xref: /openbmc/linux/include/net/tcp.h (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 
234 extern struct inet_timewait_death_row tcp_death_row;
235 
236 /* sysctl variables for tcp */
237 extern int sysctl_tcp_timestamps;
238 extern int sysctl_tcp_window_scaling;
239 extern int sysctl_tcp_sack;
240 extern int sysctl_tcp_fastopen;
241 extern int sysctl_tcp_retrans_collapse;
242 extern int sysctl_tcp_stdurg;
243 extern int sysctl_tcp_rfc1337;
244 extern int sysctl_tcp_abort_on_overflow;
245 extern int sysctl_tcp_max_orphans;
246 extern int sysctl_tcp_fack;
247 extern int sysctl_tcp_reordering;
248 extern int sysctl_tcp_max_reordering;
249 extern int sysctl_tcp_dsack;
250 extern long sysctl_tcp_mem[3];
251 extern int sysctl_tcp_wmem[3];
252 extern int sysctl_tcp_rmem[3];
253 extern int sysctl_tcp_app_win;
254 extern int sysctl_tcp_adv_win_scale;
255 extern int sysctl_tcp_tw_reuse;
256 extern int sysctl_tcp_frto;
257 extern int sysctl_tcp_low_latency;
258 extern int sysctl_tcp_nometrics_save;
259 extern int sysctl_tcp_moderate_rcvbuf;
260 extern int sysctl_tcp_tso_win_divisor;
261 extern int sysctl_tcp_workaround_signed_windows;
262 extern int sysctl_tcp_slow_start_after_idle;
263 extern int sysctl_tcp_thin_linear_timeouts;
264 extern int sysctl_tcp_thin_dupack;
265 extern int sysctl_tcp_early_retrans;
266 extern int sysctl_tcp_limit_output_bytes;
267 extern int sysctl_tcp_challenge_ack_limit;
268 extern int sysctl_tcp_min_tso_segs;
269 extern int sysctl_tcp_min_rtt_wlen;
270 extern int sysctl_tcp_autocorking;
271 extern int sysctl_tcp_invalid_ratelimit;
272 extern int sysctl_tcp_pacing_ss_ratio;
273 extern int sysctl_tcp_pacing_ca_ratio;
274 
275 extern atomic_long_t tcp_memory_allocated;
276 extern struct percpu_counter tcp_sockets_allocated;
277 extern int tcp_memory_pressure;
278 
279 /* optimized version of sk_under_memory_pressure() for TCP sockets */
280 static inline bool tcp_under_memory_pressure(const struct sock *sk)
281 {
282 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
283 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
284 		return true;
285 
286 	return tcp_memory_pressure;
287 }
288 /*
289  * The next routines deal with comparing 32 bit unsigned ints
290  * and worry about wraparound (automatic with unsigned arithmetic).
291  */
292 
293 static inline bool before(__u32 seq1, __u32 seq2)
294 {
295         return (__s32)(seq1-seq2) < 0;
296 }
297 #define after(seq2, seq1) 	before(seq1, seq2)
298 
299 /* is s2<=s1<=s3 ? */
300 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
301 {
302 	return seq3 - seq2 >= seq1 - seq2;
303 }
304 
305 static inline bool tcp_out_of_memory(struct sock *sk)
306 {
307 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
308 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
309 		return true;
310 	return false;
311 }
312 
313 void sk_forced_mem_schedule(struct sock *sk, int size);
314 
315 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
316 {
317 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
318 	int orphans = percpu_counter_read_positive(ocp);
319 
320 	if (orphans << shift > sysctl_tcp_max_orphans) {
321 		orphans = percpu_counter_sum_positive(ocp);
322 		if (orphans << shift > sysctl_tcp_max_orphans)
323 			return true;
324 	}
325 	return false;
326 }
327 
328 bool tcp_check_oom(struct sock *sk, int shift);
329 
330 
331 extern struct proto tcp_prot;
332 
333 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
334 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
336 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
337 
338 void tcp_tasklet_init(void);
339 
340 void tcp_v4_err(struct sk_buff *skb, u32);
341 
342 void tcp_shutdown(struct sock *sk, int how);
343 
344 void tcp_v4_early_demux(struct sk_buff *skb);
345 int tcp_v4_rcv(struct sk_buff *skb);
346 
347 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
348 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
349 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
350 		 int flags);
351 void tcp_release_cb(struct sock *sk);
352 void tcp_wfree(struct sk_buff *skb);
353 void tcp_write_timer_handler(struct sock *sk);
354 void tcp_delack_timer_handler(struct sock *sk);
355 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
356 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
357 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
358 			 const struct tcphdr *th, unsigned int len);
359 void tcp_rcv_space_adjust(struct sock *sk);
360 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
361 void tcp_twsk_destructor(struct sock *sk);
362 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
363 			struct pipe_inode_info *pipe, size_t len,
364 			unsigned int flags);
365 
366 static inline void tcp_dec_quickack_mode(struct sock *sk,
367 					 const unsigned int pkts)
368 {
369 	struct inet_connection_sock *icsk = inet_csk(sk);
370 
371 	if (icsk->icsk_ack.quick) {
372 		if (pkts >= icsk->icsk_ack.quick) {
373 			icsk->icsk_ack.quick = 0;
374 			/* Leaving quickack mode we deflate ATO. */
375 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
376 		} else
377 			icsk->icsk_ack.quick -= pkts;
378 	}
379 }
380 
381 #define	TCP_ECN_OK		1
382 #define	TCP_ECN_QUEUE_CWR	2
383 #define	TCP_ECN_DEMAND_CWR	4
384 #define	TCP_ECN_SEEN		8
385 
386 enum tcp_tw_status {
387 	TCP_TW_SUCCESS = 0,
388 	TCP_TW_RST = 1,
389 	TCP_TW_ACK = 2,
390 	TCP_TW_SYN = 3
391 };
392 
393 
394 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
395 					      struct sk_buff *skb,
396 					      const struct tcphdr *th);
397 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
398 			   struct request_sock *req, bool fastopen);
399 int tcp_child_process(struct sock *parent, struct sock *child,
400 		      struct sk_buff *skb);
401 void tcp_enter_loss(struct sock *sk);
402 void tcp_clear_retrans(struct tcp_sock *tp);
403 void tcp_update_metrics(struct sock *sk);
404 void tcp_init_metrics(struct sock *sk);
405 void tcp_metrics_init(void);
406 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
407 			bool paws_check, bool timestamps);
408 bool tcp_remember_stamp(struct sock *sk);
409 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
410 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
411 void tcp_disable_fack(struct tcp_sock *tp);
412 void tcp_close(struct sock *sk, long timeout);
413 void tcp_init_sock(struct sock *sk);
414 unsigned int tcp_poll(struct file *file, struct socket *sock,
415 		      struct poll_table_struct *wait);
416 int tcp_getsockopt(struct sock *sk, int level, int optname,
417 		   char __user *optval, int __user *optlen);
418 int tcp_setsockopt(struct sock *sk, int level, int optname,
419 		   char __user *optval, unsigned int optlen);
420 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
421 			  char __user *optval, int __user *optlen);
422 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
423 			  char __user *optval, unsigned int optlen);
424 void tcp_set_keepalive(struct sock *sk, int val);
425 void tcp_syn_ack_timeout(const struct request_sock *req);
426 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
427 		int flags, int *addr_len);
428 void tcp_parse_options(const struct sk_buff *skb,
429 		       struct tcp_options_received *opt_rx,
430 		       int estab, struct tcp_fastopen_cookie *foc);
431 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
432 
433 /*
434  *	TCP v4 functions exported for the inet6 API
435  */
436 
437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438 void tcp_v4_mtu_reduced(struct sock *sk);
439 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 				      struct request_sock *req,
443 				      struct sk_buff *skb);
444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 				  struct request_sock *req,
447 				  struct dst_entry *dst,
448 				  struct request_sock *req_unhash,
449 				  bool *own_req);
450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452 int tcp_connect(struct sock *sk);
453 enum tcp_synack_type {
454 	TCP_SYNACK_NORMAL,
455 	TCP_SYNACK_FASTOPEN,
456 	TCP_SYNACK_COOKIE,
457 };
458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 				struct request_sock *req,
460 				struct tcp_fastopen_cookie *foc,
461 				enum tcp_synack_type synack_type);
462 int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467 
468 /* From syncookies.c */
469 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
470 				 struct request_sock *req,
471 				 struct dst_entry *dst);
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 		      u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476 
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478  * This counter is used both as a hash input and partially encoded into
479  * the cookie value.  A cookie is only validated further if the delta
480  * between the current counter value and the encoded one is less than this,
481  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482  * the counter advances immediately after a cookie is generated).
483  */
484 #define MAX_SYNCOOKIE_AGE	2
485 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
486 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487 
488 /* syncookies: remember time of last synqueue overflow
489  * But do not dirty this field too often (once per second is enough)
490  * It is racy as we do not hold a lock, but race is very minor.
491  */
492 static inline void tcp_synq_overflow(const struct sock *sk)
493 {
494 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
495 	unsigned long now = jiffies;
496 
497 	if (time_after(now, last_overflow + HZ))
498 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
499 }
500 
501 /* syncookies: no recent synqueue overflow on this listening socket? */
502 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
503 {
504 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
505 
506 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
507 }
508 
509 static inline u32 tcp_cookie_time(void)
510 {
511 	u64 val = get_jiffies_64();
512 
513 	do_div(val, TCP_SYNCOOKIE_PERIOD);
514 	return val;
515 }
516 
517 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
518 			      u16 *mssp);
519 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
520 __u32 cookie_init_timestamp(struct request_sock *req);
521 bool cookie_timestamp_decode(struct tcp_options_received *opt);
522 bool cookie_ecn_ok(const struct tcp_options_received *opt,
523 		   const struct net *net, const struct dst_entry *dst);
524 
525 /* From net/ipv6/syncookies.c */
526 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
527 		      u32 cookie);
528 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
529 
530 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
531 			      const struct tcphdr *th, u16 *mssp);
532 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
533 #endif
534 /* tcp_output.c */
535 
536 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
537 			       int nonagle);
538 bool tcp_may_send_now(struct sock *sk);
539 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
540 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
541 void tcp_retransmit_timer(struct sock *sk);
542 void tcp_xmit_retransmit_queue(struct sock *);
543 void tcp_simple_retransmit(struct sock *);
544 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
545 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
546 
547 void tcp_send_probe0(struct sock *);
548 void tcp_send_partial(struct sock *);
549 int tcp_write_wakeup(struct sock *, int mib);
550 void tcp_send_fin(struct sock *sk);
551 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
552 int tcp_send_synack(struct sock *);
553 void tcp_push_one(struct sock *, unsigned int mss_now);
554 void tcp_send_ack(struct sock *sk);
555 void tcp_send_delayed_ack(struct sock *sk);
556 void tcp_send_loss_probe(struct sock *sk);
557 bool tcp_schedule_loss_probe(struct sock *sk);
558 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
559 			     const struct sk_buff *next_skb);
560 
561 /* tcp_input.c */
562 void tcp_resume_early_retransmit(struct sock *sk);
563 void tcp_rearm_rto(struct sock *sk);
564 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
565 void tcp_reset(struct sock *sk);
566 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
567 void tcp_fin(struct sock *sk);
568 
569 /* tcp_timer.c */
570 void tcp_init_xmit_timers(struct sock *);
571 static inline void tcp_clear_xmit_timers(struct sock *sk)
572 {
573 	inet_csk_clear_xmit_timers(sk);
574 }
575 
576 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
577 unsigned int tcp_current_mss(struct sock *sk);
578 
579 /* Bound MSS / TSO packet size with the half of the window */
580 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
581 {
582 	int cutoff;
583 
584 	/* When peer uses tiny windows, there is no use in packetizing
585 	 * to sub-MSS pieces for the sake of SWS or making sure there
586 	 * are enough packets in the pipe for fast recovery.
587 	 *
588 	 * On the other hand, for extremely large MSS devices, handling
589 	 * smaller than MSS windows in this way does make sense.
590 	 */
591 	if (tp->max_window > TCP_MSS_DEFAULT)
592 		cutoff = (tp->max_window >> 1);
593 	else
594 		cutoff = tp->max_window;
595 
596 	if (cutoff && pktsize > cutoff)
597 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
598 	else
599 		return pktsize;
600 }
601 
602 /* tcp.c */
603 void tcp_get_info(struct sock *, struct tcp_info *);
604 
605 /* Read 'sendfile()'-style from a TCP socket */
606 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
607 		  sk_read_actor_t recv_actor);
608 
609 void tcp_initialize_rcv_mss(struct sock *sk);
610 
611 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
612 int tcp_mss_to_mtu(struct sock *sk, int mss);
613 void tcp_mtup_init(struct sock *sk);
614 void tcp_init_buffer_space(struct sock *sk);
615 
616 static inline void tcp_bound_rto(const struct sock *sk)
617 {
618 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
619 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
620 }
621 
622 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
623 {
624 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
625 }
626 
627 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
628 {
629 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
630 			       ntohl(TCP_FLAG_ACK) |
631 			       snd_wnd);
632 }
633 
634 static inline void tcp_fast_path_on(struct tcp_sock *tp)
635 {
636 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
637 }
638 
639 static inline void tcp_fast_path_check(struct sock *sk)
640 {
641 	struct tcp_sock *tp = tcp_sk(sk);
642 
643 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
644 	    tp->rcv_wnd &&
645 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
646 	    !tp->urg_data)
647 		tcp_fast_path_on(tp);
648 }
649 
650 /* Compute the actual rto_min value */
651 static inline u32 tcp_rto_min(struct sock *sk)
652 {
653 	const struct dst_entry *dst = __sk_dst_get(sk);
654 	u32 rto_min = TCP_RTO_MIN;
655 
656 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
657 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
658 	return rto_min;
659 }
660 
661 static inline u32 tcp_rto_min_us(struct sock *sk)
662 {
663 	return jiffies_to_usecs(tcp_rto_min(sk));
664 }
665 
666 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
667 {
668 	return dst_metric_locked(dst, RTAX_CC_ALGO);
669 }
670 
671 /* Minimum RTT in usec. ~0 means not available. */
672 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
673 {
674 	return tp->rtt_min[0].rtt;
675 }
676 
677 /* Compute the actual receive window we are currently advertising.
678  * Rcv_nxt can be after the window if our peer push more data
679  * than the offered window.
680  */
681 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
682 {
683 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
684 
685 	if (win < 0)
686 		win = 0;
687 	return (u32) win;
688 }
689 
690 /* Choose a new window, without checks for shrinking, and without
691  * scaling applied to the result.  The caller does these things
692  * if necessary.  This is a "raw" window selection.
693  */
694 u32 __tcp_select_window(struct sock *sk);
695 
696 void tcp_send_window_probe(struct sock *sk);
697 
698 /* TCP timestamps are only 32-bits, this causes a slight
699  * complication on 64-bit systems since we store a snapshot
700  * of jiffies in the buffer control blocks below.  We decided
701  * to use only the low 32-bits of jiffies and hide the ugly
702  * casts with the following macro.
703  */
704 #define tcp_time_stamp		((__u32)(jiffies))
705 
706 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
707 {
708 	return skb->skb_mstamp.stamp_jiffies;
709 }
710 
711 
712 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
713 
714 #define TCPHDR_FIN 0x01
715 #define TCPHDR_SYN 0x02
716 #define TCPHDR_RST 0x04
717 #define TCPHDR_PSH 0x08
718 #define TCPHDR_ACK 0x10
719 #define TCPHDR_URG 0x20
720 #define TCPHDR_ECE 0x40
721 #define TCPHDR_CWR 0x80
722 
723 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
724 
725 /* This is what the send packet queuing engine uses to pass
726  * TCP per-packet control information to the transmission code.
727  * We also store the host-order sequence numbers in here too.
728  * This is 44 bytes if IPV6 is enabled.
729  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
730  */
731 struct tcp_skb_cb {
732 	__u32		seq;		/* Starting sequence number	*/
733 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
734 	union {
735 		/* Note : tcp_tw_isn is used in input path only
736 		 *	  (isn chosen by tcp_timewait_state_process())
737 		 *
738 		 * 	  tcp_gso_segs/size are used in write queue only,
739 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
740 		 */
741 		__u32		tcp_tw_isn;
742 		struct {
743 			u16	tcp_gso_segs;
744 			u16	tcp_gso_size;
745 		};
746 	};
747 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
748 
749 	__u8		sacked;		/* State flags for SACK/FACK.	*/
750 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
751 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
752 #define TCPCB_LOST		0x04	/* SKB is lost			*/
753 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
754 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
755 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
756 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
757 				TCPCB_REPAIRED)
758 
759 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
760 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
761 			eor:1,		/* Is skb MSG_EOR marked? */
762 			unused:6;
763 	__u32		ack_seq;	/* Sequence number ACK'd	*/
764 	union {
765 		struct {
766 			/* There is space for up to 20 bytes */
767 			__u32 in_flight;/* Bytes in flight when packet sent */
768 		} tx;   /* only used for outgoing skbs */
769 		union {
770 			struct inet_skb_parm	h4;
771 #if IS_ENABLED(CONFIG_IPV6)
772 			struct inet6_skb_parm	h6;
773 #endif
774 		} header;	/* For incoming skbs */
775 	};
776 };
777 
778 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
779 
780 
781 #if IS_ENABLED(CONFIG_IPV6)
782 /* This is the variant of inet6_iif() that must be used by TCP,
783  * as TCP moves IP6CB into a different location in skb->cb[]
784  */
785 static inline int tcp_v6_iif(const struct sk_buff *skb)
786 {
787 	bool l3_slave = skb_l3mdev_slave(TCP_SKB_CB(skb)->header.h6.flags);
788 
789 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
790 }
791 #endif
792 
793 /* Due to TSO, an SKB can be composed of multiple actual
794  * packets.  To keep these tracked properly, we use this.
795  */
796 static inline int tcp_skb_pcount(const struct sk_buff *skb)
797 {
798 	return TCP_SKB_CB(skb)->tcp_gso_segs;
799 }
800 
801 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
802 {
803 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
804 }
805 
806 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
807 {
808 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
809 }
810 
811 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
812 static inline int tcp_skb_mss(const struct sk_buff *skb)
813 {
814 	return TCP_SKB_CB(skb)->tcp_gso_size;
815 }
816 
817 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
818 {
819 	return likely(!TCP_SKB_CB(skb)->eor);
820 }
821 
822 /* Events passed to congestion control interface */
823 enum tcp_ca_event {
824 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
825 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
826 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
827 	CA_EVENT_LOSS,		/* loss timeout */
828 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
829 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
830 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
831 	CA_EVENT_NON_DELAYED_ACK,
832 };
833 
834 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
835 enum tcp_ca_ack_event_flags {
836 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
837 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
838 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
839 };
840 
841 /*
842  * Interface for adding new TCP congestion control handlers
843  */
844 #define TCP_CA_NAME_MAX	16
845 #define TCP_CA_MAX	128
846 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
847 
848 #define TCP_CA_UNSPEC	0
849 
850 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
851 #define TCP_CONG_NON_RESTRICTED 0x1
852 /* Requires ECN/ECT set on all packets */
853 #define TCP_CONG_NEEDS_ECN	0x2
854 
855 union tcp_cc_info;
856 
857 struct ack_sample {
858 	u32 pkts_acked;
859 	s32 rtt_us;
860 	u32 in_flight;
861 };
862 
863 struct tcp_congestion_ops {
864 	struct list_head	list;
865 	u32 key;
866 	u32 flags;
867 
868 	/* initialize private data (optional) */
869 	void (*init)(struct sock *sk);
870 	/* cleanup private data  (optional) */
871 	void (*release)(struct sock *sk);
872 
873 	/* return slow start threshold (required) */
874 	u32 (*ssthresh)(struct sock *sk);
875 	/* do new cwnd calculation (required) */
876 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
877 	/* call before changing ca_state (optional) */
878 	void (*set_state)(struct sock *sk, u8 new_state);
879 	/* call when cwnd event occurs (optional) */
880 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
881 	/* call when ack arrives (optional) */
882 	void (*in_ack_event)(struct sock *sk, u32 flags);
883 	/* new value of cwnd after loss (optional) */
884 	u32  (*undo_cwnd)(struct sock *sk);
885 	/* hook for packet ack accounting (optional) */
886 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
887 	/* get info for inet_diag (optional) */
888 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
889 			   union tcp_cc_info *info);
890 
891 	char 		name[TCP_CA_NAME_MAX];
892 	struct module 	*owner;
893 };
894 
895 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
896 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
897 
898 void tcp_assign_congestion_control(struct sock *sk);
899 void tcp_init_congestion_control(struct sock *sk);
900 void tcp_cleanup_congestion_control(struct sock *sk);
901 int tcp_set_default_congestion_control(const char *name);
902 void tcp_get_default_congestion_control(char *name);
903 void tcp_get_available_congestion_control(char *buf, size_t len);
904 void tcp_get_allowed_congestion_control(char *buf, size_t len);
905 int tcp_set_allowed_congestion_control(char *allowed);
906 int tcp_set_congestion_control(struct sock *sk, const char *name);
907 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
908 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
909 
910 u32 tcp_reno_ssthresh(struct sock *sk);
911 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
912 extern struct tcp_congestion_ops tcp_reno;
913 
914 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
915 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
916 #ifdef CONFIG_INET
917 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
918 #else
919 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
920 {
921 	return NULL;
922 }
923 #endif
924 
925 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
926 {
927 	const struct inet_connection_sock *icsk = inet_csk(sk);
928 
929 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
930 }
931 
932 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
933 {
934 	struct inet_connection_sock *icsk = inet_csk(sk);
935 
936 	if (icsk->icsk_ca_ops->set_state)
937 		icsk->icsk_ca_ops->set_state(sk, ca_state);
938 	icsk->icsk_ca_state = ca_state;
939 }
940 
941 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
942 {
943 	const struct inet_connection_sock *icsk = inet_csk(sk);
944 
945 	if (icsk->icsk_ca_ops->cwnd_event)
946 		icsk->icsk_ca_ops->cwnd_event(sk, event);
947 }
948 
949 /* These functions determine how the current flow behaves in respect of SACK
950  * handling. SACK is negotiated with the peer, and therefore it can vary
951  * between different flows.
952  *
953  * tcp_is_sack - SACK enabled
954  * tcp_is_reno - No SACK
955  * tcp_is_fack - FACK enabled, implies SACK enabled
956  */
957 static inline int tcp_is_sack(const struct tcp_sock *tp)
958 {
959 	return tp->rx_opt.sack_ok;
960 }
961 
962 static inline bool tcp_is_reno(const struct tcp_sock *tp)
963 {
964 	return !tcp_is_sack(tp);
965 }
966 
967 static inline bool tcp_is_fack(const struct tcp_sock *tp)
968 {
969 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
970 }
971 
972 static inline void tcp_enable_fack(struct tcp_sock *tp)
973 {
974 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
975 }
976 
977 /* TCP early-retransmit (ER) is similar to but more conservative than
978  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
979  */
980 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
981 {
982 	struct net *net = sock_net((struct sock *)tp);
983 
984 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
985 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
986 		net->ipv4.sysctl_tcp_reordering == 3;
987 }
988 
989 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
990 {
991 	tp->do_early_retrans = 0;
992 }
993 
994 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
995 {
996 	return tp->sacked_out + tp->lost_out;
997 }
998 
999 /* This determines how many packets are "in the network" to the best
1000  * of our knowledge.  In many cases it is conservative, but where
1001  * detailed information is available from the receiver (via SACK
1002  * blocks etc.) we can make more aggressive calculations.
1003  *
1004  * Use this for decisions involving congestion control, use just
1005  * tp->packets_out to determine if the send queue is empty or not.
1006  *
1007  * Read this equation as:
1008  *
1009  *	"Packets sent once on transmission queue" MINUS
1010  *	"Packets left network, but not honestly ACKed yet" PLUS
1011  *	"Packets fast retransmitted"
1012  */
1013 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1014 {
1015 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1016 }
1017 
1018 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1019 
1020 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1021 {
1022 	return tp->snd_cwnd < tp->snd_ssthresh;
1023 }
1024 
1025 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1026 {
1027 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1028 }
1029 
1030 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1031 {
1032 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1033 	       (1 << inet_csk(sk)->icsk_ca_state);
1034 }
1035 
1036 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1037  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1038  * ssthresh.
1039  */
1040 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1041 {
1042 	const struct tcp_sock *tp = tcp_sk(sk);
1043 
1044 	if (tcp_in_cwnd_reduction(sk))
1045 		return tp->snd_ssthresh;
1046 	else
1047 		return max(tp->snd_ssthresh,
1048 			   ((tp->snd_cwnd >> 1) +
1049 			    (tp->snd_cwnd >> 2)));
1050 }
1051 
1052 /* Use define here intentionally to get WARN_ON location shown at the caller */
1053 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1054 
1055 void tcp_enter_cwr(struct sock *sk);
1056 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1057 
1058 /* The maximum number of MSS of available cwnd for which TSO defers
1059  * sending if not using sysctl_tcp_tso_win_divisor.
1060  */
1061 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1062 {
1063 	return 3;
1064 }
1065 
1066 /* Returns end sequence number of the receiver's advertised window */
1067 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1068 {
1069 	return tp->snd_una + tp->snd_wnd;
1070 }
1071 
1072 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1073  * flexible approach. The RFC suggests cwnd should not be raised unless
1074  * it was fully used previously. And that's exactly what we do in
1075  * congestion avoidance mode. But in slow start we allow cwnd to grow
1076  * as long as the application has used half the cwnd.
1077  * Example :
1078  *    cwnd is 10 (IW10), but application sends 9 frames.
1079  *    We allow cwnd to reach 18 when all frames are ACKed.
1080  * This check is safe because it's as aggressive as slow start which already
1081  * risks 100% overshoot. The advantage is that we discourage application to
1082  * either send more filler packets or data to artificially blow up the cwnd
1083  * usage, and allow application-limited process to probe bw more aggressively.
1084  */
1085 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1086 {
1087 	const struct tcp_sock *tp = tcp_sk(sk);
1088 
1089 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1090 	if (tcp_in_slow_start(tp))
1091 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1092 
1093 	return tp->is_cwnd_limited;
1094 }
1095 
1096 /* Something is really bad, we could not queue an additional packet,
1097  * because qdisc is full or receiver sent a 0 window.
1098  * We do not want to add fuel to the fire, or abort too early,
1099  * so make sure the timer we arm now is at least 200ms in the future,
1100  * regardless of current icsk_rto value (as it could be ~2ms)
1101  */
1102 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1103 {
1104 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1105 }
1106 
1107 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1108 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1109 					    unsigned long max_when)
1110 {
1111 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1112 
1113 	return (unsigned long)min_t(u64, when, max_when);
1114 }
1115 
1116 static inline void tcp_check_probe_timer(struct sock *sk)
1117 {
1118 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1119 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1120 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1121 }
1122 
1123 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1124 {
1125 	tp->snd_wl1 = seq;
1126 }
1127 
1128 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1129 {
1130 	tp->snd_wl1 = seq;
1131 }
1132 
1133 /*
1134  * Calculate(/check) TCP checksum
1135  */
1136 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1137 				   __be32 daddr, __wsum base)
1138 {
1139 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1140 }
1141 
1142 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1143 {
1144 	return __skb_checksum_complete(skb);
1145 }
1146 
1147 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1148 {
1149 	return !skb_csum_unnecessary(skb) &&
1150 		__tcp_checksum_complete(skb);
1151 }
1152 
1153 /* Prequeue for VJ style copy to user, combined with checksumming. */
1154 
1155 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1156 {
1157 	tp->ucopy.task = NULL;
1158 	tp->ucopy.len = 0;
1159 	tp->ucopy.memory = 0;
1160 	skb_queue_head_init(&tp->ucopy.prequeue);
1161 }
1162 
1163 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1164 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1165 
1166 #undef STATE_TRACE
1167 
1168 #ifdef STATE_TRACE
1169 static const char *statename[]={
1170 	"Unused","Established","Syn Sent","Syn Recv",
1171 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1172 	"Close Wait","Last ACK","Listen","Closing"
1173 };
1174 #endif
1175 void tcp_set_state(struct sock *sk, int state);
1176 
1177 void tcp_done(struct sock *sk);
1178 
1179 int tcp_abort(struct sock *sk, int err);
1180 
1181 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1182 {
1183 	rx_opt->dsack = 0;
1184 	rx_opt->num_sacks = 0;
1185 }
1186 
1187 u32 tcp_default_init_rwnd(u32 mss);
1188 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1189 
1190 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1191 {
1192 	struct tcp_sock *tp = tcp_sk(sk);
1193 	s32 delta;
1194 
1195 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1196 		return;
1197 	delta = tcp_time_stamp - tp->lsndtime;
1198 	if (delta > inet_csk(sk)->icsk_rto)
1199 		tcp_cwnd_restart(sk, delta);
1200 }
1201 
1202 /* Determine a window scaling and initial window to offer. */
1203 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1204 			       __u32 *window_clamp, int wscale_ok,
1205 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1206 
1207 static inline int tcp_win_from_space(int space)
1208 {
1209 	return sysctl_tcp_adv_win_scale<=0 ?
1210 		(space>>(-sysctl_tcp_adv_win_scale)) :
1211 		space - (space>>sysctl_tcp_adv_win_scale);
1212 }
1213 
1214 /* Note: caller must be prepared to deal with negative returns */
1215 static inline int tcp_space(const struct sock *sk)
1216 {
1217 	return tcp_win_from_space(sk->sk_rcvbuf -
1218 				  atomic_read(&sk->sk_rmem_alloc));
1219 }
1220 
1221 static inline int tcp_full_space(const struct sock *sk)
1222 {
1223 	return tcp_win_from_space(sk->sk_rcvbuf);
1224 }
1225 
1226 extern void tcp_openreq_init_rwin(struct request_sock *req,
1227 				  const struct sock *sk_listener,
1228 				  const struct dst_entry *dst);
1229 
1230 void tcp_enter_memory_pressure(struct sock *sk);
1231 
1232 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1233 {
1234 	struct net *net = sock_net((struct sock *)tp);
1235 
1236 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1237 }
1238 
1239 static inline int keepalive_time_when(const struct tcp_sock *tp)
1240 {
1241 	struct net *net = sock_net((struct sock *)tp);
1242 
1243 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1244 }
1245 
1246 static inline int keepalive_probes(const struct tcp_sock *tp)
1247 {
1248 	struct net *net = sock_net((struct sock *)tp);
1249 
1250 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1251 }
1252 
1253 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1254 {
1255 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1256 
1257 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1258 			  tcp_time_stamp - tp->rcv_tstamp);
1259 }
1260 
1261 static inline int tcp_fin_time(const struct sock *sk)
1262 {
1263 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1264 	const int rto = inet_csk(sk)->icsk_rto;
1265 
1266 	if (fin_timeout < (rto << 2) - (rto >> 1))
1267 		fin_timeout = (rto << 2) - (rto >> 1);
1268 
1269 	return fin_timeout;
1270 }
1271 
1272 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1273 				  int paws_win)
1274 {
1275 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1276 		return true;
1277 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1278 		return true;
1279 	/*
1280 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1281 	 * then following tcp messages have valid values. Ignore 0 value,
1282 	 * or else 'negative' tsval might forbid us to accept their packets.
1283 	 */
1284 	if (!rx_opt->ts_recent)
1285 		return true;
1286 	return false;
1287 }
1288 
1289 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1290 				   int rst)
1291 {
1292 	if (tcp_paws_check(rx_opt, 0))
1293 		return false;
1294 
1295 	/* RST segments are not recommended to carry timestamp,
1296 	   and, if they do, it is recommended to ignore PAWS because
1297 	   "their cleanup function should take precedence over timestamps."
1298 	   Certainly, it is mistake. It is necessary to understand the reasons
1299 	   of this constraint to relax it: if peer reboots, clock may go
1300 	   out-of-sync and half-open connections will not be reset.
1301 	   Actually, the problem would be not existing if all
1302 	   the implementations followed draft about maintaining clock
1303 	   via reboots. Linux-2.2 DOES NOT!
1304 
1305 	   However, we can relax time bounds for RST segments to MSL.
1306 	 */
1307 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1308 		return false;
1309 	return true;
1310 }
1311 
1312 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1313 			  int mib_idx, u32 *last_oow_ack_time);
1314 
1315 static inline void tcp_mib_init(struct net *net)
1316 {
1317 	/* See RFC 2012 */
1318 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1319 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1320 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1321 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1322 }
1323 
1324 /* from STCP */
1325 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1326 {
1327 	tp->lost_skb_hint = NULL;
1328 }
1329 
1330 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1331 {
1332 	tcp_clear_retrans_hints_partial(tp);
1333 	tp->retransmit_skb_hint = NULL;
1334 }
1335 
1336 union tcp_md5_addr {
1337 	struct in_addr  a4;
1338 #if IS_ENABLED(CONFIG_IPV6)
1339 	struct in6_addr	a6;
1340 #endif
1341 };
1342 
1343 /* - key database */
1344 struct tcp_md5sig_key {
1345 	struct hlist_node	node;
1346 	u8			keylen;
1347 	u8			family; /* AF_INET or AF_INET6 */
1348 	union tcp_md5_addr	addr;
1349 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1350 	struct rcu_head		rcu;
1351 };
1352 
1353 /* - sock block */
1354 struct tcp_md5sig_info {
1355 	struct hlist_head	head;
1356 	struct rcu_head		rcu;
1357 };
1358 
1359 /* - pseudo header */
1360 struct tcp4_pseudohdr {
1361 	__be32		saddr;
1362 	__be32		daddr;
1363 	__u8		pad;
1364 	__u8		protocol;
1365 	__be16		len;
1366 };
1367 
1368 struct tcp6_pseudohdr {
1369 	struct in6_addr	saddr;
1370 	struct in6_addr daddr;
1371 	__be32		len;
1372 	__be32		protocol;	/* including padding */
1373 };
1374 
1375 union tcp_md5sum_block {
1376 	struct tcp4_pseudohdr ip4;
1377 #if IS_ENABLED(CONFIG_IPV6)
1378 	struct tcp6_pseudohdr ip6;
1379 #endif
1380 };
1381 
1382 /* - pool: digest algorithm, hash description and scratch buffer */
1383 struct tcp_md5sig_pool {
1384 	struct ahash_request	*md5_req;
1385 	void			*scratch;
1386 };
1387 
1388 /* - functions */
1389 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1390 			const struct sock *sk, const struct sk_buff *skb);
1391 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1392 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1393 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1394 		   int family);
1395 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1396 					 const struct sock *addr_sk);
1397 
1398 #ifdef CONFIG_TCP_MD5SIG
1399 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1400 					 const union tcp_md5_addr *addr,
1401 					 int family);
1402 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1403 #else
1404 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1405 					 const union tcp_md5_addr *addr,
1406 					 int family)
1407 {
1408 	return NULL;
1409 }
1410 #define tcp_twsk_md5_key(twsk)	NULL
1411 #endif
1412 
1413 bool tcp_alloc_md5sig_pool(void);
1414 
1415 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1416 static inline void tcp_put_md5sig_pool(void)
1417 {
1418 	local_bh_enable();
1419 }
1420 
1421 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1422 			  unsigned int header_len);
1423 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1424 		     const struct tcp_md5sig_key *key);
1425 
1426 /* From tcp_fastopen.c */
1427 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1428 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1429 			    unsigned long *last_syn_loss);
1430 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1431 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1432 			    u16 try_exp);
1433 struct tcp_fastopen_request {
1434 	/* Fast Open cookie. Size 0 means a cookie request */
1435 	struct tcp_fastopen_cookie	cookie;
1436 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1437 	size_t				size;
1438 	int				copied;	/* queued in tcp_connect() */
1439 };
1440 void tcp_free_fastopen_req(struct tcp_sock *tp);
1441 
1442 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1443 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1444 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1445 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1446 			      struct request_sock *req,
1447 			      struct tcp_fastopen_cookie *foc,
1448 			      struct dst_entry *dst);
1449 void tcp_fastopen_init_key_once(bool publish);
1450 #define TCP_FASTOPEN_KEY_LENGTH 16
1451 
1452 /* Fastopen key context */
1453 struct tcp_fastopen_context {
1454 	struct crypto_cipher	*tfm;
1455 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1456 	struct rcu_head		rcu;
1457 };
1458 
1459 /* write queue abstraction */
1460 static inline void tcp_write_queue_purge(struct sock *sk)
1461 {
1462 	struct sk_buff *skb;
1463 
1464 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1465 		sk_wmem_free_skb(sk, skb);
1466 	sk_mem_reclaim(sk);
1467 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1468 }
1469 
1470 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1471 {
1472 	return skb_peek(&sk->sk_write_queue);
1473 }
1474 
1475 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1476 {
1477 	return skb_peek_tail(&sk->sk_write_queue);
1478 }
1479 
1480 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1481 						   const struct sk_buff *skb)
1482 {
1483 	return skb_queue_next(&sk->sk_write_queue, skb);
1484 }
1485 
1486 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1487 						   const struct sk_buff *skb)
1488 {
1489 	return skb_queue_prev(&sk->sk_write_queue, skb);
1490 }
1491 
1492 #define tcp_for_write_queue(skb, sk)					\
1493 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1494 
1495 #define tcp_for_write_queue_from(skb, sk)				\
1496 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1497 
1498 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1499 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1500 
1501 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1502 {
1503 	return sk->sk_send_head;
1504 }
1505 
1506 static inline bool tcp_skb_is_last(const struct sock *sk,
1507 				   const struct sk_buff *skb)
1508 {
1509 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1510 }
1511 
1512 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1513 {
1514 	if (tcp_skb_is_last(sk, skb))
1515 		sk->sk_send_head = NULL;
1516 	else
1517 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1518 }
1519 
1520 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1521 {
1522 	if (sk->sk_send_head == skb_unlinked)
1523 		sk->sk_send_head = NULL;
1524 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1525 		tcp_sk(sk)->highest_sack = NULL;
1526 }
1527 
1528 static inline void tcp_init_send_head(struct sock *sk)
1529 {
1530 	sk->sk_send_head = NULL;
1531 }
1532 
1533 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1534 {
1535 	__skb_queue_tail(&sk->sk_write_queue, skb);
1536 }
1537 
1538 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1539 {
1540 	__tcp_add_write_queue_tail(sk, skb);
1541 
1542 	/* Queue it, remembering where we must start sending. */
1543 	if (sk->sk_send_head == NULL) {
1544 		sk->sk_send_head = skb;
1545 
1546 		if (tcp_sk(sk)->highest_sack == NULL)
1547 			tcp_sk(sk)->highest_sack = skb;
1548 	}
1549 }
1550 
1551 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1552 {
1553 	__skb_queue_head(&sk->sk_write_queue, skb);
1554 }
1555 
1556 /* Insert buff after skb on the write queue of sk.  */
1557 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1558 						struct sk_buff *buff,
1559 						struct sock *sk)
1560 {
1561 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1562 }
1563 
1564 /* Insert new before skb on the write queue of sk.  */
1565 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1566 						  struct sk_buff *skb,
1567 						  struct sock *sk)
1568 {
1569 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1570 
1571 	if (sk->sk_send_head == skb)
1572 		sk->sk_send_head = new;
1573 }
1574 
1575 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1576 {
1577 	__skb_unlink(skb, &sk->sk_write_queue);
1578 }
1579 
1580 static inline bool tcp_write_queue_empty(struct sock *sk)
1581 {
1582 	return skb_queue_empty(&sk->sk_write_queue);
1583 }
1584 
1585 static inline void tcp_push_pending_frames(struct sock *sk)
1586 {
1587 	if (tcp_send_head(sk)) {
1588 		struct tcp_sock *tp = tcp_sk(sk);
1589 
1590 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1591 	}
1592 }
1593 
1594 /* Start sequence of the skb just after the highest skb with SACKed
1595  * bit, valid only if sacked_out > 0 or when the caller has ensured
1596  * validity by itself.
1597  */
1598 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1599 {
1600 	if (!tp->sacked_out)
1601 		return tp->snd_una;
1602 
1603 	if (tp->highest_sack == NULL)
1604 		return tp->snd_nxt;
1605 
1606 	return TCP_SKB_CB(tp->highest_sack)->seq;
1607 }
1608 
1609 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1610 {
1611 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1612 						tcp_write_queue_next(sk, skb);
1613 }
1614 
1615 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1616 {
1617 	return tcp_sk(sk)->highest_sack;
1618 }
1619 
1620 static inline void tcp_highest_sack_reset(struct sock *sk)
1621 {
1622 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1623 }
1624 
1625 /* Called when old skb is about to be deleted (to be combined with new skb) */
1626 static inline void tcp_highest_sack_combine(struct sock *sk,
1627 					    struct sk_buff *old,
1628 					    struct sk_buff *new)
1629 {
1630 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1631 		tcp_sk(sk)->highest_sack = new;
1632 }
1633 
1634 /* This helper checks if socket has IP_TRANSPARENT set */
1635 static inline bool inet_sk_transparent(const struct sock *sk)
1636 {
1637 	switch (sk->sk_state) {
1638 	case TCP_TIME_WAIT:
1639 		return inet_twsk(sk)->tw_transparent;
1640 	case TCP_NEW_SYN_RECV:
1641 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1642 	}
1643 	return inet_sk(sk)->transparent;
1644 }
1645 
1646 /* Determines whether this is a thin stream (which may suffer from
1647  * increased latency). Used to trigger latency-reducing mechanisms.
1648  */
1649 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1650 {
1651 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1652 }
1653 
1654 /* /proc */
1655 enum tcp_seq_states {
1656 	TCP_SEQ_STATE_LISTENING,
1657 	TCP_SEQ_STATE_ESTABLISHED,
1658 };
1659 
1660 int tcp_seq_open(struct inode *inode, struct file *file);
1661 
1662 struct tcp_seq_afinfo {
1663 	char				*name;
1664 	sa_family_t			family;
1665 	const struct file_operations	*seq_fops;
1666 	struct seq_operations		seq_ops;
1667 };
1668 
1669 struct tcp_iter_state {
1670 	struct seq_net_private	p;
1671 	sa_family_t		family;
1672 	enum tcp_seq_states	state;
1673 	struct sock		*syn_wait_sk;
1674 	int			bucket, offset, sbucket, num;
1675 	loff_t			last_pos;
1676 };
1677 
1678 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1679 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1680 
1681 extern struct request_sock_ops tcp_request_sock_ops;
1682 extern struct request_sock_ops tcp6_request_sock_ops;
1683 
1684 void tcp_v4_destroy_sock(struct sock *sk);
1685 
1686 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1687 				netdev_features_t features);
1688 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1689 int tcp_gro_complete(struct sk_buff *skb);
1690 
1691 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1692 
1693 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1694 {
1695 	struct net *net = sock_net((struct sock *)tp);
1696 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1697 }
1698 
1699 static inline bool tcp_stream_memory_free(const struct sock *sk)
1700 {
1701 	const struct tcp_sock *tp = tcp_sk(sk);
1702 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1703 
1704 	return notsent_bytes < tcp_notsent_lowat(tp);
1705 }
1706 
1707 #ifdef CONFIG_PROC_FS
1708 int tcp4_proc_init(void);
1709 void tcp4_proc_exit(void);
1710 #endif
1711 
1712 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1713 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1714 		     const struct tcp_request_sock_ops *af_ops,
1715 		     struct sock *sk, struct sk_buff *skb);
1716 
1717 /* TCP af-specific functions */
1718 struct tcp_sock_af_ops {
1719 #ifdef CONFIG_TCP_MD5SIG
1720 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1721 						const struct sock *addr_sk);
1722 	int		(*calc_md5_hash)(char *location,
1723 					 const struct tcp_md5sig_key *md5,
1724 					 const struct sock *sk,
1725 					 const struct sk_buff *skb);
1726 	int		(*md5_parse)(struct sock *sk,
1727 				     char __user *optval,
1728 				     int optlen);
1729 #endif
1730 };
1731 
1732 struct tcp_request_sock_ops {
1733 	u16 mss_clamp;
1734 #ifdef CONFIG_TCP_MD5SIG
1735 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1736 						 const struct sock *addr_sk);
1737 	int		(*calc_md5_hash) (char *location,
1738 					  const struct tcp_md5sig_key *md5,
1739 					  const struct sock *sk,
1740 					  const struct sk_buff *skb);
1741 #endif
1742 	void (*init_req)(struct request_sock *req,
1743 			 const struct sock *sk_listener,
1744 			 struct sk_buff *skb);
1745 #ifdef CONFIG_SYN_COOKIES
1746 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1747 				 __u16 *mss);
1748 #endif
1749 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1750 				       const struct request_sock *req,
1751 				       bool *strict);
1752 	__u32 (*init_seq)(const struct sk_buff *skb);
1753 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1754 			   struct flowi *fl, struct request_sock *req,
1755 			   struct tcp_fastopen_cookie *foc,
1756 			   enum tcp_synack_type synack_type);
1757 };
1758 
1759 #ifdef CONFIG_SYN_COOKIES
1760 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1761 					 const struct sock *sk, struct sk_buff *skb,
1762 					 __u16 *mss)
1763 {
1764 	tcp_synq_overflow(sk);
1765 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1766 	return ops->cookie_init_seq(skb, mss);
1767 }
1768 #else
1769 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1770 					 const struct sock *sk, struct sk_buff *skb,
1771 					 __u16 *mss)
1772 {
1773 	return 0;
1774 }
1775 #endif
1776 
1777 int tcpv4_offload_init(void);
1778 
1779 void tcp_v4_init(void);
1780 void tcp_init(void);
1781 
1782 /* tcp_recovery.c */
1783 
1784 /* Flags to enable various loss recovery features. See below */
1785 extern int sysctl_tcp_recovery;
1786 
1787 /* Use TCP RACK to detect (some) tail and retransmit losses */
1788 #define TCP_RACK_LOST_RETRANS  0x1
1789 
1790 extern int tcp_rack_mark_lost(struct sock *sk);
1791 
1792 extern void tcp_rack_advance(struct tcp_sock *tp,
1793 			     const struct skb_mstamp *xmit_time, u8 sacked);
1794 
1795 /*
1796  * Save and compile IPv4 options, return a pointer to it
1797  */
1798 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1799 {
1800 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1801 	struct ip_options_rcu *dopt = NULL;
1802 
1803 	if (opt->optlen) {
1804 		int opt_size = sizeof(*dopt) + opt->optlen;
1805 
1806 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1807 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1808 			kfree(dopt);
1809 			dopt = NULL;
1810 		}
1811 	}
1812 	return dopt;
1813 }
1814 
1815 /* locally generated TCP pure ACKs have skb->truesize == 2
1816  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1817  * This is much faster than dissecting the packet to find out.
1818  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1819  */
1820 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1821 {
1822 	return skb->truesize == 2;
1823 }
1824 
1825 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1826 {
1827 	skb->truesize = 2;
1828 }
1829 
1830 static inline int tcp_inq(struct sock *sk)
1831 {
1832 	struct tcp_sock *tp = tcp_sk(sk);
1833 	int answ;
1834 
1835 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1836 		answ = 0;
1837 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1838 		   !tp->urg_data ||
1839 		   before(tp->urg_seq, tp->copied_seq) ||
1840 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1841 
1842 		answ = tp->rcv_nxt - tp->copied_seq;
1843 
1844 		/* Subtract 1, if FIN was received */
1845 		if (answ && sock_flag(sk, SOCK_DONE))
1846 			answ--;
1847 	} else {
1848 		answ = tp->urg_seq - tp->copied_seq;
1849 	}
1850 
1851 	return answ;
1852 }
1853 
1854 int tcp_peek_len(struct socket *sock);
1855 
1856 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1857 {
1858 	u16 segs_in;
1859 
1860 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1861 	tp->segs_in += segs_in;
1862 	if (skb->len > tcp_hdrlen(skb))
1863 		tp->data_segs_in += segs_in;
1864 }
1865 
1866 /*
1867  * TCP listen path runs lockless.
1868  * We forced "struct sock" to be const qualified to make sure
1869  * we don't modify one of its field by mistake.
1870  * Here, we increment sk_drops which is an atomic_t, so we can safely
1871  * make sock writable again.
1872  */
1873 static inline void tcp_listendrop(const struct sock *sk)
1874 {
1875 	atomic_inc(&((struct sock *)sk)->sk_drops);
1876 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1877 }
1878 
1879 #endif	/* _TCP_H */
1880