xref: /openbmc/linux/include/net/tcp.h (revision 98ddec80)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll_mask(struct socket *sock, __poll_t events);
392 int tcp_getsockopt(struct sock *sk, int level, int optname,
393 		   char __user *optval, int __user *optlen);
394 int tcp_setsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, unsigned int optlen);
396 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
397 			  char __user *optval, int __user *optlen);
398 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, unsigned int optlen);
400 void tcp_set_keepalive(struct sock *sk, int val);
401 void tcp_syn_ack_timeout(const struct request_sock *req);
402 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
403 		int flags, int *addr_len);
404 int tcp_set_rcvlowat(struct sock *sk, int val);
405 void tcp_data_ready(struct sock *sk);
406 int tcp_mmap(struct file *file, struct socket *sock,
407 	     struct vm_area_struct *vma);
408 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
409 		       struct tcp_options_received *opt_rx,
410 		       int estab, struct tcp_fastopen_cookie *foc);
411 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
412 
413 /*
414  *	TCP v4 functions exported for the inet6 API
415  */
416 
417 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
418 void tcp_v4_mtu_reduced(struct sock *sk);
419 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
420 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
421 struct sock *tcp_create_openreq_child(const struct sock *sk,
422 				      struct request_sock *req,
423 				      struct sk_buff *skb);
424 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
425 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
426 				  struct request_sock *req,
427 				  struct dst_entry *dst,
428 				  struct request_sock *req_unhash,
429 				  bool *own_req);
430 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
431 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
432 int tcp_connect(struct sock *sk);
433 enum tcp_synack_type {
434 	TCP_SYNACK_NORMAL,
435 	TCP_SYNACK_FASTOPEN,
436 	TCP_SYNACK_COOKIE,
437 };
438 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
439 				struct request_sock *req,
440 				struct tcp_fastopen_cookie *foc,
441 				enum tcp_synack_type synack_type);
442 int tcp_disconnect(struct sock *sk, int flags);
443 
444 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
445 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
446 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
447 
448 /* From syncookies.c */
449 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
450 				 struct request_sock *req,
451 				 struct dst_entry *dst, u32 tsoff);
452 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
453 		      u32 cookie);
454 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
455 #ifdef CONFIG_SYN_COOKIES
456 
457 /* Syncookies use a monotonic timer which increments every 60 seconds.
458  * This counter is used both as a hash input and partially encoded into
459  * the cookie value.  A cookie is only validated further if the delta
460  * between the current counter value and the encoded one is less than this,
461  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
462  * the counter advances immediately after a cookie is generated).
463  */
464 #define MAX_SYNCOOKIE_AGE	2
465 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
466 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
467 
468 /* syncookies: remember time of last synqueue overflow
469  * But do not dirty this field too often (once per second is enough)
470  * It is racy as we do not hold a lock, but race is very minor.
471  */
472 static inline void tcp_synq_overflow(const struct sock *sk)
473 {
474 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
475 	unsigned long now = jiffies;
476 
477 	if (time_after(now, last_overflow + HZ))
478 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
479 }
480 
481 /* syncookies: no recent synqueue overflow on this listening socket? */
482 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
483 {
484 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
485 
486 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
487 }
488 
489 static inline u32 tcp_cookie_time(void)
490 {
491 	u64 val = get_jiffies_64();
492 
493 	do_div(val, TCP_SYNCOOKIE_PERIOD);
494 	return val;
495 }
496 
497 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
498 			      u16 *mssp);
499 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
500 u64 cookie_init_timestamp(struct request_sock *req);
501 bool cookie_timestamp_decode(const struct net *net,
502 			     struct tcp_options_received *opt);
503 bool cookie_ecn_ok(const struct tcp_options_received *opt,
504 		   const struct net *net, const struct dst_entry *dst);
505 
506 /* From net/ipv6/syncookies.c */
507 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
508 		      u32 cookie);
509 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
510 
511 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
512 			      const struct tcphdr *th, u16 *mssp);
513 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
514 #endif
515 /* tcp_output.c */
516 
517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518 			       int nonagle);
519 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
520 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 void tcp_retransmit_timer(struct sock *sk);
522 void tcp_xmit_retransmit_queue(struct sock *);
523 void tcp_simple_retransmit(struct sock *);
524 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
525 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526 enum tcp_queue {
527 	TCP_FRAG_IN_WRITE_QUEUE,
528 	TCP_FRAG_IN_RTX_QUEUE,
529 };
530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
531 		 struct sk_buff *skb, u32 len,
532 		 unsigned int mss_now, gfp_t gfp);
533 
534 void tcp_send_probe0(struct sock *);
535 void tcp_send_partial(struct sock *);
536 int tcp_write_wakeup(struct sock *, int mib);
537 void tcp_send_fin(struct sock *sk);
538 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
539 int tcp_send_synack(struct sock *);
540 void tcp_push_one(struct sock *, unsigned int mss_now);
541 void tcp_send_ack(struct sock *sk);
542 void tcp_send_delayed_ack(struct sock *sk);
543 void tcp_send_loss_probe(struct sock *sk);
544 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
545 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
546 			     const struct sk_buff *next_skb);
547 
548 /* tcp_input.c */
549 void tcp_rearm_rto(struct sock *sk);
550 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
551 void tcp_reset(struct sock *sk);
552 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
553 void tcp_fin(struct sock *sk);
554 
555 /* tcp_timer.c */
556 void tcp_init_xmit_timers(struct sock *);
557 static inline void tcp_clear_xmit_timers(struct sock *sk)
558 {
559 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
560 		__sock_put(sk);
561 
562 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
563 		__sock_put(sk);
564 
565 	inet_csk_clear_xmit_timers(sk);
566 }
567 
568 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
569 unsigned int tcp_current_mss(struct sock *sk);
570 
571 /* Bound MSS / TSO packet size with the half of the window */
572 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
573 {
574 	int cutoff;
575 
576 	/* When peer uses tiny windows, there is no use in packetizing
577 	 * to sub-MSS pieces for the sake of SWS or making sure there
578 	 * are enough packets in the pipe for fast recovery.
579 	 *
580 	 * On the other hand, for extremely large MSS devices, handling
581 	 * smaller than MSS windows in this way does make sense.
582 	 */
583 	if (tp->max_window > TCP_MSS_DEFAULT)
584 		cutoff = (tp->max_window >> 1);
585 	else
586 		cutoff = tp->max_window;
587 
588 	if (cutoff && pktsize > cutoff)
589 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
590 	else
591 		return pktsize;
592 }
593 
594 /* tcp.c */
595 void tcp_get_info(struct sock *, struct tcp_info *);
596 
597 /* Read 'sendfile()'-style from a TCP socket */
598 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
599 		  sk_read_actor_t recv_actor);
600 
601 void tcp_initialize_rcv_mss(struct sock *sk);
602 
603 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
604 int tcp_mss_to_mtu(struct sock *sk, int mss);
605 void tcp_mtup_init(struct sock *sk);
606 void tcp_init_buffer_space(struct sock *sk);
607 
608 static inline void tcp_bound_rto(const struct sock *sk)
609 {
610 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
611 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
612 }
613 
614 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
615 {
616 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
617 }
618 
619 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
620 {
621 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
622 			       ntohl(TCP_FLAG_ACK) |
623 			       snd_wnd);
624 }
625 
626 static inline void tcp_fast_path_on(struct tcp_sock *tp)
627 {
628 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
629 }
630 
631 static inline void tcp_fast_path_check(struct sock *sk)
632 {
633 	struct tcp_sock *tp = tcp_sk(sk);
634 
635 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
636 	    tp->rcv_wnd &&
637 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
638 	    !tp->urg_data)
639 		tcp_fast_path_on(tp);
640 }
641 
642 /* Compute the actual rto_min value */
643 static inline u32 tcp_rto_min(struct sock *sk)
644 {
645 	const struct dst_entry *dst = __sk_dst_get(sk);
646 	u32 rto_min = TCP_RTO_MIN;
647 
648 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
649 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
650 	return rto_min;
651 }
652 
653 static inline u32 tcp_rto_min_us(struct sock *sk)
654 {
655 	return jiffies_to_usecs(tcp_rto_min(sk));
656 }
657 
658 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
659 {
660 	return dst_metric_locked(dst, RTAX_CC_ALGO);
661 }
662 
663 /* Minimum RTT in usec. ~0 means not available. */
664 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
665 {
666 	return minmax_get(&tp->rtt_min);
667 }
668 
669 /* Compute the actual receive window we are currently advertising.
670  * Rcv_nxt can be after the window if our peer push more data
671  * than the offered window.
672  */
673 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
674 {
675 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
676 
677 	if (win < 0)
678 		win = 0;
679 	return (u32) win;
680 }
681 
682 /* Choose a new window, without checks for shrinking, and without
683  * scaling applied to the result.  The caller does these things
684  * if necessary.  This is a "raw" window selection.
685  */
686 u32 __tcp_select_window(struct sock *sk);
687 
688 void tcp_send_window_probe(struct sock *sk);
689 
690 /* TCP uses 32bit jiffies to save some space.
691  * Note that this is different from tcp_time_stamp, which
692  * historically has been the same until linux-4.13.
693  */
694 #define tcp_jiffies32 ((u32)jiffies)
695 
696 /*
697  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
698  * It is no longer tied to jiffies, but to 1 ms clock.
699  * Note: double check if you want to use tcp_jiffies32 instead of this.
700  */
701 #define TCP_TS_HZ	1000
702 
703 static inline u64 tcp_clock_ns(void)
704 {
705 	return local_clock();
706 }
707 
708 static inline u64 tcp_clock_us(void)
709 {
710 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
711 }
712 
713 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
714 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
715 {
716 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
717 }
718 
719 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
720 static inline u32 tcp_time_stamp_raw(void)
721 {
722 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
723 }
724 
725 
726 /* Refresh 1us clock of a TCP socket,
727  * ensuring monotically increasing values.
728  */
729 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
730 {
731 	u64 val = tcp_clock_us();
732 
733 	if (val > tp->tcp_mstamp)
734 		tp->tcp_mstamp = val;
735 }
736 
737 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
738 {
739 	return max_t(s64, t1 - t0, 0);
740 }
741 
742 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
743 {
744 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
745 }
746 
747 
748 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
749 
750 #define TCPHDR_FIN 0x01
751 #define TCPHDR_SYN 0x02
752 #define TCPHDR_RST 0x04
753 #define TCPHDR_PSH 0x08
754 #define TCPHDR_ACK 0x10
755 #define TCPHDR_URG 0x20
756 #define TCPHDR_ECE 0x40
757 #define TCPHDR_CWR 0x80
758 
759 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
760 
761 /* This is what the send packet queuing engine uses to pass
762  * TCP per-packet control information to the transmission code.
763  * We also store the host-order sequence numbers in here too.
764  * This is 44 bytes if IPV6 is enabled.
765  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
766  */
767 struct tcp_skb_cb {
768 	__u32		seq;		/* Starting sequence number	*/
769 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
770 	union {
771 		/* Note : tcp_tw_isn is used in input path only
772 		 *	  (isn chosen by tcp_timewait_state_process())
773 		 *
774 		 * 	  tcp_gso_segs/size are used in write queue only,
775 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
776 		 */
777 		__u32		tcp_tw_isn;
778 		struct {
779 			u16	tcp_gso_segs;
780 			u16	tcp_gso_size;
781 		};
782 	};
783 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
784 
785 	__u8		sacked;		/* State flags for SACK.	*/
786 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
787 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
788 #define TCPCB_LOST		0x04	/* SKB is lost			*/
789 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
790 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
791 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
792 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
793 				TCPCB_REPAIRED)
794 
795 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
796 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
797 			eor:1,		/* Is skb MSG_EOR marked? */
798 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
799 			unused:5;
800 	__u32		ack_seq;	/* Sequence number ACK'd	*/
801 	union {
802 		struct {
803 			/* There is space for up to 24 bytes */
804 			__u32 in_flight:30,/* Bytes in flight at transmit */
805 			      is_app_limited:1, /* cwnd not fully used? */
806 			      unused:1;
807 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
808 			__u32 delivered;
809 			/* start of send pipeline phase */
810 			u64 first_tx_mstamp;
811 			/* when we reached the "delivered" count */
812 			u64 delivered_mstamp;
813 		} tx;   /* only used for outgoing skbs */
814 		union {
815 			struct inet_skb_parm	h4;
816 #if IS_ENABLED(CONFIG_IPV6)
817 			struct inet6_skb_parm	h6;
818 #endif
819 		} header;	/* For incoming skbs */
820 		struct {
821 			__u32 flags;
822 			struct sock *sk_redir;
823 			void *data_end;
824 		} bpf;
825 	};
826 };
827 
828 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
829 
830 
831 #if IS_ENABLED(CONFIG_IPV6)
832 /* This is the variant of inet6_iif() that must be used by TCP,
833  * as TCP moves IP6CB into a different location in skb->cb[]
834  */
835 static inline int tcp_v6_iif(const struct sk_buff *skb)
836 {
837 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
838 
839 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
840 }
841 
842 /* TCP_SKB_CB reference means this can not be used from early demux */
843 static inline int tcp_v6_sdif(const struct sk_buff *skb)
844 {
845 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
846 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
847 		return TCP_SKB_CB(skb)->header.h6.iif;
848 #endif
849 	return 0;
850 }
851 #endif
852 
853 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
854 {
855 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
856 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
857 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
858 		return true;
859 #endif
860 	return false;
861 }
862 
863 /* TCP_SKB_CB reference means this can not be used from early demux */
864 static inline int tcp_v4_sdif(struct sk_buff *skb)
865 {
866 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
867 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
868 		return TCP_SKB_CB(skb)->header.h4.iif;
869 #endif
870 	return 0;
871 }
872 
873 /* Due to TSO, an SKB can be composed of multiple actual
874  * packets.  To keep these tracked properly, we use this.
875  */
876 static inline int tcp_skb_pcount(const struct sk_buff *skb)
877 {
878 	return TCP_SKB_CB(skb)->tcp_gso_segs;
879 }
880 
881 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
882 {
883 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
884 }
885 
886 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
887 {
888 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
889 }
890 
891 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
892 static inline int tcp_skb_mss(const struct sk_buff *skb)
893 {
894 	return TCP_SKB_CB(skb)->tcp_gso_size;
895 }
896 
897 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
898 {
899 	return likely(!TCP_SKB_CB(skb)->eor);
900 }
901 
902 /* Events passed to congestion control interface */
903 enum tcp_ca_event {
904 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
905 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
906 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
907 	CA_EVENT_LOSS,		/* loss timeout */
908 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
909 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
910 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
911 	CA_EVENT_NON_DELAYED_ACK,
912 };
913 
914 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
915 enum tcp_ca_ack_event_flags {
916 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
917 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
918 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
919 };
920 
921 /*
922  * Interface for adding new TCP congestion control handlers
923  */
924 #define TCP_CA_NAME_MAX	16
925 #define TCP_CA_MAX	128
926 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
927 
928 #define TCP_CA_UNSPEC	0
929 
930 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
931 #define TCP_CONG_NON_RESTRICTED 0x1
932 /* Requires ECN/ECT set on all packets */
933 #define TCP_CONG_NEEDS_ECN	0x2
934 
935 union tcp_cc_info;
936 
937 struct ack_sample {
938 	u32 pkts_acked;
939 	s32 rtt_us;
940 	u32 in_flight;
941 };
942 
943 /* A rate sample measures the number of (original/retransmitted) data
944  * packets delivered "delivered" over an interval of time "interval_us".
945  * The tcp_rate.c code fills in the rate sample, and congestion
946  * control modules that define a cong_control function to run at the end
947  * of ACK processing can optionally chose to consult this sample when
948  * setting cwnd and pacing rate.
949  * A sample is invalid if "delivered" or "interval_us" is negative.
950  */
951 struct rate_sample {
952 	u64  prior_mstamp; /* starting timestamp for interval */
953 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
954 	s32  delivered;		/* number of packets delivered over interval */
955 	long interval_us;	/* time for tp->delivered to incr "delivered" */
956 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
957 	int  losses;		/* number of packets marked lost upon ACK */
958 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
959 	u32  prior_in_flight;	/* in flight before this ACK */
960 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
961 	bool is_retrans;	/* is sample from retransmission? */
962 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
963 };
964 
965 struct tcp_congestion_ops {
966 	struct list_head	list;
967 	u32 key;
968 	u32 flags;
969 
970 	/* initialize private data (optional) */
971 	void (*init)(struct sock *sk);
972 	/* cleanup private data  (optional) */
973 	void (*release)(struct sock *sk);
974 
975 	/* return slow start threshold (required) */
976 	u32 (*ssthresh)(struct sock *sk);
977 	/* do new cwnd calculation (required) */
978 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
979 	/* call before changing ca_state (optional) */
980 	void (*set_state)(struct sock *sk, u8 new_state);
981 	/* call when cwnd event occurs (optional) */
982 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
983 	/* call when ack arrives (optional) */
984 	void (*in_ack_event)(struct sock *sk, u32 flags);
985 	/* new value of cwnd after loss (required) */
986 	u32  (*undo_cwnd)(struct sock *sk);
987 	/* hook for packet ack accounting (optional) */
988 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
989 	/* override sysctl_tcp_min_tso_segs */
990 	u32 (*min_tso_segs)(struct sock *sk);
991 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
992 	u32 (*sndbuf_expand)(struct sock *sk);
993 	/* call when packets are delivered to update cwnd and pacing rate,
994 	 * after all the ca_state processing. (optional)
995 	 */
996 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
997 	/* get info for inet_diag (optional) */
998 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
999 			   union tcp_cc_info *info);
1000 
1001 	char 		name[TCP_CA_NAME_MAX];
1002 	struct module 	*owner;
1003 };
1004 
1005 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1006 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1007 
1008 void tcp_assign_congestion_control(struct sock *sk);
1009 void tcp_init_congestion_control(struct sock *sk);
1010 void tcp_cleanup_congestion_control(struct sock *sk);
1011 int tcp_set_default_congestion_control(struct net *net, const char *name);
1012 void tcp_get_default_congestion_control(struct net *net, char *name);
1013 void tcp_get_available_congestion_control(char *buf, size_t len);
1014 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1015 int tcp_set_allowed_congestion_control(char *allowed);
1016 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1017 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1018 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1019 
1020 u32 tcp_reno_ssthresh(struct sock *sk);
1021 u32 tcp_reno_undo_cwnd(struct sock *sk);
1022 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1023 extern struct tcp_congestion_ops tcp_reno;
1024 
1025 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1026 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1027 #ifdef CONFIG_INET
1028 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1029 #else
1030 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1031 {
1032 	return NULL;
1033 }
1034 #endif
1035 
1036 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1037 {
1038 	const struct inet_connection_sock *icsk = inet_csk(sk);
1039 
1040 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1041 }
1042 
1043 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1044 {
1045 	struct inet_connection_sock *icsk = inet_csk(sk);
1046 
1047 	if (icsk->icsk_ca_ops->set_state)
1048 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1049 	icsk->icsk_ca_state = ca_state;
1050 }
1051 
1052 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1053 {
1054 	const struct inet_connection_sock *icsk = inet_csk(sk);
1055 
1056 	if (icsk->icsk_ca_ops->cwnd_event)
1057 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1058 }
1059 
1060 /* From tcp_rate.c */
1061 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1062 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1063 			    struct rate_sample *rs);
1064 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1065 		  bool is_sack_reneg, struct rate_sample *rs);
1066 void tcp_rate_check_app_limited(struct sock *sk);
1067 
1068 /* These functions determine how the current flow behaves in respect of SACK
1069  * handling. SACK is negotiated with the peer, and therefore it can vary
1070  * between different flows.
1071  *
1072  * tcp_is_sack - SACK enabled
1073  * tcp_is_reno - No SACK
1074  */
1075 static inline int tcp_is_sack(const struct tcp_sock *tp)
1076 {
1077 	return tp->rx_opt.sack_ok;
1078 }
1079 
1080 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1081 {
1082 	return !tcp_is_sack(tp);
1083 }
1084 
1085 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1086 {
1087 	return tp->sacked_out + tp->lost_out;
1088 }
1089 
1090 /* This determines how many packets are "in the network" to the best
1091  * of our knowledge.  In many cases it is conservative, but where
1092  * detailed information is available from the receiver (via SACK
1093  * blocks etc.) we can make more aggressive calculations.
1094  *
1095  * Use this for decisions involving congestion control, use just
1096  * tp->packets_out to determine if the send queue is empty or not.
1097  *
1098  * Read this equation as:
1099  *
1100  *	"Packets sent once on transmission queue" MINUS
1101  *	"Packets left network, but not honestly ACKed yet" PLUS
1102  *	"Packets fast retransmitted"
1103  */
1104 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1105 {
1106 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1107 }
1108 
1109 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1110 
1111 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1112 {
1113 	return tp->snd_cwnd < tp->snd_ssthresh;
1114 }
1115 
1116 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1117 {
1118 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1119 }
1120 
1121 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1122 {
1123 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1124 	       (1 << inet_csk(sk)->icsk_ca_state);
1125 }
1126 
1127 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1128  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1129  * ssthresh.
1130  */
1131 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1132 {
1133 	const struct tcp_sock *tp = tcp_sk(sk);
1134 
1135 	if (tcp_in_cwnd_reduction(sk))
1136 		return tp->snd_ssthresh;
1137 	else
1138 		return max(tp->snd_ssthresh,
1139 			   ((tp->snd_cwnd >> 1) +
1140 			    (tp->snd_cwnd >> 2)));
1141 }
1142 
1143 /* Use define here intentionally to get WARN_ON location shown at the caller */
1144 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1145 
1146 void tcp_enter_cwr(struct sock *sk);
1147 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1148 
1149 /* The maximum number of MSS of available cwnd for which TSO defers
1150  * sending if not using sysctl_tcp_tso_win_divisor.
1151  */
1152 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1153 {
1154 	return 3;
1155 }
1156 
1157 /* Returns end sequence number of the receiver's advertised window */
1158 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1159 {
1160 	return tp->snd_una + tp->snd_wnd;
1161 }
1162 
1163 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1164  * flexible approach. The RFC suggests cwnd should not be raised unless
1165  * it was fully used previously. And that's exactly what we do in
1166  * congestion avoidance mode. But in slow start we allow cwnd to grow
1167  * as long as the application has used half the cwnd.
1168  * Example :
1169  *    cwnd is 10 (IW10), but application sends 9 frames.
1170  *    We allow cwnd to reach 18 when all frames are ACKed.
1171  * This check is safe because it's as aggressive as slow start which already
1172  * risks 100% overshoot. The advantage is that we discourage application to
1173  * either send more filler packets or data to artificially blow up the cwnd
1174  * usage, and allow application-limited process to probe bw more aggressively.
1175  */
1176 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1177 {
1178 	const struct tcp_sock *tp = tcp_sk(sk);
1179 
1180 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1181 	if (tcp_in_slow_start(tp))
1182 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1183 
1184 	return tp->is_cwnd_limited;
1185 }
1186 
1187 /* Something is really bad, we could not queue an additional packet,
1188  * because qdisc is full or receiver sent a 0 window.
1189  * We do not want to add fuel to the fire, or abort too early,
1190  * so make sure the timer we arm now is at least 200ms in the future,
1191  * regardless of current icsk_rto value (as it could be ~2ms)
1192  */
1193 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1194 {
1195 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1196 }
1197 
1198 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1199 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1200 					    unsigned long max_when)
1201 {
1202 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1203 
1204 	return (unsigned long)min_t(u64, when, max_when);
1205 }
1206 
1207 static inline void tcp_check_probe_timer(struct sock *sk)
1208 {
1209 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1210 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1211 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1212 }
1213 
1214 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1215 {
1216 	tp->snd_wl1 = seq;
1217 }
1218 
1219 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1220 {
1221 	tp->snd_wl1 = seq;
1222 }
1223 
1224 /*
1225  * Calculate(/check) TCP checksum
1226  */
1227 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1228 				   __be32 daddr, __wsum base)
1229 {
1230 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1231 }
1232 
1233 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1234 {
1235 	return __skb_checksum_complete(skb);
1236 }
1237 
1238 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1239 {
1240 	return !skb_csum_unnecessary(skb) &&
1241 		__tcp_checksum_complete(skb);
1242 }
1243 
1244 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1245 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1246 
1247 #undef STATE_TRACE
1248 
1249 #ifdef STATE_TRACE
1250 static const char *statename[]={
1251 	"Unused","Established","Syn Sent","Syn Recv",
1252 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1253 	"Close Wait","Last ACK","Listen","Closing"
1254 };
1255 #endif
1256 void tcp_set_state(struct sock *sk, int state);
1257 
1258 void tcp_done(struct sock *sk);
1259 
1260 int tcp_abort(struct sock *sk, int err);
1261 
1262 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1263 {
1264 	rx_opt->dsack = 0;
1265 	rx_opt->num_sacks = 0;
1266 }
1267 
1268 u32 tcp_default_init_rwnd(u32 mss);
1269 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1270 
1271 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1272 {
1273 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1274 	struct tcp_sock *tp = tcp_sk(sk);
1275 	s32 delta;
1276 
1277 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1278 	    ca_ops->cong_control)
1279 		return;
1280 	delta = tcp_jiffies32 - tp->lsndtime;
1281 	if (delta > inet_csk(sk)->icsk_rto)
1282 		tcp_cwnd_restart(sk, delta);
1283 }
1284 
1285 /* Determine a window scaling and initial window to offer. */
1286 void tcp_select_initial_window(const struct sock *sk, int __space,
1287 			       __u32 mss, __u32 *rcv_wnd,
1288 			       __u32 *window_clamp, int wscale_ok,
1289 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1290 
1291 static inline int tcp_win_from_space(const struct sock *sk, int space)
1292 {
1293 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1294 
1295 	return tcp_adv_win_scale <= 0 ?
1296 		(space>>(-tcp_adv_win_scale)) :
1297 		space - (space>>tcp_adv_win_scale);
1298 }
1299 
1300 /* Note: caller must be prepared to deal with negative returns */
1301 static inline int tcp_space(const struct sock *sk)
1302 {
1303 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1304 				  atomic_read(&sk->sk_rmem_alloc));
1305 }
1306 
1307 static inline int tcp_full_space(const struct sock *sk)
1308 {
1309 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1310 }
1311 
1312 extern void tcp_openreq_init_rwin(struct request_sock *req,
1313 				  const struct sock *sk_listener,
1314 				  const struct dst_entry *dst);
1315 
1316 void tcp_enter_memory_pressure(struct sock *sk);
1317 void tcp_leave_memory_pressure(struct sock *sk);
1318 
1319 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1320 {
1321 	struct net *net = sock_net((struct sock *)tp);
1322 
1323 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1324 }
1325 
1326 static inline int keepalive_time_when(const struct tcp_sock *tp)
1327 {
1328 	struct net *net = sock_net((struct sock *)tp);
1329 
1330 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1331 }
1332 
1333 static inline int keepalive_probes(const struct tcp_sock *tp)
1334 {
1335 	struct net *net = sock_net((struct sock *)tp);
1336 
1337 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1338 }
1339 
1340 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1341 {
1342 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1343 
1344 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1345 			  tcp_jiffies32 - tp->rcv_tstamp);
1346 }
1347 
1348 static inline int tcp_fin_time(const struct sock *sk)
1349 {
1350 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1351 	const int rto = inet_csk(sk)->icsk_rto;
1352 
1353 	if (fin_timeout < (rto << 2) - (rto >> 1))
1354 		fin_timeout = (rto << 2) - (rto >> 1);
1355 
1356 	return fin_timeout;
1357 }
1358 
1359 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1360 				  int paws_win)
1361 {
1362 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1363 		return true;
1364 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1365 		return true;
1366 	/*
1367 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1368 	 * then following tcp messages have valid values. Ignore 0 value,
1369 	 * or else 'negative' tsval might forbid us to accept their packets.
1370 	 */
1371 	if (!rx_opt->ts_recent)
1372 		return true;
1373 	return false;
1374 }
1375 
1376 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1377 				   int rst)
1378 {
1379 	if (tcp_paws_check(rx_opt, 0))
1380 		return false;
1381 
1382 	/* RST segments are not recommended to carry timestamp,
1383 	   and, if they do, it is recommended to ignore PAWS because
1384 	   "their cleanup function should take precedence over timestamps."
1385 	   Certainly, it is mistake. It is necessary to understand the reasons
1386 	   of this constraint to relax it: if peer reboots, clock may go
1387 	   out-of-sync and half-open connections will not be reset.
1388 	   Actually, the problem would be not existing if all
1389 	   the implementations followed draft about maintaining clock
1390 	   via reboots. Linux-2.2 DOES NOT!
1391 
1392 	   However, we can relax time bounds for RST segments to MSL.
1393 	 */
1394 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1395 		return false;
1396 	return true;
1397 }
1398 
1399 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1400 			  int mib_idx, u32 *last_oow_ack_time);
1401 
1402 static inline void tcp_mib_init(struct net *net)
1403 {
1404 	/* See RFC 2012 */
1405 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1406 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1407 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1408 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1409 }
1410 
1411 /* from STCP */
1412 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1413 {
1414 	tp->lost_skb_hint = NULL;
1415 }
1416 
1417 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1418 {
1419 	tcp_clear_retrans_hints_partial(tp);
1420 	tp->retransmit_skb_hint = NULL;
1421 }
1422 
1423 union tcp_md5_addr {
1424 	struct in_addr  a4;
1425 #if IS_ENABLED(CONFIG_IPV6)
1426 	struct in6_addr	a6;
1427 #endif
1428 };
1429 
1430 /* - key database */
1431 struct tcp_md5sig_key {
1432 	struct hlist_node	node;
1433 	u8			keylen;
1434 	u8			family; /* AF_INET or AF_INET6 */
1435 	union tcp_md5_addr	addr;
1436 	u8			prefixlen;
1437 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1438 	struct rcu_head		rcu;
1439 };
1440 
1441 /* - sock block */
1442 struct tcp_md5sig_info {
1443 	struct hlist_head	head;
1444 	struct rcu_head		rcu;
1445 };
1446 
1447 /* - pseudo header */
1448 struct tcp4_pseudohdr {
1449 	__be32		saddr;
1450 	__be32		daddr;
1451 	__u8		pad;
1452 	__u8		protocol;
1453 	__be16		len;
1454 };
1455 
1456 struct tcp6_pseudohdr {
1457 	struct in6_addr	saddr;
1458 	struct in6_addr daddr;
1459 	__be32		len;
1460 	__be32		protocol;	/* including padding */
1461 };
1462 
1463 union tcp_md5sum_block {
1464 	struct tcp4_pseudohdr ip4;
1465 #if IS_ENABLED(CONFIG_IPV6)
1466 	struct tcp6_pseudohdr ip6;
1467 #endif
1468 };
1469 
1470 /* - pool: digest algorithm, hash description and scratch buffer */
1471 struct tcp_md5sig_pool {
1472 	struct ahash_request	*md5_req;
1473 	void			*scratch;
1474 };
1475 
1476 /* - functions */
1477 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1478 			const struct sock *sk, const struct sk_buff *skb);
1479 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1480 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1481 		   gfp_t gfp);
1482 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1483 		   int family, u8 prefixlen);
1484 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1485 					 const struct sock *addr_sk);
1486 
1487 #ifdef CONFIG_TCP_MD5SIG
1488 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1489 					 const union tcp_md5_addr *addr,
1490 					 int family);
1491 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1492 #else
1493 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1494 					 const union tcp_md5_addr *addr,
1495 					 int family)
1496 {
1497 	return NULL;
1498 }
1499 #define tcp_twsk_md5_key(twsk)	NULL
1500 #endif
1501 
1502 bool tcp_alloc_md5sig_pool(void);
1503 
1504 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1505 static inline void tcp_put_md5sig_pool(void)
1506 {
1507 	local_bh_enable();
1508 }
1509 
1510 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1511 			  unsigned int header_len);
1512 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1513 		     const struct tcp_md5sig_key *key);
1514 
1515 /* From tcp_fastopen.c */
1516 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1517 			    struct tcp_fastopen_cookie *cookie);
1518 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1519 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1520 			    u16 try_exp);
1521 struct tcp_fastopen_request {
1522 	/* Fast Open cookie. Size 0 means a cookie request */
1523 	struct tcp_fastopen_cookie	cookie;
1524 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1525 	size_t				size;
1526 	int				copied;	/* queued in tcp_connect() */
1527 };
1528 void tcp_free_fastopen_req(struct tcp_sock *tp);
1529 void tcp_fastopen_destroy_cipher(struct sock *sk);
1530 void tcp_fastopen_ctx_destroy(struct net *net);
1531 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1532 			      void *key, unsigned int len);
1533 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1534 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1535 			      struct request_sock *req,
1536 			      struct tcp_fastopen_cookie *foc,
1537 			      const struct dst_entry *dst);
1538 void tcp_fastopen_init_key_once(struct net *net);
1539 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1540 			     struct tcp_fastopen_cookie *cookie);
1541 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1542 #define TCP_FASTOPEN_KEY_LENGTH 16
1543 
1544 /* Fastopen key context */
1545 struct tcp_fastopen_context {
1546 	struct crypto_cipher	*tfm;
1547 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1548 	struct rcu_head		rcu;
1549 };
1550 
1551 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1552 void tcp_fastopen_active_disable(struct sock *sk);
1553 bool tcp_fastopen_active_should_disable(struct sock *sk);
1554 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1555 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1556 
1557 /* Latencies incurred by various limits for a sender. They are
1558  * chronograph-like stats that are mutually exclusive.
1559  */
1560 enum tcp_chrono {
1561 	TCP_CHRONO_UNSPEC,
1562 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1563 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1564 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1565 	__TCP_CHRONO_MAX,
1566 };
1567 
1568 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1569 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1570 
1571 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1572  * the same memory storage than skb->destructor/_skb_refdst
1573  */
1574 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1575 {
1576 	skb->destructor = NULL;
1577 	skb->_skb_refdst = 0UL;
1578 }
1579 
1580 #define tcp_skb_tsorted_save(skb) {		\
1581 	unsigned long _save = skb->_skb_refdst;	\
1582 	skb->_skb_refdst = 0UL;
1583 
1584 #define tcp_skb_tsorted_restore(skb)		\
1585 	skb->_skb_refdst = _save;		\
1586 }
1587 
1588 void tcp_write_queue_purge(struct sock *sk);
1589 
1590 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1591 {
1592 	return skb_rb_first(&sk->tcp_rtx_queue);
1593 }
1594 
1595 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1596 {
1597 	return skb_peek(&sk->sk_write_queue);
1598 }
1599 
1600 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1601 {
1602 	return skb_peek_tail(&sk->sk_write_queue);
1603 }
1604 
1605 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1606 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1607 
1608 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1609 {
1610 	return skb_peek(&sk->sk_write_queue);
1611 }
1612 
1613 static inline bool tcp_skb_is_last(const struct sock *sk,
1614 				   const struct sk_buff *skb)
1615 {
1616 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1617 }
1618 
1619 static inline bool tcp_write_queue_empty(const struct sock *sk)
1620 {
1621 	return skb_queue_empty(&sk->sk_write_queue);
1622 }
1623 
1624 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1625 {
1626 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1627 }
1628 
1629 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1630 {
1631 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1632 }
1633 
1634 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1635 {
1636 	if (tcp_write_queue_empty(sk))
1637 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1638 }
1639 
1640 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1641 {
1642 	__skb_queue_tail(&sk->sk_write_queue, skb);
1643 }
1644 
1645 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1646 {
1647 	__tcp_add_write_queue_tail(sk, skb);
1648 
1649 	/* Queue it, remembering where we must start sending. */
1650 	if (sk->sk_write_queue.next == skb)
1651 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1652 }
1653 
1654 /* Insert new before skb on the write queue of sk.  */
1655 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1656 						  struct sk_buff *skb,
1657 						  struct sock *sk)
1658 {
1659 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1660 }
1661 
1662 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1663 {
1664 	tcp_skb_tsorted_anchor_cleanup(skb);
1665 	__skb_unlink(skb, &sk->sk_write_queue);
1666 }
1667 
1668 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1669 
1670 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1671 {
1672 	tcp_skb_tsorted_anchor_cleanup(skb);
1673 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1674 }
1675 
1676 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1677 {
1678 	list_del(&skb->tcp_tsorted_anchor);
1679 	tcp_rtx_queue_unlink(skb, sk);
1680 	sk_wmem_free_skb(sk, skb);
1681 }
1682 
1683 static inline void tcp_push_pending_frames(struct sock *sk)
1684 {
1685 	if (tcp_send_head(sk)) {
1686 		struct tcp_sock *tp = tcp_sk(sk);
1687 
1688 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1689 	}
1690 }
1691 
1692 /* Start sequence of the skb just after the highest skb with SACKed
1693  * bit, valid only if sacked_out > 0 or when the caller has ensured
1694  * validity by itself.
1695  */
1696 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1697 {
1698 	if (!tp->sacked_out)
1699 		return tp->snd_una;
1700 
1701 	if (tp->highest_sack == NULL)
1702 		return tp->snd_nxt;
1703 
1704 	return TCP_SKB_CB(tp->highest_sack)->seq;
1705 }
1706 
1707 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1708 {
1709 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1710 }
1711 
1712 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1713 {
1714 	return tcp_sk(sk)->highest_sack;
1715 }
1716 
1717 static inline void tcp_highest_sack_reset(struct sock *sk)
1718 {
1719 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1720 }
1721 
1722 /* Called when old skb is about to be deleted and replaced by new skb */
1723 static inline void tcp_highest_sack_replace(struct sock *sk,
1724 					    struct sk_buff *old,
1725 					    struct sk_buff *new)
1726 {
1727 	if (old == tcp_highest_sack(sk))
1728 		tcp_sk(sk)->highest_sack = new;
1729 }
1730 
1731 /* This helper checks if socket has IP_TRANSPARENT set */
1732 static inline bool inet_sk_transparent(const struct sock *sk)
1733 {
1734 	switch (sk->sk_state) {
1735 	case TCP_TIME_WAIT:
1736 		return inet_twsk(sk)->tw_transparent;
1737 	case TCP_NEW_SYN_RECV:
1738 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1739 	}
1740 	return inet_sk(sk)->transparent;
1741 }
1742 
1743 /* Determines whether this is a thin stream (which may suffer from
1744  * increased latency). Used to trigger latency-reducing mechanisms.
1745  */
1746 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1747 {
1748 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1749 }
1750 
1751 /* /proc */
1752 enum tcp_seq_states {
1753 	TCP_SEQ_STATE_LISTENING,
1754 	TCP_SEQ_STATE_ESTABLISHED,
1755 };
1756 
1757 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1758 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1759 void tcp_seq_stop(struct seq_file *seq, void *v);
1760 
1761 struct tcp_seq_afinfo {
1762 	sa_family_t			family;
1763 };
1764 
1765 struct tcp_iter_state {
1766 	struct seq_net_private	p;
1767 	enum tcp_seq_states	state;
1768 	struct sock		*syn_wait_sk;
1769 	int			bucket, offset, sbucket, num;
1770 	loff_t			last_pos;
1771 };
1772 
1773 extern struct request_sock_ops tcp_request_sock_ops;
1774 extern struct request_sock_ops tcp6_request_sock_ops;
1775 
1776 void tcp_v4_destroy_sock(struct sock *sk);
1777 
1778 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1779 				netdev_features_t features);
1780 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1781 int tcp_gro_complete(struct sk_buff *skb);
1782 
1783 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1784 
1785 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1786 {
1787 	struct net *net = sock_net((struct sock *)tp);
1788 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1789 }
1790 
1791 static inline bool tcp_stream_memory_free(const struct sock *sk)
1792 {
1793 	const struct tcp_sock *tp = tcp_sk(sk);
1794 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1795 
1796 	return notsent_bytes < tcp_notsent_lowat(tp);
1797 }
1798 
1799 #ifdef CONFIG_PROC_FS
1800 int tcp4_proc_init(void);
1801 void tcp4_proc_exit(void);
1802 #endif
1803 
1804 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1805 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1806 		     const struct tcp_request_sock_ops *af_ops,
1807 		     struct sock *sk, struct sk_buff *skb);
1808 
1809 /* TCP af-specific functions */
1810 struct tcp_sock_af_ops {
1811 #ifdef CONFIG_TCP_MD5SIG
1812 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1813 						const struct sock *addr_sk);
1814 	int		(*calc_md5_hash)(char *location,
1815 					 const struct tcp_md5sig_key *md5,
1816 					 const struct sock *sk,
1817 					 const struct sk_buff *skb);
1818 	int		(*md5_parse)(struct sock *sk,
1819 				     int optname,
1820 				     char __user *optval,
1821 				     int optlen);
1822 #endif
1823 };
1824 
1825 struct tcp_request_sock_ops {
1826 	u16 mss_clamp;
1827 #ifdef CONFIG_TCP_MD5SIG
1828 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1829 						 const struct sock *addr_sk);
1830 	int		(*calc_md5_hash) (char *location,
1831 					  const struct tcp_md5sig_key *md5,
1832 					  const struct sock *sk,
1833 					  const struct sk_buff *skb);
1834 #endif
1835 	void (*init_req)(struct request_sock *req,
1836 			 const struct sock *sk_listener,
1837 			 struct sk_buff *skb);
1838 #ifdef CONFIG_SYN_COOKIES
1839 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1840 				 __u16 *mss);
1841 #endif
1842 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1843 				       const struct request_sock *req);
1844 	u32 (*init_seq)(const struct sk_buff *skb);
1845 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1846 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1847 			   struct flowi *fl, struct request_sock *req,
1848 			   struct tcp_fastopen_cookie *foc,
1849 			   enum tcp_synack_type synack_type);
1850 };
1851 
1852 #ifdef CONFIG_SYN_COOKIES
1853 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1854 					 const struct sock *sk, struct sk_buff *skb,
1855 					 __u16 *mss)
1856 {
1857 	tcp_synq_overflow(sk);
1858 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1859 	return ops->cookie_init_seq(skb, mss);
1860 }
1861 #else
1862 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1863 					 const struct sock *sk, struct sk_buff *skb,
1864 					 __u16 *mss)
1865 {
1866 	return 0;
1867 }
1868 #endif
1869 
1870 int tcpv4_offload_init(void);
1871 
1872 void tcp_v4_init(void);
1873 void tcp_init(void);
1874 
1875 /* tcp_recovery.c */
1876 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1877 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1878 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1879 				u32 reo_wnd);
1880 extern void tcp_rack_mark_lost(struct sock *sk);
1881 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1882 			     u64 xmit_time);
1883 extern void tcp_rack_reo_timeout(struct sock *sk);
1884 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1885 
1886 /* At how many usecs into the future should the RTO fire? */
1887 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1888 {
1889 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1890 	u32 rto = inet_csk(sk)->icsk_rto;
1891 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1892 
1893 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1894 }
1895 
1896 /*
1897  * Save and compile IPv4 options, return a pointer to it
1898  */
1899 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1900 							 struct sk_buff *skb)
1901 {
1902 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1903 	struct ip_options_rcu *dopt = NULL;
1904 
1905 	if (opt->optlen) {
1906 		int opt_size = sizeof(*dopt) + opt->optlen;
1907 
1908 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1909 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1910 			kfree(dopt);
1911 			dopt = NULL;
1912 		}
1913 	}
1914 	return dopt;
1915 }
1916 
1917 /* locally generated TCP pure ACKs have skb->truesize == 2
1918  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1919  * This is much faster than dissecting the packet to find out.
1920  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1921  */
1922 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1923 {
1924 	return skb->truesize == 2;
1925 }
1926 
1927 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1928 {
1929 	skb->truesize = 2;
1930 }
1931 
1932 static inline int tcp_inq(struct sock *sk)
1933 {
1934 	struct tcp_sock *tp = tcp_sk(sk);
1935 	int answ;
1936 
1937 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1938 		answ = 0;
1939 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1940 		   !tp->urg_data ||
1941 		   before(tp->urg_seq, tp->copied_seq) ||
1942 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1943 
1944 		answ = tp->rcv_nxt - tp->copied_seq;
1945 
1946 		/* Subtract 1, if FIN was received */
1947 		if (answ && sock_flag(sk, SOCK_DONE))
1948 			answ--;
1949 	} else {
1950 		answ = tp->urg_seq - tp->copied_seq;
1951 	}
1952 
1953 	return answ;
1954 }
1955 
1956 int tcp_peek_len(struct socket *sock);
1957 
1958 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1959 {
1960 	u16 segs_in;
1961 
1962 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1963 	tp->segs_in += segs_in;
1964 	if (skb->len > tcp_hdrlen(skb))
1965 		tp->data_segs_in += segs_in;
1966 }
1967 
1968 /*
1969  * TCP listen path runs lockless.
1970  * We forced "struct sock" to be const qualified to make sure
1971  * we don't modify one of its field by mistake.
1972  * Here, we increment sk_drops which is an atomic_t, so we can safely
1973  * make sock writable again.
1974  */
1975 static inline void tcp_listendrop(const struct sock *sk)
1976 {
1977 	atomic_inc(&((struct sock *)sk)->sk_drops);
1978 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1979 }
1980 
1981 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1982 
1983 /*
1984  * Interface for adding Upper Level Protocols over TCP
1985  */
1986 
1987 #define TCP_ULP_NAME_MAX	16
1988 #define TCP_ULP_MAX		128
1989 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1990 
1991 enum {
1992 	TCP_ULP_TLS,
1993 	TCP_ULP_BPF,
1994 };
1995 
1996 struct tcp_ulp_ops {
1997 	struct list_head	list;
1998 
1999 	/* initialize ulp */
2000 	int (*init)(struct sock *sk);
2001 	/* cleanup ulp */
2002 	void (*release)(struct sock *sk);
2003 
2004 	int		uid;
2005 	char		name[TCP_ULP_NAME_MAX];
2006 	bool		user_visible;
2007 	struct module	*owner;
2008 };
2009 int tcp_register_ulp(struct tcp_ulp_ops *type);
2010 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2011 int tcp_set_ulp(struct sock *sk, const char *name);
2012 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2013 void tcp_get_available_ulp(char *buf, size_t len);
2014 void tcp_cleanup_ulp(struct sock *sk);
2015 
2016 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2017  * is < 0, then the BPF op failed (for example if the loaded BPF
2018  * program does not support the chosen operation or there is no BPF
2019  * program loaded).
2020  */
2021 #ifdef CONFIG_BPF
2022 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2023 {
2024 	struct bpf_sock_ops_kern sock_ops;
2025 	int ret;
2026 
2027 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2028 	if (sk_fullsock(sk)) {
2029 		sock_ops.is_fullsock = 1;
2030 		sock_owned_by_me(sk);
2031 	}
2032 
2033 	sock_ops.sk = sk;
2034 	sock_ops.op = op;
2035 	if (nargs > 0)
2036 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2037 
2038 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2039 	if (ret == 0)
2040 		ret = sock_ops.reply;
2041 	else
2042 		ret = -1;
2043 	return ret;
2044 }
2045 
2046 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2047 {
2048 	u32 args[2] = {arg1, arg2};
2049 
2050 	return tcp_call_bpf(sk, op, 2, args);
2051 }
2052 
2053 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2054 				    u32 arg3)
2055 {
2056 	u32 args[3] = {arg1, arg2, arg3};
2057 
2058 	return tcp_call_bpf(sk, op, 3, args);
2059 }
2060 
2061 #else
2062 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2063 {
2064 	return -EPERM;
2065 }
2066 
2067 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2068 {
2069 	return -EPERM;
2070 }
2071 
2072 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2073 				    u32 arg3)
2074 {
2075 	return -EPERM;
2076 }
2077 
2078 #endif
2079 
2080 static inline u32 tcp_timeout_init(struct sock *sk)
2081 {
2082 	int timeout;
2083 
2084 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2085 
2086 	if (timeout <= 0)
2087 		timeout = TCP_TIMEOUT_INIT;
2088 	return timeout;
2089 }
2090 
2091 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2092 {
2093 	int rwnd;
2094 
2095 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2096 
2097 	if (rwnd < 0)
2098 		rwnd = 0;
2099 	return rwnd;
2100 }
2101 
2102 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2103 {
2104 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2105 }
2106 
2107 #if IS_ENABLED(CONFIG_SMC)
2108 extern struct static_key_false tcp_have_smc;
2109 #endif
2110 
2111 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2112 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2113 			     void (*cad)(struct sock *sk, u32 ack_seq));
2114 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2115 
2116 #endif
2117 
2118 #endif	/* _TCP_H */
2119