xref: /openbmc/linux/include/net/tcp.h (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 
145 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146 
147 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149 						 * used as a fallback RTO for the
150 						 * initial data transmission if no
151 						 * valid RTT sample has been acquired,
152 						 * most likely due to retrans in 3WHS.
153 						 */
154 
155 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156 					                 * for local resources.
157 					                 */
158 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160 #define TCP_KEEPALIVE_INTVL	(75*HZ)
161 
162 #define MAX_TCP_KEEPIDLE	32767
163 #define MAX_TCP_KEEPINTVL	32767
164 #define MAX_TCP_KEEPCNT		127
165 #define MAX_TCP_SYNCNT		127
166 
167 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
168 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
169 					 * after this time. It should be equal
170 					 * (or greater than) TCP_TIMEWAIT_LEN
171 					 * to provide reliability equal to one
172 					 * provided by timewait state.
173 					 */
174 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
175 					 * timestamps. It must be less than
176 					 * minimal timewait lifetime.
177 					 */
178 /*
179  *	TCP option
180  */
181 
182 #define TCPOPT_NOP		1	/* Padding */
183 #define TCPOPT_EOL		0	/* End of options */
184 #define TCPOPT_MSS		2	/* Segment size negotiating */
185 #define TCPOPT_WINDOW		3	/* Window scaling */
186 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
187 #define TCPOPT_SACK             5       /* SACK Block */
188 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
189 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
190 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
191 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
192 #define TCPOPT_EXP		254	/* Experimental */
193 /* Magic number to be after the option value for sharing TCP
194  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
195  */
196 #define TCPOPT_FASTOPEN_MAGIC	0xF989
197 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
198 
199 /*
200  *     TCP option lengths
201  */
202 
203 #define TCPOLEN_MSS            4
204 #define TCPOLEN_WINDOW         3
205 #define TCPOLEN_SACK_PERM      2
206 #define TCPOLEN_TIMESTAMP      10
207 #define TCPOLEN_MD5SIG         18
208 #define TCPOLEN_FASTOPEN_BASE  2
209 #define TCPOLEN_EXP_FASTOPEN_BASE  4
210 #define TCPOLEN_EXP_SMC_BASE   6
211 
212 /* But this is what stacks really send out. */
213 #define TCPOLEN_TSTAMP_ALIGNED		12
214 #define TCPOLEN_WSCALE_ALIGNED		4
215 #define TCPOLEN_SACKPERM_ALIGNED	4
216 #define TCPOLEN_SACK_BASE		2
217 #define TCPOLEN_SACK_BASE_ALIGNED	4
218 #define TCPOLEN_SACK_PERBLOCK		8
219 #define TCPOLEN_MD5SIG_ALIGNED		20
220 #define TCPOLEN_MSS_ALIGNED		4
221 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
222 
223 /* Flags in tp->nonagle */
224 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
225 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
226 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
227 
228 /* TCP thin-stream limits */
229 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
230 
231 /* TCP initial congestion window as per rfc6928 */
232 #define TCP_INIT_CWND		10
233 
234 /* Bit Flags for sysctl_tcp_fastopen */
235 #define	TFO_CLIENT_ENABLE	1
236 #define	TFO_SERVER_ENABLE	2
237 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
238 
239 /* Accept SYN data w/o any cookie option */
240 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
241 
242 /* Force enable TFO on all listeners, i.e., not requiring the
243  * TCP_FASTOPEN socket option.
244  */
245 #define	TFO_SERVER_WO_SOCKOPT1	0x400
246 
247 
248 /* sysctl variables for tcp */
249 extern int sysctl_tcp_max_orphans;
250 extern long sysctl_tcp_mem[3];
251 
252 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
253 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
254 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
255 
256 extern atomic_long_t tcp_memory_allocated;
257 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
258 
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern unsigned long tcp_memory_pressure;
261 
262 /* optimized version of sk_under_memory_pressure() for TCP sockets */
263 static inline bool tcp_under_memory_pressure(const struct sock *sk)
264 {
265 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267 		return true;
268 
269 	return READ_ONCE(tcp_memory_pressure);
270 }
271 /*
272  * The next routines deal with comparing 32 bit unsigned ints
273  * and worry about wraparound (automatic with unsigned arithmetic).
274  */
275 
276 static inline bool before(__u32 seq1, __u32 seq2)
277 {
278         return (__s32)(seq1-seq2) < 0;
279 }
280 #define after(seq2, seq1) 	before(seq1, seq2)
281 
282 /* is s2<=s1<=s3 ? */
283 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284 {
285 	return seq3 - seq2 >= seq1 - seq2;
286 }
287 
288 static inline bool tcp_out_of_memory(struct sock *sk)
289 {
290 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292 		return true;
293 	return false;
294 }
295 
296 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
297 {
298 	sk_wmem_queued_add(sk, -skb->truesize);
299 	if (!skb_zcopy_pure(skb))
300 		sk_mem_uncharge(sk, skb->truesize);
301 	else
302 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
303 	__kfree_skb(skb);
304 }
305 
306 void sk_forced_mem_schedule(struct sock *sk, int size);
307 
308 bool tcp_check_oom(struct sock *sk, int shift);
309 
310 
311 extern struct proto tcp_prot;
312 
313 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
317 
318 void tcp_tasklet_init(void);
319 
320 int tcp_v4_err(struct sk_buff *skb, u32);
321 
322 void tcp_shutdown(struct sock *sk, int how);
323 
324 int tcp_v4_early_demux(struct sk_buff *skb);
325 int tcp_v4_rcv(struct sk_buff *skb);
326 
327 void tcp_remove_empty_skb(struct sock *sk);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331 			 size_t size, struct ubuf_info *uarg);
332 void tcp_splice_eof(struct socket *sock);
333 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334 int tcp_wmem_schedule(struct sock *sk, int copy);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349 			struct pipe_inode_info *pipe, size_t len,
350 			unsigned int flags);
351 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
352 				     bool force_schedule);
353 
354 static inline void tcp_dec_quickack_mode(struct sock *sk)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	if (icsk->icsk_ack.quick) {
359 		/* How many ACKs S/ACKing new data have we sent? */
360 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
361 
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int do_tcp_getsockopt(struct sock *sk, int level,
406 		      int optname, sockptr_t optval, sockptr_t optlen);
407 int tcp_getsockopt(struct sock *sk, int level, int optname,
408 		   char __user *optval, int __user *optlen);
409 bool tcp_bpf_bypass_getsockopt(int level, int optname);
410 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
411 		      sockptr_t optval, unsigned int optlen);
412 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
413 		   unsigned int optlen);
414 void tcp_set_keepalive(struct sock *sk, int val);
415 void tcp_syn_ack_timeout(const struct request_sock *req);
416 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
417 		int flags, int *addr_len);
418 int tcp_set_rcvlowat(struct sock *sk, int val);
419 int tcp_set_window_clamp(struct sock *sk, int val);
420 void tcp_update_recv_tstamps(struct sk_buff *skb,
421 			     struct scm_timestamping_internal *tss);
422 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
423 			struct scm_timestamping_internal *tss);
424 void tcp_data_ready(struct sock *sk);
425 #ifdef CONFIG_MMU
426 int tcp_mmap(struct file *file, struct socket *sock,
427 	     struct vm_area_struct *vma);
428 #endif
429 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	BPF SKB-less helpers
436  */
437 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
438 			 struct tcphdr *th, u32 *cookie);
439 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
440 			 struct tcphdr *th, u32 *cookie);
441 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
442 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
443 			  const struct tcp_request_sock_ops *af_ops,
444 			  struct sock *sk, struct tcphdr *th);
445 /*
446  *	TCP v4 functions exported for the inet6 API
447  */
448 
449 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
450 void tcp_v4_mtu_reduced(struct sock *sk);
451 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
452 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(const struct sock *sk,
455 				      struct request_sock *req,
456 				      struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459 				  struct request_sock *req,
460 				  struct dst_entry *dst,
461 				  struct request_sock *req_unhash,
462 				  bool *own_req);
463 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465 int tcp_connect(struct sock *sk);
466 enum tcp_synack_type {
467 	TCP_SYNACK_NORMAL,
468 	TCP_SYNACK_FASTOPEN,
469 	TCP_SYNACK_COOKIE,
470 };
471 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
472 				struct request_sock *req,
473 				struct tcp_fastopen_cookie *foc,
474 				enum tcp_synack_type synack_type,
475 				struct sk_buff *syn_skb);
476 int tcp_disconnect(struct sock *sk, int flags);
477 
478 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
479 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
480 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
481 
482 /* From syncookies.c */
483 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
484 				 struct request_sock *req,
485 				 struct dst_entry *dst, u32 tsoff);
486 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
487 		      u32 cookie);
488 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
489 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
490 					    const struct tcp_request_sock_ops *af_ops,
491 					    struct sock *sk, struct sk_buff *skb);
492 #ifdef CONFIG_SYN_COOKIES
493 
494 /* Syncookies use a monotonic timer which increments every 60 seconds.
495  * This counter is used both as a hash input and partially encoded into
496  * the cookie value.  A cookie is only validated further if the delta
497  * between the current counter value and the encoded one is less than this,
498  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
499  * the counter advances immediately after a cookie is generated).
500  */
501 #define MAX_SYNCOOKIE_AGE	2
502 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
503 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
504 
505 /* syncookies: remember time of last synqueue overflow
506  * But do not dirty this field too often (once per second is enough)
507  * It is racy as we do not hold a lock, but race is very minor.
508  */
509 static inline void tcp_synq_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			if (!time_between32(now, last_overflow,
521 					    last_overflow + HZ))
522 				WRITE_ONCE(reuse->synq_overflow_ts, now);
523 			return;
524 		}
525 	}
526 
527 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528 	if (!time_between32(now, last_overflow, last_overflow + HZ))
529 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
530 }
531 
532 /* syncookies: no recent synqueue overflow on this listening socket? */
533 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
534 {
535 	unsigned int last_overflow;
536 	unsigned int now = jiffies;
537 
538 	if (sk->sk_reuseport) {
539 		struct sock_reuseport *reuse;
540 
541 		reuse = rcu_dereference(sk->sk_reuseport_cb);
542 		if (likely(reuse)) {
543 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
544 			return !time_between32(now, last_overflow - HZ,
545 					       last_overflow +
546 					       TCP_SYNCOOKIE_VALID);
547 		}
548 	}
549 
550 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551 
552 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
553 	 * then we're under synflood. However, we have to use
554 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
555 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
556 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
557 	 * which could lead to rejecting a valid syncookie.
558 	 */
559 	return !time_between32(now, last_overflow - HZ,
560 			       last_overflow + TCP_SYNCOOKIE_VALID);
561 }
562 
563 static inline u32 tcp_cookie_time(void)
564 {
565 	u64 val = get_jiffies_64();
566 
567 	do_div(val, TCP_SYNCOOKIE_PERIOD);
568 	return val;
569 }
570 
571 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
572 			      u16 *mssp);
573 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
574 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
575 bool cookie_timestamp_decode(const struct net *net,
576 			     struct tcp_options_received *opt);
577 bool cookie_ecn_ok(const struct tcp_options_received *opt,
578 		   const struct net *net, const struct dst_entry *dst);
579 
580 /* From net/ipv6/syncookies.c */
581 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
582 		      u32 cookie);
583 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
584 
585 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
586 			      const struct tcphdr *th, u16 *mssp);
587 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
588 #endif
589 /* tcp_output.c */
590 
591 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
592 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
593 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
594 			       int nonagle);
595 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 void tcp_retransmit_timer(struct sock *sk);
598 void tcp_xmit_retransmit_queue(struct sock *);
599 void tcp_simple_retransmit(struct sock *);
600 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
601 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
602 enum tcp_queue {
603 	TCP_FRAG_IN_WRITE_QUEUE,
604 	TCP_FRAG_IN_RTX_QUEUE,
605 };
606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
607 		 struct sk_buff *skb, u32 len,
608 		 unsigned int mss_now, gfp_t gfp);
609 
610 void tcp_send_probe0(struct sock *);
611 int tcp_write_wakeup(struct sock *, int mib);
612 void tcp_send_fin(struct sock *sk);
613 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
614 int tcp_send_synack(struct sock *);
615 void tcp_push_one(struct sock *, unsigned int mss_now);
616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
617 void tcp_send_ack(struct sock *sk);
618 void tcp_send_delayed_ack(struct sock *sk);
619 void tcp_send_loss_probe(struct sock *sk);
620 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
621 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
622 			     const struct sk_buff *next_skb);
623 
624 /* tcp_input.c */
625 void tcp_rearm_rto(struct sock *sk);
626 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
627 void tcp_reset(struct sock *sk, struct sk_buff *skb);
628 void tcp_fin(struct sock *sk);
629 void tcp_check_space(struct sock *sk);
630 void tcp_sack_compress_send_ack(struct sock *sk);
631 
632 /* tcp_timer.c */
633 void tcp_init_xmit_timers(struct sock *);
634 static inline void tcp_clear_xmit_timers(struct sock *sk)
635 {
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
637 		__sock_put(sk);
638 
639 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
640 		__sock_put(sk);
641 
642 	inet_csk_clear_xmit_timers(sk);
643 }
644 
645 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
646 unsigned int tcp_current_mss(struct sock *sk);
647 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
648 
649 /* Bound MSS / TSO packet size with the half of the window */
650 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
651 {
652 	int cutoff;
653 
654 	/* When peer uses tiny windows, there is no use in packetizing
655 	 * to sub-MSS pieces for the sake of SWS or making sure there
656 	 * are enough packets in the pipe for fast recovery.
657 	 *
658 	 * On the other hand, for extremely large MSS devices, handling
659 	 * smaller than MSS windows in this way does make sense.
660 	 */
661 	if (tp->max_window > TCP_MSS_DEFAULT)
662 		cutoff = (tp->max_window >> 1);
663 	else
664 		cutoff = tp->max_window;
665 
666 	if (cutoff && pktsize > cutoff)
667 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
668 	else
669 		return pktsize;
670 }
671 
672 /* tcp.c */
673 void tcp_get_info(struct sock *, struct tcp_info *);
674 
675 /* Read 'sendfile()'-style from a TCP socket */
676 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
677 		  sk_read_actor_t recv_actor);
678 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
679 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
680 void tcp_read_done(struct sock *sk, size_t len);
681 
682 void tcp_initialize_rcv_mss(struct sock *sk);
683 
684 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
685 int tcp_mss_to_mtu(struct sock *sk, int mss);
686 void tcp_mtup_init(struct sock *sk);
687 
688 static inline void tcp_bound_rto(const struct sock *sk)
689 {
690 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
691 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
692 }
693 
694 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
695 {
696 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
697 }
698 
699 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
700 {
701 	/* mptcp hooks are only on the slow path */
702 	if (sk_is_mptcp((struct sock *)tp))
703 		return;
704 
705 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
706 			       ntohl(TCP_FLAG_ACK) |
707 			       snd_wnd);
708 }
709 
710 static inline void tcp_fast_path_on(struct tcp_sock *tp)
711 {
712 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
713 }
714 
715 static inline void tcp_fast_path_check(struct sock *sk)
716 {
717 	struct tcp_sock *tp = tcp_sk(sk);
718 
719 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
720 	    tp->rcv_wnd &&
721 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
722 	    !tp->urg_data)
723 		tcp_fast_path_on(tp);
724 }
725 
726 /* Compute the actual rto_min value */
727 static inline u32 tcp_rto_min(struct sock *sk)
728 {
729 	const struct dst_entry *dst = __sk_dst_get(sk);
730 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
731 
732 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
733 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
734 	return rto_min;
735 }
736 
737 static inline u32 tcp_rto_min_us(struct sock *sk)
738 {
739 	return jiffies_to_usecs(tcp_rto_min(sk));
740 }
741 
742 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
743 {
744 	return dst_metric_locked(dst, RTAX_CC_ALGO);
745 }
746 
747 /* Minimum RTT in usec. ~0 means not available. */
748 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
749 {
750 	return minmax_get(&tp->rtt_min);
751 }
752 
753 /* Compute the actual receive window we are currently advertising.
754  * Rcv_nxt can be after the window if our peer push more data
755  * than the offered window.
756  */
757 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
758 {
759 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
760 
761 	if (win < 0)
762 		win = 0;
763 	return (u32) win;
764 }
765 
766 /* Choose a new window, without checks for shrinking, and without
767  * scaling applied to the result.  The caller does these things
768  * if necessary.  This is a "raw" window selection.
769  */
770 u32 __tcp_select_window(struct sock *sk);
771 
772 void tcp_send_window_probe(struct sock *sk);
773 
774 /* TCP uses 32bit jiffies to save some space.
775  * Note that this is different from tcp_time_stamp, which
776  * historically has been the same until linux-4.13.
777  */
778 #define tcp_jiffies32 ((u32)jiffies)
779 
780 /*
781  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
782  * It is no longer tied to jiffies, but to 1 ms clock.
783  * Note: double check if you want to use tcp_jiffies32 instead of this.
784  */
785 #define TCP_TS_HZ	1000
786 
787 static inline u64 tcp_clock_ns(void)
788 {
789 	return ktime_get_ns();
790 }
791 
792 static inline u64 tcp_clock_us(void)
793 {
794 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
795 }
796 
797 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
798 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
799 {
800 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
801 }
802 
803 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
804 static inline u64 tcp_ns_to_ts(u64 ns)
805 {
806 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
807 }
808 
809 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
810 static inline u32 tcp_time_stamp_raw(void)
811 {
812 	return tcp_ns_to_ts(tcp_clock_ns());
813 }
814 
815 void tcp_mstamp_refresh(struct tcp_sock *tp);
816 
817 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
818 {
819 	return max_t(s64, t1 - t0, 0);
820 }
821 
822 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
823 {
824 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
825 }
826 
827 /* provide the departure time in us unit */
828 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
829 {
830 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
831 }
832 
833 
834 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
835 
836 #define TCPHDR_FIN 0x01
837 #define TCPHDR_SYN 0x02
838 #define TCPHDR_RST 0x04
839 #define TCPHDR_PSH 0x08
840 #define TCPHDR_ACK 0x10
841 #define TCPHDR_URG 0x20
842 #define TCPHDR_ECE 0x40
843 #define TCPHDR_CWR 0x80
844 
845 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
846 
847 /* This is what the send packet queuing engine uses to pass
848  * TCP per-packet control information to the transmission code.
849  * We also store the host-order sequence numbers in here too.
850  * This is 44 bytes if IPV6 is enabled.
851  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
852  */
853 struct tcp_skb_cb {
854 	__u32		seq;		/* Starting sequence number	*/
855 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
856 	union {
857 		/* Note : tcp_tw_isn is used in input path only
858 		 *	  (isn chosen by tcp_timewait_state_process())
859 		 *
860 		 * 	  tcp_gso_segs/size are used in write queue only,
861 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
862 		 */
863 		__u32		tcp_tw_isn;
864 		struct {
865 			u16	tcp_gso_segs;
866 			u16	tcp_gso_size;
867 		};
868 	};
869 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
870 
871 	__u8		sacked;		/* State flags for SACK.	*/
872 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
873 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
874 #define TCPCB_LOST		0x04	/* SKB is lost			*/
875 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
876 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
877 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
878 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
879 				TCPCB_REPAIRED)
880 
881 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
882 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
883 			eor:1,		/* Is skb MSG_EOR marked? */
884 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
885 			unused:5;
886 	__u32		ack_seq;	/* Sequence number ACK'd	*/
887 	union {
888 		struct {
889 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
890 			/* There is space for up to 24 bytes */
891 			__u32 is_app_limited:1, /* cwnd not fully used? */
892 			      delivered_ce:20,
893 			      unused:11;
894 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
895 			__u32 delivered;
896 			/* start of send pipeline phase */
897 			u64 first_tx_mstamp;
898 			/* when we reached the "delivered" count */
899 			u64 delivered_mstamp;
900 		} tx;   /* only used for outgoing skbs */
901 		union {
902 			struct inet_skb_parm	h4;
903 #if IS_ENABLED(CONFIG_IPV6)
904 			struct inet6_skb_parm	h6;
905 #endif
906 		} header;	/* For incoming skbs */
907 	};
908 };
909 
910 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
911 
912 extern const struct inet_connection_sock_af_ops ipv4_specific;
913 
914 #if IS_ENABLED(CONFIG_IPV6)
915 /* This is the variant of inet6_iif() that must be used by TCP,
916  * as TCP moves IP6CB into a different location in skb->cb[]
917  */
918 static inline int tcp_v6_iif(const struct sk_buff *skb)
919 {
920 	return TCP_SKB_CB(skb)->header.h6.iif;
921 }
922 
923 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
924 {
925 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
926 
927 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
928 }
929 
930 /* TCP_SKB_CB reference means this can not be used from early demux */
931 static inline int tcp_v6_sdif(const struct sk_buff *skb)
932 {
933 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
934 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
935 		return TCP_SKB_CB(skb)->header.h6.iif;
936 #endif
937 	return 0;
938 }
939 
940 extern const struct inet_connection_sock_af_ops ipv6_specific;
941 
942 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
943 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
944 void tcp_v6_early_demux(struct sk_buff *skb);
945 
946 #endif
947 
948 /* TCP_SKB_CB reference means this can not be used from early demux */
949 static inline int tcp_v4_sdif(struct sk_buff *skb)
950 {
951 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
952 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
953 		return TCP_SKB_CB(skb)->header.h4.iif;
954 #endif
955 	return 0;
956 }
957 
958 /* Due to TSO, an SKB can be composed of multiple actual
959  * packets.  To keep these tracked properly, we use this.
960  */
961 static inline int tcp_skb_pcount(const struct sk_buff *skb)
962 {
963 	return TCP_SKB_CB(skb)->tcp_gso_segs;
964 }
965 
966 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
967 {
968 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
969 }
970 
971 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
972 {
973 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
974 }
975 
976 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
977 static inline int tcp_skb_mss(const struct sk_buff *skb)
978 {
979 	return TCP_SKB_CB(skb)->tcp_gso_size;
980 }
981 
982 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
983 {
984 	return likely(!TCP_SKB_CB(skb)->eor);
985 }
986 
987 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
988 					const struct sk_buff *from)
989 {
990 	return likely(tcp_skb_can_collapse_to(to) &&
991 		      mptcp_skb_can_collapse(to, from) &&
992 		      skb_pure_zcopy_same(to, from));
993 }
994 
995 /* Events passed to congestion control interface */
996 enum tcp_ca_event {
997 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
998 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
999 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1000 	CA_EVENT_LOSS,		/* loss timeout */
1001 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1002 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1003 };
1004 
1005 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1006 enum tcp_ca_ack_event_flags {
1007 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1008 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1009 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1010 };
1011 
1012 /*
1013  * Interface for adding new TCP congestion control handlers
1014  */
1015 #define TCP_CA_NAME_MAX	16
1016 #define TCP_CA_MAX	128
1017 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1018 
1019 #define TCP_CA_UNSPEC	0
1020 
1021 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1022 #define TCP_CONG_NON_RESTRICTED 0x1
1023 /* Requires ECN/ECT set on all packets */
1024 #define TCP_CONG_NEEDS_ECN	0x2
1025 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1026 
1027 union tcp_cc_info;
1028 
1029 struct ack_sample {
1030 	u32 pkts_acked;
1031 	s32 rtt_us;
1032 	u32 in_flight;
1033 };
1034 
1035 /* A rate sample measures the number of (original/retransmitted) data
1036  * packets delivered "delivered" over an interval of time "interval_us".
1037  * The tcp_rate.c code fills in the rate sample, and congestion
1038  * control modules that define a cong_control function to run at the end
1039  * of ACK processing can optionally chose to consult this sample when
1040  * setting cwnd and pacing rate.
1041  * A sample is invalid if "delivered" or "interval_us" is negative.
1042  */
1043 struct rate_sample {
1044 	u64  prior_mstamp; /* starting timestamp for interval */
1045 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1046 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1047 	s32  delivered;		/* number of packets delivered over interval */
1048 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1049 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1050 	u32 snd_interval_us;	/* snd interval for delivered packets */
1051 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1052 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1053 	int  losses;		/* number of packets marked lost upon ACK */
1054 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1055 	u32  prior_in_flight;	/* in flight before this ACK */
1056 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1057 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1058 	bool is_retrans;	/* is sample from retransmission? */
1059 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1060 };
1061 
1062 struct tcp_congestion_ops {
1063 /* fast path fields are put first to fill one cache line */
1064 
1065 	/* return slow start threshold (required) */
1066 	u32 (*ssthresh)(struct sock *sk);
1067 
1068 	/* do new cwnd calculation (required) */
1069 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1070 
1071 	/* call before changing ca_state (optional) */
1072 	void (*set_state)(struct sock *sk, u8 new_state);
1073 
1074 	/* call when cwnd event occurs (optional) */
1075 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1076 
1077 	/* call when ack arrives (optional) */
1078 	void (*in_ack_event)(struct sock *sk, u32 flags);
1079 
1080 	/* hook for packet ack accounting (optional) */
1081 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1082 
1083 	/* override sysctl_tcp_min_tso_segs */
1084 	u32 (*min_tso_segs)(struct sock *sk);
1085 
1086 	/* call when packets are delivered to update cwnd and pacing rate,
1087 	 * after all the ca_state processing. (optional)
1088 	 */
1089 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1090 
1091 
1092 	/* new value of cwnd after loss (required) */
1093 	u32  (*undo_cwnd)(struct sock *sk);
1094 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1095 	u32 (*sndbuf_expand)(struct sock *sk);
1096 
1097 /* control/slow paths put last */
1098 	/* get info for inet_diag (optional) */
1099 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1100 			   union tcp_cc_info *info);
1101 
1102 	char 			name[TCP_CA_NAME_MAX];
1103 	struct module		*owner;
1104 	struct list_head	list;
1105 	u32			key;
1106 	u32			flags;
1107 
1108 	/* initialize private data (optional) */
1109 	void (*init)(struct sock *sk);
1110 	/* cleanup private data  (optional) */
1111 	void (*release)(struct sock *sk);
1112 } ____cacheline_aligned_in_smp;
1113 
1114 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1115 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1116 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1117 				  struct tcp_congestion_ops *old_type);
1118 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1119 
1120 void tcp_assign_congestion_control(struct sock *sk);
1121 void tcp_init_congestion_control(struct sock *sk);
1122 void tcp_cleanup_congestion_control(struct sock *sk);
1123 int tcp_set_default_congestion_control(struct net *net, const char *name);
1124 void tcp_get_default_congestion_control(struct net *net, char *name);
1125 void tcp_get_available_congestion_control(char *buf, size_t len);
1126 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1127 int tcp_set_allowed_congestion_control(char *allowed);
1128 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1129 			       bool cap_net_admin);
1130 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1131 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1132 
1133 u32 tcp_reno_ssthresh(struct sock *sk);
1134 u32 tcp_reno_undo_cwnd(struct sock *sk);
1135 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1136 extern struct tcp_congestion_ops tcp_reno;
1137 
1138 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1139 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1140 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1141 #ifdef CONFIG_INET
1142 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1143 #else
1144 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1145 {
1146 	return NULL;
1147 }
1148 #endif
1149 
1150 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1151 {
1152 	const struct inet_connection_sock *icsk = inet_csk(sk);
1153 
1154 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1155 }
1156 
1157 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1158 {
1159 	const struct inet_connection_sock *icsk = inet_csk(sk);
1160 
1161 	if (icsk->icsk_ca_ops->cwnd_event)
1162 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1163 }
1164 
1165 /* From tcp_cong.c */
1166 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1167 
1168 /* From tcp_rate.c */
1169 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1170 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1171 			    struct rate_sample *rs);
1172 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1173 		  bool is_sack_reneg, struct rate_sample *rs);
1174 void tcp_rate_check_app_limited(struct sock *sk);
1175 
1176 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1177 {
1178 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1179 }
1180 
1181 /* These functions determine how the current flow behaves in respect of SACK
1182  * handling. SACK is negotiated with the peer, and therefore it can vary
1183  * between different flows.
1184  *
1185  * tcp_is_sack - SACK enabled
1186  * tcp_is_reno - No SACK
1187  */
1188 static inline int tcp_is_sack(const struct tcp_sock *tp)
1189 {
1190 	return likely(tp->rx_opt.sack_ok);
1191 }
1192 
1193 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1194 {
1195 	return !tcp_is_sack(tp);
1196 }
1197 
1198 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1199 {
1200 	return tp->sacked_out + tp->lost_out;
1201 }
1202 
1203 /* This determines how many packets are "in the network" to the best
1204  * of our knowledge.  In many cases it is conservative, but where
1205  * detailed information is available from the receiver (via SACK
1206  * blocks etc.) we can make more aggressive calculations.
1207  *
1208  * Use this for decisions involving congestion control, use just
1209  * tp->packets_out to determine if the send queue is empty or not.
1210  *
1211  * Read this equation as:
1212  *
1213  *	"Packets sent once on transmission queue" MINUS
1214  *	"Packets left network, but not honestly ACKed yet" PLUS
1215  *	"Packets fast retransmitted"
1216  */
1217 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1218 {
1219 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1220 }
1221 
1222 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1223 
1224 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1225 {
1226 	return tp->snd_cwnd;
1227 }
1228 
1229 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1230 {
1231 	WARN_ON_ONCE((int)val <= 0);
1232 	tp->snd_cwnd = val;
1233 }
1234 
1235 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1236 {
1237 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1238 }
1239 
1240 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1241 {
1242 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1243 }
1244 
1245 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1246 {
1247 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1248 	       (1 << inet_csk(sk)->icsk_ca_state);
1249 }
1250 
1251 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1252  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1253  * ssthresh.
1254  */
1255 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1256 {
1257 	const struct tcp_sock *tp = tcp_sk(sk);
1258 
1259 	if (tcp_in_cwnd_reduction(sk))
1260 		return tp->snd_ssthresh;
1261 	else
1262 		return max(tp->snd_ssthresh,
1263 			   ((tcp_snd_cwnd(tp) >> 1) +
1264 			    (tcp_snd_cwnd(tp) >> 2)));
1265 }
1266 
1267 /* Use define here intentionally to get WARN_ON location shown at the caller */
1268 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1269 
1270 void tcp_enter_cwr(struct sock *sk);
1271 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1272 
1273 /* The maximum number of MSS of available cwnd for which TSO defers
1274  * sending if not using sysctl_tcp_tso_win_divisor.
1275  */
1276 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1277 {
1278 	return 3;
1279 }
1280 
1281 /* Returns end sequence number of the receiver's advertised window */
1282 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1283 {
1284 	return tp->snd_una + tp->snd_wnd;
1285 }
1286 
1287 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1288  * flexible approach. The RFC suggests cwnd should not be raised unless
1289  * it was fully used previously. And that's exactly what we do in
1290  * congestion avoidance mode. But in slow start we allow cwnd to grow
1291  * as long as the application has used half the cwnd.
1292  * Example :
1293  *    cwnd is 10 (IW10), but application sends 9 frames.
1294  *    We allow cwnd to reach 18 when all frames are ACKed.
1295  * This check is safe because it's as aggressive as slow start which already
1296  * risks 100% overshoot. The advantage is that we discourage application to
1297  * either send more filler packets or data to artificially blow up the cwnd
1298  * usage, and allow application-limited process to probe bw more aggressively.
1299  */
1300 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1301 {
1302 	const struct tcp_sock *tp = tcp_sk(sk);
1303 
1304 	if (tp->is_cwnd_limited)
1305 		return true;
1306 
1307 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1308 	if (tcp_in_slow_start(tp))
1309 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1310 
1311 	return false;
1312 }
1313 
1314 /* BBR congestion control needs pacing.
1315  * Same remark for SO_MAX_PACING_RATE.
1316  * sch_fq packet scheduler is efficiently handling pacing,
1317  * but is not always installed/used.
1318  * Return true if TCP stack should pace packets itself.
1319  */
1320 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1321 {
1322 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1323 }
1324 
1325 /* Estimates in how many jiffies next packet for this flow can be sent.
1326  * Scheduling a retransmit timer too early would be silly.
1327  */
1328 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1329 {
1330 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1331 
1332 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1333 }
1334 
1335 static inline void tcp_reset_xmit_timer(struct sock *sk,
1336 					const int what,
1337 					unsigned long when,
1338 					const unsigned long max_when)
1339 {
1340 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1341 				  max_when);
1342 }
1343 
1344 /* Something is really bad, we could not queue an additional packet,
1345  * because qdisc is full or receiver sent a 0 window, or we are paced.
1346  * We do not want to add fuel to the fire, or abort too early,
1347  * so make sure the timer we arm now is at least 200ms in the future,
1348  * regardless of current icsk_rto value (as it could be ~2ms)
1349  */
1350 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1351 {
1352 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1353 }
1354 
1355 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1356 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1357 					    unsigned long max_when)
1358 {
1359 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1360 			   inet_csk(sk)->icsk_backoff);
1361 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1362 
1363 	return (unsigned long)min_t(u64, when, max_when);
1364 }
1365 
1366 static inline void tcp_check_probe_timer(struct sock *sk)
1367 {
1368 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1369 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1370 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1371 }
1372 
1373 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1374 {
1375 	tp->snd_wl1 = seq;
1376 }
1377 
1378 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1379 {
1380 	tp->snd_wl1 = seq;
1381 }
1382 
1383 /*
1384  * Calculate(/check) TCP checksum
1385  */
1386 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1387 				   __be32 daddr, __wsum base)
1388 {
1389 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1390 }
1391 
1392 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1393 {
1394 	return !skb_csum_unnecessary(skb) &&
1395 		__skb_checksum_complete(skb);
1396 }
1397 
1398 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1399 		     enum skb_drop_reason *reason);
1400 
1401 
1402 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1403 void tcp_set_state(struct sock *sk, int state);
1404 void tcp_done(struct sock *sk);
1405 int tcp_abort(struct sock *sk, int err);
1406 
1407 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1408 {
1409 	rx_opt->dsack = 0;
1410 	rx_opt->num_sacks = 0;
1411 }
1412 
1413 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1414 
1415 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1416 {
1417 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1418 	struct tcp_sock *tp = tcp_sk(sk);
1419 	s32 delta;
1420 
1421 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1422 	    tp->packets_out || ca_ops->cong_control)
1423 		return;
1424 	delta = tcp_jiffies32 - tp->lsndtime;
1425 	if (delta > inet_csk(sk)->icsk_rto)
1426 		tcp_cwnd_restart(sk, delta);
1427 }
1428 
1429 /* Determine a window scaling and initial window to offer. */
1430 void tcp_select_initial_window(const struct sock *sk, int __space,
1431 			       __u32 mss, __u32 *rcv_wnd,
1432 			       __u32 *window_clamp, int wscale_ok,
1433 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1434 
1435 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1436 {
1437 	s64 scaled_space = (s64)space * scaling_ratio;
1438 
1439 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1440 }
1441 
1442 static inline int tcp_win_from_space(const struct sock *sk, int space)
1443 {
1444 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1445 }
1446 
1447 /* inverse of __tcp_win_from_space() */
1448 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1449 {
1450 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1451 
1452 	do_div(val, scaling_ratio);
1453 	return val;
1454 }
1455 
1456 static inline int tcp_space_from_win(const struct sock *sk, int win)
1457 {
1458 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1459 }
1460 
1461 static inline void tcp_scaling_ratio_init(struct sock *sk)
1462 {
1463 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1464 	 * This may be adjusted later in tcp_measure_rcv_mss().
1465 	 */
1466 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1467 				    SKB_TRUESIZE(4096);
1468 }
1469 
1470 /* Note: caller must be prepared to deal with negative returns */
1471 static inline int tcp_space(const struct sock *sk)
1472 {
1473 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1474 				  READ_ONCE(sk->sk_backlog.len) -
1475 				  atomic_read(&sk->sk_rmem_alloc));
1476 }
1477 
1478 static inline int tcp_full_space(const struct sock *sk)
1479 {
1480 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1481 }
1482 
1483 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1484 {
1485 	int unused_mem = sk_unused_reserved_mem(sk);
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 
1488 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1489 	if (unused_mem)
1490 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1491 					 tcp_win_from_space(sk, unused_mem));
1492 }
1493 
1494 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1495 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1496 
1497 
1498 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1499  * If 87.5 % (7/8) of the space has been consumed, we want to override
1500  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1501  * len/truesize ratio.
1502  */
1503 static inline bool tcp_rmem_pressure(const struct sock *sk)
1504 {
1505 	int rcvbuf, threshold;
1506 
1507 	if (tcp_under_memory_pressure(sk))
1508 		return true;
1509 
1510 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1511 	threshold = rcvbuf - (rcvbuf >> 3);
1512 
1513 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1514 }
1515 
1516 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1517 {
1518 	const struct tcp_sock *tp = tcp_sk(sk);
1519 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1520 
1521 	if (avail <= 0)
1522 		return false;
1523 
1524 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1525 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1526 }
1527 
1528 extern void tcp_openreq_init_rwin(struct request_sock *req,
1529 				  const struct sock *sk_listener,
1530 				  const struct dst_entry *dst);
1531 
1532 void tcp_enter_memory_pressure(struct sock *sk);
1533 void tcp_leave_memory_pressure(struct sock *sk);
1534 
1535 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1536 {
1537 	struct net *net = sock_net((struct sock *)tp);
1538 	int val;
1539 
1540 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1541 	 * and do_tcp_setsockopt().
1542 	 */
1543 	val = READ_ONCE(tp->keepalive_intvl);
1544 
1545 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1546 }
1547 
1548 static inline int keepalive_time_when(const struct tcp_sock *tp)
1549 {
1550 	struct net *net = sock_net((struct sock *)tp);
1551 	int val;
1552 
1553 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1554 	val = READ_ONCE(tp->keepalive_time);
1555 
1556 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1557 }
1558 
1559 static inline int keepalive_probes(const struct tcp_sock *tp)
1560 {
1561 	struct net *net = sock_net((struct sock *)tp);
1562 	int val;
1563 
1564 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1565 	 * and do_tcp_setsockopt().
1566 	 */
1567 	val = READ_ONCE(tp->keepalive_probes);
1568 
1569 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1570 }
1571 
1572 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1573 {
1574 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1575 
1576 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1577 			  tcp_jiffies32 - tp->rcv_tstamp);
1578 }
1579 
1580 static inline int tcp_fin_time(const struct sock *sk)
1581 {
1582 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1583 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1584 	const int rto = inet_csk(sk)->icsk_rto;
1585 
1586 	if (fin_timeout < (rto << 2) - (rto >> 1))
1587 		fin_timeout = (rto << 2) - (rto >> 1);
1588 
1589 	return fin_timeout;
1590 }
1591 
1592 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1593 				  int paws_win)
1594 {
1595 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1596 		return true;
1597 	if (unlikely(!time_before32(ktime_get_seconds(),
1598 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1599 		return true;
1600 	/*
1601 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1602 	 * then following tcp messages have valid values. Ignore 0 value,
1603 	 * or else 'negative' tsval might forbid us to accept their packets.
1604 	 */
1605 	if (!rx_opt->ts_recent)
1606 		return true;
1607 	return false;
1608 }
1609 
1610 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1611 				   int rst)
1612 {
1613 	if (tcp_paws_check(rx_opt, 0))
1614 		return false;
1615 
1616 	/* RST segments are not recommended to carry timestamp,
1617 	   and, if they do, it is recommended to ignore PAWS because
1618 	   "their cleanup function should take precedence over timestamps."
1619 	   Certainly, it is mistake. It is necessary to understand the reasons
1620 	   of this constraint to relax it: if peer reboots, clock may go
1621 	   out-of-sync and half-open connections will not be reset.
1622 	   Actually, the problem would be not existing if all
1623 	   the implementations followed draft about maintaining clock
1624 	   via reboots. Linux-2.2 DOES NOT!
1625 
1626 	   However, we can relax time bounds for RST segments to MSL.
1627 	 */
1628 	if (rst && !time_before32(ktime_get_seconds(),
1629 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1630 		return false;
1631 	return true;
1632 }
1633 
1634 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1635 			  int mib_idx, u32 *last_oow_ack_time);
1636 
1637 static inline void tcp_mib_init(struct net *net)
1638 {
1639 	/* See RFC 2012 */
1640 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1641 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1642 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1643 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1644 }
1645 
1646 /* from STCP */
1647 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1648 {
1649 	tp->lost_skb_hint = NULL;
1650 }
1651 
1652 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1653 {
1654 	tcp_clear_retrans_hints_partial(tp);
1655 	tp->retransmit_skb_hint = NULL;
1656 }
1657 
1658 union tcp_md5_addr {
1659 	struct in_addr  a4;
1660 #if IS_ENABLED(CONFIG_IPV6)
1661 	struct in6_addr	a6;
1662 #endif
1663 };
1664 
1665 /* - key database */
1666 struct tcp_md5sig_key {
1667 	struct hlist_node	node;
1668 	u8			keylen;
1669 	u8			family; /* AF_INET or AF_INET6 */
1670 	u8			prefixlen;
1671 	u8			flags;
1672 	union tcp_md5_addr	addr;
1673 	int			l3index; /* set if key added with L3 scope */
1674 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1675 	struct rcu_head		rcu;
1676 };
1677 
1678 /* - sock block */
1679 struct tcp_md5sig_info {
1680 	struct hlist_head	head;
1681 	struct rcu_head		rcu;
1682 };
1683 
1684 /* - pseudo header */
1685 struct tcp4_pseudohdr {
1686 	__be32		saddr;
1687 	__be32		daddr;
1688 	__u8		pad;
1689 	__u8		protocol;
1690 	__be16		len;
1691 };
1692 
1693 struct tcp6_pseudohdr {
1694 	struct in6_addr	saddr;
1695 	struct in6_addr daddr;
1696 	__be32		len;
1697 	__be32		protocol;	/* including padding */
1698 };
1699 
1700 union tcp_md5sum_block {
1701 	struct tcp4_pseudohdr ip4;
1702 #if IS_ENABLED(CONFIG_IPV6)
1703 	struct tcp6_pseudohdr ip6;
1704 #endif
1705 };
1706 
1707 /* - pool: digest algorithm, hash description and scratch buffer */
1708 struct tcp_md5sig_pool {
1709 	struct ahash_request	*md5_req;
1710 	void			*scratch;
1711 };
1712 
1713 /* - functions */
1714 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1715 			const struct sock *sk, const struct sk_buff *skb);
1716 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1717 		   int family, u8 prefixlen, int l3index, u8 flags,
1718 		   const u8 *newkey, u8 newkeylen);
1719 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1720 		     int family, u8 prefixlen, int l3index,
1721 		     struct tcp_md5sig_key *key);
1722 
1723 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1724 		   int family, u8 prefixlen, int l3index, u8 flags);
1725 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1726 					 const struct sock *addr_sk);
1727 
1728 #ifdef CONFIG_TCP_MD5SIG
1729 #include <linux/jump_label.h>
1730 extern struct static_key_false_deferred tcp_md5_needed;
1731 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1732 					   const union tcp_md5_addr *addr,
1733 					   int family);
1734 static inline struct tcp_md5sig_key *
1735 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1736 		  const union tcp_md5_addr *addr, int family)
1737 {
1738 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1739 		return NULL;
1740 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1741 }
1742 
1743 enum skb_drop_reason
1744 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1745 		     const void *saddr, const void *daddr,
1746 		     int family, int dif, int sdif);
1747 
1748 
1749 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1750 #else
1751 static inline struct tcp_md5sig_key *
1752 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1753 		  const union tcp_md5_addr *addr, int family)
1754 {
1755 	return NULL;
1756 }
1757 
1758 static inline enum skb_drop_reason
1759 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1760 		     const void *saddr, const void *daddr,
1761 		     int family, int dif, int sdif)
1762 {
1763 	return SKB_NOT_DROPPED_YET;
1764 }
1765 #define tcp_twsk_md5_key(twsk)	NULL
1766 #endif
1767 
1768 bool tcp_alloc_md5sig_pool(void);
1769 
1770 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1771 static inline void tcp_put_md5sig_pool(void)
1772 {
1773 	local_bh_enable();
1774 }
1775 
1776 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1777 			  unsigned int header_len);
1778 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1779 		     const struct tcp_md5sig_key *key);
1780 
1781 /* From tcp_fastopen.c */
1782 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1783 			    struct tcp_fastopen_cookie *cookie);
1784 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1785 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1786 			    u16 try_exp);
1787 struct tcp_fastopen_request {
1788 	/* Fast Open cookie. Size 0 means a cookie request */
1789 	struct tcp_fastopen_cookie	cookie;
1790 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1791 	size_t				size;
1792 	int				copied;	/* queued in tcp_connect() */
1793 	struct ubuf_info		*uarg;
1794 };
1795 void tcp_free_fastopen_req(struct tcp_sock *tp);
1796 void tcp_fastopen_destroy_cipher(struct sock *sk);
1797 void tcp_fastopen_ctx_destroy(struct net *net);
1798 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1799 			      void *primary_key, void *backup_key);
1800 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1801 			    u64 *key);
1802 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1803 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1804 			      struct request_sock *req,
1805 			      struct tcp_fastopen_cookie *foc,
1806 			      const struct dst_entry *dst);
1807 void tcp_fastopen_init_key_once(struct net *net);
1808 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1809 			     struct tcp_fastopen_cookie *cookie);
1810 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1811 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1812 #define TCP_FASTOPEN_KEY_MAX 2
1813 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1814 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1815 
1816 /* Fastopen key context */
1817 struct tcp_fastopen_context {
1818 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1819 	int		num;
1820 	struct rcu_head	rcu;
1821 };
1822 
1823 void tcp_fastopen_active_disable(struct sock *sk);
1824 bool tcp_fastopen_active_should_disable(struct sock *sk);
1825 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1826 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1827 
1828 /* Caller needs to wrap with rcu_read_(un)lock() */
1829 static inline
1830 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1831 {
1832 	struct tcp_fastopen_context *ctx;
1833 
1834 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1835 	if (!ctx)
1836 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1837 	return ctx;
1838 }
1839 
1840 static inline
1841 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1842 			       const struct tcp_fastopen_cookie *orig)
1843 {
1844 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1845 	    orig->len == foc->len &&
1846 	    !memcmp(orig->val, foc->val, foc->len))
1847 		return true;
1848 	return false;
1849 }
1850 
1851 static inline
1852 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1853 {
1854 	return ctx->num;
1855 }
1856 
1857 /* Latencies incurred by various limits for a sender. They are
1858  * chronograph-like stats that are mutually exclusive.
1859  */
1860 enum tcp_chrono {
1861 	TCP_CHRONO_UNSPEC,
1862 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1863 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1864 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1865 	__TCP_CHRONO_MAX,
1866 };
1867 
1868 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1869 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1870 
1871 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1872  * the same memory storage than skb->destructor/_skb_refdst
1873  */
1874 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1875 {
1876 	skb->destructor = NULL;
1877 	skb->_skb_refdst = 0UL;
1878 }
1879 
1880 #define tcp_skb_tsorted_save(skb) {		\
1881 	unsigned long _save = skb->_skb_refdst;	\
1882 	skb->_skb_refdst = 0UL;
1883 
1884 #define tcp_skb_tsorted_restore(skb)		\
1885 	skb->_skb_refdst = _save;		\
1886 }
1887 
1888 void tcp_write_queue_purge(struct sock *sk);
1889 
1890 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1891 {
1892 	return skb_rb_first(&sk->tcp_rtx_queue);
1893 }
1894 
1895 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1896 {
1897 	return skb_rb_last(&sk->tcp_rtx_queue);
1898 }
1899 
1900 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1901 {
1902 	return skb_peek_tail(&sk->sk_write_queue);
1903 }
1904 
1905 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1906 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1907 
1908 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1909 {
1910 	return skb_peek(&sk->sk_write_queue);
1911 }
1912 
1913 static inline bool tcp_skb_is_last(const struct sock *sk,
1914 				   const struct sk_buff *skb)
1915 {
1916 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1917 }
1918 
1919 /**
1920  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1921  * @sk: socket
1922  *
1923  * Since the write queue can have a temporary empty skb in it,
1924  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1925  */
1926 static inline bool tcp_write_queue_empty(const struct sock *sk)
1927 {
1928 	const struct tcp_sock *tp = tcp_sk(sk);
1929 
1930 	return tp->write_seq == tp->snd_nxt;
1931 }
1932 
1933 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1934 {
1935 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1936 }
1937 
1938 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1939 {
1940 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1941 }
1942 
1943 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1944 {
1945 	__skb_queue_tail(&sk->sk_write_queue, skb);
1946 
1947 	/* Queue it, remembering where we must start sending. */
1948 	if (sk->sk_write_queue.next == skb)
1949 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1950 }
1951 
1952 /* Insert new before skb on the write queue of sk.  */
1953 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1954 						  struct sk_buff *skb,
1955 						  struct sock *sk)
1956 {
1957 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1958 }
1959 
1960 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1961 {
1962 	tcp_skb_tsorted_anchor_cleanup(skb);
1963 	__skb_unlink(skb, &sk->sk_write_queue);
1964 }
1965 
1966 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1967 
1968 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1969 {
1970 	tcp_skb_tsorted_anchor_cleanup(skb);
1971 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1972 }
1973 
1974 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1975 {
1976 	list_del(&skb->tcp_tsorted_anchor);
1977 	tcp_rtx_queue_unlink(skb, sk);
1978 	tcp_wmem_free_skb(sk, skb);
1979 }
1980 
1981 static inline void tcp_push_pending_frames(struct sock *sk)
1982 {
1983 	if (tcp_send_head(sk)) {
1984 		struct tcp_sock *tp = tcp_sk(sk);
1985 
1986 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1987 	}
1988 }
1989 
1990 /* Start sequence of the skb just after the highest skb with SACKed
1991  * bit, valid only if sacked_out > 0 or when the caller has ensured
1992  * validity by itself.
1993  */
1994 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1995 {
1996 	if (!tp->sacked_out)
1997 		return tp->snd_una;
1998 
1999 	if (tp->highest_sack == NULL)
2000 		return tp->snd_nxt;
2001 
2002 	return TCP_SKB_CB(tp->highest_sack)->seq;
2003 }
2004 
2005 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2006 {
2007 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2008 }
2009 
2010 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2011 {
2012 	return tcp_sk(sk)->highest_sack;
2013 }
2014 
2015 static inline void tcp_highest_sack_reset(struct sock *sk)
2016 {
2017 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2018 }
2019 
2020 /* Called when old skb is about to be deleted and replaced by new skb */
2021 static inline void tcp_highest_sack_replace(struct sock *sk,
2022 					    struct sk_buff *old,
2023 					    struct sk_buff *new)
2024 {
2025 	if (old == tcp_highest_sack(sk))
2026 		tcp_sk(sk)->highest_sack = new;
2027 }
2028 
2029 /* This helper checks if socket has IP_TRANSPARENT set */
2030 static inline bool inet_sk_transparent(const struct sock *sk)
2031 {
2032 	switch (sk->sk_state) {
2033 	case TCP_TIME_WAIT:
2034 		return inet_twsk(sk)->tw_transparent;
2035 	case TCP_NEW_SYN_RECV:
2036 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2037 	}
2038 	return inet_test_bit(TRANSPARENT, sk);
2039 }
2040 
2041 /* Determines whether this is a thin stream (which may suffer from
2042  * increased latency). Used to trigger latency-reducing mechanisms.
2043  */
2044 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2045 {
2046 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2047 }
2048 
2049 /* /proc */
2050 enum tcp_seq_states {
2051 	TCP_SEQ_STATE_LISTENING,
2052 	TCP_SEQ_STATE_ESTABLISHED,
2053 };
2054 
2055 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2056 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2057 void tcp_seq_stop(struct seq_file *seq, void *v);
2058 
2059 struct tcp_seq_afinfo {
2060 	sa_family_t			family;
2061 };
2062 
2063 struct tcp_iter_state {
2064 	struct seq_net_private	p;
2065 	enum tcp_seq_states	state;
2066 	struct sock		*syn_wait_sk;
2067 	int			bucket, offset, sbucket, num;
2068 	loff_t			last_pos;
2069 };
2070 
2071 extern struct request_sock_ops tcp_request_sock_ops;
2072 extern struct request_sock_ops tcp6_request_sock_ops;
2073 
2074 void tcp_v4_destroy_sock(struct sock *sk);
2075 
2076 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2077 				netdev_features_t features);
2078 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2079 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2080 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2081 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2082 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2083 void tcp_gro_complete(struct sk_buff *skb);
2084 
2085 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2086 
2087 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2088 {
2089 	struct net *net = sock_net((struct sock *)tp);
2090 	u32 val;
2091 
2092 	val = READ_ONCE(tp->notsent_lowat);
2093 
2094 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2095 }
2096 
2097 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2098 
2099 #ifdef CONFIG_PROC_FS
2100 int tcp4_proc_init(void);
2101 void tcp4_proc_exit(void);
2102 #endif
2103 
2104 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2105 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2106 		     const struct tcp_request_sock_ops *af_ops,
2107 		     struct sock *sk, struct sk_buff *skb);
2108 
2109 /* TCP af-specific functions */
2110 struct tcp_sock_af_ops {
2111 #ifdef CONFIG_TCP_MD5SIG
2112 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2113 						const struct sock *addr_sk);
2114 	int		(*calc_md5_hash)(char *location,
2115 					 const struct tcp_md5sig_key *md5,
2116 					 const struct sock *sk,
2117 					 const struct sk_buff *skb);
2118 	int		(*md5_parse)(struct sock *sk,
2119 				     int optname,
2120 				     sockptr_t optval,
2121 				     int optlen);
2122 #endif
2123 };
2124 
2125 struct tcp_request_sock_ops {
2126 	u16 mss_clamp;
2127 #ifdef CONFIG_TCP_MD5SIG
2128 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2129 						 const struct sock *addr_sk);
2130 	int		(*calc_md5_hash) (char *location,
2131 					  const struct tcp_md5sig_key *md5,
2132 					  const struct sock *sk,
2133 					  const struct sk_buff *skb);
2134 #endif
2135 #ifdef CONFIG_SYN_COOKIES
2136 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2137 				 __u16 *mss);
2138 #endif
2139 	struct dst_entry *(*route_req)(const struct sock *sk,
2140 				       struct sk_buff *skb,
2141 				       struct flowi *fl,
2142 				       struct request_sock *req);
2143 	u32 (*init_seq)(const struct sk_buff *skb);
2144 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2145 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2146 			   struct flowi *fl, struct request_sock *req,
2147 			   struct tcp_fastopen_cookie *foc,
2148 			   enum tcp_synack_type synack_type,
2149 			   struct sk_buff *syn_skb);
2150 };
2151 
2152 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2153 #if IS_ENABLED(CONFIG_IPV6)
2154 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2155 #endif
2156 
2157 #ifdef CONFIG_SYN_COOKIES
2158 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2159 					 const struct sock *sk, struct sk_buff *skb,
2160 					 __u16 *mss)
2161 {
2162 	tcp_synq_overflow(sk);
2163 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2164 	return ops->cookie_init_seq(skb, mss);
2165 }
2166 #else
2167 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2168 					 const struct sock *sk, struct sk_buff *skb,
2169 					 __u16 *mss)
2170 {
2171 	return 0;
2172 }
2173 #endif
2174 
2175 int tcpv4_offload_init(void);
2176 
2177 void tcp_v4_init(void);
2178 void tcp_init(void);
2179 
2180 /* tcp_recovery.c */
2181 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2182 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2183 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2184 				u32 reo_wnd);
2185 extern bool tcp_rack_mark_lost(struct sock *sk);
2186 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2187 			     u64 xmit_time);
2188 extern void tcp_rack_reo_timeout(struct sock *sk);
2189 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2190 
2191 /* tcp_plb.c */
2192 
2193 /*
2194  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2195  * expects cong_ratio which represents fraction of traffic that experienced
2196  * congestion over a single RTT. In order to avoid floating point operations,
2197  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2198  */
2199 #define TCP_PLB_SCALE 8
2200 
2201 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2202 struct tcp_plb_state {
2203 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2204 		unused:3;
2205 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2206 };
2207 
2208 static inline void tcp_plb_init(const struct sock *sk,
2209 				struct tcp_plb_state *plb)
2210 {
2211 	plb->consec_cong_rounds = 0;
2212 	plb->pause_until = 0;
2213 }
2214 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2215 			  const int cong_ratio);
2216 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2217 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2218 
2219 /* At how many usecs into the future should the RTO fire? */
2220 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2221 {
2222 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2223 	u32 rto = inet_csk(sk)->icsk_rto;
2224 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2225 
2226 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2227 }
2228 
2229 /*
2230  * Save and compile IPv4 options, return a pointer to it
2231  */
2232 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2233 							 struct sk_buff *skb)
2234 {
2235 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2236 	struct ip_options_rcu *dopt = NULL;
2237 
2238 	if (opt->optlen) {
2239 		int opt_size = sizeof(*dopt) + opt->optlen;
2240 
2241 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2242 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2243 			kfree(dopt);
2244 			dopt = NULL;
2245 		}
2246 	}
2247 	return dopt;
2248 }
2249 
2250 /* locally generated TCP pure ACKs have skb->truesize == 2
2251  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2252  * This is much faster than dissecting the packet to find out.
2253  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2254  */
2255 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2256 {
2257 	return skb->truesize == 2;
2258 }
2259 
2260 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2261 {
2262 	skb->truesize = 2;
2263 }
2264 
2265 static inline int tcp_inq(struct sock *sk)
2266 {
2267 	struct tcp_sock *tp = tcp_sk(sk);
2268 	int answ;
2269 
2270 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2271 		answ = 0;
2272 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2273 		   !tp->urg_data ||
2274 		   before(tp->urg_seq, tp->copied_seq) ||
2275 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2276 
2277 		answ = tp->rcv_nxt - tp->copied_seq;
2278 
2279 		/* Subtract 1, if FIN was received */
2280 		if (answ && sock_flag(sk, SOCK_DONE))
2281 			answ--;
2282 	} else {
2283 		answ = tp->urg_seq - tp->copied_seq;
2284 	}
2285 
2286 	return answ;
2287 }
2288 
2289 int tcp_peek_len(struct socket *sock);
2290 
2291 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2292 {
2293 	u16 segs_in;
2294 
2295 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2296 
2297 	/* We update these fields while other threads might
2298 	 * read them from tcp_get_info()
2299 	 */
2300 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2301 	if (skb->len > tcp_hdrlen(skb))
2302 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2303 }
2304 
2305 /*
2306  * TCP listen path runs lockless.
2307  * We forced "struct sock" to be const qualified to make sure
2308  * we don't modify one of its field by mistake.
2309  * Here, we increment sk_drops which is an atomic_t, so we can safely
2310  * make sock writable again.
2311  */
2312 static inline void tcp_listendrop(const struct sock *sk)
2313 {
2314 	atomic_inc(&((struct sock *)sk)->sk_drops);
2315 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2316 }
2317 
2318 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2319 
2320 /*
2321  * Interface for adding Upper Level Protocols over TCP
2322  */
2323 
2324 #define TCP_ULP_NAME_MAX	16
2325 #define TCP_ULP_MAX		128
2326 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2327 
2328 struct tcp_ulp_ops {
2329 	struct list_head	list;
2330 
2331 	/* initialize ulp */
2332 	int (*init)(struct sock *sk);
2333 	/* update ulp */
2334 	void (*update)(struct sock *sk, struct proto *p,
2335 		       void (*write_space)(struct sock *sk));
2336 	/* cleanup ulp */
2337 	void (*release)(struct sock *sk);
2338 	/* diagnostic */
2339 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2340 	size_t (*get_info_size)(const struct sock *sk);
2341 	/* clone ulp */
2342 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2343 		      const gfp_t priority);
2344 
2345 	char		name[TCP_ULP_NAME_MAX];
2346 	struct module	*owner;
2347 };
2348 int tcp_register_ulp(struct tcp_ulp_ops *type);
2349 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2350 int tcp_set_ulp(struct sock *sk, const char *name);
2351 void tcp_get_available_ulp(char *buf, size_t len);
2352 void tcp_cleanup_ulp(struct sock *sk);
2353 void tcp_update_ulp(struct sock *sk, struct proto *p,
2354 		    void (*write_space)(struct sock *sk));
2355 
2356 #define MODULE_ALIAS_TCP_ULP(name)				\
2357 	__MODULE_INFO(alias, alias_userspace, name);		\
2358 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2359 
2360 #ifdef CONFIG_NET_SOCK_MSG
2361 struct sk_msg;
2362 struct sk_psock;
2363 
2364 #ifdef CONFIG_BPF_SYSCALL
2365 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2366 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2367 #endif /* CONFIG_BPF_SYSCALL */
2368 
2369 #ifdef CONFIG_INET
2370 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2371 #else
2372 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2373 {
2374 }
2375 #endif
2376 
2377 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2378 			  struct sk_msg *msg, u32 bytes, int flags);
2379 #endif /* CONFIG_NET_SOCK_MSG */
2380 
2381 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2382 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2383 {
2384 }
2385 #endif
2386 
2387 #ifdef CONFIG_CGROUP_BPF
2388 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2389 				      struct sk_buff *skb,
2390 				      unsigned int end_offset)
2391 {
2392 	skops->skb = skb;
2393 	skops->skb_data_end = skb->data + end_offset;
2394 }
2395 #else
2396 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2397 				      struct sk_buff *skb,
2398 				      unsigned int end_offset)
2399 {
2400 }
2401 #endif
2402 
2403 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2404  * is < 0, then the BPF op failed (for example if the loaded BPF
2405  * program does not support the chosen operation or there is no BPF
2406  * program loaded).
2407  */
2408 #ifdef CONFIG_BPF
2409 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2410 {
2411 	struct bpf_sock_ops_kern sock_ops;
2412 	int ret;
2413 
2414 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2415 	if (sk_fullsock(sk)) {
2416 		sock_ops.is_fullsock = 1;
2417 		sock_owned_by_me(sk);
2418 	}
2419 
2420 	sock_ops.sk = sk;
2421 	sock_ops.op = op;
2422 	if (nargs > 0)
2423 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2424 
2425 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2426 	if (ret == 0)
2427 		ret = sock_ops.reply;
2428 	else
2429 		ret = -1;
2430 	return ret;
2431 }
2432 
2433 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2434 {
2435 	u32 args[2] = {arg1, arg2};
2436 
2437 	return tcp_call_bpf(sk, op, 2, args);
2438 }
2439 
2440 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2441 				    u32 arg3)
2442 {
2443 	u32 args[3] = {arg1, arg2, arg3};
2444 
2445 	return tcp_call_bpf(sk, op, 3, args);
2446 }
2447 
2448 #else
2449 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2450 {
2451 	return -EPERM;
2452 }
2453 
2454 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2455 {
2456 	return -EPERM;
2457 }
2458 
2459 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2460 				    u32 arg3)
2461 {
2462 	return -EPERM;
2463 }
2464 
2465 #endif
2466 
2467 static inline u32 tcp_timeout_init(struct sock *sk)
2468 {
2469 	int timeout;
2470 
2471 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2472 
2473 	if (timeout <= 0)
2474 		timeout = TCP_TIMEOUT_INIT;
2475 	return min_t(int, timeout, TCP_RTO_MAX);
2476 }
2477 
2478 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2479 {
2480 	int rwnd;
2481 
2482 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2483 
2484 	if (rwnd < 0)
2485 		rwnd = 0;
2486 	return rwnd;
2487 }
2488 
2489 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2490 {
2491 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2492 }
2493 
2494 static inline void tcp_bpf_rtt(struct sock *sk)
2495 {
2496 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2497 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2498 }
2499 
2500 #if IS_ENABLED(CONFIG_SMC)
2501 extern struct static_key_false tcp_have_smc;
2502 #endif
2503 
2504 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2505 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2506 			     void (*cad)(struct sock *sk, u32 ack_seq));
2507 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2508 void clean_acked_data_flush(void);
2509 #endif
2510 
2511 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2512 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2513 				    const struct tcp_sock *tp)
2514 {
2515 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2516 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2517 }
2518 
2519 /* Compute Earliest Departure Time for some control packets
2520  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2521  */
2522 static inline u64 tcp_transmit_time(const struct sock *sk)
2523 {
2524 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2525 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2526 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2527 
2528 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2529 	}
2530 	return 0;
2531 }
2532 
2533 #endif	/* _TCP_H */
2534