1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 330 int flags); 331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 332 size_t size, int flags); 333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 334 struct page *page, int offset, size_t *size); 335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 336 size_t size, int flags); 337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 355 static inline void tcp_dec_quickack_mode(struct sock *sk, 356 const unsigned int pkts) 357 { 358 struct inet_connection_sock *icsk = inet_csk(sk); 359 360 if (icsk->icsk_ack.quick) { 361 if (pkts >= icsk->icsk_ack.quick) { 362 icsk->icsk_ack.quick = 0; 363 /* Leaving quickack mode we deflate ATO. */ 364 icsk->icsk_ack.ato = TCP_ATO_MIN; 365 } else 366 icsk->icsk_ack.quick -= pkts; 367 } 368 } 369 370 #define TCP_ECN_OK 1 371 #define TCP_ECN_QUEUE_CWR 2 372 #define TCP_ECN_DEMAND_CWR 4 373 #define TCP_ECN_SEEN 8 374 375 enum tcp_tw_status { 376 TCP_TW_SUCCESS = 0, 377 TCP_TW_RST = 1, 378 TCP_TW_ACK = 2, 379 TCP_TW_SYN = 3 380 }; 381 382 383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 384 struct sk_buff *skb, 385 const struct tcphdr *th); 386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 387 struct request_sock *req, bool fastopen, 388 bool *lost_race); 389 int tcp_child_process(struct sock *parent, struct sock *child, 390 struct sk_buff *skb); 391 void tcp_enter_loss(struct sock *sk); 392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 393 void tcp_clear_retrans(struct tcp_sock *tp); 394 void tcp_update_metrics(struct sock *sk); 395 void tcp_init_metrics(struct sock *sk); 396 void tcp_metrics_init(void); 397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 398 void __tcp_close(struct sock *sk, long timeout); 399 void tcp_close(struct sock *sk, long timeout); 400 void tcp_init_sock(struct sock *sk); 401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 402 __poll_t tcp_poll(struct file *file, struct socket *sock, 403 struct poll_table_struct *wait); 404 int tcp_getsockopt(struct sock *sk, int level, int optname, 405 char __user *optval, int __user *optlen); 406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 407 unsigned int optlen); 408 void tcp_set_keepalive(struct sock *sk, int val); 409 void tcp_syn_ack_timeout(const struct request_sock *req); 410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 411 int flags, int *addr_len); 412 int tcp_set_rcvlowat(struct sock *sk, int val); 413 int tcp_set_window_clamp(struct sock *sk, int val); 414 void tcp_data_ready(struct sock *sk); 415 #ifdef CONFIG_MMU 416 int tcp_mmap(struct file *file, struct socket *sock, 417 struct vm_area_struct *vma); 418 #endif 419 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 420 struct tcp_options_received *opt_rx, 421 int estab, struct tcp_fastopen_cookie *foc); 422 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 423 424 /* 425 * BPF SKB-less helpers 426 */ 427 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 428 struct tcphdr *th, u32 *cookie); 429 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 430 struct tcphdr *th, u32 *cookie); 431 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 432 const struct tcp_request_sock_ops *af_ops, 433 struct sock *sk, struct tcphdr *th); 434 /* 435 * TCP v4 functions exported for the inet6 API 436 */ 437 438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 439 void tcp_v4_mtu_reduced(struct sock *sk); 440 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 441 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 443 struct sock *tcp_create_openreq_child(const struct sock *sk, 444 struct request_sock *req, 445 struct sk_buff *skb); 446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 448 struct request_sock *req, 449 struct dst_entry *dst, 450 struct request_sock *req_unhash, 451 bool *own_req); 452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 454 int tcp_connect(struct sock *sk); 455 enum tcp_synack_type { 456 TCP_SYNACK_NORMAL, 457 TCP_SYNACK_FASTOPEN, 458 TCP_SYNACK_COOKIE, 459 }; 460 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 461 struct request_sock *req, 462 struct tcp_fastopen_cookie *foc, 463 enum tcp_synack_type synack_type, 464 struct sk_buff *syn_skb); 465 int tcp_disconnect(struct sock *sk, int flags); 466 467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 470 471 /* From syncookies.c */ 472 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 473 struct request_sock *req, 474 struct dst_entry *dst, u32 tsoff); 475 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 476 u32 cookie); 477 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 478 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 479 struct sock *sk, struct sk_buff *skb); 480 #ifdef CONFIG_SYN_COOKIES 481 482 /* Syncookies use a monotonic timer which increments every 60 seconds. 483 * This counter is used both as a hash input and partially encoded into 484 * the cookie value. A cookie is only validated further if the delta 485 * between the current counter value and the encoded one is less than this, 486 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 487 * the counter advances immediately after a cookie is generated). 488 */ 489 #define MAX_SYNCOOKIE_AGE 2 490 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 491 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 492 493 /* syncookies: remember time of last synqueue overflow 494 * But do not dirty this field too often (once per second is enough) 495 * It is racy as we do not hold a lock, but race is very minor. 496 */ 497 static inline void tcp_synq_overflow(const struct sock *sk) 498 { 499 unsigned int last_overflow; 500 unsigned int now = jiffies; 501 502 if (sk->sk_reuseport) { 503 struct sock_reuseport *reuse; 504 505 reuse = rcu_dereference(sk->sk_reuseport_cb); 506 if (likely(reuse)) { 507 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 508 if (!time_between32(now, last_overflow, 509 last_overflow + HZ)) 510 WRITE_ONCE(reuse->synq_overflow_ts, now); 511 return; 512 } 513 } 514 515 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 516 if (!time_between32(now, last_overflow, last_overflow + HZ)) 517 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 518 } 519 520 /* syncookies: no recent synqueue overflow on this listening socket? */ 521 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 522 { 523 unsigned int last_overflow; 524 unsigned int now = jiffies; 525 526 if (sk->sk_reuseport) { 527 struct sock_reuseport *reuse; 528 529 reuse = rcu_dereference(sk->sk_reuseport_cb); 530 if (likely(reuse)) { 531 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 532 return !time_between32(now, last_overflow - HZ, 533 last_overflow + 534 TCP_SYNCOOKIE_VALID); 535 } 536 } 537 538 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 539 540 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 541 * then we're under synflood. However, we have to use 542 * 'last_overflow - HZ' as lower bound. That's because a concurrent 543 * tcp_synq_overflow() could update .ts_recent_stamp after we read 544 * jiffies but before we store .ts_recent_stamp into last_overflow, 545 * which could lead to rejecting a valid syncookie. 546 */ 547 return !time_between32(now, last_overflow - HZ, 548 last_overflow + TCP_SYNCOOKIE_VALID); 549 } 550 551 static inline u32 tcp_cookie_time(void) 552 { 553 u64 val = get_jiffies_64(); 554 555 do_div(val, TCP_SYNCOOKIE_PERIOD); 556 return val; 557 } 558 559 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 560 u16 *mssp); 561 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 562 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 563 bool cookie_timestamp_decode(const struct net *net, 564 struct tcp_options_received *opt); 565 bool cookie_ecn_ok(const struct tcp_options_received *opt, 566 const struct net *net, const struct dst_entry *dst); 567 568 /* From net/ipv6/syncookies.c */ 569 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 570 u32 cookie); 571 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 572 573 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 574 const struct tcphdr *th, u16 *mssp); 575 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 576 #endif 577 /* tcp_output.c */ 578 579 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 580 int nonagle); 581 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 582 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 583 void tcp_retransmit_timer(struct sock *sk); 584 void tcp_xmit_retransmit_queue(struct sock *); 585 void tcp_simple_retransmit(struct sock *); 586 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 587 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 588 enum tcp_queue { 589 TCP_FRAG_IN_WRITE_QUEUE, 590 TCP_FRAG_IN_RTX_QUEUE, 591 }; 592 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 593 struct sk_buff *skb, u32 len, 594 unsigned int mss_now, gfp_t gfp); 595 596 void tcp_send_probe0(struct sock *); 597 void tcp_send_partial(struct sock *); 598 int tcp_write_wakeup(struct sock *, int mib); 599 void tcp_send_fin(struct sock *sk); 600 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 601 int tcp_send_synack(struct sock *); 602 void tcp_push_one(struct sock *, unsigned int mss_now); 603 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 604 void tcp_send_ack(struct sock *sk); 605 void tcp_send_delayed_ack(struct sock *sk); 606 void tcp_send_loss_probe(struct sock *sk); 607 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 608 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 609 const struct sk_buff *next_skb); 610 611 /* tcp_input.c */ 612 void tcp_rearm_rto(struct sock *sk); 613 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 614 void tcp_reset(struct sock *sk); 615 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 616 void tcp_fin(struct sock *sk); 617 618 /* tcp_timer.c */ 619 void tcp_init_xmit_timers(struct sock *); 620 static inline void tcp_clear_xmit_timers(struct sock *sk) 621 { 622 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 623 __sock_put(sk); 624 625 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 626 __sock_put(sk); 627 628 inet_csk_clear_xmit_timers(sk); 629 } 630 631 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 632 unsigned int tcp_current_mss(struct sock *sk); 633 634 /* Bound MSS / TSO packet size with the half of the window */ 635 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 636 { 637 int cutoff; 638 639 /* When peer uses tiny windows, there is no use in packetizing 640 * to sub-MSS pieces for the sake of SWS or making sure there 641 * are enough packets in the pipe for fast recovery. 642 * 643 * On the other hand, for extremely large MSS devices, handling 644 * smaller than MSS windows in this way does make sense. 645 */ 646 if (tp->max_window > TCP_MSS_DEFAULT) 647 cutoff = (tp->max_window >> 1); 648 else 649 cutoff = tp->max_window; 650 651 if (cutoff && pktsize > cutoff) 652 return max_t(int, cutoff, 68U - tp->tcp_header_len); 653 else 654 return pktsize; 655 } 656 657 /* tcp.c */ 658 void tcp_get_info(struct sock *, struct tcp_info *); 659 660 /* Read 'sendfile()'-style from a TCP socket */ 661 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 662 sk_read_actor_t recv_actor); 663 664 void tcp_initialize_rcv_mss(struct sock *sk); 665 666 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 667 int tcp_mss_to_mtu(struct sock *sk, int mss); 668 void tcp_mtup_init(struct sock *sk); 669 670 static inline void tcp_bound_rto(const struct sock *sk) 671 { 672 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 673 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 674 } 675 676 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 677 { 678 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 679 } 680 681 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 682 { 683 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 684 ntohl(TCP_FLAG_ACK) | 685 snd_wnd); 686 } 687 688 static inline void tcp_fast_path_on(struct tcp_sock *tp) 689 { 690 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 691 } 692 693 static inline void tcp_fast_path_check(struct sock *sk) 694 { 695 struct tcp_sock *tp = tcp_sk(sk); 696 697 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 698 tp->rcv_wnd && 699 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 700 !tp->urg_data) 701 tcp_fast_path_on(tp); 702 } 703 704 /* Compute the actual rto_min value */ 705 static inline u32 tcp_rto_min(struct sock *sk) 706 { 707 const struct dst_entry *dst = __sk_dst_get(sk); 708 u32 rto_min = inet_csk(sk)->icsk_rto_min; 709 710 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 711 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 712 return rto_min; 713 } 714 715 static inline u32 tcp_rto_min_us(struct sock *sk) 716 { 717 return jiffies_to_usecs(tcp_rto_min(sk)); 718 } 719 720 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 721 { 722 return dst_metric_locked(dst, RTAX_CC_ALGO); 723 } 724 725 /* Minimum RTT in usec. ~0 means not available. */ 726 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 727 { 728 return minmax_get(&tp->rtt_min); 729 } 730 731 /* Compute the actual receive window we are currently advertising. 732 * Rcv_nxt can be after the window if our peer push more data 733 * than the offered window. 734 */ 735 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 736 { 737 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 738 739 if (win < 0) 740 win = 0; 741 return (u32) win; 742 } 743 744 /* Choose a new window, without checks for shrinking, and without 745 * scaling applied to the result. The caller does these things 746 * if necessary. This is a "raw" window selection. 747 */ 748 u32 __tcp_select_window(struct sock *sk); 749 750 void tcp_send_window_probe(struct sock *sk); 751 752 /* TCP uses 32bit jiffies to save some space. 753 * Note that this is different from tcp_time_stamp, which 754 * historically has been the same until linux-4.13. 755 */ 756 #define tcp_jiffies32 ((u32)jiffies) 757 758 /* 759 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 760 * It is no longer tied to jiffies, but to 1 ms clock. 761 * Note: double check if you want to use tcp_jiffies32 instead of this. 762 */ 763 #define TCP_TS_HZ 1000 764 765 static inline u64 tcp_clock_ns(void) 766 { 767 return ktime_get_ns(); 768 } 769 770 static inline u64 tcp_clock_us(void) 771 { 772 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 773 } 774 775 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 776 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 777 { 778 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 779 } 780 781 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 782 static inline u32 tcp_ns_to_ts(u64 ns) 783 { 784 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 785 } 786 787 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 788 static inline u32 tcp_time_stamp_raw(void) 789 { 790 return tcp_ns_to_ts(tcp_clock_ns()); 791 } 792 793 void tcp_mstamp_refresh(struct tcp_sock *tp); 794 795 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 796 { 797 return max_t(s64, t1 - t0, 0); 798 } 799 800 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 801 { 802 return tcp_ns_to_ts(skb->skb_mstamp_ns); 803 } 804 805 /* provide the departure time in us unit */ 806 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 807 { 808 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 809 } 810 811 812 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 813 814 #define TCPHDR_FIN 0x01 815 #define TCPHDR_SYN 0x02 816 #define TCPHDR_RST 0x04 817 #define TCPHDR_PSH 0x08 818 #define TCPHDR_ACK 0x10 819 #define TCPHDR_URG 0x20 820 #define TCPHDR_ECE 0x40 821 #define TCPHDR_CWR 0x80 822 823 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 824 825 /* This is what the send packet queuing engine uses to pass 826 * TCP per-packet control information to the transmission code. 827 * We also store the host-order sequence numbers in here too. 828 * This is 44 bytes if IPV6 is enabled. 829 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 830 */ 831 struct tcp_skb_cb { 832 __u32 seq; /* Starting sequence number */ 833 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 834 union { 835 /* Note : tcp_tw_isn is used in input path only 836 * (isn chosen by tcp_timewait_state_process()) 837 * 838 * tcp_gso_segs/size are used in write queue only, 839 * cf tcp_skb_pcount()/tcp_skb_mss() 840 */ 841 __u32 tcp_tw_isn; 842 struct { 843 u16 tcp_gso_segs; 844 u16 tcp_gso_size; 845 }; 846 }; 847 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 848 849 __u8 sacked; /* State flags for SACK. */ 850 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 851 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 852 #define TCPCB_LOST 0x04 /* SKB is lost */ 853 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 854 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 855 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 856 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 857 TCPCB_REPAIRED) 858 859 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 860 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 861 eor:1, /* Is skb MSG_EOR marked? */ 862 has_rxtstamp:1, /* SKB has a RX timestamp */ 863 unused:5; 864 __u32 ack_seq; /* Sequence number ACK'd */ 865 union { 866 struct { 867 /* There is space for up to 24 bytes */ 868 __u32 in_flight:30,/* Bytes in flight at transmit */ 869 is_app_limited:1, /* cwnd not fully used? */ 870 unused:1; 871 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 872 __u32 delivered; 873 /* start of send pipeline phase */ 874 u64 first_tx_mstamp; 875 /* when we reached the "delivered" count */ 876 u64 delivered_mstamp; 877 } tx; /* only used for outgoing skbs */ 878 union { 879 struct inet_skb_parm h4; 880 #if IS_ENABLED(CONFIG_IPV6) 881 struct inet6_skb_parm h6; 882 #endif 883 } header; /* For incoming skbs */ 884 struct { 885 __u32 flags; 886 struct sock *sk_redir; 887 void *data_end; 888 } bpf; 889 }; 890 }; 891 892 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 893 894 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) 895 { 896 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); 897 } 898 899 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) 900 { 901 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; 902 } 903 904 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) 905 { 906 return TCP_SKB_CB(skb)->bpf.sk_redir; 907 } 908 909 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) 910 { 911 TCP_SKB_CB(skb)->bpf.sk_redir = NULL; 912 } 913 914 extern const struct inet_connection_sock_af_ops ipv4_specific; 915 916 #if IS_ENABLED(CONFIG_IPV6) 917 /* This is the variant of inet6_iif() that must be used by TCP, 918 * as TCP moves IP6CB into a different location in skb->cb[] 919 */ 920 static inline int tcp_v6_iif(const struct sk_buff *skb) 921 { 922 return TCP_SKB_CB(skb)->header.h6.iif; 923 } 924 925 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 926 { 927 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 928 929 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 930 } 931 932 /* TCP_SKB_CB reference means this can not be used from early demux */ 933 static inline int tcp_v6_sdif(const struct sk_buff *skb) 934 { 935 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 936 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 937 return TCP_SKB_CB(skb)->header.h6.iif; 938 #endif 939 return 0; 940 } 941 942 extern const struct inet_connection_sock_af_ops ipv6_specific; 943 944 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 945 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 947 948 #endif 949 950 /* TCP_SKB_CB reference means this can not be used from early demux */ 951 static inline int tcp_v4_sdif(struct sk_buff *skb) 952 { 953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 954 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 955 return TCP_SKB_CB(skb)->header.h4.iif; 956 #endif 957 return 0; 958 } 959 960 /* Due to TSO, an SKB can be composed of multiple actual 961 * packets. To keep these tracked properly, we use this. 962 */ 963 static inline int tcp_skb_pcount(const struct sk_buff *skb) 964 { 965 return TCP_SKB_CB(skb)->tcp_gso_segs; 966 } 967 968 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 969 { 970 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 971 } 972 973 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 974 { 975 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 976 } 977 978 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 979 static inline int tcp_skb_mss(const struct sk_buff *skb) 980 { 981 return TCP_SKB_CB(skb)->tcp_gso_size; 982 } 983 984 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 985 { 986 return likely(!TCP_SKB_CB(skb)->eor); 987 } 988 989 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 990 const struct sk_buff *from) 991 { 992 return likely(tcp_skb_can_collapse_to(to) && 993 mptcp_skb_can_collapse(to, from)); 994 } 995 996 /* Events passed to congestion control interface */ 997 enum tcp_ca_event { 998 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 999 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1000 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1001 CA_EVENT_LOSS, /* loss timeout */ 1002 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1003 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1004 }; 1005 1006 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1007 enum tcp_ca_ack_event_flags { 1008 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1009 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1010 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1011 }; 1012 1013 /* 1014 * Interface for adding new TCP congestion control handlers 1015 */ 1016 #define TCP_CA_NAME_MAX 16 1017 #define TCP_CA_MAX 128 1018 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1019 1020 #define TCP_CA_UNSPEC 0 1021 1022 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1023 #define TCP_CONG_NON_RESTRICTED 0x1 1024 /* Requires ECN/ECT set on all packets */ 1025 #define TCP_CONG_NEEDS_ECN 0x2 1026 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1027 1028 union tcp_cc_info; 1029 1030 struct ack_sample { 1031 u32 pkts_acked; 1032 s32 rtt_us; 1033 u32 in_flight; 1034 }; 1035 1036 /* A rate sample measures the number of (original/retransmitted) data 1037 * packets delivered "delivered" over an interval of time "interval_us". 1038 * The tcp_rate.c code fills in the rate sample, and congestion 1039 * control modules that define a cong_control function to run at the end 1040 * of ACK processing can optionally chose to consult this sample when 1041 * setting cwnd and pacing rate. 1042 * A sample is invalid if "delivered" or "interval_us" is negative. 1043 */ 1044 struct rate_sample { 1045 u64 prior_mstamp; /* starting timestamp for interval */ 1046 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1047 s32 delivered; /* number of packets delivered over interval */ 1048 long interval_us; /* time for tp->delivered to incr "delivered" */ 1049 u32 snd_interval_us; /* snd interval for delivered packets */ 1050 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1051 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1052 int losses; /* number of packets marked lost upon ACK */ 1053 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1054 u32 prior_in_flight; /* in flight before this ACK */ 1055 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1056 bool is_retrans; /* is sample from retransmission? */ 1057 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1058 }; 1059 1060 struct tcp_congestion_ops { 1061 struct list_head list; 1062 u32 key; 1063 u32 flags; 1064 1065 /* initialize private data (optional) */ 1066 void (*init)(struct sock *sk); 1067 /* cleanup private data (optional) */ 1068 void (*release)(struct sock *sk); 1069 1070 /* return slow start threshold (required) */ 1071 u32 (*ssthresh)(struct sock *sk); 1072 /* do new cwnd calculation (required) */ 1073 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1074 /* call before changing ca_state (optional) */ 1075 void (*set_state)(struct sock *sk, u8 new_state); 1076 /* call when cwnd event occurs (optional) */ 1077 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1078 /* call when ack arrives (optional) */ 1079 void (*in_ack_event)(struct sock *sk, u32 flags); 1080 /* new value of cwnd after loss (required) */ 1081 u32 (*undo_cwnd)(struct sock *sk); 1082 /* hook for packet ack accounting (optional) */ 1083 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1084 /* override sysctl_tcp_min_tso_segs */ 1085 u32 (*min_tso_segs)(struct sock *sk); 1086 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1087 u32 (*sndbuf_expand)(struct sock *sk); 1088 /* call when packets are delivered to update cwnd and pacing rate, 1089 * after all the ca_state processing. (optional) 1090 */ 1091 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1092 /* get info for inet_diag (optional) */ 1093 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1094 union tcp_cc_info *info); 1095 1096 char name[TCP_CA_NAME_MAX]; 1097 struct module *owner; 1098 }; 1099 1100 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1101 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1102 1103 void tcp_assign_congestion_control(struct sock *sk); 1104 void tcp_init_congestion_control(struct sock *sk); 1105 void tcp_cleanup_congestion_control(struct sock *sk); 1106 int tcp_set_default_congestion_control(struct net *net, const char *name); 1107 void tcp_get_default_congestion_control(struct net *net, char *name); 1108 void tcp_get_available_congestion_control(char *buf, size_t len); 1109 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1110 int tcp_set_allowed_congestion_control(char *allowed); 1111 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1112 bool cap_net_admin); 1113 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1114 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1115 1116 u32 tcp_reno_ssthresh(struct sock *sk); 1117 u32 tcp_reno_undo_cwnd(struct sock *sk); 1118 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1119 extern struct tcp_congestion_ops tcp_reno; 1120 1121 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1122 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1123 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1124 #ifdef CONFIG_INET 1125 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1126 #else 1127 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1128 { 1129 return NULL; 1130 } 1131 #endif 1132 1133 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1134 { 1135 const struct inet_connection_sock *icsk = inet_csk(sk); 1136 1137 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1138 } 1139 1140 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1141 { 1142 struct inet_connection_sock *icsk = inet_csk(sk); 1143 1144 if (icsk->icsk_ca_ops->set_state) 1145 icsk->icsk_ca_ops->set_state(sk, ca_state); 1146 icsk->icsk_ca_state = ca_state; 1147 } 1148 1149 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1150 { 1151 const struct inet_connection_sock *icsk = inet_csk(sk); 1152 1153 if (icsk->icsk_ca_ops->cwnd_event) 1154 icsk->icsk_ca_ops->cwnd_event(sk, event); 1155 } 1156 1157 /* From tcp_rate.c */ 1158 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1159 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1160 struct rate_sample *rs); 1161 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1162 bool is_sack_reneg, struct rate_sample *rs); 1163 void tcp_rate_check_app_limited(struct sock *sk); 1164 1165 /* These functions determine how the current flow behaves in respect of SACK 1166 * handling. SACK is negotiated with the peer, and therefore it can vary 1167 * between different flows. 1168 * 1169 * tcp_is_sack - SACK enabled 1170 * tcp_is_reno - No SACK 1171 */ 1172 static inline int tcp_is_sack(const struct tcp_sock *tp) 1173 { 1174 return likely(tp->rx_opt.sack_ok); 1175 } 1176 1177 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1178 { 1179 return !tcp_is_sack(tp); 1180 } 1181 1182 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1183 { 1184 return tp->sacked_out + tp->lost_out; 1185 } 1186 1187 /* This determines how many packets are "in the network" to the best 1188 * of our knowledge. In many cases it is conservative, but where 1189 * detailed information is available from the receiver (via SACK 1190 * blocks etc.) we can make more aggressive calculations. 1191 * 1192 * Use this for decisions involving congestion control, use just 1193 * tp->packets_out to determine if the send queue is empty or not. 1194 * 1195 * Read this equation as: 1196 * 1197 * "Packets sent once on transmission queue" MINUS 1198 * "Packets left network, but not honestly ACKed yet" PLUS 1199 * "Packets fast retransmitted" 1200 */ 1201 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1202 { 1203 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1204 } 1205 1206 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1207 1208 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1209 { 1210 return tp->snd_cwnd < tp->snd_ssthresh; 1211 } 1212 1213 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1214 { 1215 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1216 } 1217 1218 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1219 { 1220 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1221 (1 << inet_csk(sk)->icsk_ca_state); 1222 } 1223 1224 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1225 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1226 * ssthresh. 1227 */ 1228 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1229 { 1230 const struct tcp_sock *tp = tcp_sk(sk); 1231 1232 if (tcp_in_cwnd_reduction(sk)) 1233 return tp->snd_ssthresh; 1234 else 1235 return max(tp->snd_ssthresh, 1236 ((tp->snd_cwnd >> 1) + 1237 (tp->snd_cwnd >> 2))); 1238 } 1239 1240 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1241 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1242 1243 void tcp_enter_cwr(struct sock *sk); 1244 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1245 1246 /* The maximum number of MSS of available cwnd for which TSO defers 1247 * sending if not using sysctl_tcp_tso_win_divisor. 1248 */ 1249 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1250 { 1251 return 3; 1252 } 1253 1254 /* Returns end sequence number of the receiver's advertised window */ 1255 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1256 { 1257 return tp->snd_una + tp->snd_wnd; 1258 } 1259 1260 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1261 * flexible approach. The RFC suggests cwnd should not be raised unless 1262 * it was fully used previously. And that's exactly what we do in 1263 * congestion avoidance mode. But in slow start we allow cwnd to grow 1264 * as long as the application has used half the cwnd. 1265 * Example : 1266 * cwnd is 10 (IW10), but application sends 9 frames. 1267 * We allow cwnd to reach 18 when all frames are ACKed. 1268 * This check is safe because it's as aggressive as slow start which already 1269 * risks 100% overshoot. The advantage is that we discourage application to 1270 * either send more filler packets or data to artificially blow up the cwnd 1271 * usage, and allow application-limited process to probe bw more aggressively. 1272 */ 1273 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1274 { 1275 const struct tcp_sock *tp = tcp_sk(sk); 1276 1277 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1278 if (tcp_in_slow_start(tp)) 1279 return tp->snd_cwnd < 2 * tp->max_packets_out; 1280 1281 return tp->is_cwnd_limited; 1282 } 1283 1284 /* BBR congestion control needs pacing. 1285 * Same remark for SO_MAX_PACING_RATE. 1286 * sch_fq packet scheduler is efficiently handling pacing, 1287 * but is not always installed/used. 1288 * Return true if TCP stack should pace packets itself. 1289 */ 1290 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1291 { 1292 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1293 } 1294 1295 /* Estimates in how many jiffies next packet for this flow can be sent. 1296 * Scheduling a retransmit timer too early would be silly. 1297 */ 1298 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1299 { 1300 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1301 1302 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1303 } 1304 1305 static inline void tcp_reset_xmit_timer(struct sock *sk, 1306 const int what, 1307 unsigned long when, 1308 const unsigned long max_when) 1309 { 1310 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1311 max_when); 1312 } 1313 1314 /* Something is really bad, we could not queue an additional packet, 1315 * because qdisc is full or receiver sent a 0 window, or we are paced. 1316 * We do not want to add fuel to the fire, or abort too early, 1317 * so make sure the timer we arm now is at least 200ms in the future, 1318 * regardless of current icsk_rto value (as it could be ~2ms) 1319 */ 1320 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1321 { 1322 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1323 } 1324 1325 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1326 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1327 unsigned long max_when) 1328 { 1329 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; 1330 1331 return (unsigned long)min_t(u64, when, max_when); 1332 } 1333 1334 static inline void tcp_check_probe_timer(struct sock *sk) 1335 { 1336 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1337 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1338 tcp_probe0_base(sk), TCP_RTO_MAX); 1339 } 1340 1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1342 { 1343 tp->snd_wl1 = seq; 1344 } 1345 1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1347 { 1348 tp->snd_wl1 = seq; 1349 } 1350 1351 /* 1352 * Calculate(/check) TCP checksum 1353 */ 1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1355 __be32 daddr, __wsum base) 1356 { 1357 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1358 } 1359 1360 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1361 { 1362 return !skb_csum_unnecessary(skb) && 1363 __skb_checksum_complete(skb); 1364 } 1365 1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1367 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1368 void tcp_set_state(struct sock *sk, int state); 1369 void tcp_done(struct sock *sk); 1370 int tcp_abort(struct sock *sk, int err); 1371 1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1373 { 1374 rx_opt->dsack = 0; 1375 rx_opt->num_sacks = 0; 1376 } 1377 1378 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1379 1380 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1381 { 1382 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 s32 delta; 1385 1386 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1387 ca_ops->cong_control) 1388 return; 1389 delta = tcp_jiffies32 - tp->lsndtime; 1390 if (delta > inet_csk(sk)->icsk_rto) 1391 tcp_cwnd_restart(sk, delta); 1392 } 1393 1394 /* Determine a window scaling and initial window to offer. */ 1395 void tcp_select_initial_window(const struct sock *sk, int __space, 1396 __u32 mss, __u32 *rcv_wnd, 1397 __u32 *window_clamp, int wscale_ok, 1398 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1399 1400 static inline int tcp_win_from_space(const struct sock *sk, int space) 1401 { 1402 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1403 1404 return tcp_adv_win_scale <= 0 ? 1405 (space>>(-tcp_adv_win_scale)) : 1406 space - (space>>tcp_adv_win_scale); 1407 } 1408 1409 /* Note: caller must be prepared to deal with negative returns */ 1410 static inline int tcp_space(const struct sock *sk) 1411 { 1412 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1413 READ_ONCE(sk->sk_backlog.len) - 1414 atomic_read(&sk->sk_rmem_alloc)); 1415 } 1416 1417 static inline int tcp_full_space(const struct sock *sk) 1418 { 1419 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1420 } 1421 1422 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1423 1424 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1425 * If 87.5 % (7/8) of the space has been consumed, we want to override 1426 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1427 * len/truesize ratio. 1428 */ 1429 static inline bool tcp_rmem_pressure(const struct sock *sk) 1430 { 1431 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1432 int threshold = rcvbuf - (rcvbuf >> 3); 1433 1434 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1435 } 1436 1437 extern void tcp_openreq_init_rwin(struct request_sock *req, 1438 const struct sock *sk_listener, 1439 const struct dst_entry *dst); 1440 1441 void tcp_enter_memory_pressure(struct sock *sk); 1442 void tcp_leave_memory_pressure(struct sock *sk); 1443 1444 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1445 { 1446 struct net *net = sock_net((struct sock *)tp); 1447 1448 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1449 } 1450 1451 static inline int keepalive_time_when(const struct tcp_sock *tp) 1452 { 1453 struct net *net = sock_net((struct sock *)tp); 1454 1455 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1456 } 1457 1458 static inline int keepalive_probes(const struct tcp_sock *tp) 1459 { 1460 struct net *net = sock_net((struct sock *)tp); 1461 1462 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1463 } 1464 1465 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1466 { 1467 const struct inet_connection_sock *icsk = &tp->inet_conn; 1468 1469 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1470 tcp_jiffies32 - tp->rcv_tstamp); 1471 } 1472 1473 static inline int tcp_fin_time(const struct sock *sk) 1474 { 1475 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1476 const int rto = inet_csk(sk)->icsk_rto; 1477 1478 if (fin_timeout < (rto << 2) - (rto >> 1)) 1479 fin_timeout = (rto << 2) - (rto >> 1); 1480 1481 return fin_timeout; 1482 } 1483 1484 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1485 int paws_win) 1486 { 1487 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1488 return true; 1489 if (unlikely(!time_before32(ktime_get_seconds(), 1490 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1491 return true; 1492 /* 1493 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1494 * then following tcp messages have valid values. Ignore 0 value, 1495 * or else 'negative' tsval might forbid us to accept their packets. 1496 */ 1497 if (!rx_opt->ts_recent) 1498 return true; 1499 return false; 1500 } 1501 1502 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1503 int rst) 1504 { 1505 if (tcp_paws_check(rx_opt, 0)) 1506 return false; 1507 1508 /* RST segments are not recommended to carry timestamp, 1509 and, if they do, it is recommended to ignore PAWS because 1510 "their cleanup function should take precedence over timestamps." 1511 Certainly, it is mistake. It is necessary to understand the reasons 1512 of this constraint to relax it: if peer reboots, clock may go 1513 out-of-sync and half-open connections will not be reset. 1514 Actually, the problem would be not existing if all 1515 the implementations followed draft about maintaining clock 1516 via reboots. Linux-2.2 DOES NOT! 1517 1518 However, we can relax time bounds for RST segments to MSL. 1519 */ 1520 if (rst && !time_before32(ktime_get_seconds(), 1521 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1522 return false; 1523 return true; 1524 } 1525 1526 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1527 int mib_idx, u32 *last_oow_ack_time); 1528 1529 static inline void tcp_mib_init(struct net *net) 1530 { 1531 /* See RFC 2012 */ 1532 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1533 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1534 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1535 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1536 } 1537 1538 /* from STCP */ 1539 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1540 { 1541 tp->lost_skb_hint = NULL; 1542 } 1543 1544 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1545 { 1546 tcp_clear_retrans_hints_partial(tp); 1547 tp->retransmit_skb_hint = NULL; 1548 } 1549 1550 union tcp_md5_addr { 1551 struct in_addr a4; 1552 #if IS_ENABLED(CONFIG_IPV6) 1553 struct in6_addr a6; 1554 #endif 1555 }; 1556 1557 /* - key database */ 1558 struct tcp_md5sig_key { 1559 struct hlist_node node; 1560 u8 keylen; 1561 u8 family; /* AF_INET or AF_INET6 */ 1562 u8 prefixlen; 1563 union tcp_md5_addr addr; 1564 int l3index; /* set if key added with L3 scope */ 1565 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1566 struct rcu_head rcu; 1567 }; 1568 1569 /* - sock block */ 1570 struct tcp_md5sig_info { 1571 struct hlist_head head; 1572 struct rcu_head rcu; 1573 }; 1574 1575 /* - pseudo header */ 1576 struct tcp4_pseudohdr { 1577 __be32 saddr; 1578 __be32 daddr; 1579 __u8 pad; 1580 __u8 protocol; 1581 __be16 len; 1582 }; 1583 1584 struct tcp6_pseudohdr { 1585 struct in6_addr saddr; 1586 struct in6_addr daddr; 1587 __be32 len; 1588 __be32 protocol; /* including padding */ 1589 }; 1590 1591 union tcp_md5sum_block { 1592 struct tcp4_pseudohdr ip4; 1593 #if IS_ENABLED(CONFIG_IPV6) 1594 struct tcp6_pseudohdr ip6; 1595 #endif 1596 }; 1597 1598 /* - pool: digest algorithm, hash description and scratch buffer */ 1599 struct tcp_md5sig_pool { 1600 struct ahash_request *md5_req; 1601 void *scratch; 1602 }; 1603 1604 /* - functions */ 1605 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1606 const struct sock *sk, const struct sk_buff *skb); 1607 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1608 int family, u8 prefixlen, int l3index, 1609 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1610 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1611 int family, u8 prefixlen, int l3index); 1612 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1613 const struct sock *addr_sk); 1614 1615 #ifdef CONFIG_TCP_MD5SIG 1616 #include <linux/jump_label.h> 1617 extern struct static_key_false tcp_md5_needed; 1618 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1619 const union tcp_md5_addr *addr, 1620 int family); 1621 static inline struct tcp_md5sig_key * 1622 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1623 const union tcp_md5_addr *addr, int family) 1624 { 1625 if (!static_branch_unlikely(&tcp_md5_needed)) 1626 return NULL; 1627 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1628 } 1629 1630 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1631 #else 1632 static inline struct tcp_md5sig_key * 1633 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1634 const union tcp_md5_addr *addr, int family) 1635 { 1636 return NULL; 1637 } 1638 #define tcp_twsk_md5_key(twsk) NULL 1639 #endif 1640 1641 bool tcp_alloc_md5sig_pool(void); 1642 1643 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1644 static inline void tcp_put_md5sig_pool(void) 1645 { 1646 local_bh_enable(); 1647 } 1648 1649 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1650 unsigned int header_len); 1651 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1652 const struct tcp_md5sig_key *key); 1653 1654 /* From tcp_fastopen.c */ 1655 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1656 struct tcp_fastopen_cookie *cookie); 1657 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1658 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1659 u16 try_exp); 1660 struct tcp_fastopen_request { 1661 /* Fast Open cookie. Size 0 means a cookie request */ 1662 struct tcp_fastopen_cookie cookie; 1663 struct msghdr *data; /* data in MSG_FASTOPEN */ 1664 size_t size; 1665 int copied; /* queued in tcp_connect() */ 1666 struct ubuf_info *uarg; 1667 }; 1668 void tcp_free_fastopen_req(struct tcp_sock *tp); 1669 void tcp_fastopen_destroy_cipher(struct sock *sk); 1670 void tcp_fastopen_ctx_destroy(struct net *net); 1671 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1672 void *primary_key, void *backup_key); 1673 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1674 u64 *key); 1675 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1676 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1677 struct request_sock *req, 1678 struct tcp_fastopen_cookie *foc, 1679 const struct dst_entry *dst); 1680 void tcp_fastopen_init_key_once(struct net *net); 1681 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1682 struct tcp_fastopen_cookie *cookie); 1683 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1684 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1685 #define TCP_FASTOPEN_KEY_MAX 2 1686 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1687 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1688 1689 /* Fastopen key context */ 1690 struct tcp_fastopen_context { 1691 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1692 int num; 1693 struct rcu_head rcu; 1694 }; 1695 1696 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; 1697 void tcp_fastopen_active_disable(struct sock *sk); 1698 bool tcp_fastopen_active_should_disable(struct sock *sk); 1699 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1700 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1701 1702 /* Caller needs to wrap with rcu_read_(un)lock() */ 1703 static inline 1704 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1705 { 1706 struct tcp_fastopen_context *ctx; 1707 1708 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1709 if (!ctx) 1710 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1711 return ctx; 1712 } 1713 1714 static inline 1715 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1716 const struct tcp_fastopen_cookie *orig) 1717 { 1718 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1719 orig->len == foc->len && 1720 !memcmp(orig->val, foc->val, foc->len)) 1721 return true; 1722 return false; 1723 } 1724 1725 static inline 1726 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1727 { 1728 return ctx->num; 1729 } 1730 1731 /* Latencies incurred by various limits for a sender. They are 1732 * chronograph-like stats that are mutually exclusive. 1733 */ 1734 enum tcp_chrono { 1735 TCP_CHRONO_UNSPEC, 1736 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1737 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1738 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1739 __TCP_CHRONO_MAX, 1740 }; 1741 1742 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1743 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1744 1745 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1746 * the same memory storage than skb->destructor/_skb_refdst 1747 */ 1748 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1749 { 1750 skb->destructor = NULL; 1751 skb->_skb_refdst = 0UL; 1752 } 1753 1754 #define tcp_skb_tsorted_save(skb) { \ 1755 unsigned long _save = skb->_skb_refdst; \ 1756 skb->_skb_refdst = 0UL; 1757 1758 #define tcp_skb_tsorted_restore(skb) \ 1759 skb->_skb_refdst = _save; \ 1760 } 1761 1762 void tcp_write_queue_purge(struct sock *sk); 1763 1764 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1765 { 1766 return skb_rb_first(&sk->tcp_rtx_queue); 1767 } 1768 1769 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1770 { 1771 return skb_rb_last(&sk->tcp_rtx_queue); 1772 } 1773 1774 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1775 { 1776 return skb_peek(&sk->sk_write_queue); 1777 } 1778 1779 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1780 { 1781 return skb_peek_tail(&sk->sk_write_queue); 1782 } 1783 1784 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1785 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1786 1787 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1788 { 1789 return skb_peek(&sk->sk_write_queue); 1790 } 1791 1792 static inline bool tcp_skb_is_last(const struct sock *sk, 1793 const struct sk_buff *skb) 1794 { 1795 return skb_queue_is_last(&sk->sk_write_queue, skb); 1796 } 1797 1798 /** 1799 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1800 * @sk: socket 1801 * 1802 * Since the write queue can have a temporary empty skb in it, 1803 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1804 */ 1805 static inline bool tcp_write_queue_empty(const struct sock *sk) 1806 { 1807 const struct tcp_sock *tp = tcp_sk(sk); 1808 1809 return tp->write_seq == tp->snd_nxt; 1810 } 1811 1812 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1813 { 1814 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1815 } 1816 1817 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1818 { 1819 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1820 } 1821 1822 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1823 { 1824 __skb_queue_tail(&sk->sk_write_queue, skb); 1825 1826 /* Queue it, remembering where we must start sending. */ 1827 if (sk->sk_write_queue.next == skb) 1828 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1829 } 1830 1831 /* Insert new before skb on the write queue of sk. */ 1832 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1833 struct sk_buff *skb, 1834 struct sock *sk) 1835 { 1836 __skb_queue_before(&sk->sk_write_queue, skb, new); 1837 } 1838 1839 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1840 { 1841 tcp_skb_tsorted_anchor_cleanup(skb); 1842 __skb_unlink(skb, &sk->sk_write_queue); 1843 } 1844 1845 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1846 1847 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1848 { 1849 tcp_skb_tsorted_anchor_cleanup(skb); 1850 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1851 } 1852 1853 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1854 { 1855 list_del(&skb->tcp_tsorted_anchor); 1856 tcp_rtx_queue_unlink(skb, sk); 1857 sk_wmem_free_skb(sk, skb); 1858 } 1859 1860 static inline void tcp_push_pending_frames(struct sock *sk) 1861 { 1862 if (tcp_send_head(sk)) { 1863 struct tcp_sock *tp = tcp_sk(sk); 1864 1865 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1866 } 1867 } 1868 1869 /* Start sequence of the skb just after the highest skb with SACKed 1870 * bit, valid only if sacked_out > 0 or when the caller has ensured 1871 * validity by itself. 1872 */ 1873 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1874 { 1875 if (!tp->sacked_out) 1876 return tp->snd_una; 1877 1878 if (tp->highest_sack == NULL) 1879 return tp->snd_nxt; 1880 1881 return TCP_SKB_CB(tp->highest_sack)->seq; 1882 } 1883 1884 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1885 { 1886 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1887 } 1888 1889 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1890 { 1891 return tcp_sk(sk)->highest_sack; 1892 } 1893 1894 static inline void tcp_highest_sack_reset(struct sock *sk) 1895 { 1896 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1897 } 1898 1899 /* Called when old skb is about to be deleted and replaced by new skb */ 1900 static inline void tcp_highest_sack_replace(struct sock *sk, 1901 struct sk_buff *old, 1902 struct sk_buff *new) 1903 { 1904 if (old == tcp_highest_sack(sk)) 1905 tcp_sk(sk)->highest_sack = new; 1906 } 1907 1908 /* This helper checks if socket has IP_TRANSPARENT set */ 1909 static inline bool inet_sk_transparent(const struct sock *sk) 1910 { 1911 switch (sk->sk_state) { 1912 case TCP_TIME_WAIT: 1913 return inet_twsk(sk)->tw_transparent; 1914 case TCP_NEW_SYN_RECV: 1915 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1916 } 1917 return inet_sk(sk)->transparent; 1918 } 1919 1920 /* Determines whether this is a thin stream (which may suffer from 1921 * increased latency). Used to trigger latency-reducing mechanisms. 1922 */ 1923 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1924 { 1925 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1926 } 1927 1928 /* /proc */ 1929 enum tcp_seq_states { 1930 TCP_SEQ_STATE_LISTENING, 1931 TCP_SEQ_STATE_ESTABLISHED, 1932 }; 1933 1934 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1935 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1936 void tcp_seq_stop(struct seq_file *seq, void *v); 1937 1938 struct tcp_seq_afinfo { 1939 sa_family_t family; 1940 }; 1941 1942 struct tcp_iter_state { 1943 struct seq_net_private p; 1944 enum tcp_seq_states state; 1945 struct sock *syn_wait_sk; 1946 struct tcp_seq_afinfo *bpf_seq_afinfo; 1947 int bucket, offset, sbucket, num; 1948 loff_t last_pos; 1949 }; 1950 1951 extern struct request_sock_ops tcp_request_sock_ops; 1952 extern struct request_sock_ops tcp6_request_sock_ops; 1953 1954 void tcp_v4_destroy_sock(struct sock *sk); 1955 1956 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1957 netdev_features_t features); 1958 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1959 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 1960 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 1961 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 1962 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 1963 int tcp_gro_complete(struct sk_buff *skb); 1964 1965 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1966 1967 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1968 { 1969 struct net *net = sock_net((struct sock *)tp); 1970 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1971 } 1972 1973 bool tcp_stream_memory_free(const struct sock *sk, int wake); 1974 1975 #ifdef CONFIG_PROC_FS 1976 int tcp4_proc_init(void); 1977 void tcp4_proc_exit(void); 1978 #endif 1979 1980 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 1981 int tcp_conn_request(struct request_sock_ops *rsk_ops, 1982 const struct tcp_request_sock_ops *af_ops, 1983 struct sock *sk, struct sk_buff *skb); 1984 1985 /* TCP af-specific functions */ 1986 struct tcp_sock_af_ops { 1987 #ifdef CONFIG_TCP_MD5SIG 1988 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 1989 const struct sock *addr_sk); 1990 int (*calc_md5_hash)(char *location, 1991 const struct tcp_md5sig_key *md5, 1992 const struct sock *sk, 1993 const struct sk_buff *skb); 1994 int (*md5_parse)(struct sock *sk, 1995 int optname, 1996 sockptr_t optval, 1997 int optlen); 1998 #endif 1999 }; 2000 2001 struct tcp_request_sock_ops { 2002 u16 mss_clamp; 2003 #ifdef CONFIG_TCP_MD5SIG 2004 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2005 const struct sock *addr_sk); 2006 int (*calc_md5_hash) (char *location, 2007 const struct tcp_md5sig_key *md5, 2008 const struct sock *sk, 2009 const struct sk_buff *skb); 2010 #endif 2011 #ifdef CONFIG_SYN_COOKIES 2012 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2013 __u16 *mss); 2014 #endif 2015 struct dst_entry *(*route_req)(const struct sock *sk, 2016 struct sk_buff *skb, 2017 struct flowi *fl, 2018 struct request_sock *req); 2019 u32 (*init_seq)(const struct sk_buff *skb); 2020 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2021 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2022 struct flowi *fl, struct request_sock *req, 2023 struct tcp_fastopen_cookie *foc, 2024 enum tcp_synack_type synack_type, 2025 struct sk_buff *syn_skb); 2026 }; 2027 2028 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2029 #if IS_ENABLED(CONFIG_IPV6) 2030 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2031 #endif 2032 2033 #ifdef CONFIG_SYN_COOKIES 2034 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2035 const struct sock *sk, struct sk_buff *skb, 2036 __u16 *mss) 2037 { 2038 tcp_synq_overflow(sk); 2039 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2040 return ops->cookie_init_seq(skb, mss); 2041 } 2042 #else 2043 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2044 const struct sock *sk, struct sk_buff *skb, 2045 __u16 *mss) 2046 { 2047 return 0; 2048 } 2049 #endif 2050 2051 int tcpv4_offload_init(void); 2052 2053 void tcp_v4_init(void); 2054 void tcp_init(void); 2055 2056 /* tcp_recovery.c */ 2057 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2058 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2059 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2060 u32 reo_wnd); 2061 extern void tcp_rack_mark_lost(struct sock *sk); 2062 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2063 u64 xmit_time); 2064 extern void tcp_rack_reo_timeout(struct sock *sk); 2065 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2066 2067 /* At how many usecs into the future should the RTO fire? */ 2068 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2069 { 2070 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2071 u32 rto = inet_csk(sk)->icsk_rto; 2072 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2073 2074 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2075 } 2076 2077 /* 2078 * Save and compile IPv4 options, return a pointer to it 2079 */ 2080 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2081 struct sk_buff *skb) 2082 { 2083 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2084 struct ip_options_rcu *dopt = NULL; 2085 2086 if (opt->optlen) { 2087 int opt_size = sizeof(*dopt) + opt->optlen; 2088 2089 dopt = kmalloc(opt_size, GFP_ATOMIC); 2090 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2091 kfree(dopt); 2092 dopt = NULL; 2093 } 2094 } 2095 return dopt; 2096 } 2097 2098 /* locally generated TCP pure ACKs have skb->truesize == 2 2099 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2100 * This is much faster than dissecting the packet to find out. 2101 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2102 */ 2103 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2104 { 2105 return skb->truesize == 2; 2106 } 2107 2108 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2109 { 2110 skb->truesize = 2; 2111 } 2112 2113 static inline int tcp_inq(struct sock *sk) 2114 { 2115 struct tcp_sock *tp = tcp_sk(sk); 2116 int answ; 2117 2118 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2119 answ = 0; 2120 } else if (sock_flag(sk, SOCK_URGINLINE) || 2121 !tp->urg_data || 2122 before(tp->urg_seq, tp->copied_seq) || 2123 !before(tp->urg_seq, tp->rcv_nxt)) { 2124 2125 answ = tp->rcv_nxt - tp->copied_seq; 2126 2127 /* Subtract 1, if FIN was received */ 2128 if (answ && sock_flag(sk, SOCK_DONE)) 2129 answ--; 2130 } else { 2131 answ = tp->urg_seq - tp->copied_seq; 2132 } 2133 2134 return answ; 2135 } 2136 2137 int tcp_peek_len(struct socket *sock); 2138 2139 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2140 { 2141 u16 segs_in; 2142 2143 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2144 tp->segs_in += segs_in; 2145 if (skb->len > tcp_hdrlen(skb)) 2146 tp->data_segs_in += segs_in; 2147 } 2148 2149 /* 2150 * TCP listen path runs lockless. 2151 * We forced "struct sock" to be const qualified to make sure 2152 * we don't modify one of its field by mistake. 2153 * Here, we increment sk_drops which is an atomic_t, so we can safely 2154 * make sock writable again. 2155 */ 2156 static inline void tcp_listendrop(const struct sock *sk) 2157 { 2158 atomic_inc(&((struct sock *)sk)->sk_drops); 2159 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2160 } 2161 2162 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2163 2164 /* 2165 * Interface for adding Upper Level Protocols over TCP 2166 */ 2167 2168 #define TCP_ULP_NAME_MAX 16 2169 #define TCP_ULP_MAX 128 2170 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2171 2172 struct tcp_ulp_ops { 2173 struct list_head list; 2174 2175 /* initialize ulp */ 2176 int (*init)(struct sock *sk); 2177 /* update ulp */ 2178 void (*update)(struct sock *sk, struct proto *p, 2179 void (*write_space)(struct sock *sk)); 2180 /* cleanup ulp */ 2181 void (*release)(struct sock *sk); 2182 /* diagnostic */ 2183 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2184 size_t (*get_info_size)(const struct sock *sk); 2185 /* clone ulp */ 2186 void (*clone)(const struct request_sock *req, struct sock *newsk, 2187 const gfp_t priority); 2188 2189 char name[TCP_ULP_NAME_MAX]; 2190 struct module *owner; 2191 }; 2192 int tcp_register_ulp(struct tcp_ulp_ops *type); 2193 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2194 int tcp_set_ulp(struct sock *sk, const char *name); 2195 void tcp_get_available_ulp(char *buf, size_t len); 2196 void tcp_cleanup_ulp(struct sock *sk); 2197 void tcp_update_ulp(struct sock *sk, struct proto *p, 2198 void (*write_space)(struct sock *sk)); 2199 2200 #define MODULE_ALIAS_TCP_ULP(name) \ 2201 __MODULE_INFO(alias, alias_userspace, name); \ 2202 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2203 2204 struct sk_msg; 2205 struct sk_psock; 2206 2207 #ifdef CONFIG_BPF_STREAM_PARSER 2208 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2209 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2210 #else 2211 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2212 { 2213 } 2214 #endif /* CONFIG_BPF_STREAM_PARSER */ 2215 2216 #ifdef CONFIG_NET_SOCK_MSG 2217 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2218 int flags); 2219 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, 2220 struct msghdr *msg, int len, int flags); 2221 #endif /* CONFIG_NET_SOCK_MSG */ 2222 2223 #ifdef CONFIG_CGROUP_BPF 2224 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2225 struct sk_buff *skb, 2226 unsigned int end_offset) 2227 { 2228 skops->skb = skb; 2229 skops->skb_data_end = skb->data + end_offset; 2230 } 2231 #else 2232 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2233 struct sk_buff *skb, 2234 unsigned int end_offset) 2235 { 2236 } 2237 #endif 2238 2239 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2240 * is < 0, then the BPF op failed (for example if the loaded BPF 2241 * program does not support the chosen operation or there is no BPF 2242 * program loaded). 2243 */ 2244 #ifdef CONFIG_BPF 2245 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2246 { 2247 struct bpf_sock_ops_kern sock_ops; 2248 int ret; 2249 2250 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2251 if (sk_fullsock(sk)) { 2252 sock_ops.is_fullsock = 1; 2253 sock_owned_by_me(sk); 2254 } 2255 2256 sock_ops.sk = sk; 2257 sock_ops.op = op; 2258 if (nargs > 0) 2259 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2260 2261 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2262 if (ret == 0) 2263 ret = sock_ops.reply; 2264 else 2265 ret = -1; 2266 return ret; 2267 } 2268 2269 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2270 { 2271 u32 args[2] = {arg1, arg2}; 2272 2273 return tcp_call_bpf(sk, op, 2, args); 2274 } 2275 2276 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2277 u32 arg3) 2278 { 2279 u32 args[3] = {arg1, arg2, arg3}; 2280 2281 return tcp_call_bpf(sk, op, 3, args); 2282 } 2283 2284 #else 2285 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2286 { 2287 return -EPERM; 2288 } 2289 2290 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2291 { 2292 return -EPERM; 2293 } 2294 2295 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2296 u32 arg3) 2297 { 2298 return -EPERM; 2299 } 2300 2301 #endif 2302 2303 static inline u32 tcp_timeout_init(struct sock *sk) 2304 { 2305 int timeout; 2306 2307 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2308 2309 if (timeout <= 0) 2310 timeout = TCP_TIMEOUT_INIT; 2311 return timeout; 2312 } 2313 2314 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2315 { 2316 int rwnd; 2317 2318 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2319 2320 if (rwnd < 0) 2321 rwnd = 0; 2322 return rwnd; 2323 } 2324 2325 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2326 { 2327 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2328 } 2329 2330 static inline void tcp_bpf_rtt(struct sock *sk) 2331 { 2332 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2333 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2334 } 2335 2336 #if IS_ENABLED(CONFIG_SMC) 2337 extern struct static_key_false tcp_have_smc; 2338 #endif 2339 2340 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2341 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2342 void (*cad)(struct sock *sk, u32 ack_seq)); 2343 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2344 void clean_acked_data_flush(void); 2345 #endif 2346 2347 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2348 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2349 const struct tcp_sock *tp) 2350 { 2351 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2352 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2353 } 2354 2355 /* Compute Earliest Departure Time for some control packets 2356 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2357 */ 2358 static inline u64 tcp_transmit_time(const struct sock *sk) 2359 { 2360 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2361 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2362 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2363 2364 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2365 } 2366 return 0; 2367 } 2368 2369 #endif /* _TCP_H */ 2370