb); 2065 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2066 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2067 struct flowi *fl, struct request_sock *req, 2068 struct tcp_fastopen_cookie *foc, 2069 enum tcp_synack_type synack_type, 2070 struct sk_buff *syn_skb); 2071 }; 2072 2073 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2074 #if IS_ENABLED(CONFIG_IPV6) 2075 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2076 #endif 2077 2078 #ifdef CONFIG_SYN_COOKIES 2079 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2080 const struct sock *sk, struct sk_buff *skb, 2081 __u16 *mss) 2082 { 2083 tcp_synq_overflow(sk); 2084 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2085 return ops->cookie_init_seq(skb, mss); 2086 } 2087 #else 2088 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2089 const struct sock *sk, struct sk_buff *skb, 2090 __u16 *mss) 2091 { 2092 return 0; 2093 } 2094 #endif 2095 2096 int tcpv4_offload_init(void); 2097 2098 void tcp_v4_init(void); 2099 void tcp_init(void); 2100 2101 /* tcp_recovery.c */ 2102 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2103 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2104 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2105 u32 reo_wnd); 2106 extern bool tcp_rack_mark_lost(struct sock *sk); 2107 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2108 u64 xmit_time); 2109 extern void tcp_rack_reo_timeout(struct sock *sk); 2110 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2111 2112 /* At how many usecs into the future should the RTO fire? */ 2113 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2114 { 2115 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2116 u32 rto = inet_csk(sk)->icsk_rto; 2117 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2118 2119 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2120 } 2121 2122 /* 2123 * Save and compile IPv4 options, return a pointer to it 2124 */ 2125 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2126 struct sk_buff *skb) 2127 { 2128 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2129 struct ip_options_rcu *dopt = NULL; 2130 2131 if (opt->optlen) { 2132 int opt_size = sizeof(*dopt) + opt->optlen; 2133 2134 dopt = kmalloc(opt_size, GFP_ATOMIC); 2135 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2136 kfree(dopt); 2137 dopt = NULL; 2138 } 2139 } 2140 return dopt; 2141 } 2142 2143 /* locally generated TCP pure ACKs have skb->truesize == 2 2144 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2145 * This is much faster than dissecting the packet to find out. 2146 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2147 */ 2148 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2149 { 2150 return skb->truesize == 2; 2151 } 2152 2153 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2154 { 2155 skb->truesize = 2; 2156 } 2157 2158 static inline int tcp_inq(struct sock *sk) 2159 { 2160 struct tcp_sock *tp = tcp_sk(sk); 2161 int answ; 2162 2163 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2164 answ = 0; 2165 } else if (sock_flag(sk, SOCK_URGINLINE) || 2166 !tp->urg_data || 2167 before(tp->urg_seq, tp->copied_seq) || 2168 !before(tp->urg_seq, tp->rcv_nxt)) { 2169 2170 answ = tp->rcv_nxt - tp->copied_seq; 2171 2172 /* Subtract 1, if FIN was received */ 2173 if (answ && sock_flag(sk, SOCK_DONE)) 2174 answ--; 2175 } else { 2176 answ = tp->urg_seq - tp->copied_seq; 2177 } 2178 2179 return answ; 2180 } 2181 2182 int tcp_peek_len(struct socket *sock); 2183 2184 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2185 { 2186 u16 segs_in; 2187 2188 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2189 2190 /* We update these fields while other threads might 2191 * read them from tcp_get_info() 2192 */ 2193 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2194 if (skb->len > tcp_hdrlen(skb)) 2195 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2196 } 2197 2198 /* 2199 * TCP listen path runs lockless. 2200 * We forced "struct sock" to be const qualified to make sure 2201 * we don't modify one of its field by mistake. 2202 * Here, we increment sk_drops which is an atomic_t, so we can safely 2203 * make sock writable again. 2204 */ 2205 static inline void tcp_listendrop(const struct sock *sk) 2206 { 2207 atomic_inc(&((struct sock *)sk)->sk_drops); 2208 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2209 } 2210 2211 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2212 2213 /* 2214 * Interface for adding Upper Level Protocols over TCP 2215 */ 2216 2217 #define TCP_ULP_NAME_MAX 16 2218 #define TCP_ULP_MAX 128 2219 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2220 2221 struct tcp_ulp_ops { 2222 struct list_head list; 2223 2224 /* initialize ulp */ 2225 int (*init)(struct sock *sk); 2226 /* update ulp */ 2227 void (*update)(struct sock *sk, struct proto *p, 2228 void (*write_space)(struct sock *sk)); 2229 /* cleanup ulp */ 2230 void (*release)(struct sock *sk); 2231 /* diagnostic */ 2232 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2233 size_t (*get_info_size)(const struct sock *sk); 2234 /* clone ulp */ 2235 void (*clone)(const struct request_sock *req, struct sock *newsk, 2236 const gfp_t priority); 2237 2238 char name[TCP_ULP_NAME_MAX]; 2239 struct module *owner; 2240 }; 2241 int tcp_register_ulp(struct tcp_ulp_ops *type); 2242 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2243 int tcp_set_ulp(struct sock *sk, const char *name); 2244 void tcp_get_available_ulp(char *buf, size_t len); 2245 void tcp_cleanup_ulp(struct sock *sk); 2246 void tcp_update_ulp(struct sock *sk, struct proto *p, 2247 void (*write_space)(struct sock *sk)); 2248 2249 #define MODULE_ALIAS_TCP_ULP(name) \ 2250 __MODULE_INFO(alias, alias_userspace, name); \ 2251 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2252 2253 #ifdef CONFIG_NET_SOCK_MSG 2254 struct sk_msg; 2255 struct sk_psock; 2256 2257 #ifdef CONFIG_BPF_SYSCALL 2258 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2259 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2260 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2261 #endif /* CONFIG_BPF_SYSCALL */ 2262 2263 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2264 int flags); 2265 #endif /* CONFIG_NET_SOCK_MSG */ 2266 2267 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2268 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2269 { 2270 } 2271 #endif 2272 2273 #ifdef CONFIG_CGROUP_BPF 2274 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2275 struct sk_buff *skb, 2276 unsigned int end_offset) 2277 { 2278 skops->skb = skb; 2279 skops->skb_data_end = skb->data + end_offset; 2280 } 2281 #else 2282 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2283 struct sk_buff *skb, 2284 unsigned int end_offset) 2285 { 2286 } 2287 #endif 2288 2289 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2290 * is < 0, then the BPF op failed (for example if the loaded BPF 2291 * program does not support the chosen operation or there is no BPF 2292 * program loaded). 2293 */ 2294 #ifdef CONFIG_BPF 2295 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2296 { 2297 struct bpf_sock_ops_kern sock_ops; 2298 int ret; 2299 2300 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2301 if (sk_fullsock(sk)) { 2302 sock_ops.is_fullsock = 1; 2303 sock_owned_by_me(sk); 2304 } 2305 2306 sock_ops.sk = sk; 2307 sock_ops.op = op; 2308 if (nargs > 0) 2309 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2310 2311 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2312 if (ret == 0) 2313 ret = sock_ops.reply; 2314 else 2315 ret = -1; 2316 return ret; 2317 } 2318 2319 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2320 { 2321 u32 args[2] = {arg1, arg2}; 2322 2323 return tcp_call_bpf(sk, op, 2, args); 2324 } 2325 2326 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2327 u32 arg3) 2328 { 2329 u32 args[3] = {arg1, arg2, arg3}; 2330 2331 return tcp_call_bpf(sk, op, 3, args); 2332 } 2333 2334 #else 2335 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2336 { 2337 return -EPERM; 2338 } 2339 2340 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2341 { 2342 return -EPERM; 2343 } 2344 2345 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2346 u32 arg3) 2347 { 2348 return -EPERM; 2349 } 2350 2351 #endif 2352 2353 static inline u32 tcp_timeout_init(struct sock *sk) 2354 { 2355 int timeout; 2356 2357 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2358 2359 if (timeout <= 0) 2360 timeout = TCP_TIMEOUT_INIT; 2361 return timeout; 2362 } 2363 2364 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2365 { 2366 int rwnd; 2367 2368 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2369 2370 if (rwnd < 0) 2371 rwnd = 0; 2372 return rwnd; 2373 } 2374 2375 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2376 { 2377 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2378 } 2379 2380 static inline void tcp_bpf_rtt(struct sock *sk) 2381 { 2382 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2383 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2384 } 2385 2386 #if IS_ENABLED(CONFIG_SMC) 2387 extern struct static_key_false tcp_have_smc; 2388 #endif 2389 2390 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2391 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2392 void (*cad)(struct sock *sk, u32 ack_seq)); 2393 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2394 void clean_acked_data_flush(void); 2395 #endif 2396 2397 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2398 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2399 const struct tcp_sock *tp) 2400 { 2401 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2402 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2403 } 2404 2405 /* Compute Earliest Departure Time for some control packets 2406 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2407 */ 2408 static inline u64 tcp_transmit_time(const struct sock *sk) 2409 { 2410 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2411 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2412 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2413 2414 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2415 } 2416 return 0; 2417 } 2418 2419 #endif /* _TCP_H */ 2420