xref: /openbmc/linux/include/net/tcp.h (revision 96de2506)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 void tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen,
380 			   bool *lost_race);
381 int tcp_child_process(struct sock *parent, struct sock *child,
382 		      struct sk_buff *skb);
383 void tcp_enter_loss(struct sock *sk);
384 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385 void tcp_clear_retrans(struct tcp_sock *tp);
386 void tcp_update_metrics(struct sock *sk);
387 void tcp_init_metrics(struct sock *sk);
388 void tcp_metrics_init(void);
389 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 __poll_t tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 int tcp_set_rcvlowat(struct sock *sk, int val);
408 void tcp_data_ready(struct sock *sk);
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412 		       struct tcp_options_received *opt_rx,
413 		       int estab, struct tcp_fastopen_cookie *foc);
414 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
421 void tcp_v4_mtu_reduced(struct sock *sk);
422 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
423 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
424 struct sock *tcp_create_openreq_child(const struct sock *sk,
425 				      struct request_sock *req,
426 				      struct sk_buff *skb);
427 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
428 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
429 				  struct request_sock *req,
430 				  struct dst_entry *dst,
431 				  struct request_sock *req_unhash,
432 				  bool *own_req);
433 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
434 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
435 int tcp_connect(struct sock *sk);
436 enum tcp_synack_type {
437 	TCP_SYNACK_NORMAL,
438 	TCP_SYNACK_FASTOPEN,
439 	TCP_SYNACK_COOKIE,
440 };
441 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
442 				struct request_sock *req,
443 				struct tcp_fastopen_cookie *foc,
444 				enum tcp_synack_type synack_type);
445 int tcp_disconnect(struct sock *sk, int flags);
446 
447 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
448 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
449 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
450 
451 /* From syncookies.c */
452 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
453 				 struct request_sock *req,
454 				 struct dst_entry *dst, u32 tsoff);
455 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
456 		      u32 cookie);
457 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
458 #ifdef CONFIG_SYN_COOKIES
459 
460 /* Syncookies use a monotonic timer which increments every 60 seconds.
461  * This counter is used both as a hash input and partially encoded into
462  * the cookie value.  A cookie is only validated further if the delta
463  * between the current counter value and the encoded one is less than this,
464  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
465  * the counter advances immediately after a cookie is generated).
466  */
467 #define MAX_SYNCOOKIE_AGE	2
468 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
469 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
470 
471 /* syncookies: remember time of last synqueue overflow
472  * But do not dirty this field too often (once per second is enough)
473  * It is racy as we do not hold a lock, but race is very minor.
474  */
475 static inline void tcp_synq_overflow(const struct sock *sk)
476 {
477 	unsigned int last_overflow;
478 	unsigned int now = jiffies;
479 
480 	if (sk->sk_reuseport) {
481 		struct sock_reuseport *reuse;
482 
483 		reuse = rcu_dereference(sk->sk_reuseport_cb);
484 		if (likely(reuse)) {
485 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
486 			if (time_after32(now, last_overflow + HZ))
487 				WRITE_ONCE(reuse->synq_overflow_ts, now);
488 			return;
489 		}
490 	}
491 
492 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
493 	if (time_after32(now, last_overflow + HZ))
494 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
495 }
496 
497 /* syncookies: no recent synqueue overflow on this listening socket? */
498 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			return time_after32(now, last_overflow +
510 					    TCP_SYNCOOKIE_VALID);
511 		}
512 	}
513 
514 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
515 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
516 }
517 
518 static inline u32 tcp_cookie_time(void)
519 {
520 	u64 val = get_jiffies_64();
521 
522 	do_div(val, TCP_SYNCOOKIE_PERIOD);
523 	return val;
524 }
525 
526 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
527 			      u16 *mssp);
528 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
529 u64 cookie_init_timestamp(struct request_sock *req);
530 bool cookie_timestamp_decode(const struct net *net,
531 			     struct tcp_options_received *opt);
532 bool cookie_ecn_ok(const struct tcp_options_received *opt,
533 		   const struct net *net, const struct dst_entry *dst);
534 
535 /* From net/ipv6/syncookies.c */
536 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
537 		      u32 cookie);
538 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
539 
540 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
541 			      const struct tcphdr *th, u16 *mssp);
542 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
543 #endif
544 /* tcp_output.c */
545 
546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
547 			       int nonagle);
548 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 void tcp_retransmit_timer(struct sock *sk);
551 void tcp_xmit_retransmit_queue(struct sock *);
552 void tcp_simple_retransmit(struct sock *);
553 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
554 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
555 enum tcp_queue {
556 	TCP_FRAG_IN_WRITE_QUEUE,
557 	TCP_FRAG_IN_RTX_QUEUE,
558 };
559 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
560 		 struct sk_buff *skb, u32 len,
561 		 unsigned int mss_now, gfp_t gfp);
562 
563 void tcp_send_probe0(struct sock *);
564 void tcp_send_partial(struct sock *);
565 int tcp_write_wakeup(struct sock *, int mib);
566 void tcp_send_fin(struct sock *sk);
567 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
568 int tcp_send_synack(struct sock *);
569 void tcp_push_one(struct sock *, unsigned int mss_now);
570 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
571 void tcp_send_ack(struct sock *sk);
572 void tcp_send_delayed_ack(struct sock *sk);
573 void tcp_send_loss_probe(struct sock *sk);
574 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
575 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
576 			     const struct sk_buff *next_skb);
577 
578 /* tcp_input.c */
579 void tcp_rearm_rto(struct sock *sk);
580 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
581 void tcp_reset(struct sock *sk);
582 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
583 void tcp_fin(struct sock *sk);
584 
585 /* tcp_timer.c */
586 void tcp_init_xmit_timers(struct sock *);
587 static inline void tcp_clear_xmit_timers(struct sock *sk)
588 {
589 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
590 		__sock_put(sk);
591 
592 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
593 		__sock_put(sk);
594 
595 	inet_csk_clear_xmit_timers(sk);
596 }
597 
598 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599 unsigned int tcp_current_mss(struct sock *sk);
600 
601 /* Bound MSS / TSO packet size with the half of the window */
602 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603 {
604 	int cutoff;
605 
606 	/* When peer uses tiny windows, there is no use in packetizing
607 	 * to sub-MSS pieces for the sake of SWS or making sure there
608 	 * are enough packets in the pipe for fast recovery.
609 	 *
610 	 * On the other hand, for extremely large MSS devices, handling
611 	 * smaller than MSS windows in this way does make sense.
612 	 */
613 	if (tp->max_window > TCP_MSS_DEFAULT)
614 		cutoff = (tp->max_window >> 1);
615 	else
616 		cutoff = tp->max_window;
617 
618 	if (cutoff && pktsize > cutoff)
619 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 	else
621 		return pktsize;
622 }
623 
624 /* tcp.c */
625 void tcp_get_info(struct sock *, struct tcp_info *);
626 
627 /* Read 'sendfile()'-style from a TCP socket */
628 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 		  sk_read_actor_t recv_actor);
630 
631 void tcp_initialize_rcv_mss(struct sock *sk);
632 
633 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634 int tcp_mss_to_mtu(struct sock *sk, int mss);
635 void tcp_mtup_init(struct sock *sk);
636 void tcp_init_buffer_space(struct sock *sk);
637 
638 static inline void tcp_bound_rto(const struct sock *sk)
639 {
640 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642 }
643 
644 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645 {
646 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647 }
648 
649 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650 {
651 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 			       ntohl(TCP_FLAG_ACK) |
653 			       snd_wnd);
654 }
655 
656 static inline void tcp_fast_path_on(struct tcp_sock *tp)
657 {
658 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659 }
660 
661 static inline void tcp_fast_path_check(struct sock *sk)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 
665 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 	    tp->rcv_wnd &&
667 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 	    !tp->urg_data)
669 		tcp_fast_path_on(tp);
670 }
671 
672 /* Compute the actual rto_min value */
673 static inline u32 tcp_rto_min(struct sock *sk)
674 {
675 	const struct dst_entry *dst = __sk_dst_get(sk);
676 	u32 rto_min = TCP_RTO_MIN;
677 
678 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 	return rto_min;
681 }
682 
683 static inline u32 tcp_rto_min_us(struct sock *sk)
684 {
685 	return jiffies_to_usecs(tcp_rto_min(sk));
686 }
687 
688 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689 {
690 	return dst_metric_locked(dst, RTAX_CC_ALGO);
691 }
692 
693 /* Minimum RTT in usec. ~0 means not available. */
694 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695 {
696 	return minmax_get(&tp->rtt_min);
697 }
698 
699 /* Compute the actual receive window we are currently advertising.
700  * Rcv_nxt can be after the window if our peer push more data
701  * than the offered window.
702  */
703 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704 {
705 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706 
707 	if (win < 0)
708 		win = 0;
709 	return (u32) win;
710 }
711 
712 /* Choose a new window, without checks for shrinking, and without
713  * scaling applied to the result.  The caller does these things
714  * if necessary.  This is a "raw" window selection.
715  */
716 u32 __tcp_select_window(struct sock *sk);
717 
718 void tcp_send_window_probe(struct sock *sk);
719 
720 /* TCP uses 32bit jiffies to save some space.
721  * Note that this is different from tcp_time_stamp, which
722  * historically has been the same until linux-4.13.
723  */
724 #define tcp_jiffies32 ((u32)jiffies)
725 
726 /*
727  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728  * It is no longer tied to jiffies, but to 1 ms clock.
729  * Note: double check if you want to use tcp_jiffies32 instead of this.
730  */
731 #define TCP_TS_HZ	1000
732 
733 static inline u64 tcp_clock_ns(void)
734 {
735 	return ktime_get_ns();
736 }
737 
738 static inline u64 tcp_clock_us(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741 }
742 
743 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
744 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745 {
746 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
750 static inline u32 tcp_time_stamp_raw(void)
751 {
752 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753 }
754 
755 void tcp_mstamp_refresh(struct tcp_sock *tp);
756 
757 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
758 {
759 	return max_t(s64, t1 - t0, 0);
760 }
761 
762 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
763 {
764 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
765 }
766 
767 /* provide the departure time in us unit */
768 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
769 {
770 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
771 }
772 
773 
774 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
775 
776 #define TCPHDR_FIN 0x01
777 #define TCPHDR_SYN 0x02
778 #define TCPHDR_RST 0x04
779 #define TCPHDR_PSH 0x08
780 #define TCPHDR_ACK 0x10
781 #define TCPHDR_URG 0x20
782 #define TCPHDR_ECE 0x40
783 #define TCPHDR_CWR 0x80
784 
785 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
786 
787 /* This is what the send packet queuing engine uses to pass
788  * TCP per-packet control information to the transmission code.
789  * We also store the host-order sequence numbers in here too.
790  * This is 44 bytes if IPV6 is enabled.
791  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
792  */
793 struct tcp_skb_cb {
794 	__u32		seq;		/* Starting sequence number	*/
795 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
796 	union {
797 		/* Note : tcp_tw_isn is used in input path only
798 		 *	  (isn chosen by tcp_timewait_state_process())
799 		 *
800 		 * 	  tcp_gso_segs/size are used in write queue only,
801 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
802 		 */
803 		__u32		tcp_tw_isn;
804 		struct {
805 			u16	tcp_gso_segs;
806 			u16	tcp_gso_size;
807 		};
808 	};
809 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
810 
811 	__u8		sacked;		/* State flags for SACK.	*/
812 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
813 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
814 #define TCPCB_LOST		0x04	/* SKB is lost			*/
815 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
816 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
817 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
818 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
819 				TCPCB_REPAIRED)
820 
821 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
822 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
823 			eor:1,		/* Is skb MSG_EOR marked? */
824 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
825 			unused:5;
826 	__u32		ack_seq;	/* Sequence number ACK'd	*/
827 	union {
828 		struct {
829 			/* There is space for up to 24 bytes */
830 			__u32 in_flight:30,/* Bytes in flight at transmit */
831 			      is_app_limited:1, /* cwnd not fully used? */
832 			      unused:1;
833 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
834 			__u32 delivered;
835 			/* start of send pipeline phase */
836 			u64 first_tx_mstamp;
837 			/* when we reached the "delivered" count */
838 			u64 delivered_mstamp;
839 		} tx;   /* only used for outgoing skbs */
840 		union {
841 			struct inet_skb_parm	h4;
842 #if IS_ENABLED(CONFIG_IPV6)
843 			struct inet6_skb_parm	h6;
844 #endif
845 		} header;	/* For incoming skbs */
846 		struct {
847 			__u32 flags;
848 			struct sock *sk_redir;
849 			void *data_end;
850 		} bpf;
851 	};
852 };
853 
854 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
855 
856 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
857 {
858 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
859 }
860 
861 #if IS_ENABLED(CONFIG_IPV6)
862 /* This is the variant of inet6_iif() that must be used by TCP,
863  * as TCP moves IP6CB into a different location in skb->cb[]
864  */
865 static inline int tcp_v6_iif(const struct sk_buff *skb)
866 {
867 	return TCP_SKB_CB(skb)->header.h6.iif;
868 }
869 
870 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
871 {
872 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
873 
874 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
875 }
876 
877 /* TCP_SKB_CB reference means this can not be used from early demux */
878 static inline int tcp_v6_sdif(const struct sk_buff *skb)
879 {
880 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
881 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
882 		return TCP_SKB_CB(skb)->header.h6.iif;
883 #endif
884 	return 0;
885 }
886 #endif
887 
888 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
889 {
890 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
891 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
892 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
893 		return true;
894 #endif
895 	return false;
896 }
897 
898 /* TCP_SKB_CB reference means this can not be used from early demux */
899 static inline int tcp_v4_sdif(struct sk_buff *skb)
900 {
901 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
902 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
903 		return TCP_SKB_CB(skb)->header.h4.iif;
904 #endif
905 	return 0;
906 }
907 
908 /* Due to TSO, an SKB can be composed of multiple actual
909  * packets.  To keep these tracked properly, we use this.
910  */
911 static inline int tcp_skb_pcount(const struct sk_buff *skb)
912 {
913 	return TCP_SKB_CB(skb)->tcp_gso_segs;
914 }
915 
916 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
917 {
918 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
919 }
920 
921 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
922 {
923 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
924 }
925 
926 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
927 static inline int tcp_skb_mss(const struct sk_buff *skb)
928 {
929 	return TCP_SKB_CB(skb)->tcp_gso_size;
930 }
931 
932 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
933 {
934 	return likely(!TCP_SKB_CB(skb)->eor);
935 }
936 
937 /* Events passed to congestion control interface */
938 enum tcp_ca_event {
939 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
940 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
941 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
942 	CA_EVENT_LOSS,		/* loss timeout */
943 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
944 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
945 };
946 
947 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
948 enum tcp_ca_ack_event_flags {
949 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
950 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
951 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
952 };
953 
954 /*
955  * Interface for adding new TCP congestion control handlers
956  */
957 #define TCP_CA_NAME_MAX	16
958 #define TCP_CA_MAX	128
959 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
960 
961 #define TCP_CA_UNSPEC	0
962 
963 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
964 #define TCP_CONG_NON_RESTRICTED 0x1
965 /* Requires ECN/ECT set on all packets */
966 #define TCP_CONG_NEEDS_ECN	0x2
967 
968 union tcp_cc_info;
969 
970 struct ack_sample {
971 	u32 pkts_acked;
972 	s32 rtt_us;
973 	u32 in_flight;
974 };
975 
976 /* A rate sample measures the number of (original/retransmitted) data
977  * packets delivered "delivered" over an interval of time "interval_us".
978  * The tcp_rate.c code fills in the rate sample, and congestion
979  * control modules that define a cong_control function to run at the end
980  * of ACK processing can optionally chose to consult this sample when
981  * setting cwnd and pacing rate.
982  * A sample is invalid if "delivered" or "interval_us" is negative.
983  */
984 struct rate_sample {
985 	u64  prior_mstamp; /* starting timestamp for interval */
986 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
987 	s32  delivered;		/* number of packets delivered over interval */
988 	long interval_us;	/* time for tp->delivered to incr "delivered" */
989 	u32 snd_interval_us;	/* snd interval for delivered packets */
990 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
991 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
992 	int  losses;		/* number of packets marked lost upon ACK */
993 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
994 	u32  prior_in_flight;	/* in flight before this ACK */
995 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
996 	bool is_retrans;	/* is sample from retransmission? */
997 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
998 };
999 
1000 struct tcp_congestion_ops {
1001 	struct list_head	list;
1002 	u32 key;
1003 	u32 flags;
1004 
1005 	/* initialize private data (optional) */
1006 	void (*init)(struct sock *sk);
1007 	/* cleanup private data  (optional) */
1008 	void (*release)(struct sock *sk);
1009 
1010 	/* return slow start threshold (required) */
1011 	u32 (*ssthresh)(struct sock *sk);
1012 	/* do new cwnd calculation (required) */
1013 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1014 	/* call before changing ca_state (optional) */
1015 	void (*set_state)(struct sock *sk, u8 new_state);
1016 	/* call when cwnd event occurs (optional) */
1017 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1018 	/* call when ack arrives (optional) */
1019 	void (*in_ack_event)(struct sock *sk, u32 flags);
1020 	/* new value of cwnd after loss (required) */
1021 	u32  (*undo_cwnd)(struct sock *sk);
1022 	/* hook for packet ack accounting (optional) */
1023 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1024 	/* override sysctl_tcp_min_tso_segs */
1025 	u32 (*min_tso_segs)(struct sock *sk);
1026 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1027 	u32 (*sndbuf_expand)(struct sock *sk);
1028 	/* call when packets are delivered to update cwnd and pacing rate,
1029 	 * after all the ca_state processing. (optional)
1030 	 */
1031 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1032 	/* get info for inet_diag (optional) */
1033 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1034 			   union tcp_cc_info *info);
1035 
1036 	char 		name[TCP_CA_NAME_MAX];
1037 	struct module 	*owner;
1038 };
1039 
1040 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1041 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1042 
1043 void tcp_assign_congestion_control(struct sock *sk);
1044 void tcp_init_congestion_control(struct sock *sk);
1045 void tcp_cleanup_congestion_control(struct sock *sk);
1046 int tcp_set_default_congestion_control(struct net *net, const char *name);
1047 void tcp_get_default_congestion_control(struct net *net, char *name);
1048 void tcp_get_available_congestion_control(char *buf, size_t len);
1049 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1050 int tcp_set_allowed_congestion_control(char *allowed);
1051 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1052 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1053 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1054 
1055 u32 tcp_reno_ssthresh(struct sock *sk);
1056 u32 tcp_reno_undo_cwnd(struct sock *sk);
1057 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1058 extern struct tcp_congestion_ops tcp_reno;
1059 
1060 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1061 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1062 #ifdef CONFIG_INET
1063 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1064 #else
1065 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1066 {
1067 	return NULL;
1068 }
1069 #endif
1070 
1071 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1072 {
1073 	const struct inet_connection_sock *icsk = inet_csk(sk);
1074 
1075 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1076 }
1077 
1078 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1079 {
1080 	struct inet_connection_sock *icsk = inet_csk(sk);
1081 
1082 	if (icsk->icsk_ca_ops->set_state)
1083 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1084 	icsk->icsk_ca_state = ca_state;
1085 }
1086 
1087 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1088 {
1089 	const struct inet_connection_sock *icsk = inet_csk(sk);
1090 
1091 	if (icsk->icsk_ca_ops->cwnd_event)
1092 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1093 }
1094 
1095 /* From tcp_rate.c */
1096 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1097 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1098 			    struct rate_sample *rs);
1099 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1100 		  bool is_sack_reneg, struct rate_sample *rs);
1101 void tcp_rate_check_app_limited(struct sock *sk);
1102 
1103 /* These functions determine how the current flow behaves in respect of SACK
1104  * handling. SACK is negotiated with the peer, and therefore it can vary
1105  * between different flows.
1106  *
1107  * tcp_is_sack - SACK enabled
1108  * tcp_is_reno - No SACK
1109  */
1110 static inline int tcp_is_sack(const struct tcp_sock *tp)
1111 {
1112 	return tp->rx_opt.sack_ok;
1113 }
1114 
1115 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1116 {
1117 	return !tcp_is_sack(tp);
1118 }
1119 
1120 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1121 {
1122 	return tp->sacked_out + tp->lost_out;
1123 }
1124 
1125 /* This determines how many packets are "in the network" to the best
1126  * of our knowledge.  In many cases it is conservative, but where
1127  * detailed information is available from the receiver (via SACK
1128  * blocks etc.) we can make more aggressive calculations.
1129  *
1130  * Use this for decisions involving congestion control, use just
1131  * tp->packets_out to determine if the send queue is empty or not.
1132  *
1133  * Read this equation as:
1134  *
1135  *	"Packets sent once on transmission queue" MINUS
1136  *	"Packets left network, but not honestly ACKed yet" PLUS
1137  *	"Packets fast retransmitted"
1138  */
1139 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1140 {
1141 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1142 }
1143 
1144 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1145 
1146 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1147 {
1148 	return tp->snd_cwnd < tp->snd_ssthresh;
1149 }
1150 
1151 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1152 {
1153 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1154 }
1155 
1156 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1157 {
1158 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1159 	       (1 << inet_csk(sk)->icsk_ca_state);
1160 }
1161 
1162 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1163  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1164  * ssthresh.
1165  */
1166 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1167 {
1168 	const struct tcp_sock *tp = tcp_sk(sk);
1169 
1170 	if (tcp_in_cwnd_reduction(sk))
1171 		return tp->snd_ssthresh;
1172 	else
1173 		return max(tp->snd_ssthresh,
1174 			   ((tp->snd_cwnd >> 1) +
1175 			    (tp->snd_cwnd >> 2)));
1176 }
1177 
1178 /* Use define here intentionally to get WARN_ON location shown at the caller */
1179 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1180 
1181 void tcp_enter_cwr(struct sock *sk);
1182 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1183 
1184 /* The maximum number of MSS of available cwnd for which TSO defers
1185  * sending if not using sysctl_tcp_tso_win_divisor.
1186  */
1187 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1188 {
1189 	return 3;
1190 }
1191 
1192 /* Returns end sequence number of the receiver's advertised window */
1193 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1194 {
1195 	return tp->snd_una + tp->snd_wnd;
1196 }
1197 
1198 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1199  * flexible approach. The RFC suggests cwnd should not be raised unless
1200  * it was fully used previously. And that's exactly what we do in
1201  * congestion avoidance mode. But in slow start we allow cwnd to grow
1202  * as long as the application has used half the cwnd.
1203  * Example :
1204  *    cwnd is 10 (IW10), but application sends 9 frames.
1205  *    We allow cwnd to reach 18 when all frames are ACKed.
1206  * This check is safe because it's as aggressive as slow start which already
1207  * risks 100% overshoot. The advantage is that we discourage application to
1208  * either send more filler packets or data to artificially blow up the cwnd
1209  * usage, and allow application-limited process to probe bw more aggressively.
1210  */
1211 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1212 {
1213 	const struct tcp_sock *tp = tcp_sk(sk);
1214 
1215 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1216 	if (tcp_in_slow_start(tp))
1217 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1218 
1219 	return tp->is_cwnd_limited;
1220 }
1221 
1222 /* BBR congestion control needs pacing.
1223  * Same remark for SO_MAX_PACING_RATE.
1224  * sch_fq packet scheduler is efficiently handling pacing,
1225  * but is not always installed/used.
1226  * Return true if TCP stack should pace packets itself.
1227  */
1228 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1229 {
1230 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1231 }
1232 
1233 /* Something is really bad, we could not queue an additional packet,
1234  * because qdisc is full or receiver sent a 0 window.
1235  * We do not want to add fuel to the fire, or abort too early,
1236  * so make sure the timer we arm now is at least 200ms in the future,
1237  * regardless of current icsk_rto value (as it could be ~2ms)
1238  */
1239 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1240 {
1241 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1242 }
1243 
1244 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1245 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1246 					    unsigned long max_when)
1247 {
1248 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1249 
1250 	return (unsigned long)min_t(u64, when, max_when);
1251 }
1252 
1253 static inline void tcp_check_probe_timer(struct sock *sk)
1254 {
1255 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1256 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1257 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1258 }
1259 
1260 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1261 {
1262 	tp->snd_wl1 = seq;
1263 }
1264 
1265 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1266 {
1267 	tp->snd_wl1 = seq;
1268 }
1269 
1270 /*
1271  * Calculate(/check) TCP checksum
1272  */
1273 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1274 				   __be32 daddr, __wsum base)
1275 {
1276 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1277 }
1278 
1279 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1280 {
1281 	return __skb_checksum_complete(skb);
1282 }
1283 
1284 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1285 {
1286 	return !skb_csum_unnecessary(skb) &&
1287 		__tcp_checksum_complete(skb);
1288 }
1289 
1290 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1291 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1292 
1293 #undef STATE_TRACE
1294 
1295 #ifdef STATE_TRACE
1296 static const char *statename[]={
1297 	"Unused","Established","Syn Sent","Syn Recv",
1298 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1299 	"Close Wait","Last ACK","Listen","Closing"
1300 };
1301 #endif
1302 void tcp_set_state(struct sock *sk, int state);
1303 
1304 void tcp_done(struct sock *sk);
1305 
1306 int tcp_abort(struct sock *sk, int err);
1307 
1308 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1309 {
1310 	rx_opt->dsack = 0;
1311 	rx_opt->num_sacks = 0;
1312 }
1313 
1314 u32 tcp_default_init_rwnd(u32 mss);
1315 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1316 
1317 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1318 {
1319 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1320 	struct tcp_sock *tp = tcp_sk(sk);
1321 	s32 delta;
1322 
1323 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1324 	    ca_ops->cong_control)
1325 		return;
1326 	delta = tcp_jiffies32 - tp->lsndtime;
1327 	if (delta > inet_csk(sk)->icsk_rto)
1328 		tcp_cwnd_restart(sk, delta);
1329 }
1330 
1331 /* Determine a window scaling and initial window to offer. */
1332 void tcp_select_initial_window(const struct sock *sk, int __space,
1333 			       __u32 mss, __u32 *rcv_wnd,
1334 			       __u32 *window_clamp, int wscale_ok,
1335 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1336 
1337 static inline int tcp_win_from_space(const struct sock *sk, int space)
1338 {
1339 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1340 
1341 	return tcp_adv_win_scale <= 0 ?
1342 		(space>>(-tcp_adv_win_scale)) :
1343 		space - (space>>tcp_adv_win_scale);
1344 }
1345 
1346 /* Note: caller must be prepared to deal with negative returns */
1347 static inline int tcp_space(const struct sock *sk)
1348 {
1349 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1350 				  atomic_read(&sk->sk_rmem_alloc));
1351 }
1352 
1353 static inline int tcp_full_space(const struct sock *sk)
1354 {
1355 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1356 }
1357 
1358 extern void tcp_openreq_init_rwin(struct request_sock *req,
1359 				  const struct sock *sk_listener,
1360 				  const struct dst_entry *dst);
1361 
1362 void tcp_enter_memory_pressure(struct sock *sk);
1363 void tcp_leave_memory_pressure(struct sock *sk);
1364 
1365 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1366 {
1367 	struct net *net = sock_net((struct sock *)tp);
1368 
1369 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1370 }
1371 
1372 static inline int keepalive_time_when(const struct tcp_sock *tp)
1373 {
1374 	struct net *net = sock_net((struct sock *)tp);
1375 
1376 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1377 }
1378 
1379 static inline int keepalive_probes(const struct tcp_sock *tp)
1380 {
1381 	struct net *net = sock_net((struct sock *)tp);
1382 
1383 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1384 }
1385 
1386 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1387 {
1388 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1389 
1390 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1391 			  tcp_jiffies32 - tp->rcv_tstamp);
1392 }
1393 
1394 static inline int tcp_fin_time(const struct sock *sk)
1395 {
1396 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1397 	const int rto = inet_csk(sk)->icsk_rto;
1398 
1399 	if (fin_timeout < (rto << 2) - (rto >> 1))
1400 		fin_timeout = (rto << 2) - (rto >> 1);
1401 
1402 	return fin_timeout;
1403 }
1404 
1405 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1406 				  int paws_win)
1407 {
1408 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1409 		return true;
1410 	if (unlikely(!time_before32(ktime_get_seconds(),
1411 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1412 		return true;
1413 	/*
1414 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1415 	 * then following tcp messages have valid values. Ignore 0 value,
1416 	 * or else 'negative' tsval might forbid us to accept their packets.
1417 	 */
1418 	if (!rx_opt->ts_recent)
1419 		return true;
1420 	return false;
1421 }
1422 
1423 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1424 				   int rst)
1425 {
1426 	if (tcp_paws_check(rx_opt, 0))
1427 		return false;
1428 
1429 	/* RST segments are not recommended to carry timestamp,
1430 	   and, if they do, it is recommended to ignore PAWS because
1431 	   "their cleanup function should take precedence over timestamps."
1432 	   Certainly, it is mistake. It is necessary to understand the reasons
1433 	   of this constraint to relax it: if peer reboots, clock may go
1434 	   out-of-sync and half-open connections will not be reset.
1435 	   Actually, the problem would be not existing if all
1436 	   the implementations followed draft about maintaining clock
1437 	   via reboots. Linux-2.2 DOES NOT!
1438 
1439 	   However, we can relax time bounds for RST segments to MSL.
1440 	 */
1441 	if (rst && !time_before32(ktime_get_seconds(),
1442 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1443 		return false;
1444 	return true;
1445 }
1446 
1447 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1448 			  int mib_idx, u32 *last_oow_ack_time);
1449 
1450 static inline void tcp_mib_init(struct net *net)
1451 {
1452 	/* See RFC 2012 */
1453 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1454 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1455 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1456 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1457 }
1458 
1459 /* from STCP */
1460 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1461 {
1462 	tp->lost_skb_hint = NULL;
1463 }
1464 
1465 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1466 {
1467 	tcp_clear_retrans_hints_partial(tp);
1468 	tp->retransmit_skb_hint = NULL;
1469 }
1470 
1471 union tcp_md5_addr {
1472 	struct in_addr  a4;
1473 #if IS_ENABLED(CONFIG_IPV6)
1474 	struct in6_addr	a6;
1475 #endif
1476 };
1477 
1478 /* - key database */
1479 struct tcp_md5sig_key {
1480 	struct hlist_node	node;
1481 	u8			keylen;
1482 	u8			family; /* AF_INET or AF_INET6 */
1483 	union tcp_md5_addr	addr;
1484 	u8			prefixlen;
1485 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1486 	struct rcu_head		rcu;
1487 };
1488 
1489 /* - sock block */
1490 struct tcp_md5sig_info {
1491 	struct hlist_head	head;
1492 	struct rcu_head		rcu;
1493 };
1494 
1495 /* - pseudo header */
1496 struct tcp4_pseudohdr {
1497 	__be32		saddr;
1498 	__be32		daddr;
1499 	__u8		pad;
1500 	__u8		protocol;
1501 	__be16		len;
1502 };
1503 
1504 struct tcp6_pseudohdr {
1505 	struct in6_addr	saddr;
1506 	struct in6_addr daddr;
1507 	__be32		len;
1508 	__be32		protocol;	/* including padding */
1509 };
1510 
1511 union tcp_md5sum_block {
1512 	struct tcp4_pseudohdr ip4;
1513 #if IS_ENABLED(CONFIG_IPV6)
1514 	struct tcp6_pseudohdr ip6;
1515 #endif
1516 };
1517 
1518 /* - pool: digest algorithm, hash description and scratch buffer */
1519 struct tcp_md5sig_pool {
1520 	struct ahash_request	*md5_req;
1521 	void			*scratch;
1522 };
1523 
1524 /* - functions */
1525 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1526 			const struct sock *sk, const struct sk_buff *skb);
1527 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1528 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1529 		   gfp_t gfp);
1530 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1531 		   int family, u8 prefixlen);
1532 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1533 					 const struct sock *addr_sk);
1534 
1535 #ifdef CONFIG_TCP_MD5SIG
1536 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1537 					 const union tcp_md5_addr *addr,
1538 					 int family);
1539 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1540 #else
1541 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1542 					 const union tcp_md5_addr *addr,
1543 					 int family)
1544 {
1545 	return NULL;
1546 }
1547 #define tcp_twsk_md5_key(twsk)	NULL
1548 #endif
1549 
1550 bool tcp_alloc_md5sig_pool(void);
1551 
1552 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1553 static inline void tcp_put_md5sig_pool(void)
1554 {
1555 	local_bh_enable();
1556 }
1557 
1558 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1559 			  unsigned int header_len);
1560 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1561 		     const struct tcp_md5sig_key *key);
1562 
1563 /* From tcp_fastopen.c */
1564 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1565 			    struct tcp_fastopen_cookie *cookie);
1566 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1567 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1568 			    u16 try_exp);
1569 struct tcp_fastopen_request {
1570 	/* Fast Open cookie. Size 0 means a cookie request */
1571 	struct tcp_fastopen_cookie	cookie;
1572 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1573 	size_t				size;
1574 	int				copied;	/* queued in tcp_connect() */
1575 };
1576 void tcp_free_fastopen_req(struct tcp_sock *tp);
1577 void tcp_fastopen_destroy_cipher(struct sock *sk);
1578 void tcp_fastopen_ctx_destroy(struct net *net);
1579 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1580 			      void *key, unsigned int len);
1581 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1582 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1583 			      struct request_sock *req,
1584 			      struct tcp_fastopen_cookie *foc,
1585 			      const struct dst_entry *dst);
1586 void tcp_fastopen_init_key_once(struct net *net);
1587 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1588 			     struct tcp_fastopen_cookie *cookie);
1589 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1590 #define TCP_FASTOPEN_KEY_LENGTH 16
1591 
1592 /* Fastopen key context */
1593 struct tcp_fastopen_context {
1594 	struct crypto_cipher	*tfm;
1595 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1596 	struct rcu_head		rcu;
1597 };
1598 
1599 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1600 void tcp_fastopen_active_disable(struct sock *sk);
1601 bool tcp_fastopen_active_should_disable(struct sock *sk);
1602 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1603 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1604 
1605 /* Latencies incurred by various limits for a sender. They are
1606  * chronograph-like stats that are mutually exclusive.
1607  */
1608 enum tcp_chrono {
1609 	TCP_CHRONO_UNSPEC,
1610 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1611 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1612 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1613 	__TCP_CHRONO_MAX,
1614 };
1615 
1616 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1617 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1618 
1619 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1620  * the same memory storage than skb->destructor/_skb_refdst
1621  */
1622 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1623 {
1624 	skb->destructor = NULL;
1625 	skb->_skb_refdst = 0UL;
1626 }
1627 
1628 #define tcp_skb_tsorted_save(skb) {		\
1629 	unsigned long _save = skb->_skb_refdst;	\
1630 	skb->_skb_refdst = 0UL;
1631 
1632 #define tcp_skb_tsorted_restore(skb)		\
1633 	skb->_skb_refdst = _save;		\
1634 }
1635 
1636 void tcp_write_queue_purge(struct sock *sk);
1637 
1638 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1639 {
1640 	return skb_rb_first(&sk->tcp_rtx_queue);
1641 }
1642 
1643 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1644 {
1645 	return skb_peek(&sk->sk_write_queue);
1646 }
1647 
1648 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1649 {
1650 	return skb_peek_tail(&sk->sk_write_queue);
1651 }
1652 
1653 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1654 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1655 
1656 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1657 {
1658 	return skb_peek(&sk->sk_write_queue);
1659 }
1660 
1661 static inline bool tcp_skb_is_last(const struct sock *sk,
1662 				   const struct sk_buff *skb)
1663 {
1664 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1665 }
1666 
1667 static inline bool tcp_write_queue_empty(const struct sock *sk)
1668 {
1669 	return skb_queue_empty(&sk->sk_write_queue);
1670 }
1671 
1672 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1673 {
1674 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1675 }
1676 
1677 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1678 {
1679 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1680 }
1681 
1682 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1683 {
1684 	if (tcp_write_queue_empty(sk))
1685 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1686 }
1687 
1688 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1689 {
1690 	__skb_queue_tail(&sk->sk_write_queue, skb);
1691 }
1692 
1693 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1694 {
1695 	__tcp_add_write_queue_tail(sk, skb);
1696 
1697 	/* Queue it, remembering where we must start sending. */
1698 	if (sk->sk_write_queue.next == skb)
1699 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1700 }
1701 
1702 /* Insert new before skb on the write queue of sk.  */
1703 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1704 						  struct sk_buff *skb,
1705 						  struct sock *sk)
1706 {
1707 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1708 }
1709 
1710 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1711 {
1712 	tcp_skb_tsorted_anchor_cleanup(skb);
1713 	__skb_unlink(skb, &sk->sk_write_queue);
1714 }
1715 
1716 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1717 
1718 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1719 {
1720 	tcp_skb_tsorted_anchor_cleanup(skb);
1721 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1722 }
1723 
1724 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1725 {
1726 	list_del(&skb->tcp_tsorted_anchor);
1727 	tcp_rtx_queue_unlink(skb, sk);
1728 	sk_wmem_free_skb(sk, skb);
1729 }
1730 
1731 static inline void tcp_push_pending_frames(struct sock *sk)
1732 {
1733 	if (tcp_send_head(sk)) {
1734 		struct tcp_sock *tp = tcp_sk(sk);
1735 
1736 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1737 	}
1738 }
1739 
1740 /* Start sequence of the skb just after the highest skb with SACKed
1741  * bit, valid only if sacked_out > 0 or when the caller has ensured
1742  * validity by itself.
1743  */
1744 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1745 {
1746 	if (!tp->sacked_out)
1747 		return tp->snd_una;
1748 
1749 	if (tp->highest_sack == NULL)
1750 		return tp->snd_nxt;
1751 
1752 	return TCP_SKB_CB(tp->highest_sack)->seq;
1753 }
1754 
1755 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1756 {
1757 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1758 }
1759 
1760 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1761 {
1762 	return tcp_sk(sk)->highest_sack;
1763 }
1764 
1765 static inline void tcp_highest_sack_reset(struct sock *sk)
1766 {
1767 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1768 }
1769 
1770 /* Called when old skb is about to be deleted and replaced by new skb */
1771 static inline void tcp_highest_sack_replace(struct sock *sk,
1772 					    struct sk_buff *old,
1773 					    struct sk_buff *new)
1774 {
1775 	if (old == tcp_highest_sack(sk))
1776 		tcp_sk(sk)->highest_sack = new;
1777 }
1778 
1779 /* This helper checks if socket has IP_TRANSPARENT set */
1780 static inline bool inet_sk_transparent(const struct sock *sk)
1781 {
1782 	switch (sk->sk_state) {
1783 	case TCP_TIME_WAIT:
1784 		return inet_twsk(sk)->tw_transparent;
1785 	case TCP_NEW_SYN_RECV:
1786 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1787 	}
1788 	return inet_sk(sk)->transparent;
1789 }
1790 
1791 /* Determines whether this is a thin stream (which may suffer from
1792  * increased latency). Used to trigger latency-reducing mechanisms.
1793  */
1794 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1795 {
1796 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1797 }
1798 
1799 /* /proc */
1800 enum tcp_seq_states {
1801 	TCP_SEQ_STATE_LISTENING,
1802 	TCP_SEQ_STATE_ESTABLISHED,
1803 };
1804 
1805 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1806 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1807 void tcp_seq_stop(struct seq_file *seq, void *v);
1808 
1809 struct tcp_seq_afinfo {
1810 	sa_family_t			family;
1811 };
1812 
1813 struct tcp_iter_state {
1814 	struct seq_net_private	p;
1815 	enum tcp_seq_states	state;
1816 	struct sock		*syn_wait_sk;
1817 	int			bucket, offset, sbucket, num;
1818 	loff_t			last_pos;
1819 };
1820 
1821 extern struct request_sock_ops tcp_request_sock_ops;
1822 extern struct request_sock_ops tcp6_request_sock_ops;
1823 
1824 void tcp_v4_destroy_sock(struct sock *sk);
1825 
1826 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1827 				netdev_features_t features);
1828 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1829 int tcp_gro_complete(struct sk_buff *skb);
1830 
1831 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1832 
1833 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1834 {
1835 	struct net *net = sock_net((struct sock *)tp);
1836 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1837 }
1838 
1839 static inline bool tcp_stream_memory_free(const struct sock *sk)
1840 {
1841 	const struct tcp_sock *tp = tcp_sk(sk);
1842 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1843 
1844 	return notsent_bytes < tcp_notsent_lowat(tp);
1845 }
1846 
1847 #ifdef CONFIG_PROC_FS
1848 int tcp4_proc_init(void);
1849 void tcp4_proc_exit(void);
1850 #endif
1851 
1852 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1853 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1854 		     const struct tcp_request_sock_ops *af_ops,
1855 		     struct sock *sk, struct sk_buff *skb);
1856 
1857 /* TCP af-specific functions */
1858 struct tcp_sock_af_ops {
1859 #ifdef CONFIG_TCP_MD5SIG
1860 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1861 						const struct sock *addr_sk);
1862 	int		(*calc_md5_hash)(char *location,
1863 					 const struct tcp_md5sig_key *md5,
1864 					 const struct sock *sk,
1865 					 const struct sk_buff *skb);
1866 	int		(*md5_parse)(struct sock *sk,
1867 				     int optname,
1868 				     char __user *optval,
1869 				     int optlen);
1870 #endif
1871 };
1872 
1873 struct tcp_request_sock_ops {
1874 	u16 mss_clamp;
1875 #ifdef CONFIG_TCP_MD5SIG
1876 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1877 						 const struct sock *addr_sk);
1878 	int		(*calc_md5_hash) (char *location,
1879 					  const struct tcp_md5sig_key *md5,
1880 					  const struct sock *sk,
1881 					  const struct sk_buff *skb);
1882 #endif
1883 	void (*init_req)(struct request_sock *req,
1884 			 const struct sock *sk_listener,
1885 			 struct sk_buff *skb);
1886 #ifdef CONFIG_SYN_COOKIES
1887 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1888 				 __u16 *mss);
1889 #endif
1890 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1891 				       const struct request_sock *req);
1892 	u32 (*init_seq)(const struct sk_buff *skb);
1893 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1894 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1895 			   struct flowi *fl, struct request_sock *req,
1896 			   struct tcp_fastopen_cookie *foc,
1897 			   enum tcp_synack_type synack_type);
1898 };
1899 
1900 #ifdef CONFIG_SYN_COOKIES
1901 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1902 					 const struct sock *sk, struct sk_buff *skb,
1903 					 __u16 *mss)
1904 {
1905 	tcp_synq_overflow(sk);
1906 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1907 	return ops->cookie_init_seq(skb, mss);
1908 }
1909 #else
1910 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1911 					 const struct sock *sk, struct sk_buff *skb,
1912 					 __u16 *mss)
1913 {
1914 	return 0;
1915 }
1916 #endif
1917 
1918 int tcpv4_offload_init(void);
1919 
1920 void tcp_v4_init(void);
1921 void tcp_init(void);
1922 
1923 /* tcp_recovery.c */
1924 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1925 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1926 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1927 				u32 reo_wnd);
1928 extern void tcp_rack_mark_lost(struct sock *sk);
1929 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1930 			     u64 xmit_time);
1931 extern void tcp_rack_reo_timeout(struct sock *sk);
1932 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1933 
1934 /* At how many usecs into the future should the RTO fire? */
1935 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1936 {
1937 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1938 	u32 rto = inet_csk(sk)->icsk_rto;
1939 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1940 
1941 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1942 }
1943 
1944 /*
1945  * Save and compile IPv4 options, return a pointer to it
1946  */
1947 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1948 							 struct sk_buff *skb)
1949 {
1950 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1951 	struct ip_options_rcu *dopt = NULL;
1952 
1953 	if (opt->optlen) {
1954 		int opt_size = sizeof(*dopt) + opt->optlen;
1955 
1956 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1957 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1958 			kfree(dopt);
1959 			dopt = NULL;
1960 		}
1961 	}
1962 	return dopt;
1963 }
1964 
1965 /* locally generated TCP pure ACKs have skb->truesize == 2
1966  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1967  * This is much faster than dissecting the packet to find out.
1968  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1969  */
1970 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1971 {
1972 	return skb->truesize == 2;
1973 }
1974 
1975 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1976 {
1977 	skb->truesize = 2;
1978 }
1979 
1980 static inline int tcp_inq(struct sock *sk)
1981 {
1982 	struct tcp_sock *tp = tcp_sk(sk);
1983 	int answ;
1984 
1985 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1986 		answ = 0;
1987 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1988 		   !tp->urg_data ||
1989 		   before(tp->urg_seq, tp->copied_seq) ||
1990 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1991 
1992 		answ = tp->rcv_nxt - tp->copied_seq;
1993 
1994 		/* Subtract 1, if FIN was received */
1995 		if (answ && sock_flag(sk, SOCK_DONE))
1996 			answ--;
1997 	} else {
1998 		answ = tp->urg_seq - tp->copied_seq;
1999 	}
2000 
2001 	return answ;
2002 }
2003 
2004 int tcp_peek_len(struct socket *sock);
2005 
2006 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2007 {
2008 	u16 segs_in;
2009 
2010 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2011 	tp->segs_in += segs_in;
2012 	if (skb->len > tcp_hdrlen(skb))
2013 		tp->data_segs_in += segs_in;
2014 }
2015 
2016 /*
2017  * TCP listen path runs lockless.
2018  * We forced "struct sock" to be const qualified to make sure
2019  * we don't modify one of its field by mistake.
2020  * Here, we increment sk_drops which is an atomic_t, so we can safely
2021  * make sock writable again.
2022  */
2023 static inline void tcp_listendrop(const struct sock *sk)
2024 {
2025 	atomic_inc(&((struct sock *)sk)->sk_drops);
2026 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2027 }
2028 
2029 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2030 
2031 /*
2032  * Interface for adding Upper Level Protocols over TCP
2033  */
2034 
2035 #define TCP_ULP_NAME_MAX	16
2036 #define TCP_ULP_MAX		128
2037 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2038 
2039 enum {
2040 	TCP_ULP_TLS,
2041 	TCP_ULP_BPF,
2042 };
2043 
2044 struct tcp_ulp_ops {
2045 	struct list_head	list;
2046 
2047 	/* initialize ulp */
2048 	int (*init)(struct sock *sk);
2049 	/* cleanup ulp */
2050 	void (*release)(struct sock *sk);
2051 
2052 	int		uid;
2053 	char		name[TCP_ULP_NAME_MAX];
2054 	bool		user_visible;
2055 	struct module	*owner;
2056 };
2057 int tcp_register_ulp(struct tcp_ulp_ops *type);
2058 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2059 int tcp_set_ulp(struct sock *sk, const char *name);
2060 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2061 void tcp_get_available_ulp(char *buf, size_t len);
2062 void tcp_cleanup_ulp(struct sock *sk);
2063 
2064 #define MODULE_ALIAS_TCP_ULP(name)				\
2065 	__MODULE_INFO(alias, alias_userspace, name);		\
2066 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2067 
2068 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2069  * is < 0, then the BPF op failed (for example if the loaded BPF
2070  * program does not support the chosen operation or there is no BPF
2071  * program loaded).
2072  */
2073 #ifdef CONFIG_BPF
2074 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2075 {
2076 	struct bpf_sock_ops_kern sock_ops;
2077 	int ret;
2078 
2079 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2080 	if (sk_fullsock(sk)) {
2081 		sock_ops.is_fullsock = 1;
2082 		sock_owned_by_me(sk);
2083 	}
2084 
2085 	sock_ops.sk = sk;
2086 	sock_ops.op = op;
2087 	if (nargs > 0)
2088 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2089 
2090 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2091 	if (ret == 0)
2092 		ret = sock_ops.reply;
2093 	else
2094 		ret = -1;
2095 	return ret;
2096 }
2097 
2098 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2099 {
2100 	u32 args[2] = {arg1, arg2};
2101 
2102 	return tcp_call_bpf(sk, op, 2, args);
2103 }
2104 
2105 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2106 				    u32 arg3)
2107 {
2108 	u32 args[3] = {arg1, arg2, arg3};
2109 
2110 	return tcp_call_bpf(sk, op, 3, args);
2111 }
2112 
2113 #else
2114 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2115 {
2116 	return -EPERM;
2117 }
2118 
2119 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2120 {
2121 	return -EPERM;
2122 }
2123 
2124 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2125 				    u32 arg3)
2126 {
2127 	return -EPERM;
2128 }
2129 
2130 #endif
2131 
2132 static inline u32 tcp_timeout_init(struct sock *sk)
2133 {
2134 	int timeout;
2135 
2136 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2137 
2138 	if (timeout <= 0)
2139 		timeout = TCP_TIMEOUT_INIT;
2140 	return timeout;
2141 }
2142 
2143 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2144 {
2145 	int rwnd;
2146 
2147 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2148 
2149 	if (rwnd < 0)
2150 		rwnd = 0;
2151 	return rwnd;
2152 }
2153 
2154 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2155 {
2156 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2157 }
2158 
2159 #if IS_ENABLED(CONFIG_SMC)
2160 extern struct static_key_false tcp_have_smc;
2161 #endif
2162 
2163 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2164 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2165 			     void (*cad)(struct sock *sk, u32 ack_seq));
2166 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2167 
2168 #endif
2169 
2170 #endif	/* _TCP_H */
2171