xref: /openbmc/linux/include/net/tcp.h (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 		   unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 		int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_data_ready(struct sock *sk);
416 #ifdef CONFIG_MMU
417 int tcp_mmap(struct file *file, struct socket *sock,
418 	     struct vm_area_struct *vma);
419 #endif
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 		       struct tcp_options_received *opt_rx,
422 		       int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424 
425 /*
426  *	BPF SKB-less helpers
427  */
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 			 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 			 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 			  const struct tcp_request_sock_ops *af_ops,
434 			  struct sock *sk, struct tcphdr *th);
435 /*
436  *	TCP v4 functions exported for the inet6 API
437  */
438 
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct dst_entry *dst,
451 				  struct request_sock *req_unhash,
452 				  bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 	TCP_SYNACK_NORMAL,
458 	TCP_SYNACK_FASTOPEN,
459 	TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc,
464 				enum tcp_synack_type synack_type,
465 				struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
467 
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
471 
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 				 struct request_sock *req,
475 				 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 		      u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 					    struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			if (!time_between32(now, last_overflow,
510 					    last_overflow + HZ))
511 				WRITE_ONCE(reuse->synq_overflow_ts, now);
512 			return;
513 		}
514 	}
515 
516 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 	if (!time_between32(now, last_overflow, last_overflow + HZ))
518 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
519 }
520 
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
523 {
524 	unsigned int last_overflow;
525 	unsigned int now = jiffies;
526 
527 	if (sk->sk_reuseport) {
528 		struct sock_reuseport *reuse;
529 
530 		reuse = rcu_dereference(sk->sk_reuseport_cb);
531 		if (likely(reuse)) {
532 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 			return !time_between32(now, last_overflow - HZ,
534 					       last_overflow +
535 					       TCP_SYNCOOKIE_VALID);
536 		}
537 	}
538 
539 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
540 
541 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 	 * then we're under synflood. However, we have to use
543 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 	 * which could lead to rejecting a valid syncookie.
547 	 */
548 	return !time_between32(now, last_overflow - HZ,
549 			       last_overflow + TCP_SYNCOOKIE_VALID);
550 }
551 
552 static inline u32 tcp_cookie_time(void)
553 {
554 	u64 val = get_jiffies_64();
555 
556 	do_div(val, TCP_SYNCOOKIE_PERIOD);
557 	return val;
558 }
559 
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
561 			      u16 *mssp);
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 			     struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 		   const struct net *net, const struct dst_entry *dst);
568 
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
571 		      u32 cookie);
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
573 
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 			      const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 #endif
578 /* tcp_output.c */
579 
580 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581 			       int nonagle);
582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584 void tcp_retransmit_timer(struct sock *sk);
585 void tcp_xmit_retransmit_queue(struct sock *);
586 void tcp_simple_retransmit(struct sock *);
587 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589 enum tcp_queue {
590 	TCP_FRAG_IN_WRITE_QUEUE,
591 	TCP_FRAG_IN_RTX_QUEUE,
592 };
593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594 		 struct sk_buff *skb, u32 len,
595 		 unsigned int mss_now, gfp_t gfp);
596 
597 void tcp_send_probe0(struct sock *);
598 void tcp_send_partial(struct sock *);
599 int tcp_write_wakeup(struct sock *, int mib);
600 void tcp_send_fin(struct sock *sk);
601 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602 int tcp_send_synack(struct sock *);
603 void tcp_push_one(struct sock *, unsigned int mss_now);
604 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605 void tcp_send_ack(struct sock *sk);
606 void tcp_send_delayed_ack(struct sock *sk);
607 void tcp_send_loss_probe(struct sock *sk);
608 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610 			     const struct sk_buff *next_skb);
611 
612 /* tcp_input.c */
613 void tcp_rearm_rto(struct sock *sk);
614 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615 void tcp_reset(struct sock *sk, struct sk_buff *skb);
616 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617 void tcp_fin(struct sock *sk);
618 
619 /* tcp_timer.c */
620 void tcp_init_xmit_timers(struct sock *);
621 static inline void tcp_clear_xmit_timers(struct sock *sk)
622 {
623 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
624 		__sock_put(sk);
625 
626 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
627 		__sock_put(sk);
628 
629 	inet_csk_clear_xmit_timers(sk);
630 }
631 
632 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
633 unsigned int tcp_current_mss(struct sock *sk);
634 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
635 
636 /* Bound MSS / TSO packet size with the half of the window */
637 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
638 {
639 	int cutoff;
640 
641 	/* When peer uses tiny windows, there is no use in packetizing
642 	 * to sub-MSS pieces for the sake of SWS or making sure there
643 	 * are enough packets in the pipe for fast recovery.
644 	 *
645 	 * On the other hand, for extremely large MSS devices, handling
646 	 * smaller than MSS windows in this way does make sense.
647 	 */
648 	if (tp->max_window > TCP_MSS_DEFAULT)
649 		cutoff = (tp->max_window >> 1);
650 	else
651 		cutoff = tp->max_window;
652 
653 	if (cutoff && pktsize > cutoff)
654 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
655 	else
656 		return pktsize;
657 }
658 
659 /* tcp.c */
660 void tcp_get_info(struct sock *, struct tcp_info *);
661 
662 /* Read 'sendfile()'-style from a TCP socket */
663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
664 		  sk_read_actor_t recv_actor);
665 
666 void tcp_initialize_rcv_mss(struct sock *sk);
667 
668 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
669 int tcp_mss_to_mtu(struct sock *sk, int mss);
670 void tcp_mtup_init(struct sock *sk);
671 
672 static inline void tcp_bound_rto(const struct sock *sk)
673 {
674 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
675 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
676 }
677 
678 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
679 {
680 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
681 }
682 
683 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
684 {
685 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
686 			       ntohl(TCP_FLAG_ACK) |
687 			       snd_wnd);
688 }
689 
690 static inline void tcp_fast_path_on(struct tcp_sock *tp)
691 {
692 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
693 }
694 
695 static inline void tcp_fast_path_check(struct sock *sk)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 
699 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
700 	    tp->rcv_wnd &&
701 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
702 	    !tp->urg_data)
703 		tcp_fast_path_on(tp);
704 }
705 
706 /* Compute the actual rto_min value */
707 static inline u32 tcp_rto_min(struct sock *sk)
708 {
709 	const struct dst_entry *dst = __sk_dst_get(sk);
710 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
711 
712 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
713 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
714 	return rto_min;
715 }
716 
717 static inline u32 tcp_rto_min_us(struct sock *sk)
718 {
719 	return jiffies_to_usecs(tcp_rto_min(sk));
720 }
721 
722 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
723 {
724 	return dst_metric_locked(dst, RTAX_CC_ALGO);
725 }
726 
727 /* Minimum RTT in usec. ~0 means not available. */
728 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
729 {
730 	return minmax_get(&tp->rtt_min);
731 }
732 
733 /* Compute the actual receive window we are currently advertising.
734  * Rcv_nxt can be after the window if our peer push more data
735  * than the offered window.
736  */
737 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
738 {
739 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740 
741 	if (win < 0)
742 		win = 0;
743 	return (u32) win;
744 }
745 
746 /* Choose a new window, without checks for shrinking, and without
747  * scaling applied to the result.  The caller does these things
748  * if necessary.  This is a "raw" window selection.
749  */
750 u32 __tcp_select_window(struct sock *sk);
751 
752 void tcp_send_window_probe(struct sock *sk);
753 
754 /* TCP uses 32bit jiffies to save some space.
755  * Note that this is different from tcp_time_stamp, which
756  * historically has been the same until linux-4.13.
757  */
758 #define tcp_jiffies32 ((u32)jiffies)
759 
760 /*
761  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
762  * It is no longer tied to jiffies, but to 1 ms clock.
763  * Note: double check if you want to use tcp_jiffies32 instead of this.
764  */
765 #define TCP_TS_HZ	1000
766 
767 static inline u64 tcp_clock_ns(void)
768 {
769 	return ktime_get_ns();
770 }
771 
772 static inline u64 tcp_clock_us(void)
773 {
774 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
775 }
776 
777 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
778 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
779 {
780 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
781 }
782 
783 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
784 static inline u32 tcp_ns_to_ts(u64 ns)
785 {
786 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788 
789 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
790 static inline u32 tcp_time_stamp_raw(void)
791 {
792 	return tcp_ns_to_ts(tcp_clock_ns());
793 }
794 
795 void tcp_mstamp_refresh(struct tcp_sock *tp);
796 
797 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
798 {
799 	return max_t(s64, t1 - t0, 0);
800 }
801 
802 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
803 {
804 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
805 }
806 
807 /* provide the departure time in us unit */
808 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
809 {
810 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
811 }
812 
813 
814 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
815 
816 #define TCPHDR_FIN 0x01
817 #define TCPHDR_SYN 0x02
818 #define TCPHDR_RST 0x04
819 #define TCPHDR_PSH 0x08
820 #define TCPHDR_ACK 0x10
821 #define TCPHDR_URG 0x20
822 #define TCPHDR_ECE 0x40
823 #define TCPHDR_CWR 0x80
824 
825 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
826 
827 /* This is what the send packet queuing engine uses to pass
828  * TCP per-packet control information to the transmission code.
829  * We also store the host-order sequence numbers in here too.
830  * This is 44 bytes if IPV6 is enabled.
831  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
832  */
833 struct tcp_skb_cb {
834 	__u32		seq;		/* Starting sequence number	*/
835 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
836 	union {
837 		/* Note : tcp_tw_isn is used in input path only
838 		 *	  (isn chosen by tcp_timewait_state_process())
839 		 *
840 		 * 	  tcp_gso_segs/size are used in write queue only,
841 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
842 		 */
843 		__u32		tcp_tw_isn;
844 		struct {
845 			u16	tcp_gso_segs;
846 			u16	tcp_gso_size;
847 		};
848 	};
849 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
850 
851 	__u8		sacked;		/* State flags for SACK.	*/
852 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
853 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
854 #define TCPCB_LOST		0x04	/* SKB is lost			*/
855 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
856 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
857 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
858 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
859 				TCPCB_REPAIRED)
860 
861 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
862 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
863 			eor:1,		/* Is skb MSG_EOR marked? */
864 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
865 			unused:5;
866 	__u32		ack_seq;	/* Sequence number ACK'd	*/
867 	union {
868 		struct {
869 			/* There is space for up to 24 bytes */
870 			__u32 in_flight:30,/* Bytes in flight at transmit */
871 			      is_app_limited:1, /* cwnd not fully used? */
872 			      unused:1;
873 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
874 			__u32 delivered;
875 			/* start of send pipeline phase */
876 			u64 first_tx_mstamp;
877 			/* when we reached the "delivered" count */
878 			u64 delivered_mstamp;
879 		} tx;   /* only used for outgoing skbs */
880 		union {
881 			struct inet_skb_parm	h4;
882 #if IS_ENABLED(CONFIG_IPV6)
883 			struct inet6_skb_parm	h6;
884 #endif
885 		} header;	/* For incoming skbs */
886 		struct {
887 			__u32 flags;
888 			struct sock *sk_redir;
889 			void *data_end;
890 		} bpf;
891 	};
892 };
893 
894 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
895 
896 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
897 {
898 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
899 }
900 
901 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
902 {
903 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
904 }
905 
906 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
907 {
908 	return TCP_SKB_CB(skb)->bpf.sk_redir;
909 }
910 
911 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
912 {
913 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
914 }
915 
916 extern const struct inet_connection_sock_af_ops ipv4_specific;
917 
918 #if IS_ENABLED(CONFIG_IPV6)
919 /* This is the variant of inet6_iif() that must be used by TCP,
920  * as TCP moves IP6CB into a different location in skb->cb[]
921  */
922 static inline int tcp_v6_iif(const struct sk_buff *skb)
923 {
924 	return TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
928 {
929 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
930 
931 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
932 }
933 
934 /* TCP_SKB_CB reference means this can not be used from early demux */
935 static inline int tcp_v6_sdif(const struct sk_buff *skb)
936 {
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
939 		return TCP_SKB_CB(skb)->header.h6.iif;
940 #endif
941 	return 0;
942 }
943 
944 extern const struct inet_connection_sock_af_ops ipv6_specific;
945 
946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
947 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
948 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
949 
950 #endif
951 
952 /* TCP_SKB_CB reference means this can not be used from early demux */
953 static inline int tcp_v4_sdif(struct sk_buff *skb)
954 {
955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957 		return TCP_SKB_CB(skb)->header.h4.iif;
958 #endif
959 	return 0;
960 }
961 
962 /* Due to TSO, an SKB can be composed of multiple actual
963  * packets.  To keep these tracked properly, we use this.
964  */
965 static inline int tcp_skb_pcount(const struct sk_buff *skb)
966 {
967 	return TCP_SKB_CB(skb)->tcp_gso_segs;
968 }
969 
970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971 {
972 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973 }
974 
975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976 {
977 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978 }
979 
980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
981 static inline int tcp_skb_mss(const struct sk_buff *skb)
982 {
983 	return TCP_SKB_CB(skb)->tcp_gso_size;
984 }
985 
986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987 {
988 	return likely(!TCP_SKB_CB(skb)->eor);
989 }
990 
991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992 					const struct sk_buff *from)
993 {
994 	return likely(tcp_skb_can_collapse_to(to) &&
995 		      mptcp_skb_can_collapse(to, from));
996 }
997 
998 /* Events passed to congestion control interface */
999 enum tcp_ca_event {
1000 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003 	CA_EVENT_LOSS,		/* loss timeout */
1004 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006 };
1007 
1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009 enum tcp_ca_ack_event_flags {
1010 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013 };
1014 
1015 /*
1016  * Interface for adding new TCP congestion control handlers
1017  */
1018 #define TCP_CA_NAME_MAX	16
1019 #define TCP_CA_MAX	128
1020 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021 
1022 #define TCP_CA_UNSPEC	0
1023 
1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025 #define TCP_CONG_NON_RESTRICTED 0x1
1026 /* Requires ECN/ECT set on all packets */
1027 #define TCP_CONG_NEEDS_ECN	0x2
1028 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029 
1030 union tcp_cc_info;
1031 
1032 struct ack_sample {
1033 	u32 pkts_acked;
1034 	s32 rtt_us;
1035 	u32 in_flight;
1036 };
1037 
1038 /* A rate sample measures the number of (original/retransmitted) data
1039  * packets delivered "delivered" over an interval of time "interval_us".
1040  * The tcp_rate.c code fills in the rate sample, and congestion
1041  * control modules that define a cong_control function to run at the end
1042  * of ACK processing can optionally chose to consult this sample when
1043  * setting cwnd and pacing rate.
1044  * A sample is invalid if "delivered" or "interval_us" is negative.
1045  */
1046 struct rate_sample {
1047 	u64  prior_mstamp; /* starting timestamp for interval */
1048 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049 	s32  delivered;		/* number of packets delivered over interval */
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1058 	bool is_retrans;	/* is sample from retransmission? */
1059 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1060 };
1061 
1062 struct tcp_congestion_ops {
1063 	struct list_head	list;
1064 	u32 key;
1065 	u32 flags;
1066 
1067 	/* initialize private data (optional) */
1068 	void (*init)(struct sock *sk);
1069 	/* cleanup private data  (optional) */
1070 	void (*release)(struct sock *sk);
1071 
1072 	/* return slow start threshold (required) */
1073 	u32 (*ssthresh)(struct sock *sk);
1074 	/* do new cwnd calculation (required) */
1075 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1076 	/* call before changing ca_state (optional) */
1077 	void (*set_state)(struct sock *sk, u8 new_state);
1078 	/* call when cwnd event occurs (optional) */
1079 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080 	/* call when ack arrives (optional) */
1081 	void (*in_ack_event)(struct sock *sk, u32 flags);
1082 	/* new value of cwnd after loss (required) */
1083 	u32  (*undo_cwnd)(struct sock *sk);
1084 	/* hook for packet ack accounting (optional) */
1085 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086 	/* override sysctl_tcp_min_tso_segs */
1087 	u32 (*min_tso_segs)(struct sock *sk);
1088 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1089 	u32 (*sndbuf_expand)(struct sock *sk);
1090 	/* call when packets are delivered to update cwnd and pacing rate,
1091 	 * after all the ca_state processing. (optional)
1092 	 */
1093 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094 	/* get info for inet_diag (optional) */
1095 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1096 			   union tcp_cc_info *info);
1097 
1098 	char 		name[TCP_CA_NAME_MAX];
1099 	struct module 	*owner;
1100 };
1101 
1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1104 
1105 void tcp_assign_congestion_control(struct sock *sk);
1106 void tcp_init_congestion_control(struct sock *sk);
1107 void tcp_cleanup_congestion_control(struct sock *sk);
1108 int tcp_set_default_congestion_control(struct net *net, const char *name);
1109 void tcp_get_default_congestion_control(struct net *net, char *name);
1110 void tcp_get_available_congestion_control(char *buf, size_t len);
1111 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1112 int tcp_set_allowed_congestion_control(char *allowed);
1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1114 			       bool cap_net_admin);
1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1117 
1118 u32 tcp_reno_ssthresh(struct sock *sk);
1119 u32 tcp_reno_undo_cwnd(struct sock *sk);
1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1121 extern struct tcp_congestion_ops tcp_reno;
1122 
1123 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1126 #ifdef CONFIG_INET
1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1128 #else
1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 {
1131 	return NULL;
1132 }
1133 #endif
1134 
1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1136 {
1137 	const struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1140 }
1141 
1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1143 {
1144 	struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	if (icsk->icsk_ca_ops->set_state)
1147 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1148 	icsk->icsk_ca_state = ca_state;
1149 }
1150 
1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_rate.c */
1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1162 			    struct rate_sample *rs);
1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1164 		  bool is_sack_reneg, struct rate_sample *rs);
1165 void tcp_rate_check_app_limited(struct sock *sk);
1166 
1167 /* These functions determine how the current flow behaves in respect of SACK
1168  * handling. SACK is negotiated with the peer, and therefore it can vary
1169  * between different flows.
1170  *
1171  * tcp_is_sack - SACK enabled
1172  * tcp_is_reno - No SACK
1173  */
1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 	return likely(tp->rx_opt.sack_ok);
1177 }
1178 
1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 	return !tcp_is_sack(tp);
1182 }
1183 
1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 	return tp->sacked_out + tp->lost_out;
1187 }
1188 
1189 /* This determines how many packets are "in the network" to the best
1190  * of our knowledge.  In many cases it is conservative, but where
1191  * detailed information is available from the receiver (via SACK
1192  * blocks etc.) we can make more aggressive calculations.
1193  *
1194  * Use this for decisions involving congestion control, use just
1195  * tp->packets_out to determine if the send queue is empty or not.
1196  *
1197  * Read this equation as:
1198  *
1199  *	"Packets sent once on transmission queue" MINUS
1200  *	"Packets left network, but not honestly ACKed yet" PLUS
1201  *	"Packets fast retransmitted"
1202  */
1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207 
1208 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1209 
1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214 
1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219 
1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 	       (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225 
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228  * ssthresh.
1229  */
1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 	const struct tcp_sock *tp = tcp_sk(sk);
1233 
1234 	if (tcp_in_cwnd_reduction(sk))
1235 		return tp->snd_ssthresh;
1236 	else
1237 		return max(tp->snd_ssthresh,
1238 			   ((tp->snd_cwnd >> 1) +
1239 			    (tp->snd_cwnd >> 2)));
1240 }
1241 
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244 
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247 
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249  * sending if not using sysctl_tcp_tso_win_divisor.
1250  */
1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 	return 3;
1254 }
1255 
1256 /* Returns end sequence number of the receiver's advertised window */
1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 	return tp->snd_una + tp->snd_wnd;
1260 }
1261 
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263  * flexible approach. The RFC suggests cwnd should not be raised unless
1264  * it was fully used previously. And that's exactly what we do in
1265  * congestion avoidance mode. But in slow start we allow cwnd to grow
1266  * as long as the application has used half the cwnd.
1267  * Example :
1268  *    cwnd is 10 (IW10), but application sends 9 frames.
1269  *    We allow cwnd to reach 18 when all frames are ACKed.
1270  * This check is safe because it's as aggressive as slow start which already
1271  * risks 100% overshoot. The advantage is that we discourage application to
1272  * either send more filler packets or data to artificially blow up the cwnd
1273  * usage, and allow application-limited process to probe bw more aggressively.
1274  */
1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 	const struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1280 	if (tcp_in_slow_start(tp))
1281 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1282 
1283 	return tp->is_cwnd_limited;
1284 }
1285 
1286 /* BBR congestion control needs pacing.
1287  * Same remark for SO_MAX_PACING_RATE.
1288  * sch_fq packet scheduler is efficiently handling pacing,
1289  * but is not always installed/used.
1290  * Return true if TCP stack should pace packets itself.
1291  */
1292 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1293 {
1294 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1295 }
1296 
1297 /* Estimates in how many jiffies next packet for this flow can be sent.
1298  * Scheduling a retransmit timer too early would be silly.
1299  */
1300 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1301 {
1302 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1303 
1304 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1305 }
1306 
1307 static inline void tcp_reset_xmit_timer(struct sock *sk,
1308 					const int what,
1309 					unsigned long when,
1310 					const unsigned long max_when)
1311 {
1312 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1313 				  max_when);
1314 }
1315 
1316 /* Something is really bad, we could not queue an additional packet,
1317  * because qdisc is full or receiver sent a 0 window, or we are paced.
1318  * We do not want to add fuel to the fire, or abort too early,
1319  * so make sure the timer we arm now is at least 200ms in the future,
1320  * regardless of current icsk_rto value (as it could be ~2ms)
1321  */
1322 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1323 {
1324 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1325 }
1326 
1327 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1328 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1329 					    unsigned long max_when)
1330 {
1331 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1332 			   inet_csk(sk)->icsk_backoff);
1333 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1334 
1335 	return (unsigned long)min_t(u64, when, max_when);
1336 }
1337 
1338 static inline void tcp_check_probe_timer(struct sock *sk)
1339 {
1340 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1341 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1342 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1343 }
1344 
1345 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346 {
1347 	tp->snd_wl1 = seq;
1348 }
1349 
1350 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1351 {
1352 	tp->snd_wl1 = seq;
1353 }
1354 
1355 /*
1356  * Calculate(/check) TCP checksum
1357  */
1358 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1359 				   __be32 daddr, __wsum base)
1360 {
1361 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1362 }
1363 
1364 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1365 {
1366 	return !skb_csum_unnecessary(skb) &&
1367 		__skb_checksum_complete(skb);
1368 }
1369 
1370 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1371 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1372 void tcp_set_state(struct sock *sk, int state);
1373 void tcp_done(struct sock *sk);
1374 int tcp_abort(struct sock *sk, int err);
1375 
1376 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1377 {
1378 	rx_opt->dsack = 0;
1379 	rx_opt->num_sacks = 0;
1380 }
1381 
1382 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1383 
1384 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1385 {
1386 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 	s32 delta;
1389 
1390 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1391 	    ca_ops->cong_control)
1392 		return;
1393 	delta = tcp_jiffies32 - tp->lsndtime;
1394 	if (delta > inet_csk(sk)->icsk_rto)
1395 		tcp_cwnd_restart(sk, delta);
1396 }
1397 
1398 /* Determine a window scaling and initial window to offer. */
1399 void tcp_select_initial_window(const struct sock *sk, int __space,
1400 			       __u32 mss, __u32 *rcv_wnd,
1401 			       __u32 *window_clamp, int wscale_ok,
1402 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1403 
1404 static inline int tcp_win_from_space(const struct sock *sk, int space)
1405 {
1406 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1407 
1408 	return tcp_adv_win_scale <= 0 ?
1409 		(space>>(-tcp_adv_win_scale)) :
1410 		space - (space>>tcp_adv_win_scale);
1411 }
1412 
1413 /* Note: caller must be prepared to deal with negative returns */
1414 static inline int tcp_space(const struct sock *sk)
1415 {
1416 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1417 				  READ_ONCE(sk->sk_backlog.len) -
1418 				  atomic_read(&sk->sk_rmem_alloc));
1419 }
1420 
1421 static inline int tcp_full_space(const struct sock *sk)
1422 {
1423 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1424 }
1425 
1426 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1427 
1428 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1429  * If 87.5 % (7/8) of the space has been consumed, we want to override
1430  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1431  * len/truesize ratio.
1432  */
1433 static inline bool tcp_rmem_pressure(const struct sock *sk)
1434 {
1435 	int rcvbuf, threshold;
1436 
1437 	if (tcp_under_memory_pressure(sk))
1438 		return true;
1439 
1440 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1441 	threshold = rcvbuf - (rcvbuf >> 3);
1442 
1443 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1444 }
1445 
1446 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1447 {
1448 	const struct tcp_sock *tp = tcp_sk(sk);
1449 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1450 
1451 	if (avail <= 0)
1452 		return false;
1453 
1454 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1455 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1456 }
1457 
1458 extern void tcp_openreq_init_rwin(struct request_sock *req,
1459 				  const struct sock *sk_listener,
1460 				  const struct dst_entry *dst);
1461 
1462 void tcp_enter_memory_pressure(struct sock *sk);
1463 void tcp_leave_memory_pressure(struct sock *sk);
1464 
1465 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1466 {
1467 	struct net *net = sock_net((struct sock *)tp);
1468 
1469 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1470 }
1471 
1472 static inline int keepalive_time_when(const struct tcp_sock *tp)
1473 {
1474 	struct net *net = sock_net((struct sock *)tp);
1475 
1476 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1477 }
1478 
1479 static inline int keepalive_probes(const struct tcp_sock *tp)
1480 {
1481 	struct net *net = sock_net((struct sock *)tp);
1482 
1483 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1484 }
1485 
1486 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1487 {
1488 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1489 
1490 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1491 			  tcp_jiffies32 - tp->rcv_tstamp);
1492 }
1493 
1494 static inline int tcp_fin_time(const struct sock *sk)
1495 {
1496 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1497 	const int rto = inet_csk(sk)->icsk_rto;
1498 
1499 	if (fin_timeout < (rto << 2) - (rto >> 1))
1500 		fin_timeout = (rto << 2) - (rto >> 1);
1501 
1502 	return fin_timeout;
1503 }
1504 
1505 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1506 				  int paws_win)
1507 {
1508 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1509 		return true;
1510 	if (unlikely(!time_before32(ktime_get_seconds(),
1511 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1512 		return true;
1513 	/*
1514 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1515 	 * then following tcp messages have valid values. Ignore 0 value,
1516 	 * or else 'negative' tsval might forbid us to accept their packets.
1517 	 */
1518 	if (!rx_opt->ts_recent)
1519 		return true;
1520 	return false;
1521 }
1522 
1523 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1524 				   int rst)
1525 {
1526 	if (tcp_paws_check(rx_opt, 0))
1527 		return false;
1528 
1529 	/* RST segments are not recommended to carry timestamp,
1530 	   and, if they do, it is recommended to ignore PAWS because
1531 	   "their cleanup function should take precedence over timestamps."
1532 	   Certainly, it is mistake. It is necessary to understand the reasons
1533 	   of this constraint to relax it: if peer reboots, clock may go
1534 	   out-of-sync and half-open connections will not be reset.
1535 	   Actually, the problem would be not existing if all
1536 	   the implementations followed draft about maintaining clock
1537 	   via reboots. Linux-2.2 DOES NOT!
1538 
1539 	   However, we can relax time bounds for RST segments to MSL.
1540 	 */
1541 	if (rst && !time_before32(ktime_get_seconds(),
1542 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1543 		return false;
1544 	return true;
1545 }
1546 
1547 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1548 			  int mib_idx, u32 *last_oow_ack_time);
1549 
1550 static inline void tcp_mib_init(struct net *net)
1551 {
1552 	/* See RFC 2012 */
1553 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1554 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1555 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1556 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1557 }
1558 
1559 /* from STCP */
1560 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1561 {
1562 	tp->lost_skb_hint = NULL;
1563 }
1564 
1565 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1566 {
1567 	tcp_clear_retrans_hints_partial(tp);
1568 	tp->retransmit_skb_hint = NULL;
1569 }
1570 
1571 union tcp_md5_addr {
1572 	struct in_addr  a4;
1573 #if IS_ENABLED(CONFIG_IPV6)
1574 	struct in6_addr	a6;
1575 #endif
1576 };
1577 
1578 /* - key database */
1579 struct tcp_md5sig_key {
1580 	struct hlist_node	node;
1581 	u8			keylen;
1582 	u8			family; /* AF_INET or AF_INET6 */
1583 	u8			prefixlen;
1584 	union tcp_md5_addr	addr;
1585 	int			l3index; /* set if key added with L3 scope */
1586 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1587 	struct rcu_head		rcu;
1588 };
1589 
1590 /* - sock block */
1591 struct tcp_md5sig_info {
1592 	struct hlist_head	head;
1593 	struct rcu_head		rcu;
1594 };
1595 
1596 /* - pseudo header */
1597 struct tcp4_pseudohdr {
1598 	__be32		saddr;
1599 	__be32		daddr;
1600 	__u8		pad;
1601 	__u8		protocol;
1602 	__be16		len;
1603 };
1604 
1605 struct tcp6_pseudohdr {
1606 	struct in6_addr	saddr;
1607 	struct in6_addr daddr;
1608 	__be32		len;
1609 	__be32		protocol;	/* including padding */
1610 };
1611 
1612 union tcp_md5sum_block {
1613 	struct tcp4_pseudohdr ip4;
1614 #if IS_ENABLED(CONFIG_IPV6)
1615 	struct tcp6_pseudohdr ip6;
1616 #endif
1617 };
1618 
1619 /* - pool: digest algorithm, hash description and scratch buffer */
1620 struct tcp_md5sig_pool {
1621 	struct ahash_request	*md5_req;
1622 	void			*scratch;
1623 };
1624 
1625 /* - functions */
1626 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1627 			const struct sock *sk, const struct sk_buff *skb);
1628 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1629 		   int family, u8 prefixlen, int l3index,
1630 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1631 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1632 		   int family, u8 prefixlen, int l3index);
1633 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1634 					 const struct sock *addr_sk);
1635 
1636 #ifdef CONFIG_TCP_MD5SIG
1637 #include <linux/jump_label.h>
1638 extern struct static_key_false tcp_md5_needed;
1639 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1640 					   const union tcp_md5_addr *addr,
1641 					   int family);
1642 static inline struct tcp_md5sig_key *
1643 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1644 		  const union tcp_md5_addr *addr, int family)
1645 {
1646 	if (!static_branch_unlikely(&tcp_md5_needed))
1647 		return NULL;
1648 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1649 }
1650 
1651 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1652 #else
1653 static inline struct tcp_md5sig_key *
1654 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1655 		  const union tcp_md5_addr *addr, int family)
1656 {
1657 	return NULL;
1658 }
1659 #define tcp_twsk_md5_key(twsk)	NULL
1660 #endif
1661 
1662 bool tcp_alloc_md5sig_pool(void);
1663 
1664 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1665 static inline void tcp_put_md5sig_pool(void)
1666 {
1667 	local_bh_enable();
1668 }
1669 
1670 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1671 			  unsigned int header_len);
1672 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1673 		     const struct tcp_md5sig_key *key);
1674 
1675 /* From tcp_fastopen.c */
1676 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1677 			    struct tcp_fastopen_cookie *cookie);
1678 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1679 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1680 			    u16 try_exp);
1681 struct tcp_fastopen_request {
1682 	/* Fast Open cookie. Size 0 means a cookie request */
1683 	struct tcp_fastopen_cookie	cookie;
1684 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1685 	size_t				size;
1686 	int				copied;	/* queued in tcp_connect() */
1687 	struct ubuf_info		*uarg;
1688 };
1689 void tcp_free_fastopen_req(struct tcp_sock *tp);
1690 void tcp_fastopen_destroy_cipher(struct sock *sk);
1691 void tcp_fastopen_ctx_destroy(struct net *net);
1692 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1693 			      void *primary_key, void *backup_key);
1694 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1695 			    u64 *key);
1696 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1697 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1698 			      struct request_sock *req,
1699 			      struct tcp_fastopen_cookie *foc,
1700 			      const struct dst_entry *dst);
1701 void tcp_fastopen_init_key_once(struct net *net);
1702 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1703 			     struct tcp_fastopen_cookie *cookie);
1704 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1705 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1706 #define TCP_FASTOPEN_KEY_MAX 2
1707 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1708 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1709 
1710 /* Fastopen key context */
1711 struct tcp_fastopen_context {
1712 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1713 	int		num;
1714 	struct rcu_head	rcu;
1715 };
1716 
1717 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1718 void tcp_fastopen_active_disable(struct sock *sk);
1719 bool tcp_fastopen_active_should_disable(struct sock *sk);
1720 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1721 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1722 
1723 /* Caller needs to wrap with rcu_read_(un)lock() */
1724 static inline
1725 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1726 {
1727 	struct tcp_fastopen_context *ctx;
1728 
1729 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1730 	if (!ctx)
1731 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1732 	return ctx;
1733 }
1734 
1735 static inline
1736 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1737 			       const struct tcp_fastopen_cookie *orig)
1738 {
1739 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1740 	    orig->len == foc->len &&
1741 	    !memcmp(orig->val, foc->val, foc->len))
1742 		return true;
1743 	return false;
1744 }
1745 
1746 static inline
1747 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1748 {
1749 	return ctx->num;
1750 }
1751 
1752 /* Latencies incurred by various limits for a sender. They are
1753  * chronograph-like stats that are mutually exclusive.
1754  */
1755 enum tcp_chrono {
1756 	TCP_CHRONO_UNSPEC,
1757 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1758 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1759 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1760 	__TCP_CHRONO_MAX,
1761 };
1762 
1763 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1764 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1765 
1766 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1767  * the same memory storage than skb->destructor/_skb_refdst
1768  */
1769 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1770 {
1771 	skb->destructor = NULL;
1772 	skb->_skb_refdst = 0UL;
1773 }
1774 
1775 #define tcp_skb_tsorted_save(skb) {		\
1776 	unsigned long _save = skb->_skb_refdst;	\
1777 	skb->_skb_refdst = 0UL;
1778 
1779 #define tcp_skb_tsorted_restore(skb)		\
1780 	skb->_skb_refdst = _save;		\
1781 }
1782 
1783 void tcp_write_queue_purge(struct sock *sk);
1784 
1785 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1786 {
1787 	return skb_rb_first(&sk->tcp_rtx_queue);
1788 }
1789 
1790 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1791 {
1792 	return skb_rb_last(&sk->tcp_rtx_queue);
1793 }
1794 
1795 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1796 {
1797 	return skb_peek(&sk->sk_write_queue);
1798 }
1799 
1800 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1801 {
1802 	return skb_peek_tail(&sk->sk_write_queue);
1803 }
1804 
1805 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1806 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1807 
1808 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1809 {
1810 	return skb_peek(&sk->sk_write_queue);
1811 }
1812 
1813 static inline bool tcp_skb_is_last(const struct sock *sk,
1814 				   const struct sk_buff *skb)
1815 {
1816 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1817 }
1818 
1819 /**
1820  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1821  * @sk: socket
1822  *
1823  * Since the write queue can have a temporary empty skb in it,
1824  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1825  */
1826 static inline bool tcp_write_queue_empty(const struct sock *sk)
1827 {
1828 	const struct tcp_sock *tp = tcp_sk(sk);
1829 
1830 	return tp->write_seq == tp->snd_nxt;
1831 }
1832 
1833 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1834 {
1835 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1836 }
1837 
1838 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1839 {
1840 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1841 }
1842 
1843 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1844 {
1845 	__skb_queue_tail(&sk->sk_write_queue, skb);
1846 
1847 	/* Queue it, remembering where we must start sending. */
1848 	if (sk->sk_write_queue.next == skb)
1849 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1850 }
1851 
1852 /* Insert new before skb on the write queue of sk.  */
1853 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1854 						  struct sk_buff *skb,
1855 						  struct sock *sk)
1856 {
1857 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1858 }
1859 
1860 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1861 {
1862 	tcp_skb_tsorted_anchor_cleanup(skb);
1863 	__skb_unlink(skb, &sk->sk_write_queue);
1864 }
1865 
1866 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1867 
1868 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1869 {
1870 	tcp_skb_tsorted_anchor_cleanup(skb);
1871 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1872 }
1873 
1874 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1875 {
1876 	list_del(&skb->tcp_tsorted_anchor);
1877 	tcp_rtx_queue_unlink(skb, sk);
1878 	sk_wmem_free_skb(sk, skb);
1879 }
1880 
1881 static inline void tcp_push_pending_frames(struct sock *sk)
1882 {
1883 	if (tcp_send_head(sk)) {
1884 		struct tcp_sock *tp = tcp_sk(sk);
1885 
1886 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1887 	}
1888 }
1889 
1890 /* Start sequence of the skb just after the highest skb with SACKed
1891  * bit, valid only if sacked_out > 0 or when the caller has ensured
1892  * validity by itself.
1893  */
1894 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1895 {
1896 	if (!tp->sacked_out)
1897 		return tp->snd_una;
1898 
1899 	if (tp->highest_sack == NULL)
1900 		return tp->snd_nxt;
1901 
1902 	return TCP_SKB_CB(tp->highest_sack)->seq;
1903 }
1904 
1905 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1906 {
1907 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1908 }
1909 
1910 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1911 {
1912 	return tcp_sk(sk)->highest_sack;
1913 }
1914 
1915 static inline void tcp_highest_sack_reset(struct sock *sk)
1916 {
1917 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1918 }
1919 
1920 /* Called when old skb is about to be deleted and replaced by new skb */
1921 static inline void tcp_highest_sack_replace(struct sock *sk,
1922 					    struct sk_buff *old,
1923 					    struct sk_buff *new)
1924 {
1925 	if (old == tcp_highest_sack(sk))
1926 		tcp_sk(sk)->highest_sack = new;
1927 }
1928 
1929 /* This helper checks if socket has IP_TRANSPARENT set */
1930 static inline bool inet_sk_transparent(const struct sock *sk)
1931 {
1932 	switch (sk->sk_state) {
1933 	case TCP_TIME_WAIT:
1934 		return inet_twsk(sk)->tw_transparent;
1935 	case TCP_NEW_SYN_RECV:
1936 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1937 	}
1938 	return inet_sk(sk)->transparent;
1939 }
1940 
1941 /* Determines whether this is a thin stream (which may suffer from
1942  * increased latency). Used to trigger latency-reducing mechanisms.
1943  */
1944 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1945 {
1946 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1947 }
1948 
1949 /* /proc */
1950 enum tcp_seq_states {
1951 	TCP_SEQ_STATE_LISTENING,
1952 	TCP_SEQ_STATE_ESTABLISHED,
1953 };
1954 
1955 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1956 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1957 void tcp_seq_stop(struct seq_file *seq, void *v);
1958 
1959 struct tcp_seq_afinfo {
1960 	sa_family_t			family;
1961 };
1962 
1963 struct tcp_iter_state {
1964 	struct seq_net_private	p;
1965 	enum tcp_seq_states	state;
1966 	struct sock		*syn_wait_sk;
1967 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1968 	int			bucket, offset, sbucket, num;
1969 	loff_t			last_pos;
1970 };
1971 
1972 extern struct request_sock_ops tcp_request_sock_ops;
1973 extern struct request_sock_ops tcp6_request_sock_ops;
1974 
1975 void tcp_v4_destroy_sock(struct sock *sk);
1976 
1977 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1978 				netdev_features_t features);
1979 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1980 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1981 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1982 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1983 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1984 int tcp_gro_complete(struct sk_buff *skb);
1985 
1986 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1987 
1988 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1989 {
1990 	struct net *net = sock_net((struct sock *)tp);
1991 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1992 }
1993 
1994 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1995 
1996 #ifdef CONFIG_PROC_FS
1997 int tcp4_proc_init(void);
1998 void tcp4_proc_exit(void);
1999 #endif
2000 
2001 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2002 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2003 		     const struct tcp_request_sock_ops *af_ops,
2004 		     struct sock *sk, struct sk_buff *skb);
2005 
2006 /* TCP af-specific functions */
2007 struct tcp_sock_af_ops {
2008 #ifdef CONFIG_TCP_MD5SIG
2009 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2010 						const struct sock *addr_sk);
2011 	int		(*calc_md5_hash)(char *location,
2012 					 const struct tcp_md5sig_key *md5,
2013 					 const struct sock *sk,
2014 					 const struct sk_buff *skb);
2015 	int		(*md5_parse)(struct sock *sk,
2016 				     int optname,
2017 				     sockptr_t optval,
2018 				     int optlen);
2019 #endif
2020 };
2021 
2022 struct tcp_request_sock_ops {
2023 	u16 mss_clamp;
2024 #ifdef CONFIG_TCP_MD5SIG
2025 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2026 						 const struct sock *addr_sk);
2027 	int		(*calc_md5_hash) (char *location,
2028 					  const struct tcp_md5sig_key *md5,
2029 					  const struct sock *sk,
2030 					  const struct sk_buff *skb);
2031 #endif
2032 #ifdef CONFIG_SYN_COOKIES
2033 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2034 				 __u16 *mss);
2035 #endif
2036 	struct dst_entry *(*route_req)(const struct sock *sk,
2037 				       struct sk_buff *skb,
2038 				       struct flowi *fl,
2039 				       struct request_sock *req);
2040 	u32 (*init_seq)(const struct sk_buff *skb);
2041 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2042 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2043 			   struct flowi *fl, struct request_sock *req,
2044 			   struct tcp_fastopen_cookie *foc,
2045 			   enum tcp_synack_type synack_type,
2046 			   struct sk_buff *syn_skb);
2047 };
2048 
2049 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2050 #if IS_ENABLED(CONFIG_IPV6)
2051 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2052 #endif
2053 
2054 #ifdef CONFIG_SYN_COOKIES
2055 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2056 					 const struct sock *sk, struct sk_buff *skb,
2057 					 __u16 *mss)
2058 {
2059 	tcp_synq_overflow(sk);
2060 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2061 	return ops->cookie_init_seq(skb, mss);
2062 }
2063 #else
2064 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2065 					 const struct sock *sk, struct sk_buff *skb,
2066 					 __u16 *mss)
2067 {
2068 	return 0;
2069 }
2070 #endif
2071 
2072 int tcpv4_offload_init(void);
2073 
2074 void tcp_v4_init(void);
2075 void tcp_init(void);
2076 
2077 /* tcp_recovery.c */
2078 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2079 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2080 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2081 				u32 reo_wnd);
2082 extern bool tcp_rack_mark_lost(struct sock *sk);
2083 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2084 			     u64 xmit_time);
2085 extern void tcp_rack_reo_timeout(struct sock *sk);
2086 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2087 
2088 /* At how many usecs into the future should the RTO fire? */
2089 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2090 {
2091 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2092 	u32 rto = inet_csk(sk)->icsk_rto;
2093 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2094 
2095 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2096 }
2097 
2098 /*
2099  * Save and compile IPv4 options, return a pointer to it
2100  */
2101 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2102 							 struct sk_buff *skb)
2103 {
2104 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2105 	struct ip_options_rcu *dopt = NULL;
2106 
2107 	if (opt->optlen) {
2108 		int opt_size = sizeof(*dopt) + opt->optlen;
2109 
2110 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2111 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2112 			kfree(dopt);
2113 			dopt = NULL;
2114 		}
2115 	}
2116 	return dopt;
2117 }
2118 
2119 /* locally generated TCP pure ACKs have skb->truesize == 2
2120  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2121  * This is much faster than dissecting the packet to find out.
2122  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2123  */
2124 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2125 {
2126 	return skb->truesize == 2;
2127 }
2128 
2129 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2130 {
2131 	skb->truesize = 2;
2132 }
2133 
2134 static inline int tcp_inq(struct sock *sk)
2135 {
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 	int answ;
2138 
2139 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2140 		answ = 0;
2141 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2142 		   !tp->urg_data ||
2143 		   before(tp->urg_seq, tp->copied_seq) ||
2144 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2145 
2146 		answ = tp->rcv_nxt - tp->copied_seq;
2147 
2148 		/* Subtract 1, if FIN was received */
2149 		if (answ && sock_flag(sk, SOCK_DONE))
2150 			answ--;
2151 	} else {
2152 		answ = tp->urg_seq - tp->copied_seq;
2153 	}
2154 
2155 	return answ;
2156 }
2157 
2158 int tcp_peek_len(struct socket *sock);
2159 
2160 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2161 {
2162 	u16 segs_in;
2163 
2164 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2165 	tp->segs_in += segs_in;
2166 	if (skb->len > tcp_hdrlen(skb))
2167 		tp->data_segs_in += segs_in;
2168 }
2169 
2170 /*
2171  * TCP listen path runs lockless.
2172  * We forced "struct sock" to be const qualified to make sure
2173  * we don't modify one of its field by mistake.
2174  * Here, we increment sk_drops which is an atomic_t, so we can safely
2175  * make sock writable again.
2176  */
2177 static inline void tcp_listendrop(const struct sock *sk)
2178 {
2179 	atomic_inc(&((struct sock *)sk)->sk_drops);
2180 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2181 }
2182 
2183 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2184 
2185 /*
2186  * Interface for adding Upper Level Protocols over TCP
2187  */
2188 
2189 #define TCP_ULP_NAME_MAX	16
2190 #define TCP_ULP_MAX		128
2191 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2192 
2193 struct tcp_ulp_ops {
2194 	struct list_head	list;
2195 
2196 	/* initialize ulp */
2197 	int (*init)(struct sock *sk);
2198 	/* update ulp */
2199 	void (*update)(struct sock *sk, struct proto *p,
2200 		       void (*write_space)(struct sock *sk));
2201 	/* cleanup ulp */
2202 	void (*release)(struct sock *sk);
2203 	/* diagnostic */
2204 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2205 	size_t (*get_info_size)(const struct sock *sk);
2206 	/* clone ulp */
2207 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2208 		      const gfp_t priority);
2209 
2210 	char		name[TCP_ULP_NAME_MAX];
2211 	struct module	*owner;
2212 };
2213 int tcp_register_ulp(struct tcp_ulp_ops *type);
2214 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2215 int tcp_set_ulp(struct sock *sk, const char *name);
2216 void tcp_get_available_ulp(char *buf, size_t len);
2217 void tcp_cleanup_ulp(struct sock *sk);
2218 void tcp_update_ulp(struct sock *sk, struct proto *p,
2219 		    void (*write_space)(struct sock *sk));
2220 
2221 #define MODULE_ALIAS_TCP_ULP(name)				\
2222 	__MODULE_INFO(alias, alias_userspace, name);		\
2223 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2224 
2225 struct sk_msg;
2226 struct sk_psock;
2227 
2228 #ifdef CONFIG_BPF_STREAM_PARSER
2229 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2230 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2231 #else
2232 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2233 {
2234 }
2235 #endif /* CONFIG_BPF_STREAM_PARSER */
2236 
2237 #ifdef CONFIG_NET_SOCK_MSG
2238 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2239 			  int flags);
2240 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2241 		      struct msghdr *msg, int len, int flags);
2242 #endif /* CONFIG_NET_SOCK_MSG */
2243 
2244 #ifdef CONFIG_CGROUP_BPF
2245 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2246 				      struct sk_buff *skb,
2247 				      unsigned int end_offset)
2248 {
2249 	skops->skb = skb;
2250 	skops->skb_data_end = skb->data + end_offset;
2251 }
2252 #else
2253 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2254 				      struct sk_buff *skb,
2255 				      unsigned int end_offset)
2256 {
2257 }
2258 #endif
2259 
2260 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2261  * is < 0, then the BPF op failed (for example if the loaded BPF
2262  * program does not support the chosen operation or there is no BPF
2263  * program loaded).
2264  */
2265 #ifdef CONFIG_BPF
2266 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2267 {
2268 	struct bpf_sock_ops_kern sock_ops;
2269 	int ret;
2270 
2271 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2272 	if (sk_fullsock(sk)) {
2273 		sock_ops.is_fullsock = 1;
2274 		sock_owned_by_me(sk);
2275 	}
2276 
2277 	sock_ops.sk = sk;
2278 	sock_ops.op = op;
2279 	if (nargs > 0)
2280 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2281 
2282 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2283 	if (ret == 0)
2284 		ret = sock_ops.reply;
2285 	else
2286 		ret = -1;
2287 	return ret;
2288 }
2289 
2290 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2291 {
2292 	u32 args[2] = {arg1, arg2};
2293 
2294 	return tcp_call_bpf(sk, op, 2, args);
2295 }
2296 
2297 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2298 				    u32 arg3)
2299 {
2300 	u32 args[3] = {arg1, arg2, arg3};
2301 
2302 	return tcp_call_bpf(sk, op, 3, args);
2303 }
2304 
2305 #else
2306 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2307 {
2308 	return -EPERM;
2309 }
2310 
2311 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2312 {
2313 	return -EPERM;
2314 }
2315 
2316 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2317 				    u32 arg3)
2318 {
2319 	return -EPERM;
2320 }
2321 
2322 #endif
2323 
2324 static inline u32 tcp_timeout_init(struct sock *sk)
2325 {
2326 	int timeout;
2327 
2328 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2329 
2330 	if (timeout <= 0)
2331 		timeout = TCP_TIMEOUT_INIT;
2332 	return timeout;
2333 }
2334 
2335 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2336 {
2337 	int rwnd;
2338 
2339 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2340 
2341 	if (rwnd < 0)
2342 		rwnd = 0;
2343 	return rwnd;
2344 }
2345 
2346 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2347 {
2348 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2349 }
2350 
2351 static inline void tcp_bpf_rtt(struct sock *sk)
2352 {
2353 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2354 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2355 }
2356 
2357 #if IS_ENABLED(CONFIG_SMC)
2358 extern struct static_key_false tcp_have_smc;
2359 #endif
2360 
2361 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2362 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2363 			     void (*cad)(struct sock *sk, u32 ack_seq));
2364 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2365 void clean_acked_data_flush(void);
2366 #endif
2367 
2368 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2369 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2370 				    const struct tcp_sock *tp)
2371 {
2372 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2373 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2374 }
2375 
2376 /* Compute Earliest Departure Time for some control packets
2377  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2378  */
2379 static inline u64 tcp_transmit_time(const struct sock *sk)
2380 {
2381 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2382 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2383 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2384 
2385 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2386 	}
2387 	return 0;
2388 }
2389 
2390 #endif	/* _TCP_H */
2391