xref: /openbmc/linux/include/net/tcp.h (revision b03afaa8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 					 const unsigned int pkts)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		if (pkts >= icsk->icsk_ack.quick) {
359 			icsk->icsk_ack.quick = 0;
360 			/* Leaving quickack mode we deflate ATO. */
361 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
362 		} else
363 			icsk->icsk_ack.quick -= pkts;
364 	}
365 }
366 
367 #define	TCP_ECN_OK		1
368 #define	TCP_ECN_QUEUE_CWR	2
369 #define	TCP_ECN_DEMAND_CWR	4
370 #define	TCP_ECN_SEEN		8
371 
372 enum tcp_tw_status {
373 	TCP_TW_SUCCESS = 0,
374 	TCP_TW_RST = 1,
375 	TCP_TW_ACK = 2,
376 	TCP_TW_SYN = 3
377 };
378 
379 
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 					      struct sk_buff *skb,
382 					      const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 			   struct request_sock *req, bool fastopen,
385 			   bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 		      struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 		      struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname,
403 		   char __user *optval, unsigned int optlen);
404 void tcp_set_keepalive(struct sock *sk, int val);
405 void tcp_syn_ack_timeout(const struct request_sock *req);
406 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
407 		int flags, int *addr_len);
408 int tcp_set_rcvlowat(struct sock *sk, int val);
409 void tcp_data_ready(struct sock *sk);
410 #ifdef CONFIG_MMU
411 int tcp_mmap(struct file *file, struct socket *sock,
412 	     struct vm_area_struct *vma);
413 #endif
414 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
415 		       struct tcp_options_received *opt_rx,
416 		       int estab, struct tcp_fastopen_cookie *foc);
417 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
418 
419 /*
420  *	BPF SKB-less helpers
421  */
422 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
425 			 struct tcphdr *th, u32 *cookie);
426 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
427 			  const struct tcp_request_sock_ops *af_ops,
428 			  struct sock *sk, struct tcphdr *th);
429 /*
430  *	TCP v4 functions exported for the inet6 API
431  */
432 
433 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
434 void tcp_v4_mtu_reduced(struct sock *sk);
435 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
436 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
437 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 				      struct request_sock *req,
440 				      struct sk_buff *skb);
441 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
442 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
443 				  struct request_sock *req,
444 				  struct dst_entry *dst,
445 				  struct request_sock *req_unhash,
446 				  bool *own_req);
447 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
448 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
449 int tcp_connect(struct sock *sk);
450 enum tcp_synack_type {
451 	TCP_SYNACK_NORMAL,
452 	TCP_SYNACK_FASTOPEN,
453 	TCP_SYNACK_COOKIE,
454 };
455 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
456 				struct request_sock *req,
457 				struct tcp_fastopen_cookie *foc,
458 				enum tcp_synack_type synack_type);
459 int tcp_disconnect(struct sock *sk, int flags);
460 
461 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
462 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
463 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
464 
465 /* From syncookies.c */
466 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
467 				 struct request_sock *req,
468 				 struct dst_entry *dst, u32 tsoff);
469 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
470 		      u32 cookie);
471 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
472 #ifdef CONFIG_SYN_COOKIES
473 
474 /* Syncookies use a monotonic timer which increments every 60 seconds.
475  * This counter is used both as a hash input and partially encoded into
476  * the cookie value.  A cookie is only validated further if the delta
477  * between the current counter value and the encoded one is less than this,
478  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
479  * the counter advances immediately after a cookie is generated).
480  */
481 #define MAX_SYNCOOKIE_AGE	2
482 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
483 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
484 
485 /* syncookies: remember time of last synqueue overflow
486  * But do not dirty this field too often (once per second is enough)
487  * It is racy as we do not hold a lock, but race is very minor.
488  */
489 static inline void tcp_synq_overflow(const struct sock *sk)
490 {
491 	unsigned int last_overflow;
492 	unsigned int now = jiffies;
493 
494 	if (sk->sk_reuseport) {
495 		struct sock_reuseport *reuse;
496 
497 		reuse = rcu_dereference(sk->sk_reuseport_cb);
498 		if (likely(reuse)) {
499 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
500 			if (!time_between32(now, last_overflow,
501 					    last_overflow + HZ))
502 				WRITE_ONCE(reuse->synq_overflow_ts, now);
503 			return;
504 		}
505 	}
506 
507 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
508 	if (!time_between32(now, last_overflow, last_overflow + HZ))
509 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
510 }
511 
512 /* syncookies: no recent synqueue overflow on this listening socket? */
513 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
514 {
515 	unsigned int last_overflow;
516 	unsigned int now = jiffies;
517 
518 	if (sk->sk_reuseport) {
519 		struct sock_reuseport *reuse;
520 
521 		reuse = rcu_dereference(sk->sk_reuseport_cb);
522 		if (likely(reuse)) {
523 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
524 			return !time_between32(now, last_overflow - HZ,
525 					       last_overflow +
526 					       TCP_SYNCOOKIE_VALID);
527 		}
528 	}
529 
530 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
531 
532 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
533 	 * then we're under synflood. However, we have to use
534 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
535 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
536 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
537 	 * which could lead to rejecting a valid syncookie.
538 	 */
539 	return !time_between32(now, last_overflow - HZ,
540 			       last_overflow + TCP_SYNCOOKIE_VALID);
541 }
542 
543 static inline u32 tcp_cookie_time(void)
544 {
545 	u64 val = get_jiffies_64();
546 
547 	do_div(val, TCP_SYNCOOKIE_PERIOD);
548 	return val;
549 }
550 
551 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
552 			      u16 *mssp);
553 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
554 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
555 bool cookie_timestamp_decode(const struct net *net,
556 			     struct tcp_options_received *opt);
557 bool cookie_ecn_ok(const struct tcp_options_received *opt,
558 		   const struct net *net, const struct dst_entry *dst);
559 
560 /* From net/ipv6/syncookies.c */
561 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
562 		      u32 cookie);
563 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
564 
565 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
566 			      const struct tcphdr *th, u16 *mssp);
567 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
568 #endif
569 /* tcp_output.c */
570 
571 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
572 			       int nonagle);
573 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
574 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
575 void tcp_retransmit_timer(struct sock *sk);
576 void tcp_xmit_retransmit_queue(struct sock *);
577 void tcp_simple_retransmit(struct sock *);
578 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
579 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
580 enum tcp_queue {
581 	TCP_FRAG_IN_WRITE_QUEUE,
582 	TCP_FRAG_IN_RTX_QUEUE,
583 };
584 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
585 		 struct sk_buff *skb, u32 len,
586 		 unsigned int mss_now, gfp_t gfp);
587 
588 void tcp_send_probe0(struct sock *);
589 void tcp_send_partial(struct sock *);
590 int tcp_write_wakeup(struct sock *, int mib);
591 void tcp_send_fin(struct sock *sk);
592 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
593 int tcp_send_synack(struct sock *);
594 void tcp_push_one(struct sock *, unsigned int mss_now);
595 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
596 void tcp_send_ack(struct sock *sk);
597 void tcp_send_delayed_ack(struct sock *sk);
598 void tcp_send_loss_probe(struct sock *sk);
599 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
600 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
601 			     const struct sk_buff *next_skb);
602 
603 /* tcp_input.c */
604 void tcp_rearm_rto(struct sock *sk);
605 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
606 void tcp_reset(struct sock *sk);
607 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
608 void tcp_fin(struct sock *sk);
609 
610 /* tcp_timer.c */
611 void tcp_init_xmit_timers(struct sock *);
612 static inline void tcp_clear_xmit_timers(struct sock *sk)
613 {
614 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
615 		__sock_put(sk);
616 
617 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
618 		__sock_put(sk);
619 
620 	inet_csk_clear_xmit_timers(sk);
621 }
622 
623 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
624 unsigned int tcp_current_mss(struct sock *sk);
625 
626 /* Bound MSS / TSO packet size with the half of the window */
627 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
628 {
629 	int cutoff;
630 
631 	/* When peer uses tiny windows, there is no use in packetizing
632 	 * to sub-MSS pieces for the sake of SWS or making sure there
633 	 * are enough packets in the pipe for fast recovery.
634 	 *
635 	 * On the other hand, for extremely large MSS devices, handling
636 	 * smaller than MSS windows in this way does make sense.
637 	 */
638 	if (tp->max_window > TCP_MSS_DEFAULT)
639 		cutoff = (tp->max_window >> 1);
640 	else
641 		cutoff = tp->max_window;
642 
643 	if (cutoff && pktsize > cutoff)
644 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
645 	else
646 		return pktsize;
647 }
648 
649 /* tcp.c */
650 void tcp_get_info(struct sock *, struct tcp_info *);
651 
652 /* Read 'sendfile()'-style from a TCP socket */
653 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
654 		  sk_read_actor_t recv_actor);
655 
656 void tcp_initialize_rcv_mss(struct sock *sk);
657 
658 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
659 int tcp_mss_to_mtu(struct sock *sk, int mss);
660 void tcp_mtup_init(struct sock *sk);
661 
662 static inline void tcp_bound_rto(const struct sock *sk)
663 {
664 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
665 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
666 }
667 
668 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
669 {
670 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
671 }
672 
673 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
674 {
675 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
676 			       ntohl(TCP_FLAG_ACK) |
677 			       snd_wnd);
678 }
679 
680 static inline void tcp_fast_path_on(struct tcp_sock *tp)
681 {
682 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
683 }
684 
685 static inline void tcp_fast_path_check(struct sock *sk)
686 {
687 	struct tcp_sock *tp = tcp_sk(sk);
688 
689 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
690 	    tp->rcv_wnd &&
691 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
692 	    !tp->urg_data)
693 		tcp_fast_path_on(tp);
694 }
695 
696 /* Compute the actual rto_min value */
697 static inline u32 tcp_rto_min(struct sock *sk)
698 {
699 	const struct dst_entry *dst = __sk_dst_get(sk);
700 	u32 rto_min = TCP_RTO_MIN;
701 
702 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
703 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
704 	return rto_min;
705 }
706 
707 static inline u32 tcp_rto_min_us(struct sock *sk)
708 {
709 	return jiffies_to_usecs(tcp_rto_min(sk));
710 }
711 
712 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
713 {
714 	return dst_metric_locked(dst, RTAX_CC_ALGO);
715 }
716 
717 /* Minimum RTT in usec. ~0 means not available. */
718 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
719 {
720 	return minmax_get(&tp->rtt_min);
721 }
722 
723 /* Compute the actual receive window we are currently advertising.
724  * Rcv_nxt can be after the window if our peer push more data
725  * than the offered window.
726  */
727 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
728 {
729 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
730 
731 	if (win < 0)
732 		win = 0;
733 	return (u32) win;
734 }
735 
736 /* Choose a new window, without checks for shrinking, and without
737  * scaling applied to the result.  The caller does these things
738  * if necessary.  This is a "raw" window selection.
739  */
740 u32 __tcp_select_window(struct sock *sk);
741 
742 void tcp_send_window_probe(struct sock *sk);
743 
744 /* TCP uses 32bit jiffies to save some space.
745  * Note that this is different from tcp_time_stamp, which
746  * historically has been the same until linux-4.13.
747  */
748 #define tcp_jiffies32 ((u32)jiffies)
749 
750 /*
751  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
752  * It is no longer tied to jiffies, but to 1 ms clock.
753  * Note: double check if you want to use tcp_jiffies32 instead of this.
754  */
755 #define TCP_TS_HZ	1000
756 
757 static inline u64 tcp_clock_ns(void)
758 {
759 	return ktime_get_ns();
760 }
761 
762 static inline u64 tcp_clock_us(void)
763 {
764 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
765 }
766 
767 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
768 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
769 {
770 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
771 }
772 
773 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
774 static inline u32 tcp_ns_to_ts(u64 ns)
775 {
776 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
777 }
778 
779 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
780 static inline u32 tcp_time_stamp_raw(void)
781 {
782 	return tcp_ns_to_ts(tcp_clock_ns());
783 }
784 
785 void tcp_mstamp_refresh(struct tcp_sock *tp);
786 
787 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
788 {
789 	return max_t(s64, t1 - t0, 0);
790 }
791 
792 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
793 {
794 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
795 }
796 
797 /* provide the departure time in us unit */
798 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
799 {
800 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
801 }
802 
803 
804 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
805 
806 #define TCPHDR_FIN 0x01
807 #define TCPHDR_SYN 0x02
808 #define TCPHDR_RST 0x04
809 #define TCPHDR_PSH 0x08
810 #define TCPHDR_ACK 0x10
811 #define TCPHDR_URG 0x20
812 #define TCPHDR_ECE 0x40
813 #define TCPHDR_CWR 0x80
814 
815 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
816 
817 /* This is what the send packet queuing engine uses to pass
818  * TCP per-packet control information to the transmission code.
819  * We also store the host-order sequence numbers in here too.
820  * This is 44 bytes if IPV6 is enabled.
821  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
822  */
823 struct tcp_skb_cb {
824 	__u32		seq;		/* Starting sequence number	*/
825 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
826 	union {
827 		/* Note : tcp_tw_isn is used in input path only
828 		 *	  (isn chosen by tcp_timewait_state_process())
829 		 *
830 		 * 	  tcp_gso_segs/size are used in write queue only,
831 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
832 		 */
833 		__u32		tcp_tw_isn;
834 		struct {
835 			u16	tcp_gso_segs;
836 			u16	tcp_gso_size;
837 		};
838 	};
839 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
840 
841 	__u8		sacked;		/* State flags for SACK.	*/
842 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
843 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
844 #define TCPCB_LOST		0x04	/* SKB is lost			*/
845 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
846 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
847 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
848 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
849 				TCPCB_REPAIRED)
850 
851 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
852 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
853 			eor:1,		/* Is skb MSG_EOR marked? */
854 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
855 			unused:5;
856 	__u32		ack_seq;	/* Sequence number ACK'd	*/
857 	union {
858 		struct {
859 			/* There is space for up to 24 bytes */
860 			__u32 in_flight:30,/* Bytes in flight at transmit */
861 			      is_app_limited:1, /* cwnd not fully used? */
862 			      unused:1;
863 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
864 			__u32 delivered;
865 			/* start of send pipeline phase */
866 			u64 first_tx_mstamp;
867 			/* when we reached the "delivered" count */
868 			u64 delivered_mstamp;
869 		} tx;   /* only used for outgoing skbs */
870 		union {
871 			struct inet_skb_parm	h4;
872 #if IS_ENABLED(CONFIG_IPV6)
873 			struct inet6_skb_parm	h6;
874 #endif
875 		} header;	/* For incoming skbs */
876 		struct {
877 			__u32 flags;
878 			struct sock *sk_redir;
879 			void *data_end;
880 		} bpf;
881 	};
882 };
883 
884 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
885 
886 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
887 {
888 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
889 }
890 
891 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
892 {
893 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
894 }
895 
896 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
897 {
898 	return TCP_SKB_CB(skb)->bpf.sk_redir;
899 }
900 
901 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
902 {
903 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
904 }
905 
906 extern const struct inet_connection_sock_af_ops ipv4_specific;
907 
908 #if IS_ENABLED(CONFIG_IPV6)
909 /* This is the variant of inet6_iif() that must be used by TCP,
910  * as TCP moves IP6CB into a different location in skb->cb[]
911  */
912 static inline int tcp_v6_iif(const struct sk_buff *skb)
913 {
914 	return TCP_SKB_CB(skb)->header.h6.iif;
915 }
916 
917 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
918 {
919 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
920 
921 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
922 }
923 
924 /* TCP_SKB_CB reference means this can not be used from early demux */
925 static inline int tcp_v6_sdif(const struct sk_buff *skb)
926 {
927 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
928 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
929 		return TCP_SKB_CB(skb)->header.h6.iif;
930 #endif
931 	return 0;
932 }
933 
934 extern const struct inet_connection_sock_af_ops ipv6_specific;
935 
936 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
937 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
938 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
939 
940 #endif
941 
942 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
943 {
944 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
945 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
946 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
947 		return true;
948 #endif
949 	return false;
950 }
951 
952 /* TCP_SKB_CB reference means this can not be used from early demux */
953 static inline int tcp_v4_sdif(struct sk_buff *skb)
954 {
955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957 		return TCP_SKB_CB(skb)->header.h4.iif;
958 #endif
959 	return 0;
960 }
961 
962 /* Due to TSO, an SKB can be composed of multiple actual
963  * packets.  To keep these tracked properly, we use this.
964  */
965 static inline int tcp_skb_pcount(const struct sk_buff *skb)
966 {
967 	return TCP_SKB_CB(skb)->tcp_gso_segs;
968 }
969 
970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971 {
972 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973 }
974 
975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976 {
977 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978 }
979 
980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
981 static inline int tcp_skb_mss(const struct sk_buff *skb)
982 {
983 	return TCP_SKB_CB(skb)->tcp_gso_size;
984 }
985 
986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987 {
988 	return likely(!TCP_SKB_CB(skb)->eor);
989 }
990 
991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992 					const struct sk_buff *from)
993 {
994 	return likely(tcp_skb_can_collapse_to(to) &&
995 		      mptcp_skb_can_collapse(to, from));
996 }
997 
998 /* Events passed to congestion control interface */
999 enum tcp_ca_event {
1000 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003 	CA_EVENT_LOSS,		/* loss timeout */
1004 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006 };
1007 
1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009 enum tcp_ca_ack_event_flags {
1010 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013 };
1014 
1015 /*
1016  * Interface for adding new TCP congestion control handlers
1017  */
1018 #define TCP_CA_NAME_MAX	16
1019 #define TCP_CA_MAX	128
1020 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021 
1022 #define TCP_CA_UNSPEC	0
1023 
1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025 #define TCP_CONG_NON_RESTRICTED 0x1
1026 /* Requires ECN/ECT set on all packets */
1027 #define TCP_CONG_NEEDS_ECN	0x2
1028 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029 
1030 union tcp_cc_info;
1031 
1032 struct ack_sample {
1033 	u32 pkts_acked;
1034 	s32 rtt_us;
1035 	u32 in_flight;
1036 };
1037 
1038 /* A rate sample measures the number of (original/retransmitted) data
1039  * packets delivered "delivered" over an interval of time "interval_us".
1040  * The tcp_rate.c code fills in the rate sample, and congestion
1041  * control modules that define a cong_control function to run at the end
1042  * of ACK processing can optionally chose to consult this sample when
1043  * setting cwnd and pacing rate.
1044  * A sample is invalid if "delivered" or "interval_us" is negative.
1045  */
1046 struct rate_sample {
1047 	u64  prior_mstamp; /* starting timestamp for interval */
1048 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049 	s32  delivered;		/* number of packets delivered over interval */
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1058 	bool is_retrans;	/* is sample from retransmission? */
1059 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1060 };
1061 
1062 struct tcp_congestion_ops {
1063 	struct list_head	list;
1064 	u32 key;
1065 	u32 flags;
1066 
1067 	/* initialize private data (optional) */
1068 	void (*init)(struct sock *sk);
1069 	/* cleanup private data  (optional) */
1070 	void (*release)(struct sock *sk);
1071 
1072 	/* return slow start threshold (required) */
1073 	u32 (*ssthresh)(struct sock *sk);
1074 	/* do new cwnd calculation (required) */
1075 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1076 	/* call before changing ca_state (optional) */
1077 	void (*set_state)(struct sock *sk, u8 new_state);
1078 	/* call when cwnd event occurs (optional) */
1079 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080 	/* call when ack arrives (optional) */
1081 	void (*in_ack_event)(struct sock *sk, u32 flags);
1082 	/* new value of cwnd after loss (required) */
1083 	u32  (*undo_cwnd)(struct sock *sk);
1084 	/* hook for packet ack accounting (optional) */
1085 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086 	/* override sysctl_tcp_min_tso_segs */
1087 	u32 (*min_tso_segs)(struct sock *sk);
1088 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1089 	u32 (*sndbuf_expand)(struct sock *sk);
1090 	/* call when packets are delivered to update cwnd and pacing rate,
1091 	 * after all the ca_state processing. (optional)
1092 	 */
1093 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094 	/* get info for inet_diag (optional) */
1095 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1096 			   union tcp_cc_info *info);
1097 
1098 	char 		name[TCP_CA_NAME_MAX];
1099 	struct module 	*owner;
1100 };
1101 
1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1104 
1105 void tcp_assign_congestion_control(struct sock *sk);
1106 void tcp_init_congestion_control(struct sock *sk);
1107 void tcp_cleanup_congestion_control(struct sock *sk);
1108 int tcp_set_default_congestion_control(struct net *net, const char *name);
1109 void tcp_get_default_congestion_control(struct net *net, char *name);
1110 void tcp_get_available_congestion_control(char *buf, size_t len);
1111 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1112 int tcp_set_allowed_congestion_control(char *allowed);
1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1114 			       bool reinit, bool cap_net_admin);
1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1117 
1118 u32 tcp_reno_ssthresh(struct sock *sk);
1119 u32 tcp_reno_undo_cwnd(struct sock *sk);
1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1121 extern struct tcp_congestion_ops tcp_reno;
1122 
1123 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1126 #ifdef CONFIG_INET
1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1128 #else
1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 {
1131 	return NULL;
1132 }
1133 #endif
1134 
1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1136 {
1137 	const struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1140 }
1141 
1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1143 {
1144 	struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	if (icsk->icsk_ca_ops->set_state)
1147 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1148 	icsk->icsk_ca_state = ca_state;
1149 }
1150 
1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_rate.c */
1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1162 			    struct rate_sample *rs);
1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1164 		  bool is_sack_reneg, struct rate_sample *rs);
1165 void tcp_rate_check_app_limited(struct sock *sk);
1166 
1167 /* These functions determine how the current flow behaves in respect of SACK
1168  * handling. SACK is negotiated with the peer, and therefore it can vary
1169  * between different flows.
1170  *
1171  * tcp_is_sack - SACK enabled
1172  * tcp_is_reno - No SACK
1173  */
1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 	return likely(tp->rx_opt.sack_ok);
1177 }
1178 
1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 	return !tcp_is_sack(tp);
1182 }
1183 
1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 	return tp->sacked_out + tp->lost_out;
1187 }
1188 
1189 /* This determines how many packets are "in the network" to the best
1190  * of our knowledge.  In many cases it is conservative, but where
1191  * detailed information is available from the receiver (via SACK
1192  * blocks etc.) we can make more aggressive calculations.
1193  *
1194  * Use this for decisions involving congestion control, use just
1195  * tp->packets_out to determine if the send queue is empty or not.
1196  *
1197  * Read this equation as:
1198  *
1199  *	"Packets sent once on transmission queue" MINUS
1200  *	"Packets left network, but not honestly ACKed yet" PLUS
1201  *	"Packets fast retransmitted"
1202  */
1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207 
1208 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1209 
1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214 
1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219 
1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 	       (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225 
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228  * ssthresh.
1229  */
1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 	const struct tcp_sock *tp = tcp_sk(sk);
1233 
1234 	if (tcp_in_cwnd_reduction(sk))
1235 		return tp->snd_ssthresh;
1236 	else
1237 		return max(tp->snd_ssthresh,
1238 			   ((tp->snd_cwnd >> 1) +
1239 			    (tp->snd_cwnd >> 2)));
1240 }
1241 
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244 
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247 
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249  * sending if not using sysctl_tcp_tso_win_divisor.
1250  */
1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 	return 3;
1254 }
1255 
1256 /* Returns end sequence number of the receiver's advertised window */
1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 	return tp->snd_una + tp->snd_wnd;
1260 }
1261 
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263  * flexible approach. The RFC suggests cwnd should not be raised unless
1264  * it was fully used previously. And that's exactly what we do in
1265  * congestion avoidance mode. But in slow start we allow cwnd to grow
1266  * as long as the application has used half the cwnd.
1267  * Example :
1268  *    cwnd is 10 (IW10), but application sends 9 frames.
1269  *    We allow cwnd to reach 18 when all frames are ACKed.
1270  * This check is safe because it's as aggressive as slow start which already
1271  * risks 100% overshoot. The advantage is that we discourage application to
1272  * either send more filler packets or data to artificially blow up the cwnd
1273  * usage, and allow application-limited process to probe bw more aggressively.
1274  */
1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 	const struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1280 	if (tcp_in_slow_start(tp))
1281 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1282 
1283 	return tp->is_cwnd_limited;
1284 }
1285 
1286 /* BBR congestion control needs pacing.
1287  * Same remark for SO_MAX_PACING_RATE.
1288  * sch_fq packet scheduler is efficiently handling pacing,
1289  * but is not always installed/used.
1290  * Return true if TCP stack should pace packets itself.
1291  */
1292 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1293 {
1294 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1295 }
1296 
1297 /* Estimates in how many jiffies next packet for this flow can be sent.
1298  * Scheduling a retransmit timer too early would be silly.
1299  */
1300 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1301 {
1302 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1303 
1304 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1305 }
1306 
1307 static inline void tcp_reset_xmit_timer(struct sock *sk,
1308 					const int what,
1309 					unsigned long when,
1310 					const unsigned long max_when)
1311 {
1312 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1313 				  max_when);
1314 }
1315 
1316 /* Something is really bad, we could not queue an additional packet,
1317  * because qdisc is full or receiver sent a 0 window, or we are paced.
1318  * We do not want to add fuel to the fire, or abort too early,
1319  * so make sure the timer we arm now is at least 200ms in the future,
1320  * regardless of current icsk_rto value (as it could be ~2ms)
1321  */
1322 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1323 {
1324 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1325 }
1326 
1327 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1328 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1329 					    unsigned long max_when)
1330 {
1331 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1332 
1333 	return (unsigned long)min_t(u64, when, max_when);
1334 }
1335 
1336 static inline void tcp_check_probe_timer(struct sock *sk)
1337 {
1338 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1339 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1340 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1341 }
1342 
1343 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1344 {
1345 	tp->snd_wl1 = seq;
1346 }
1347 
1348 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1349 {
1350 	tp->snd_wl1 = seq;
1351 }
1352 
1353 /*
1354  * Calculate(/check) TCP checksum
1355  */
1356 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1357 				   __be32 daddr, __wsum base)
1358 {
1359 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1360 }
1361 
1362 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1363 {
1364 	return !skb_csum_unnecessary(skb) &&
1365 		__skb_checksum_complete(skb);
1366 }
1367 
1368 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1369 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1370 void tcp_set_state(struct sock *sk, int state);
1371 void tcp_done(struct sock *sk);
1372 int tcp_abort(struct sock *sk, int err);
1373 
1374 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1375 {
1376 	rx_opt->dsack = 0;
1377 	rx_opt->num_sacks = 0;
1378 }
1379 
1380 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1381 
1382 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1383 {
1384 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1385 	struct tcp_sock *tp = tcp_sk(sk);
1386 	s32 delta;
1387 
1388 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1389 	    ca_ops->cong_control)
1390 		return;
1391 	delta = tcp_jiffies32 - tp->lsndtime;
1392 	if (delta > inet_csk(sk)->icsk_rto)
1393 		tcp_cwnd_restart(sk, delta);
1394 }
1395 
1396 /* Determine a window scaling and initial window to offer. */
1397 void tcp_select_initial_window(const struct sock *sk, int __space,
1398 			       __u32 mss, __u32 *rcv_wnd,
1399 			       __u32 *window_clamp, int wscale_ok,
1400 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1401 
1402 static inline int tcp_win_from_space(const struct sock *sk, int space)
1403 {
1404 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1405 
1406 	return tcp_adv_win_scale <= 0 ?
1407 		(space>>(-tcp_adv_win_scale)) :
1408 		space - (space>>tcp_adv_win_scale);
1409 }
1410 
1411 /* Note: caller must be prepared to deal with negative returns */
1412 static inline int tcp_space(const struct sock *sk)
1413 {
1414 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1415 				  READ_ONCE(sk->sk_backlog.len) -
1416 				  atomic_read(&sk->sk_rmem_alloc));
1417 }
1418 
1419 static inline int tcp_full_space(const struct sock *sk)
1420 {
1421 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1422 }
1423 
1424 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1425  * If 87.5 % (7/8) of the space has been consumed, we want to override
1426  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1427  * len/truesize ratio.
1428  */
1429 static inline bool tcp_rmem_pressure(const struct sock *sk)
1430 {
1431 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1432 	int threshold = rcvbuf - (rcvbuf >> 3);
1433 
1434 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1435 }
1436 
1437 extern void tcp_openreq_init_rwin(struct request_sock *req,
1438 				  const struct sock *sk_listener,
1439 				  const struct dst_entry *dst);
1440 
1441 void tcp_enter_memory_pressure(struct sock *sk);
1442 void tcp_leave_memory_pressure(struct sock *sk);
1443 
1444 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1445 {
1446 	struct net *net = sock_net((struct sock *)tp);
1447 
1448 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1449 }
1450 
1451 static inline int keepalive_time_when(const struct tcp_sock *tp)
1452 {
1453 	struct net *net = sock_net((struct sock *)tp);
1454 
1455 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1456 }
1457 
1458 static inline int keepalive_probes(const struct tcp_sock *tp)
1459 {
1460 	struct net *net = sock_net((struct sock *)tp);
1461 
1462 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1463 }
1464 
1465 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1466 {
1467 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1468 
1469 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1470 			  tcp_jiffies32 - tp->rcv_tstamp);
1471 }
1472 
1473 static inline int tcp_fin_time(const struct sock *sk)
1474 {
1475 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1476 	const int rto = inet_csk(sk)->icsk_rto;
1477 
1478 	if (fin_timeout < (rto << 2) - (rto >> 1))
1479 		fin_timeout = (rto << 2) - (rto >> 1);
1480 
1481 	return fin_timeout;
1482 }
1483 
1484 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1485 				  int paws_win)
1486 {
1487 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1488 		return true;
1489 	if (unlikely(!time_before32(ktime_get_seconds(),
1490 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1491 		return true;
1492 	/*
1493 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1494 	 * then following tcp messages have valid values. Ignore 0 value,
1495 	 * or else 'negative' tsval might forbid us to accept their packets.
1496 	 */
1497 	if (!rx_opt->ts_recent)
1498 		return true;
1499 	return false;
1500 }
1501 
1502 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1503 				   int rst)
1504 {
1505 	if (tcp_paws_check(rx_opt, 0))
1506 		return false;
1507 
1508 	/* RST segments are not recommended to carry timestamp,
1509 	   and, if they do, it is recommended to ignore PAWS because
1510 	   "their cleanup function should take precedence over timestamps."
1511 	   Certainly, it is mistake. It is necessary to understand the reasons
1512 	   of this constraint to relax it: if peer reboots, clock may go
1513 	   out-of-sync and half-open connections will not be reset.
1514 	   Actually, the problem would be not existing if all
1515 	   the implementations followed draft about maintaining clock
1516 	   via reboots. Linux-2.2 DOES NOT!
1517 
1518 	   However, we can relax time bounds for RST segments to MSL.
1519 	 */
1520 	if (rst && !time_before32(ktime_get_seconds(),
1521 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1522 		return false;
1523 	return true;
1524 }
1525 
1526 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1527 			  int mib_idx, u32 *last_oow_ack_time);
1528 
1529 static inline void tcp_mib_init(struct net *net)
1530 {
1531 	/* See RFC 2012 */
1532 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1533 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1534 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1535 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1536 }
1537 
1538 /* from STCP */
1539 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1540 {
1541 	tp->lost_skb_hint = NULL;
1542 }
1543 
1544 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1545 {
1546 	tcp_clear_retrans_hints_partial(tp);
1547 	tp->retransmit_skb_hint = NULL;
1548 }
1549 
1550 union tcp_md5_addr {
1551 	struct in_addr  a4;
1552 #if IS_ENABLED(CONFIG_IPV6)
1553 	struct in6_addr	a6;
1554 #endif
1555 };
1556 
1557 /* - key database */
1558 struct tcp_md5sig_key {
1559 	struct hlist_node	node;
1560 	u8			keylen;
1561 	u8			family; /* AF_INET or AF_INET6 */
1562 	u8			prefixlen;
1563 	union tcp_md5_addr	addr;
1564 	int			l3index; /* set if key added with L3 scope */
1565 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1566 	struct rcu_head		rcu;
1567 };
1568 
1569 /* - sock block */
1570 struct tcp_md5sig_info {
1571 	struct hlist_head	head;
1572 	struct rcu_head		rcu;
1573 };
1574 
1575 /* - pseudo header */
1576 struct tcp4_pseudohdr {
1577 	__be32		saddr;
1578 	__be32		daddr;
1579 	__u8		pad;
1580 	__u8		protocol;
1581 	__be16		len;
1582 };
1583 
1584 struct tcp6_pseudohdr {
1585 	struct in6_addr	saddr;
1586 	struct in6_addr daddr;
1587 	__be32		len;
1588 	__be32		protocol;	/* including padding */
1589 };
1590 
1591 union tcp_md5sum_block {
1592 	struct tcp4_pseudohdr ip4;
1593 #if IS_ENABLED(CONFIG_IPV6)
1594 	struct tcp6_pseudohdr ip6;
1595 #endif
1596 };
1597 
1598 /* - pool: digest algorithm, hash description and scratch buffer */
1599 struct tcp_md5sig_pool {
1600 	struct ahash_request	*md5_req;
1601 	void			*scratch;
1602 };
1603 
1604 /* - functions */
1605 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1606 			const struct sock *sk, const struct sk_buff *skb);
1607 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1608 		   int family, u8 prefixlen, int l3index,
1609 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1610 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1611 		   int family, u8 prefixlen, int l3index);
1612 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1613 					 const struct sock *addr_sk);
1614 
1615 #ifdef CONFIG_TCP_MD5SIG
1616 #include <linux/jump_label.h>
1617 extern struct static_key_false tcp_md5_needed;
1618 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1619 					   const union tcp_md5_addr *addr,
1620 					   int family);
1621 static inline struct tcp_md5sig_key *
1622 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1623 		  const union tcp_md5_addr *addr, int family)
1624 {
1625 	if (!static_branch_unlikely(&tcp_md5_needed))
1626 		return NULL;
1627 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1628 }
1629 
1630 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1631 #else
1632 static inline struct tcp_md5sig_key *
1633 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1634 		  const union tcp_md5_addr *addr, int family)
1635 {
1636 	return NULL;
1637 }
1638 #define tcp_twsk_md5_key(twsk)	NULL
1639 #endif
1640 
1641 bool tcp_alloc_md5sig_pool(void);
1642 
1643 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1644 static inline void tcp_put_md5sig_pool(void)
1645 {
1646 	local_bh_enable();
1647 }
1648 
1649 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1650 			  unsigned int header_len);
1651 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1652 		     const struct tcp_md5sig_key *key);
1653 
1654 /* From tcp_fastopen.c */
1655 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1656 			    struct tcp_fastopen_cookie *cookie);
1657 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1658 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1659 			    u16 try_exp);
1660 struct tcp_fastopen_request {
1661 	/* Fast Open cookie. Size 0 means a cookie request */
1662 	struct tcp_fastopen_cookie	cookie;
1663 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1664 	size_t				size;
1665 	int				copied;	/* queued in tcp_connect() */
1666 	struct ubuf_info		*uarg;
1667 };
1668 void tcp_free_fastopen_req(struct tcp_sock *tp);
1669 void tcp_fastopen_destroy_cipher(struct sock *sk);
1670 void tcp_fastopen_ctx_destroy(struct net *net);
1671 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1672 			      void *primary_key, void *backup_key);
1673 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1674 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1675 			      struct request_sock *req,
1676 			      struct tcp_fastopen_cookie *foc,
1677 			      const struct dst_entry *dst);
1678 void tcp_fastopen_init_key_once(struct net *net);
1679 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1680 			     struct tcp_fastopen_cookie *cookie);
1681 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1682 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1683 #define TCP_FASTOPEN_KEY_MAX 2
1684 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1685 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1686 
1687 /* Fastopen key context */
1688 struct tcp_fastopen_context {
1689 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1690 	int		num;
1691 	struct rcu_head	rcu;
1692 };
1693 
1694 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1695 void tcp_fastopen_active_disable(struct sock *sk);
1696 bool tcp_fastopen_active_should_disable(struct sock *sk);
1697 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1698 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1699 
1700 /* Caller needs to wrap with rcu_read_(un)lock() */
1701 static inline
1702 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1703 {
1704 	struct tcp_fastopen_context *ctx;
1705 
1706 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1707 	if (!ctx)
1708 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1709 	return ctx;
1710 }
1711 
1712 static inline
1713 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1714 			       const struct tcp_fastopen_cookie *orig)
1715 {
1716 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1717 	    orig->len == foc->len &&
1718 	    !memcmp(orig->val, foc->val, foc->len))
1719 		return true;
1720 	return false;
1721 }
1722 
1723 static inline
1724 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1725 {
1726 	return ctx->num;
1727 }
1728 
1729 /* Latencies incurred by various limits for a sender. They are
1730  * chronograph-like stats that are mutually exclusive.
1731  */
1732 enum tcp_chrono {
1733 	TCP_CHRONO_UNSPEC,
1734 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1735 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1736 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1737 	__TCP_CHRONO_MAX,
1738 };
1739 
1740 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1741 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1742 
1743 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1744  * the same memory storage than skb->destructor/_skb_refdst
1745  */
1746 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1747 {
1748 	skb->destructor = NULL;
1749 	skb->_skb_refdst = 0UL;
1750 }
1751 
1752 #define tcp_skb_tsorted_save(skb) {		\
1753 	unsigned long _save = skb->_skb_refdst;	\
1754 	skb->_skb_refdst = 0UL;
1755 
1756 #define tcp_skb_tsorted_restore(skb)		\
1757 	skb->_skb_refdst = _save;		\
1758 }
1759 
1760 void tcp_write_queue_purge(struct sock *sk);
1761 
1762 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1763 {
1764 	return skb_rb_first(&sk->tcp_rtx_queue);
1765 }
1766 
1767 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1768 {
1769 	return skb_rb_last(&sk->tcp_rtx_queue);
1770 }
1771 
1772 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1773 {
1774 	return skb_peek(&sk->sk_write_queue);
1775 }
1776 
1777 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1778 {
1779 	return skb_peek_tail(&sk->sk_write_queue);
1780 }
1781 
1782 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1783 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1784 
1785 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1786 {
1787 	return skb_peek(&sk->sk_write_queue);
1788 }
1789 
1790 static inline bool tcp_skb_is_last(const struct sock *sk,
1791 				   const struct sk_buff *skb)
1792 {
1793 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1794 }
1795 
1796 /**
1797  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1798  * @sk: socket
1799  *
1800  * Since the write queue can have a temporary empty skb in it,
1801  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1802  */
1803 static inline bool tcp_write_queue_empty(const struct sock *sk)
1804 {
1805 	const struct tcp_sock *tp = tcp_sk(sk);
1806 
1807 	return tp->write_seq == tp->snd_nxt;
1808 }
1809 
1810 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1811 {
1812 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1813 }
1814 
1815 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1816 {
1817 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1818 }
1819 
1820 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1821 {
1822 	__skb_queue_tail(&sk->sk_write_queue, skb);
1823 
1824 	/* Queue it, remembering where we must start sending. */
1825 	if (sk->sk_write_queue.next == skb)
1826 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1827 }
1828 
1829 /* Insert new before skb on the write queue of sk.  */
1830 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1831 						  struct sk_buff *skb,
1832 						  struct sock *sk)
1833 {
1834 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1835 }
1836 
1837 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1838 {
1839 	tcp_skb_tsorted_anchor_cleanup(skb);
1840 	__skb_unlink(skb, &sk->sk_write_queue);
1841 }
1842 
1843 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1844 
1845 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1846 {
1847 	tcp_skb_tsorted_anchor_cleanup(skb);
1848 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1849 }
1850 
1851 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1852 {
1853 	list_del(&skb->tcp_tsorted_anchor);
1854 	tcp_rtx_queue_unlink(skb, sk);
1855 	sk_wmem_free_skb(sk, skb);
1856 }
1857 
1858 static inline void tcp_push_pending_frames(struct sock *sk)
1859 {
1860 	if (tcp_send_head(sk)) {
1861 		struct tcp_sock *tp = tcp_sk(sk);
1862 
1863 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1864 	}
1865 }
1866 
1867 /* Start sequence of the skb just after the highest skb with SACKed
1868  * bit, valid only if sacked_out > 0 or when the caller has ensured
1869  * validity by itself.
1870  */
1871 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1872 {
1873 	if (!tp->sacked_out)
1874 		return tp->snd_una;
1875 
1876 	if (tp->highest_sack == NULL)
1877 		return tp->snd_nxt;
1878 
1879 	return TCP_SKB_CB(tp->highest_sack)->seq;
1880 }
1881 
1882 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1883 {
1884 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1885 }
1886 
1887 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1888 {
1889 	return tcp_sk(sk)->highest_sack;
1890 }
1891 
1892 static inline void tcp_highest_sack_reset(struct sock *sk)
1893 {
1894 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1895 }
1896 
1897 /* Called when old skb is about to be deleted and replaced by new skb */
1898 static inline void tcp_highest_sack_replace(struct sock *sk,
1899 					    struct sk_buff *old,
1900 					    struct sk_buff *new)
1901 {
1902 	if (old == tcp_highest_sack(sk))
1903 		tcp_sk(sk)->highest_sack = new;
1904 }
1905 
1906 /* This helper checks if socket has IP_TRANSPARENT set */
1907 static inline bool inet_sk_transparent(const struct sock *sk)
1908 {
1909 	switch (sk->sk_state) {
1910 	case TCP_TIME_WAIT:
1911 		return inet_twsk(sk)->tw_transparent;
1912 	case TCP_NEW_SYN_RECV:
1913 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1914 	}
1915 	return inet_sk(sk)->transparent;
1916 }
1917 
1918 /* Determines whether this is a thin stream (which may suffer from
1919  * increased latency). Used to trigger latency-reducing mechanisms.
1920  */
1921 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1922 {
1923 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1924 }
1925 
1926 /* /proc */
1927 enum tcp_seq_states {
1928 	TCP_SEQ_STATE_LISTENING,
1929 	TCP_SEQ_STATE_ESTABLISHED,
1930 };
1931 
1932 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1933 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1934 void tcp_seq_stop(struct seq_file *seq, void *v);
1935 
1936 struct tcp_seq_afinfo {
1937 	sa_family_t			family;
1938 };
1939 
1940 struct tcp_iter_state {
1941 	struct seq_net_private	p;
1942 	enum tcp_seq_states	state;
1943 	struct sock		*syn_wait_sk;
1944 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1945 	int			bucket, offset, sbucket, num;
1946 	loff_t			last_pos;
1947 };
1948 
1949 extern struct request_sock_ops tcp_request_sock_ops;
1950 extern struct request_sock_ops tcp6_request_sock_ops;
1951 
1952 void tcp_v4_destroy_sock(struct sock *sk);
1953 
1954 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1955 				netdev_features_t features);
1956 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1957 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1958 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1959 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1960 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1961 int tcp_gro_complete(struct sk_buff *skb);
1962 
1963 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1964 
1965 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1966 {
1967 	struct net *net = sock_net((struct sock *)tp);
1968 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1969 }
1970 
1971 /* @wake is one when sk_stream_write_space() calls us.
1972  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1973  * This mimics the strategy used in sock_def_write_space().
1974  */
1975 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1976 {
1977 	const struct tcp_sock *tp = tcp_sk(sk);
1978 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1979 			    READ_ONCE(tp->snd_nxt);
1980 
1981 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1982 }
1983 
1984 #ifdef CONFIG_PROC_FS
1985 int tcp4_proc_init(void);
1986 void tcp4_proc_exit(void);
1987 #endif
1988 
1989 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1990 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1991 		     const struct tcp_request_sock_ops *af_ops,
1992 		     struct sock *sk, struct sk_buff *skb);
1993 
1994 /* TCP af-specific functions */
1995 struct tcp_sock_af_ops {
1996 #ifdef CONFIG_TCP_MD5SIG
1997 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1998 						const struct sock *addr_sk);
1999 	int		(*calc_md5_hash)(char *location,
2000 					 const struct tcp_md5sig_key *md5,
2001 					 const struct sock *sk,
2002 					 const struct sk_buff *skb);
2003 	int		(*md5_parse)(struct sock *sk,
2004 				     int optname,
2005 				     char __user *optval,
2006 				     int optlen);
2007 #endif
2008 };
2009 
2010 struct tcp_request_sock_ops {
2011 	u16 mss_clamp;
2012 #ifdef CONFIG_TCP_MD5SIG
2013 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2014 						 const struct sock *addr_sk);
2015 	int		(*calc_md5_hash) (char *location,
2016 					  const struct tcp_md5sig_key *md5,
2017 					  const struct sock *sk,
2018 					  const struct sk_buff *skb);
2019 #endif
2020 	void (*init_req)(struct request_sock *req,
2021 			 const struct sock *sk_listener,
2022 			 struct sk_buff *skb);
2023 #ifdef CONFIG_SYN_COOKIES
2024 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2025 				 __u16 *mss);
2026 #endif
2027 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2028 				       const struct request_sock *req);
2029 	u32 (*init_seq)(const struct sk_buff *skb);
2030 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2031 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2032 			   struct flowi *fl, struct request_sock *req,
2033 			   struct tcp_fastopen_cookie *foc,
2034 			   enum tcp_synack_type synack_type);
2035 };
2036 
2037 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2038 #if IS_ENABLED(CONFIG_IPV6)
2039 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2040 #endif
2041 
2042 #ifdef CONFIG_SYN_COOKIES
2043 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2044 					 const struct sock *sk, struct sk_buff *skb,
2045 					 __u16 *mss)
2046 {
2047 	tcp_synq_overflow(sk);
2048 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2049 	return ops->cookie_init_seq(skb, mss);
2050 }
2051 #else
2052 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2053 					 const struct sock *sk, struct sk_buff *skb,
2054 					 __u16 *mss)
2055 {
2056 	return 0;
2057 }
2058 #endif
2059 
2060 int tcpv4_offload_init(void);
2061 
2062 void tcp_v4_init(void);
2063 void tcp_init(void);
2064 
2065 /* tcp_recovery.c */
2066 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2067 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2068 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2069 				u32 reo_wnd);
2070 extern void tcp_rack_mark_lost(struct sock *sk);
2071 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2072 			     u64 xmit_time);
2073 extern void tcp_rack_reo_timeout(struct sock *sk);
2074 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2075 
2076 /* At how many usecs into the future should the RTO fire? */
2077 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2078 {
2079 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2080 	u32 rto = inet_csk(sk)->icsk_rto;
2081 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2082 
2083 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2084 }
2085 
2086 /*
2087  * Save and compile IPv4 options, return a pointer to it
2088  */
2089 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2090 							 struct sk_buff *skb)
2091 {
2092 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2093 	struct ip_options_rcu *dopt = NULL;
2094 
2095 	if (opt->optlen) {
2096 		int opt_size = sizeof(*dopt) + opt->optlen;
2097 
2098 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2099 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2100 			kfree(dopt);
2101 			dopt = NULL;
2102 		}
2103 	}
2104 	return dopt;
2105 }
2106 
2107 /* locally generated TCP pure ACKs have skb->truesize == 2
2108  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2109  * This is much faster than dissecting the packet to find out.
2110  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2111  */
2112 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2113 {
2114 	return skb->truesize == 2;
2115 }
2116 
2117 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2118 {
2119 	skb->truesize = 2;
2120 }
2121 
2122 static inline int tcp_inq(struct sock *sk)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	int answ;
2126 
2127 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2128 		answ = 0;
2129 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2130 		   !tp->urg_data ||
2131 		   before(tp->urg_seq, tp->copied_seq) ||
2132 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2133 
2134 		answ = tp->rcv_nxt - tp->copied_seq;
2135 
2136 		/* Subtract 1, if FIN was received */
2137 		if (answ && sock_flag(sk, SOCK_DONE))
2138 			answ--;
2139 	} else {
2140 		answ = tp->urg_seq - tp->copied_seq;
2141 	}
2142 
2143 	return answ;
2144 }
2145 
2146 int tcp_peek_len(struct socket *sock);
2147 
2148 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2149 {
2150 	u16 segs_in;
2151 
2152 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2153 	tp->segs_in += segs_in;
2154 	if (skb->len > tcp_hdrlen(skb))
2155 		tp->data_segs_in += segs_in;
2156 }
2157 
2158 /*
2159  * TCP listen path runs lockless.
2160  * We forced "struct sock" to be const qualified to make sure
2161  * we don't modify one of its field by mistake.
2162  * Here, we increment sk_drops which is an atomic_t, so we can safely
2163  * make sock writable again.
2164  */
2165 static inline void tcp_listendrop(const struct sock *sk)
2166 {
2167 	atomic_inc(&((struct sock *)sk)->sk_drops);
2168 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2169 }
2170 
2171 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2172 
2173 /*
2174  * Interface for adding Upper Level Protocols over TCP
2175  */
2176 
2177 #define TCP_ULP_NAME_MAX	16
2178 #define TCP_ULP_MAX		128
2179 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2180 
2181 struct tcp_ulp_ops {
2182 	struct list_head	list;
2183 
2184 	/* initialize ulp */
2185 	int (*init)(struct sock *sk);
2186 	/* update ulp */
2187 	void (*update)(struct sock *sk, struct proto *p,
2188 		       void (*write_space)(struct sock *sk));
2189 	/* cleanup ulp */
2190 	void (*release)(struct sock *sk);
2191 	/* diagnostic */
2192 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2193 	size_t (*get_info_size)(const struct sock *sk);
2194 	/* clone ulp */
2195 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2196 		      const gfp_t priority);
2197 
2198 	char		name[TCP_ULP_NAME_MAX];
2199 	struct module	*owner;
2200 };
2201 int tcp_register_ulp(struct tcp_ulp_ops *type);
2202 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2203 int tcp_set_ulp(struct sock *sk, const char *name);
2204 void tcp_get_available_ulp(char *buf, size_t len);
2205 void tcp_cleanup_ulp(struct sock *sk);
2206 void tcp_update_ulp(struct sock *sk, struct proto *p,
2207 		    void (*write_space)(struct sock *sk));
2208 
2209 #define MODULE_ALIAS_TCP_ULP(name)				\
2210 	__MODULE_INFO(alias, alias_userspace, name);		\
2211 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2212 
2213 struct sk_msg;
2214 struct sk_psock;
2215 
2216 #ifdef CONFIG_BPF_STREAM_PARSER
2217 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2218 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2219 #else
2220 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2221 {
2222 }
2223 #endif /* CONFIG_BPF_STREAM_PARSER */
2224 
2225 #ifdef CONFIG_NET_SOCK_MSG
2226 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2227 			  int flags);
2228 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2229 		      struct msghdr *msg, int len, int flags);
2230 #endif /* CONFIG_NET_SOCK_MSG */
2231 
2232 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2233  * is < 0, then the BPF op failed (for example if the loaded BPF
2234  * program does not support the chosen operation or there is no BPF
2235  * program loaded).
2236  */
2237 #ifdef CONFIG_BPF
2238 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2239 {
2240 	struct bpf_sock_ops_kern sock_ops;
2241 	int ret;
2242 
2243 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2244 	if (sk_fullsock(sk)) {
2245 		sock_ops.is_fullsock = 1;
2246 		sock_owned_by_me(sk);
2247 	}
2248 
2249 	sock_ops.sk = sk;
2250 	sock_ops.op = op;
2251 	if (nargs > 0)
2252 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2253 
2254 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2255 	if (ret == 0)
2256 		ret = sock_ops.reply;
2257 	else
2258 		ret = -1;
2259 	return ret;
2260 }
2261 
2262 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2263 {
2264 	u32 args[2] = {arg1, arg2};
2265 
2266 	return tcp_call_bpf(sk, op, 2, args);
2267 }
2268 
2269 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2270 				    u32 arg3)
2271 {
2272 	u32 args[3] = {arg1, arg2, arg3};
2273 
2274 	return tcp_call_bpf(sk, op, 3, args);
2275 }
2276 
2277 #else
2278 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2279 {
2280 	return -EPERM;
2281 }
2282 
2283 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2284 {
2285 	return -EPERM;
2286 }
2287 
2288 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2289 				    u32 arg3)
2290 {
2291 	return -EPERM;
2292 }
2293 
2294 #endif
2295 
2296 static inline u32 tcp_timeout_init(struct sock *sk)
2297 {
2298 	int timeout;
2299 
2300 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2301 
2302 	if (timeout <= 0)
2303 		timeout = TCP_TIMEOUT_INIT;
2304 	return timeout;
2305 }
2306 
2307 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2308 {
2309 	int rwnd;
2310 
2311 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2312 
2313 	if (rwnd < 0)
2314 		rwnd = 0;
2315 	return rwnd;
2316 }
2317 
2318 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2319 {
2320 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2321 }
2322 
2323 static inline void tcp_bpf_rtt(struct sock *sk)
2324 {
2325 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2326 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2327 }
2328 
2329 #if IS_ENABLED(CONFIG_SMC)
2330 extern struct static_key_false tcp_have_smc;
2331 #endif
2332 
2333 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2334 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2335 			     void (*cad)(struct sock *sk, u32 ack_seq));
2336 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2337 void clean_acked_data_flush(void);
2338 #endif
2339 
2340 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2341 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2342 				    const struct tcp_sock *tp)
2343 {
2344 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2345 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2346 }
2347 
2348 /* Compute Earliest Departure Time for some control packets
2349  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2350  */
2351 static inline u64 tcp_transmit_time(const struct sock *sk)
2352 {
2353 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2354 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2355 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2356 
2357 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2358 	}
2359 	return 0;
2360 }
2361 
2362 #endif	/* _TCP_H */
2363