xref: /openbmc/linux/include/net/tcp.h (revision 9e6fd874c7bb47b6a4295abc4c81b2f41b97e970)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
353 				     bool force_schedule);
354 
355 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
356 static inline void tcp_dec_quickack_mode(struct sock *sk,
357 					 const unsigned int pkts)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int tcp_getsockopt(struct sock *sk, int level, int optname,
406 		   char __user *optval, int __user *optlen);
407 bool tcp_bpf_bypass_getsockopt(int level, int optname);
408 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
409 		   unsigned int optlen);
410 void tcp_set_keepalive(struct sock *sk, int val);
411 void tcp_syn_ack_timeout(const struct request_sock *req);
412 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
413 		int flags, int *addr_len);
414 int tcp_set_rcvlowat(struct sock *sk, int val);
415 int tcp_set_window_clamp(struct sock *sk, int val);
416 void tcp_update_recv_tstamps(struct sk_buff *skb,
417 			     struct scm_timestamping_internal *tss);
418 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
419 			struct scm_timestamping_internal *tss);
420 void tcp_data_ready(struct sock *sk);
421 #ifdef CONFIG_MMU
422 int tcp_mmap(struct file *file, struct socket *sock,
423 	     struct vm_area_struct *vma);
424 #endif
425 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
426 		       struct tcp_options_received *opt_rx,
427 		       int estab, struct tcp_fastopen_cookie *foc);
428 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
429 
430 /*
431  *	BPF SKB-less helpers
432  */
433 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
438 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
439 			  const struct tcp_request_sock_ops *af_ops,
440 			  struct sock *sk, struct tcphdr *th);
441 /*
442  *	TCP v4 functions exported for the inet6 API
443  */
444 
445 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
446 void tcp_v4_mtu_reduced(struct sock *sk);
447 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
448 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(const struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
454 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
455 				  struct request_sock *req,
456 				  struct dst_entry *dst,
457 				  struct request_sock *req_unhash,
458 				  bool *own_req);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 enum tcp_synack_type {
463 	TCP_SYNACK_NORMAL,
464 	TCP_SYNACK_FASTOPEN,
465 	TCP_SYNACK_COOKIE,
466 };
467 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
468 				struct request_sock *req,
469 				struct tcp_fastopen_cookie *foc,
470 				enum tcp_synack_type synack_type,
471 				struct sk_buff *syn_skb);
472 int tcp_disconnect(struct sock *sk, int flags);
473 
474 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477 
478 /* From syncookies.c */
479 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 				 struct request_sock *req,
481 				 struct dst_entry *dst, u32 tsoff);
482 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 		      u32 cookie);
484 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
486 					    const struct tcp_request_sock_ops *af_ops,
487 					    struct sock *sk, struct sk_buff *skb);
488 #ifdef CONFIG_SYN_COOKIES
489 
490 /* Syncookies use a monotonic timer which increments every 60 seconds.
491  * This counter is used both as a hash input and partially encoded into
492  * the cookie value.  A cookie is only validated further if the delta
493  * between the current counter value and the encoded one is less than this,
494  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
495  * the counter advances immediately after a cookie is generated).
496  */
497 #define MAX_SYNCOOKIE_AGE	2
498 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
499 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
500 
501 /* syncookies: remember time of last synqueue overflow
502  * But do not dirty this field too often (once per second is enough)
503  * It is racy as we do not hold a lock, but race is very minor.
504  */
505 static inline void tcp_synq_overflow(const struct sock *sk)
506 {
507 	unsigned int last_overflow;
508 	unsigned int now = jiffies;
509 
510 	if (sk->sk_reuseport) {
511 		struct sock_reuseport *reuse;
512 
513 		reuse = rcu_dereference(sk->sk_reuseport_cb);
514 		if (likely(reuse)) {
515 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
516 			if (!time_between32(now, last_overflow,
517 					    last_overflow + HZ))
518 				WRITE_ONCE(reuse->synq_overflow_ts, now);
519 			return;
520 		}
521 	}
522 
523 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
524 	if (!time_between32(now, last_overflow, last_overflow + HZ))
525 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
526 }
527 
528 /* syncookies: no recent synqueue overflow on this listening socket? */
529 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
530 {
531 	unsigned int last_overflow;
532 	unsigned int now = jiffies;
533 
534 	if (sk->sk_reuseport) {
535 		struct sock_reuseport *reuse;
536 
537 		reuse = rcu_dereference(sk->sk_reuseport_cb);
538 		if (likely(reuse)) {
539 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 			return !time_between32(now, last_overflow - HZ,
541 					       last_overflow +
542 					       TCP_SYNCOOKIE_VALID);
543 		}
544 	}
545 
546 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
547 
548 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
549 	 * then we're under synflood. However, we have to use
550 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
551 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
552 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
553 	 * which could lead to rejecting a valid syncookie.
554 	 */
555 	return !time_between32(now, last_overflow - HZ,
556 			       last_overflow + TCP_SYNCOOKIE_VALID);
557 }
558 
559 static inline u32 tcp_cookie_time(void)
560 {
561 	u64 val = get_jiffies_64();
562 
563 	do_div(val, TCP_SYNCOOKIE_PERIOD);
564 	return val;
565 }
566 
567 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
568 			      u16 *mssp);
569 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
570 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
571 bool cookie_timestamp_decode(const struct net *net,
572 			     struct tcp_options_received *opt);
573 bool cookie_ecn_ok(const struct tcp_options_received *opt,
574 		   const struct net *net, const struct dst_entry *dst);
575 
576 /* From net/ipv6/syncookies.c */
577 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
578 		      u32 cookie);
579 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
580 
581 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
582 			      const struct tcphdr *th, u16 *mssp);
583 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
584 #endif
585 /* tcp_output.c */
586 
587 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
588 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
589 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
590 			       int nonagle);
591 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
592 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 void tcp_retransmit_timer(struct sock *sk);
594 void tcp_xmit_retransmit_queue(struct sock *);
595 void tcp_simple_retransmit(struct sock *);
596 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
597 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
598 enum tcp_queue {
599 	TCP_FRAG_IN_WRITE_QUEUE,
600 	TCP_FRAG_IN_RTX_QUEUE,
601 };
602 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
603 		 struct sk_buff *skb, u32 len,
604 		 unsigned int mss_now, gfp_t gfp);
605 
606 void tcp_send_probe0(struct sock *);
607 void tcp_send_partial(struct sock *);
608 int tcp_write_wakeup(struct sock *, int mib);
609 void tcp_send_fin(struct sock *sk);
610 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
611 int tcp_send_synack(struct sock *);
612 void tcp_push_one(struct sock *, unsigned int mss_now);
613 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
614 void tcp_send_ack(struct sock *sk);
615 void tcp_send_delayed_ack(struct sock *sk);
616 void tcp_send_loss_probe(struct sock *sk);
617 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
618 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
619 			     const struct sk_buff *next_skb);
620 
621 /* tcp_input.c */
622 void tcp_rearm_rto(struct sock *sk);
623 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
624 void tcp_reset(struct sock *sk, struct sk_buff *skb);
625 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
626 void tcp_fin(struct sock *sk);
627 void tcp_check_space(struct sock *sk);
628 
629 /* tcp_timer.c */
630 void tcp_init_xmit_timers(struct sock *);
631 static inline void tcp_clear_xmit_timers(struct sock *sk)
632 {
633 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
634 		__sock_put(sk);
635 
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
637 		__sock_put(sk);
638 
639 	inet_csk_clear_xmit_timers(sk);
640 }
641 
642 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
643 unsigned int tcp_current_mss(struct sock *sk);
644 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
645 
646 /* Bound MSS / TSO packet size with the half of the window */
647 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
648 {
649 	int cutoff;
650 
651 	/* When peer uses tiny windows, there is no use in packetizing
652 	 * to sub-MSS pieces for the sake of SWS or making sure there
653 	 * are enough packets in the pipe for fast recovery.
654 	 *
655 	 * On the other hand, for extremely large MSS devices, handling
656 	 * smaller than MSS windows in this way does make sense.
657 	 */
658 	if (tp->max_window > TCP_MSS_DEFAULT)
659 		cutoff = (tp->max_window >> 1);
660 	else
661 		cutoff = tp->max_window;
662 
663 	if (cutoff && pktsize > cutoff)
664 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
665 	else
666 		return pktsize;
667 }
668 
669 /* tcp.c */
670 void tcp_get_info(struct sock *, struct tcp_info *);
671 
672 /* Read 'sendfile()'-style from a TCP socket */
673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
674 		  sk_read_actor_t recv_actor);
675 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
676 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
677 void tcp_read_done(struct sock *sk, size_t len);
678 
679 void tcp_initialize_rcv_mss(struct sock *sk);
680 
681 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
682 int tcp_mss_to_mtu(struct sock *sk, int mss);
683 void tcp_mtup_init(struct sock *sk);
684 
685 static inline void tcp_bound_rto(const struct sock *sk)
686 {
687 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
688 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
689 }
690 
691 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
692 {
693 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
694 }
695 
696 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
697 {
698 	/* mptcp hooks are only on the slow path */
699 	if (sk_is_mptcp((struct sock *)tp))
700 		return;
701 
702 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
703 			       ntohl(TCP_FLAG_ACK) |
704 			       snd_wnd);
705 }
706 
707 static inline void tcp_fast_path_on(struct tcp_sock *tp)
708 {
709 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
710 }
711 
712 static inline void tcp_fast_path_check(struct sock *sk)
713 {
714 	struct tcp_sock *tp = tcp_sk(sk);
715 
716 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
717 	    tp->rcv_wnd &&
718 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
719 	    !tp->urg_data)
720 		tcp_fast_path_on(tp);
721 }
722 
723 /* Compute the actual rto_min value */
724 static inline u32 tcp_rto_min(struct sock *sk)
725 {
726 	const struct dst_entry *dst = __sk_dst_get(sk);
727 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
728 
729 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
730 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
731 	return rto_min;
732 }
733 
734 static inline u32 tcp_rto_min_us(struct sock *sk)
735 {
736 	return jiffies_to_usecs(tcp_rto_min(sk));
737 }
738 
739 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
740 {
741 	return dst_metric_locked(dst, RTAX_CC_ALGO);
742 }
743 
744 /* Minimum RTT in usec. ~0 means not available. */
745 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
746 {
747 	return minmax_get(&tp->rtt_min);
748 }
749 
750 /* Compute the actual receive window we are currently advertising.
751  * Rcv_nxt can be after the window if our peer push more data
752  * than the offered window.
753  */
754 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
755 {
756 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
757 
758 	if (win < 0)
759 		win = 0;
760 	return (u32) win;
761 }
762 
763 /* Choose a new window, without checks for shrinking, and without
764  * scaling applied to the result.  The caller does these things
765  * if necessary.  This is a "raw" window selection.
766  */
767 u32 __tcp_select_window(struct sock *sk);
768 
769 void tcp_send_window_probe(struct sock *sk);
770 
771 /* TCP uses 32bit jiffies to save some space.
772  * Note that this is different from tcp_time_stamp, which
773  * historically has been the same until linux-4.13.
774  */
775 #define tcp_jiffies32 ((u32)jiffies)
776 
777 /*
778  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
779  * It is no longer tied to jiffies, but to 1 ms clock.
780  * Note: double check if you want to use tcp_jiffies32 instead of this.
781  */
782 #define TCP_TS_HZ	1000
783 
784 static inline u64 tcp_clock_ns(void)
785 {
786 	return ktime_get_ns();
787 }
788 
789 static inline u64 tcp_clock_us(void)
790 {
791 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
792 }
793 
794 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
795 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
796 {
797 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
798 }
799 
800 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
801 static inline u32 tcp_ns_to_ts(u64 ns)
802 {
803 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
804 }
805 
806 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
807 static inline u32 tcp_time_stamp_raw(void)
808 {
809 	return tcp_ns_to_ts(tcp_clock_ns());
810 }
811 
812 void tcp_mstamp_refresh(struct tcp_sock *tp);
813 
814 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
815 {
816 	return max_t(s64, t1 - t0, 0);
817 }
818 
819 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
820 {
821 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
822 }
823 
824 /* provide the departure time in us unit */
825 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
826 {
827 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
828 }
829 
830 
831 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
832 
833 #define TCPHDR_FIN 0x01
834 #define TCPHDR_SYN 0x02
835 #define TCPHDR_RST 0x04
836 #define TCPHDR_PSH 0x08
837 #define TCPHDR_ACK 0x10
838 #define TCPHDR_URG 0x20
839 #define TCPHDR_ECE 0x40
840 #define TCPHDR_CWR 0x80
841 
842 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
843 
844 /* This is what the send packet queuing engine uses to pass
845  * TCP per-packet control information to the transmission code.
846  * We also store the host-order sequence numbers in here too.
847  * This is 44 bytes if IPV6 is enabled.
848  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
849  */
850 struct tcp_skb_cb {
851 	__u32		seq;		/* Starting sequence number	*/
852 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
853 	union {
854 		/* Note : tcp_tw_isn is used in input path only
855 		 *	  (isn chosen by tcp_timewait_state_process())
856 		 *
857 		 * 	  tcp_gso_segs/size are used in write queue only,
858 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
859 		 */
860 		__u32		tcp_tw_isn;
861 		struct {
862 			u16	tcp_gso_segs;
863 			u16	tcp_gso_size;
864 		};
865 	};
866 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
867 
868 	__u8		sacked;		/* State flags for SACK.	*/
869 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
870 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
871 #define TCPCB_LOST		0x04	/* SKB is lost			*/
872 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
873 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
874 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
875 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
876 				TCPCB_REPAIRED)
877 
878 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
879 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
880 			eor:1,		/* Is skb MSG_EOR marked? */
881 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
882 			unused:5;
883 	__u32		ack_seq;	/* Sequence number ACK'd	*/
884 	union {
885 		struct {
886 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
887 			/* There is space for up to 24 bytes */
888 			__u32 is_app_limited:1, /* cwnd not fully used? */
889 			      delivered_ce:20,
890 			      unused:11;
891 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
892 			__u32 delivered;
893 			/* start of send pipeline phase */
894 			u64 first_tx_mstamp;
895 			/* when we reached the "delivered" count */
896 			u64 delivered_mstamp;
897 		} tx;   /* only used for outgoing skbs */
898 		union {
899 			struct inet_skb_parm	h4;
900 #if IS_ENABLED(CONFIG_IPV6)
901 			struct inet6_skb_parm	h6;
902 #endif
903 		} header;	/* For incoming skbs */
904 	};
905 };
906 
907 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
908 
909 extern const struct inet_connection_sock_af_ops ipv4_specific;
910 
911 #if IS_ENABLED(CONFIG_IPV6)
912 /* This is the variant of inet6_iif() that must be used by TCP,
913  * as TCP moves IP6CB into a different location in skb->cb[]
914  */
915 static inline int tcp_v6_iif(const struct sk_buff *skb)
916 {
917 	return TCP_SKB_CB(skb)->header.h6.iif;
918 }
919 
920 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
921 {
922 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
923 
924 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v6_sdif(const struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
932 		return TCP_SKB_CB(skb)->header.h6.iif;
933 #endif
934 	return 0;
935 }
936 
937 extern const struct inet_connection_sock_af_ops ipv6_specific;
938 
939 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
940 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
941 void tcp_v6_early_demux(struct sk_buff *skb);
942 
943 #endif
944 
945 /* TCP_SKB_CB reference means this can not be used from early demux */
946 static inline int tcp_v4_sdif(struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
950 		return TCP_SKB_CB(skb)->header.h4.iif;
951 #endif
952 	return 0;
953 }
954 
955 /* Due to TSO, an SKB can be composed of multiple actual
956  * packets.  To keep these tracked properly, we use this.
957  */
958 static inline int tcp_skb_pcount(const struct sk_buff *skb)
959 {
960 	return TCP_SKB_CB(skb)->tcp_gso_segs;
961 }
962 
963 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
964 {
965 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
966 }
967 
968 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
971 }
972 
973 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
974 static inline int tcp_skb_mss(const struct sk_buff *skb)
975 {
976 	return TCP_SKB_CB(skb)->tcp_gso_size;
977 }
978 
979 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
980 {
981 	return likely(!TCP_SKB_CB(skb)->eor);
982 }
983 
984 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
985 					const struct sk_buff *from)
986 {
987 	return likely(tcp_skb_can_collapse_to(to) &&
988 		      mptcp_skb_can_collapse(to, from) &&
989 		      skb_pure_zcopy_same(to, from));
990 }
991 
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
995 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
996 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
997 	CA_EVENT_LOSS,		/* loss timeout */
998 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
999 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1000 };
1001 
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1005 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1006 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1007 };
1008 
1009 /*
1010  * Interface for adding new TCP congestion control handlers
1011  */
1012 #define TCP_CA_NAME_MAX	16
1013 #define TCP_CA_MAX	128
1014 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1015 
1016 #define TCP_CA_UNSPEC	0
1017 
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN	0x2
1022 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023 
1024 union tcp_cc_info;
1025 
1026 struct ack_sample {
1027 	u32 pkts_acked;
1028 	s32 rtt_us;
1029 	u32 in_flight;
1030 };
1031 
1032 /* A rate sample measures the number of (original/retransmitted) data
1033  * packets delivered "delivered" over an interval of time "interval_us".
1034  * The tcp_rate.c code fills in the rate sample, and congestion
1035  * control modules that define a cong_control function to run at the end
1036  * of ACK processing can optionally chose to consult this sample when
1037  * setting cwnd and pacing rate.
1038  * A sample is invalid if "delivered" or "interval_us" is negative.
1039  */
1040 struct rate_sample {
1041 	u64  prior_mstamp; /* starting timestamp for interval */
1042 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1043 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1044 	s32  delivered;		/* number of packets delivered over interval */
1045 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1046 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1047 	u32 snd_interval_us;	/* snd interval for delivered packets */
1048 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1049 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1050 	int  losses;		/* number of packets marked lost upon ACK */
1051 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1052 	u32  prior_in_flight;	/* in flight before this ACK */
1053 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1054 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1055 	bool is_retrans;	/* is sample from retransmission? */
1056 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1057 };
1058 
1059 struct tcp_congestion_ops {
1060 /* fast path fields are put first to fill one cache line */
1061 
1062 	/* return slow start threshold (required) */
1063 	u32 (*ssthresh)(struct sock *sk);
1064 
1065 	/* do new cwnd calculation (required) */
1066 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1067 
1068 	/* call before changing ca_state (optional) */
1069 	void (*set_state)(struct sock *sk, u8 new_state);
1070 
1071 	/* call when cwnd event occurs (optional) */
1072 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073 
1074 	/* call when ack arrives (optional) */
1075 	void (*in_ack_event)(struct sock *sk, u32 flags);
1076 
1077 	/* hook for packet ack accounting (optional) */
1078 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079 
1080 	/* override sysctl_tcp_min_tso_segs */
1081 	u32 (*min_tso_segs)(struct sock *sk);
1082 
1083 	/* call when packets are delivered to update cwnd and pacing rate,
1084 	 * after all the ca_state processing. (optional)
1085 	 */
1086 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087 
1088 
1089 	/* new value of cwnd after loss (required) */
1090 	u32  (*undo_cwnd)(struct sock *sk);
1091 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1092 	u32 (*sndbuf_expand)(struct sock *sk);
1093 
1094 /* control/slow paths put last */
1095 	/* get info for inet_diag (optional) */
1096 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1097 			   union tcp_cc_info *info);
1098 
1099 	char 			name[TCP_CA_NAME_MAX];
1100 	struct module		*owner;
1101 	struct list_head	list;
1102 	u32			key;
1103 	u32			flags;
1104 
1105 	/* initialize private data (optional) */
1106 	void (*init)(struct sock *sk);
1107 	/* cleanup private data  (optional) */
1108 	void (*release)(struct sock *sk);
1109 } ____cacheline_aligned_in_smp;
1110 
1111 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1112 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1113 
1114 void tcp_assign_congestion_control(struct sock *sk);
1115 void tcp_init_congestion_control(struct sock *sk);
1116 void tcp_cleanup_congestion_control(struct sock *sk);
1117 int tcp_set_default_congestion_control(struct net *net, const char *name);
1118 void tcp_get_default_congestion_control(struct net *net, char *name);
1119 void tcp_get_available_congestion_control(char *buf, size_t len);
1120 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1121 int tcp_set_allowed_congestion_control(char *allowed);
1122 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1123 			       bool cap_net_admin);
1124 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1125 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1126 
1127 u32 tcp_reno_ssthresh(struct sock *sk);
1128 u32 tcp_reno_undo_cwnd(struct sock *sk);
1129 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1130 extern struct tcp_congestion_ops tcp_reno;
1131 
1132 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1133 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1134 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1135 #ifdef CONFIG_INET
1136 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1137 #else
1138 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1139 {
1140 	return NULL;
1141 }
1142 #endif
1143 
1144 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1145 {
1146 	const struct inet_connection_sock *icsk = inet_csk(sk);
1147 
1148 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1149 }
1150 
1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_cong.c */
1160 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1161 
1162 /* From tcp_rate.c */
1163 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1164 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1165 			    struct rate_sample *rs);
1166 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1167 		  bool is_sack_reneg, struct rate_sample *rs);
1168 void tcp_rate_check_app_limited(struct sock *sk);
1169 
1170 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1171 {
1172 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1173 }
1174 
1175 /* These functions determine how the current flow behaves in respect of SACK
1176  * handling. SACK is negotiated with the peer, and therefore it can vary
1177  * between different flows.
1178  *
1179  * tcp_is_sack - SACK enabled
1180  * tcp_is_reno - No SACK
1181  */
1182 static inline int tcp_is_sack(const struct tcp_sock *tp)
1183 {
1184 	return likely(tp->rx_opt.sack_ok);
1185 }
1186 
1187 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1188 {
1189 	return !tcp_is_sack(tp);
1190 }
1191 
1192 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1193 {
1194 	return tp->sacked_out + tp->lost_out;
1195 }
1196 
1197 /* This determines how many packets are "in the network" to the best
1198  * of our knowledge.  In many cases it is conservative, but where
1199  * detailed information is available from the receiver (via SACK
1200  * blocks etc.) we can make more aggressive calculations.
1201  *
1202  * Use this for decisions involving congestion control, use just
1203  * tp->packets_out to determine if the send queue is empty or not.
1204  *
1205  * Read this equation as:
1206  *
1207  *	"Packets sent once on transmission queue" MINUS
1208  *	"Packets left network, but not honestly ACKed yet" PLUS
1209  *	"Packets fast retransmitted"
1210  */
1211 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1212 {
1213 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1214 }
1215 
1216 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1217 
1218 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1219 {
1220 	return tp->snd_cwnd;
1221 }
1222 
1223 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1224 {
1225 	WARN_ON_ONCE((int)val <= 0);
1226 	tp->snd_cwnd = val;
1227 }
1228 
1229 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1230 {
1231 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1232 }
1233 
1234 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1235 {
1236 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1237 }
1238 
1239 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1240 {
1241 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1242 	       (1 << inet_csk(sk)->icsk_ca_state);
1243 }
1244 
1245 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1246  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1247  * ssthresh.
1248  */
1249 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1250 {
1251 	const struct tcp_sock *tp = tcp_sk(sk);
1252 
1253 	if (tcp_in_cwnd_reduction(sk))
1254 		return tp->snd_ssthresh;
1255 	else
1256 		return max(tp->snd_ssthresh,
1257 			   ((tcp_snd_cwnd(tp) >> 1) +
1258 			    (tcp_snd_cwnd(tp) >> 2)));
1259 }
1260 
1261 /* Use define here intentionally to get WARN_ON location shown at the caller */
1262 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1263 
1264 void tcp_enter_cwr(struct sock *sk);
1265 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1266 
1267 /* The maximum number of MSS of available cwnd for which TSO defers
1268  * sending if not using sysctl_tcp_tso_win_divisor.
1269  */
1270 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1271 {
1272 	return 3;
1273 }
1274 
1275 /* Returns end sequence number of the receiver's advertised window */
1276 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1277 {
1278 	return tp->snd_una + tp->snd_wnd;
1279 }
1280 
1281 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1282  * flexible approach. The RFC suggests cwnd should not be raised unless
1283  * it was fully used previously. And that's exactly what we do in
1284  * congestion avoidance mode. But in slow start we allow cwnd to grow
1285  * as long as the application has used half the cwnd.
1286  * Example :
1287  *    cwnd is 10 (IW10), but application sends 9 frames.
1288  *    We allow cwnd to reach 18 when all frames are ACKed.
1289  * This check is safe because it's as aggressive as slow start which already
1290  * risks 100% overshoot. The advantage is that we discourage application to
1291  * either send more filler packets or data to artificially blow up the cwnd
1292  * usage, and allow application-limited process to probe bw more aggressively.
1293  */
1294 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1295 {
1296 	const struct tcp_sock *tp = tcp_sk(sk);
1297 
1298 	if (tp->is_cwnd_limited)
1299 		return true;
1300 
1301 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1302 	if (tcp_in_slow_start(tp))
1303 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1304 
1305 	return false;
1306 }
1307 
1308 /* BBR congestion control needs pacing.
1309  * Same remark for SO_MAX_PACING_RATE.
1310  * sch_fq packet scheduler is efficiently handling pacing,
1311  * but is not always installed/used.
1312  * Return true if TCP stack should pace packets itself.
1313  */
1314 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1315 {
1316 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1317 }
1318 
1319 /* Estimates in how many jiffies next packet for this flow can be sent.
1320  * Scheduling a retransmit timer too early would be silly.
1321  */
1322 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1323 {
1324 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1325 
1326 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1327 }
1328 
1329 static inline void tcp_reset_xmit_timer(struct sock *sk,
1330 					const int what,
1331 					unsigned long when,
1332 					const unsigned long max_when)
1333 {
1334 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1335 				  max_when);
1336 }
1337 
1338 /* Something is really bad, we could not queue an additional packet,
1339  * because qdisc is full or receiver sent a 0 window, or we are paced.
1340  * We do not want to add fuel to the fire, or abort too early,
1341  * so make sure the timer we arm now is at least 200ms in the future,
1342  * regardless of current icsk_rto value (as it could be ~2ms)
1343  */
1344 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1345 {
1346 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1347 }
1348 
1349 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1350 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1351 					    unsigned long max_when)
1352 {
1353 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1354 			   inet_csk(sk)->icsk_backoff);
1355 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1356 
1357 	return (unsigned long)min_t(u64, when, max_when);
1358 }
1359 
1360 static inline void tcp_check_probe_timer(struct sock *sk)
1361 {
1362 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1363 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1364 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1365 }
1366 
1367 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1368 {
1369 	tp->snd_wl1 = seq;
1370 }
1371 
1372 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1373 {
1374 	tp->snd_wl1 = seq;
1375 }
1376 
1377 /*
1378  * Calculate(/check) TCP checksum
1379  */
1380 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1381 				   __be32 daddr, __wsum base)
1382 {
1383 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1384 }
1385 
1386 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1387 {
1388 	return !skb_csum_unnecessary(skb) &&
1389 		__skb_checksum_complete(skb);
1390 }
1391 
1392 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1393 		     enum skb_drop_reason *reason);
1394 
1395 
1396 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1397 void tcp_set_state(struct sock *sk, int state);
1398 void tcp_done(struct sock *sk);
1399 int tcp_abort(struct sock *sk, int err);
1400 
1401 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1402 {
1403 	rx_opt->dsack = 0;
1404 	rx_opt->num_sacks = 0;
1405 }
1406 
1407 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1408 
1409 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1410 {
1411 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1412 	struct tcp_sock *tp = tcp_sk(sk);
1413 	s32 delta;
1414 
1415 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1416 	    tp->packets_out || ca_ops->cong_control)
1417 		return;
1418 	delta = tcp_jiffies32 - tp->lsndtime;
1419 	if (delta > inet_csk(sk)->icsk_rto)
1420 		tcp_cwnd_restart(sk, delta);
1421 }
1422 
1423 /* Determine a window scaling and initial window to offer. */
1424 void tcp_select_initial_window(const struct sock *sk, int __space,
1425 			       __u32 mss, __u32 *rcv_wnd,
1426 			       __u32 *window_clamp, int wscale_ok,
1427 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1428 
1429 static inline int tcp_win_from_space(const struct sock *sk, int space)
1430 {
1431 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1432 
1433 	return tcp_adv_win_scale <= 0 ?
1434 		(space>>(-tcp_adv_win_scale)) :
1435 		space - (space>>tcp_adv_win_scale);
1436 }
1437 
1438 /* Note: caller must be prepared to deal with negative returns */
1439 static inline int tcp_space(const struct sock *sk)
1440 {
1441 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1442 				  READ_ONCE(sk->sk_backlog.len) -
1443 				  atomic_read(&sk->sk_rmem_alloc));
1444 }
1445 
1446 static inline int tcp_full_space(const struct sock *sk)
1447 {
1448 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1449 }
1450 
1451 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1452 {
1453 	int unused_mem = sk_unused_reserved_mem(sk);
1454 	struct tcp_sock *tp = tcp_sk(sk);
1455 
1456 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1457 	if (unused_mem)
1458 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1459 					 tcp_win_from_space(sk, unused_mem));
1460 }
1461 
1462 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1463 
1464 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1465  * If 87.5 % (7/8) of the space has been consumed, we want to override
1466  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1467  * len/truesize ratio.
1468  */
1469 static inline bool tcp_rmem_pressure(const struct sock *sk)
1470 {
1471 	int rcvbuf, threshold;
1472 
1473 	if (tcp_under_memory_pressure(sk))
1474 		return true;
1475 
1476 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1477 	threshold = rcvbuf - (rcvbuf >> 3);
1478 
1479 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1480 }
1481 
1482 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1483 {
1484 	const struct tcp_sock *tp = tcp_sk(sk);
1485 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1486 
1487 	if (avail <= 0)
1488 		return false;
1489 
1490 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1491 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1492 }
1493 
1494 extern void tcp_openreq_init_rwin(struct request_sock *req,
1495 				  const struct sock *sk_listener,
1496 				  const struct dst_entry *dst);
1497 
1498 void tcp_enter_memory_pressure(struct sock *sk);
1499 void tcp_leave_memory_pressure(struct sock *sk);
1500 
1501 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1502 {
1503 	struct net *net = sock_net((struct sock *)tp);
1504 
1505 	return tp->keepalive_intvl ? :
1506 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1507 }
1508 
1509 static inline int keepalive_time_when(const struct tcp_sock *tp)
1510 {
1511 	struct net *net = sock_net((struct sock *)tp);
1512 
1513 	return tp->keepalive_time ? :
1514 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1515 }
1516 
1517 static inline int keepalive_probes(const struct tcp_sock *tp)
1518 {
1519 	struct net *net = sock_net((struct sock *)tp);
1520 
1521 	return tp->keepalive_probes ? :
1522 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1523 }
1524 
1525 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1526 {
1527 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1528 
1529 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1530 			  tcp_jiffies32 - tp->rcv_tstamp);
1531 }
1532 
1533 static inline int tcp_fin_time(const struct sock *sk)
1534 {
1535 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1536 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1537 	const int rto = inet_csk(sk)->icsk_rto;
1538 
1539 	if (fin_timeout < (rto << 2) - (rto >> 1))
1540 		fin_timeout = (rto << 2) - (rto >> 1);
1541 
1542 	return fin_timeout;
1543 }
1544 
1545 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1546 				  int paws_win)
1547 {
1548 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1549 		return true;
1550 	if (unlikely(!time_before32(ktime_get_seconds(),
1551 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1552 		return true;
1553 	/*
1554 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1555 	 * then following tcp messages have valid values. Ignore 0 value,
1556 	 * or else 'negative' tsval might forbid us to accept their packets.
1557 	 */
1558 	if (!rx_opt->ts_recent)
1559 		return true;
1560 	return false;
1561 }
1562 
1563 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1564 				   int rst)
1565 {
1566 	if (tcp_paws_check(rx_opt, 0))
1567 		return false;
1568 
1569 	/* RST segments are not recommended to carry timestamp,
1570 	   and, if they do, it is recommended to ignore PAWS because
1571 	   "their cleanup function should take precedence over timestamps."
1572 	   Certainly, it is mistake. It is necessary to understand the reasons
1573 	   of this constraint to relax it: if peer reboots, clock may go
1574 	   out-of-sync and half-open connections will not be reset.
1575 	   Actually, the problem would be not existing if all
1576 	   the implementations followed draft about maintaining clock
1577 	   via reboots. Linux-2.2 DOES NOT!
1578 
1579 	   However, we can relax time bounds for RST segments to MSL.
1580 	 */
1581 	if (rst && !time_before32(ktime_get_seconds(),
1582 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1583 		return false;
1584 	return true;
1585 }
1586 
1587 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1588 			  int mib_idx, u32 *last_oow_ack_time);
1589 
1590 static inline void tcp_mib_init(struct net *net)
1591 {
1592 	/* See RFC 2012 */
1593 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1594 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1595 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1596 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1597 }
1598 
1599 /* from STCP */
1600 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1601 {
1602 	tp->lost_skb_hint = NULL;
1603 }
1604 
1605 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1606 {
1607 	tcp_clear_retrans_hints_partial(tp);
1608 	tp->retransmit_skb_hint = NULL;
1609 }
1610 
1611 union tcp_md5_addr {
1612 	struct in_addr  a4;
1613 #if IS_ENABLED(CONFIG_IPV6)
1614 	struct in6_addr	a6;
1615 #endif
1616 };
1617 
1618 /* - key database */
1619 struct tcp_md5sig_key {
1620 	struct hlist_node	node;
1621 	u8			keylen;
1622 	u8			family; /* AF_INET or AF_INET6 */
1623 	u8			prefixlen;
1624 	u8			flags;
1625 	union tcp_md5_addr	addr;
1626 	int			l3index; /* set if key added with L3 scope */
1627 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1628 	struct rcu_head		rcu;
1629 };
1630 
1631 /* - sock block */
1632 struct tcp_md5sig_info {
1633 	struct hlist_head	head;
1634 	struct rcu_head		rcu;
1635 };
1636 
1637 /* - pseudo header */
1638 struct tcp4_pseudohdr {
1639 	__be32		saddr;
1640 	__be32		daddr;
1641 	__u8		pad;
1642 	__u8		protocol;
1643 	__be16		len;
1644 };
1645 
1646 struct tcp6_pseudohdr {
1647 	struct in6_addr	saddr;
1648 	struct in6_addr daddr;
1649 	__be32		len;
1650 	__be32		protocol;	/* including padding */
1651 };
1652 
1653 union tcp_md5sum_block {
1654 	struct tcp4_pseudohdr ip4;
1655 #if IS_ENABLED(CONFIG_IPV6)
1656 	struct tcp6_pseudohdr ip6;
1657 #endif
1658 };
1659 
1660 /* - pool: digest algorithm, hash description and scratch buffer */
1661 struct tcp_md5sig_pool {
1662 	struct ahash_request	*md5_req;
1663 	void			*scratch;
1664 };
1665 
1666 /* - functions */
1667 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1668 			const struct sock *sk, const struct sk_buff *skb);
1669 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1670 		   int family, u8 prefixlen, int l3index, u8 flags,
1671 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1672 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1673 		   int family, u8 prefixlen, int l3index, u8 flags);
1674 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1675 					 const struct sock *addr_sk);
1676 
1677 #ifdef CONFIG_TCP_MD5SIG
1678 #include <linux/jump_label.h>
1679 extern struct static_key_false tcp_md5_needed;
1680 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1681 					   const union tcp_md5_addr *addr,
1682 					   int family);
1683 static inline struct tcp_md5sig_key *
1684 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1685 		  const union tcp_md5_addr *addr, int family)
1686 {
1687 	if (!static_branch_unlikely(&tcp_md5_needed))
1688 		return NULL;
1689 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1690 }
1691 
1692 enum skb_drop_reason
1693 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1694 		     const void *saddr, const void *daddr,
1695 		     int family, int dif, int sdif);
1696 
1697 
1698 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1699 #else
1700 static inline struct tcp_md5sig_key *
1701 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1702 		  const union tcp_md5_addr *addr, int family)
1703 {
1704 	return NULL;
1705 }
1706 
1707 static inline enum skb_drop_reason
1708 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1709 		     const void *saddr, const void *daddr,
1710 		     int family, int dif, int sdif)
1711 {
1712 	return SKB_NOT_DROPPED_YET;
1713 }
1714 #define tcp_twsk_md5_key(twsk)	NULL
1715 #endif
1716 
1717 bool tcp_alloc_md5sig_pool(void);
1718 
1719 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1720 static inline void tcp_put_md5sig_pool(void)
1721 {
1722 	local_bh_enable();
1723 }
1724 
1725 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1726 			  unsigned int header_len);
1727 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1728 		     const struct tcp_md5sig_key *key);
1729 
1730 /* From tcp_fastopen.c */
1731 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1732 			    struct tcp_fastopen_cookie *cookie);
1733 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1734 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1735 			    u16 try_exp);
1736 struct tcp_fastopen_request {
1737 	/* Fast Open cookie. Size 0 means a cookie request */
1738 	struct tcp_fastopen_cookie	cookie;
1739 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1740 	size_t				size;
1741 	int				copied;	/* queued in tcp_connect() */
1742 	struct ubuf_info		*uarg;
1743 };
1744 void tcp_free_fastopen_req(struct tcp_sock *tp);
1745 void tcp_fastopen_destroy_cipher(struct sock *sk);
1746 void tcp_fastopen_ctx_destroy(struct net *net);
1747 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1748 			      void *primary_key, void *backup_key);
1749 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1750 			    u64 *key);
1751 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1752 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1753 			      struct request_sock *req,
1754 			      struct tcp_fastopen_cookie *foc,
1755 			      const struct dst_entry *dst);
1756 void tcp_fastopen_init_key_once(struct net *net);
1757 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1758 			     struct tcp_fastopen_cookie *cookie);
1759 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1760 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1761 #define TCP_FASTOPEN_KEY_MAX 2
1762 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1763 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1764 
1765 /* Fastopen key context */
1766 struct tcp_fastopen_context {
1767 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1768 	int		num;
1769 	struct rcu_head	rcu;
1770 };
1771 
1772 void tcp_fastopen_active_disable(struct sock *sk);
1773 bool tcp_fastopen_active_should_disable(struct sock *sk);
1774 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1775 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1776 
1777 /* Caller needs to wrap with rcu_read_(un)lock() */
1778 static inline
1779 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1780 {
1781 	struct tcp_fastopen_context *ctx;
1782 
1783 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1784 	if (!ctx)
1785 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1786 	return ctx;
1787 }
1788 
1789 static inline
1790 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1791 			       const struct tcp_fastopen_cookie *orig)
1792 {
1793 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1794 	    orig->len == foc->len &&
1795 	    !memcmp(orig->val, foc->val, foc->len))
1796 		return true;
1797 	return false;
1798 }
1799 
1800 static inline
1801 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1802 {
1803 	return ctx->num;
1804 }
1805 
1806 /* Latencies incurred by various limits for a sender. They are
1807  * chronograph-like stats that are mutually exclusive.
1808  */
1809 enum tcp_chrono {
1810 	TCP_CHRONO_UNSPEC,
1811 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1812 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1813 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1814 	__TCP_CHRONO_MAX,
1815 };
1816 
1817 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1818 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1819 
1820 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1821  * the same memory storage than skb->destructor/_skb_refdst
1822  */
1823 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1824 {
1825 	skb->destructor = NULL;
1826 	skb->_skb_refdst = 0UL;
1827 }
1828 
1829 #define tcp_skb_tsorted_save(skb) {		\
1830 	unsigned long _save = skb->_skb_refdst;	\
1831 	skb->_skb_refdst = 0UL;
1832 
1833 #define tcp_skb_tsorted_restore(skb)		\
1834 	skb->_skb_refdst = _save;		\
1835 }
1836 
1837 void tcp_write_queue_purge(struct sock *sk);
1838 
1839 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1840 {
1841 	return skb_rb_first(&sk->tcp_rtx_queue);
1842 }
1843 
1844 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1845 {
1846 	return skb_rb_last(&sk->tcp_rtx_queue);
1847 }
1848 
1849 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1850 {
1851 	return skb_peek_tail(&sk->sk_write_queue);
1852 }
1853 
1854 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1855 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1856 
1857 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1858 {
1859 	return skb_peek(&sk->sk_write_queue);
1860 }
1861 
1862 static inline bool tcp_skb_is_last(const struct sock *sk,
1863 				   const struct sk_buff *skb)
1864 {
1865 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1866 }
1867 
1868 /**
1869  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1870  * @sk: socket
1871  *
1872  * Since the write queue can have a temporary empty skb in it,
1873  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1874  */
1875 static inline bool tcp_write_queue_empty(const struct sock *sk)
1876 {
1877 	const struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 	return tp->write_seq == tp->snd_nxt;
1880 }
1881 
1882 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1883 {
1884 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1885 }
1886 
1887 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1888 {
1889 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1890 }
1891 
1892 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1893 {
1894 	__skb_queue_tail(&sk->sk_write_queue, skb);
1895 
1896 	/* Queue it, remembering where we must start sending. */
1897 	if (sk->sk_write_queue.next == skb)
1898 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1899 }
1900 
1901 /* Insert new before skb on the write queue of sk.  */
1902 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1903 						  struct sk_buff *skb,
1904 						  struct sock *sk)
1905 {
1906 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1907 }
1908 
1909 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1910 {
1911 	tcp_skb_tsorted_anchor_cleanup(skb);
1912 	__skb_unlink(skb, &sk->sk_write_queue);
1913 }
1914 
1915 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1916 
1917 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1918 {
1919 	tcp_skb_tsorted_anchor_cleanup(skb);
1920 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1921 }
1922 
1923 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1924 {
1925 	list_del(&skb->tcp_tsorted_anchor);
1926 	tcp_rtx_queue_unlink(skb, sk);
1927 	tcp_wmem_free_skb(sk, skb);
1928 }
1929 
1930 static inline void tcp_push_pending_frames(struct sock *sk)
1931 {
1932 	if (tcp_send_head(sk)) {
1933 		struct tcp_sock *tp = tcp_sk(sk);
1934 
1935 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1936 	}
1937 }
1938 
1939 /* Start sequence of the skb just after the highest skb with SACKed
1940  * bit, valid only if sacked_out > 0 or when the caller has ensured
1941  * validity by itself.
1942  */
1943 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1944 {
1945 	if (!tp->sacked_out)
1946 		return tp->snd_una;
1947 
1948 	if (tp->highest_sack == NULL)
1949 		return tp->snd_nxt;
1950 
1951 	return TCP_SKB_CB(tp->highest_sack)->seq;
1952 }
1953 
1954 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1955 {
1956 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1957 }
1958 
1959 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1960 {
1961 	return tcp_sk(sk)->highest_sack;
1962 }
1963 
1964 static inline void tcp_highest_sack_reset(struct sock *sk)
1965 {
1966 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1967 }
1968 
1969 /* Called when old skb is about to be deleted and replaced by new skb */
1970 static inline void tcp_highest_sack_replace(struct sock *sk,
1971 					    struct sk_buff *old,
1972 					    struct sk_buff *new)
1973 {
1974 	if (old == tcp_highest_sack(sk))
1975 		tcp_sk(sk)->highest_sack = new;
1976 }
1977 
1978 /* This helper checks if socket has IP_TRANSPARENT set */
1979 static inline bool inet_sk_transparent(const struct sock *sk)
1980 {
1981 	switch (sk->sk_state) {
1982 	case TCP_TIME_WAIT:
1983 		return inet_twsk(sk)->tw_transparent;
1984 	case TCP_NEW_SYN_RECV:
1985 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1986 	}
1987 	return inet_sk(sk)->transparent;
1988 }
1989 
1990 /* Determines whether this is a thin stream (which may suffer from
1991  * increased latency). Used to trigger latency-reducing mechanisms.
1992  */
1993 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1994 {
1995 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1996 }
1997 
1998 /* /proc */
1999 enum tcp_seq_states {
2000 	TCP_SEQ_STATE_LISTENING,
2001 	TCP_SEQ_STATE_ESTABLISHED,
2002 };
2003 
2004 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2005 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2006 void tcp_seq_stop(struct seq_file *seq, void *v);
2007 
2008 struct tcp_seq_afinfo {
2009 	sa_family_t			family;
2010 };
2011 
2012 struct tcp_iter_state {
2013 	struct seq_net_private	p;
2014 	enum tcp_seq_states	state;
2015 	struct sock		*syn_wait_sk;
2016 	int			bucket, offset, sbucket, num;
2017 	loff_t			last_pos;
2018 };
2019 
2020 extern struct request_sock_ops tcp_request_sock_ops;
2021 extern struct request_sock_ops tcp6_request_sock_ops;
2022 
2023 void tcp_v4_destroy_sock(struct sock *sk);
2024 
2025 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2026 				netdev_features_t features);
2027 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2028 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2029 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2030 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2031 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2032 int tcp_gro_complete(struct sk_buff *skb);
2033 
2034 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2035 
2036 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2037 {
2038 	struct net *net = sock_net((struct sock *)tp);
2039 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2040 }
2041 
2042 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2043 
2044 #ifdef CONFIG_PROC_FS
2045 int tcp4_proc_init(void);
2046 void tcp4_proc_exit(void);
2047 #endif
2048 
2049 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2050 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2051 		     const struct tcp_request_sock_ops *af_ops,
2052 		     struct sock *sk, struct sk_buff *skb);
2053 
2054 /* TCP af-specific functions */
2055 struct tcp_sock_af_ops {
2056 #ifdef CONFIG_TCP_MD5SIG
2057 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2058 						const struct sock *addr_sk);
2059 	int		(*calc_md5_hash)(char *location,
2060 					 const struct tcp_md5sig_key *md5,
2061 					 const struct sock *sk,
2062 					 const struct sk_buff *skb);
2063 	int		(*md5_parse)(struct sock *sk,
2064 				     int optname,
2065 				     sockptr_t optval,
2066 				     int optlen);
2067 #endif
2068 };
2069 
2070 struct tcp_request_sock_ops {
2071 	u16 mss_clamp;
2072 #ifdef CONFIG_TCP_MD5SIG
2073 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2074 						 const struct sock *addr_sk);
2075 	int		(*calc_md5_hash) (char *location,
2076 					  const struct tcp_md5sig_key *md5,
2077 					  const struct sock *sk,
2078 					  const struct sk_buff *skb);
2079 #endif
2080 #ifdef CONFIG_SYN_COOKIES
2081 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2082 				 __u16 *mss);
2083 #endif
2084 	struct dst_entry *(*route_req)(const struct sock *sk,
2085 				       struct sk_buff *skb,
2086 				       struct flowi *fl,
2087 				       struct request_sock *req);
2088 	u32 (*init_seq)(const struct sk_buff *skb);
2089 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2090 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2091 			   struct flowi *fl, struct request_sock *req,
2092 			   struct tcp_fastopen_cookie *foc,
2093 			   enum tcp_synack_type synack_type,
2094 			   struct sk_buff *syn_skb);
2095 };
2096 
2097 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2098 #if IS_ENABLED(CONFIG_IPV6)
2099 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2100 #endif
2101 
2102 #ifdef CONFIG_SYN_COOKIES
2103 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2104 					 const struct sock *sk, struct sk_buff *skb,
2105 					 __u16 *mss)
2106 {
2107 	tcp_synq_overflow(sk);
2108 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2109 	return ops->cookie_init_seq(skb, mss);
2110 }
2111 #else
2112 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2113 					 const struct sock *sk, struct sk_buff *skb,
2114 					 __u16 *mss)
2115 {
2116 	return 0;
2117 }
2118 #endif
2119 
2120 int tcpv4_offload_init(void);
2121 
2122 void tcp_v4_init(void);
2123 void tcp_init(void);
2124 
2125 /* tcp_recovery.c */
2126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2127 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2128 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2129 				u32 reo_wnd);
2130 extern bool tcp_rack_mark_lost(struct sock *sk);
2131 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2132 			     u64 xmit_time);
2133 extern void tcp_rack_reo_timeout(struct sock *sk);
2134 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2135 
2136 /* At how many usecs into the future should the RTO fire? */
2137 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2138 {
2139 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2140 	u32 rto = inet_csk(sk)->icsk_rto;
2141 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2142 
2143 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2144 }
2145 
2146 /*
2147  * Save and compile IPv4 options, return a pointer to it
2148  */
2149 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2150 							 struct sk_buff *skb)
2151 {
2152 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2153 	struct ip_options_rcu *dopt = NULL;
2154 
2155 	if (opt->optlen) {
2156 		int opt_size = sizeof(*dopt) + opt->optlen;
2157 
2158 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2159 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2160 			kfree(dopt);
2161 			dopt = NULL;
2162 		}
2163 	}
2164 	return dopt;
2165 }
2166 
2167 /* locally generated TCP pure ACKs have skb->truesize == 2
2168  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2169  * This is much faster than dissecting the packet to find out.
2170  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2171  */
2172 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2173 {
2174 	return skb->truesize == 2;
2175 }
2176 
2177 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2178 {
2179 	skb->truesize = 2;
2180 }
2181 
2182 static inline int tcp_inq(struct sock *sk)
2183 {
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	int answ;
2186 
2187 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2188 		answ = 0;
2189 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2190 		   !tp->urg_data ||
2191 		   before(tp->urg_seq, tp->copied_seq) ||
2192 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2193 
2194 		answ = tp->rcv_nxt - tp->copied_seq;
2195 
2196 		/* Subtract 1, if FIN was received */
2197 		if (answ && sock_flag(sk, SOCK_DONE))
2198 			answ--;
2199 	} else {
2200 		answ = tp->urg_seq - tp->copied_seq;
2201 	}
2202 
2203 	return answ;
2204 }
2205 
2206 int tcp_peek_len(struct socket *sock);
2207 
2208 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2209 {
2210 	u16 segs_in;
2211 
2212 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2213 
2214 	/* We update these fields while other threads might
2215 	 * read them from tcp_get_info()
2216 	 */
2217 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2218 	if (skb->len > tcp_hdrlen(skb))
2219 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2220 }
2221 
2222 /*
2223  * TCP listen path runs lockless.
2224  * We forced "struct sock" to be const qualified to make sure
2225  * we don't modify one of its field by mistake.
2226  * Here, we increment sk_drops which is an atomic_t, so we can safely
2227  * make sock writable again.
2228  */
2229 static inline void tcp_listendrop(const struct sock *sk)
2230 {
2231 	atomic_inc(&((struct sock *)sk)->sk_drops);
2232 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2233 }
2234 
2235 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2236 
2237 /*
2238  * Interface for adding Upper Level Protocols over TCP
2239  */
2240 
2241 #define TCP_ULP_NAME_MAX	16
2242 #define TCP_ULP_MAX		128
2243 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2244 
2245 struct tcp_ulp_ops {
2246 	struct list_head	list;
2247 
2248 	/* initialize ulp */
2249 	int (*init)(struct sock *sk);
2250 	/* update ulp */
2251 	void (*update)(struct sock *sk, struct proto *p,
2252 		       void (*write_space)(struct sock *sk));
2253 	/* cleanup ulp */
2254 	void (*release)(struct sock *sk);
2255 	/* diagnostic */
2256 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2257 	size_t (*get_info_size)(const struct sock *sk);
2258 	/* clone ulp */
2259 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2260 		      const gfp_t priority);
2261 
2262 	char		name[TCP_ULP_NAME_MAX];
2263 	struct module	*owner;
2264 };
2265 int tcp_register_ulp(struct tcp_ulp_ops *type);
2266 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2267 int tcp_set_ulp(struct sock *sk, const char *name);
2268 void tcp_get_available_ulp(char *buf, size_t len);
2269 void tcp_cleanup_ulp(struct sock *sk);
2270 void tcp_update_ulp(struct sock *sk, struct proto *p,
2271 		    void (*write_space)(struct sock *sk));
2272 
2273 #define MODULE_ALIAS_TCP_ULP(name)				\
2274 	__MODULE_INFO(alias, alias_userspace, name);		\
2275 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2276 
2277 #ifdef CONFIG_NET_SOCK_MSG
2278 struct sk_msg;
2279 struct sk_psock;
2280 
2281 #ifdef CONFIG_BPF_SYSCALL
2282 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2283 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2284 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2285 #endif /* CONFIG_BPF_SYSCALL */
2286 
2287 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2288 			  int flags);
2289 #endif /* CONFIG_NET_SOCK_MSG */
2290 
2291 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2292 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2293 {
2294 }
2295 #endif
2296 
2297 #ifdef CONFIG_CGROUP_BPF
2298 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2299 				      struct sk_buff *skb,
2300 				      unsigned int end_offset)
2301 {
2302 	skops->skb = skb;
2303 	skops->skb_data_end = skb->data + end_offset;
2304 }
2305 #else
2306 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2307 				      struct sk_buff *skb,
2308 				      unsigned int end_offset)
2309 {
2310 }
2311 #endif
2312 
2313 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2314  * is < 0, then the BPF op failed (for example if the loaded BPF
2315  * program does not support the chosen operation or there is no BPF
2316  * program loaded).
2317  */
2318 #ifdef CONFIG_BPF
2319 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2320 {
2321 	struct bpf_sock_ops_kern sock_ops;
2322 	int ret;
2323 
2324 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2325 	if (sk_fullsock(sk)) {
2326 		sock_ops.is_fullsock = 1;
2327 		sock_owned_by_me(sk);
2328 	}
2329 
2330 	sock_ops.sk = sk;
2331 	sock_ops.op = op;
2332 	if (nargs > 0)
2333 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2334 
2335 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2336 	if (ret == 0)
2337 		ret = sock_ops.reply;
2338 	else
2339 		ret = -1;
2340 	return ret;
2341 }
2342 
2343 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2344 {
2345 	u32 args[2] = {arg1, arg2};
2346 
2347 	return tcp_call_bpf(sk, op, 2, args);
2348 }
2349 
2350 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2351 				    u32 arg3)
2352 {
2353 	u32 args[3] = {arg1, arg2, arg3};
2354 
2355 	return tcp_call_bpf(sk, op, 3, args);
2356 }
2357 
2358 #else
2359 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2360 {
2361 	return -EPERM;
2362 }
2363 
2364 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2365 {
2366 	return -EPERM;
2367 }
2368 
2369 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2370 				    u32 arg3)
2371 {
2372 	return -EPERM;
2373 }
2374 
2375 #endif
2376 
2377 static inline u32 tcp_timeout_init(struct sock *sk)
2378 {
2379 	int timeout;
2380 
2381 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2382 
2383 	if (timeout <= 0)
2384 		timeout = TCP_TIMEOUT_INIT;
2385 	return min_t(int, timeout, TCP_RTO_MAX);
2386 }
2387 
2388 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2389 {
2390 	int rwnd;
2391 
2392 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2393 
2394 	if (rwnd < 0)
2395 		rwnd = 0;
2396 	return rwnd;
2397 }
2398 
2399 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2400 {
2401 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2402 }
2403 
2404 static inline void tcp_bpf_rtt(struct sock *sk)
2405 {
2406 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2407 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2408 }
2409 
2410 #if IS_ENABLED(CONFIG_SMC)
2411 extern struct static_key_false tcp_have_smc;
2412 #endif
2413 
2414 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2415 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2416 			     void (*cad)(struct sock *sk, u32 ack_seq));
2417 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2418 void clean_acked_data_flush(void);
2419 #endif
2420 
2421 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2422 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2423 				    const struct tcp_sock *tp)
2424 {
2425 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2426 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2427 }
2428 
2429 /* Compute Earliest Departure Time for some control packets
2430  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2431  */
2432 static inline u64 tcp_transmit_time(const struct sock *sk)
2433 {
2434 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2435 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2436 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2437 
2438 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2439 	}
2440 	return 0;
2441 }
2442 
2443 #endif	/* _TCP_H */
2444