xref: /openbmc/linux/include/net/tcp.h (revision 965f94c77552d80f824229a6a68f7ca92a59e5ff)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
52 
53 extern struct inet_hashinfo tcp_hashinfo;
54 
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 
58 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 
132 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN	((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN	4U
138 #define TCP_ATO_MIN	4U
139 #endif
140 #define TCP_RTO_MAX	((unsigned)(120*HZ))
141 #define TCP_RTO_MIN	((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
143 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
144 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
145 						 * used as a fallback RTO for the
146 						 * initial data transmission if no
147 						 * valid RTT sample has been acquired,
148 						 * most likely due to retrans in 3WHS.
149 						 */
150 
151 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 					                 * for local resources.
153 					                 */
154 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
155 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
156 #define TCP_KEEPALIVE_INTVL	(75*HZ)
157 
158 #define MAX_TCP_KEEPIDLE	32767
159 #define MAX_TCP_KEEPINTVL	32767
160 #define MAX_TCP_KEEPCNT		127
161 #define MAX_TCP_SYNCNT		127
162 
163 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 
195 /*
196  *     TCP option lengths
197  */
198 
199 #define TCPOLEN_MSS            4
200 #define TCPOLEN_WINDOW         3
201 #define TCPOLEN_SACK_PERM      2
202 #define TCPOLEN_TIMESTAMP      10
203 #define TCPOLEN_MD5SIG         18
204 #define TCPOLEN_FASTOPEN_BASE  2
205 #define TCPOLEN_EXP_FASTOPEN_BASE  4
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_fastopen;
244 extern int sysctl_tcp_retrans_collapse;
245 extern int sysctl_tcp_stdurg;
246 extern int sysctl_tcp_rfc1337;
247 extern int sysctl_tcp_abort_on_overflow;
248 extern int sysctl_tcp_max_orphans;
249 extern int sysctl_tcp_fack;
250 extern int sysctl_tcp_reordering;
251 extern int sysctl_tcp_max_reordering;
252 extern int sysctl_tcp_dsack;
253 extern long sysctl_tcp_mem[3];
254 extern int sysctl_tcp_wmem[3];
255 extern int sysctl_tcp_rmem[3];
256 extern int sysctl_tcp_app_win;
257 extern int sysctl_tcp_adv_win_scale;
258 extern int sysctl_tcp_frto;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_recovery;
268 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
269 
270 extern int sysctl_tcp_limit_output_bytes;
271 extern int sysctl_tcp_challenge_ack_limit;
272 extern int sysctl_tcp_min_tso_segs;
273 extern int sysctl_tcp_min_rtt_wlen;
274 extern int sysctl_tcp_autocorking;
275 extern int sysctl_tcp_invalid_ratelimit;
276 extern int sysctl_tcp_pacing_ss_ratio;
277 extern int sysctl_tcp_pacing_ca_ratio;
278 
279 extern atomic_long_t tcp_memory_allocated;
280 extern struct percpu_counter tcp_sockets_allocated;
281 extern unsigned long tcp_memory_pressure;
282 
283 /* optimized version of sk_under_memory_pressure() for TCP sockets */
284 static inline bool tcp_under_memory_pressure(const struct sock *sk)
285 {
286 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
287 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
288 		return true;
289 
290 	return tcp_memory_pressure;
291 }
292 /*
293  * The next routines deal with comparing 32 bit unsigned ints
294  * and worry about wraparound (automatic with unsigned arithmetic).
295  */
296 
297 static inline bool before(__u32 seq1, __u32 seq2)
298 {
299         return (__s32)(seq1-seq2) < 0;
300 }
301 #define after(seq2, seq1) 	before(seq1, seq2)
302 
303 /* is s2<=s1<=s3 ? */
304 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
305 {
306 	return seq3 - seq2 >= seq1 - seq2;
307 }
308 
309 static inline bool tcp_out_of_memory(struct sock *sk)
310 {
311 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
312 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
313 		return true;
314 	return false;
315 }
316 
317 void sk_forced_mem_schedule(struct sock *sk, int size);
318 
319 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
320 {
321 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
322 	int orphans = percpu_counter_read_positive(ocp);
323 
324 	if (orphans << shift > sysctl_tcp_max_orphans) {
325 		orphans = percpu_counter_sum_positive(ocp);
326 		if (orphans << shift > sysctl_tcp_max_orphans)
327 			return true;
328 	}
329 	return false;
330 }
331 
332 bool tcp_check_oom(struct sock *sk, int shift);
333 
334 
335 extern struct proto tcp_prot;
336 
337 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
338 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
339 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
341 
342 void tcp_tasklet_init(void);
343 
344 void tcp_v4_err(struct sk_buff *skb, u32);
345 
346 void tcp_shutdown(struct sock *sk, int how);
347 
348 void tcp_v4_early_demux(struct sk_buff *skb);
349 int tcp_v4_rcv(struct sk_buff *skb);
350 
351 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
352 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
353 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
354 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
355 		 int flags);
356 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
357 			size_t size, int flags);
358 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
359 		 size_t size, int flags);
360 void tcp_release_cb(struct sock *sk);
361 void tcp_wfree(struct sk_buff *skb);
362 void tcp_write_timer_handler(struct sock *sk);
363 void tcp_delack_timer_handler(struct sock *sk);
364 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
365 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
366 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
367 			 const struct tcphdr *th);
368 void tcp_rcv_space_adjust(struct sock *sk);
369 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
370 void tcp_twsk_destructor(struct sock *sk);
371 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
372 			struct pipe_inode_info *pipe, size_t len,
373 			unsigned int flags);
374 
375 static inline void tcp_dec_quickack_mode(struct sock *sk,
376 					 const unsigned int pkts)
377 {
378 	struct inet_connection_sock *icsk = inet_csk(sk);
379 
380 	if (icsk->icsk_ack.quick) {
381 		if (pkts >= icsk->icsk_ack.quick) {
382 			icsk->icsk_ack.quick = 0;
383 			/* Leaving quickack mode we deflate ATO. */
384 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
385 		} else
386 			icsk->icsk_ack.quick -= pkts;
387 	}
388 }
389 
390 #define	TCP_ECN_OK		1
391 #define	TCP_ECN_QUEUE_CWR	2
392 #define	TCP_ECN_DEMAND_CWR	4
393 #define	TCP_ECN_SEEN		8
394 
395 enum tcp_tw_status {
396 	TCP_TW_SUCCESS = 0,
397 	TCP_TW_RST = 1,
398 	TCP_TW_ACK = 2,
399 	TCP_TW_SYN = 3
400 };
401 
402 
403 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
404 					      struct sk_buff *skb,
405 					      const struct tcphdr *th);
406 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
407 			   struct request_sock *req, bool fastopen);
408 int tcp_child_process(struct sock *parent, struct sock *child,
409 		      struct sk_buff *skb);
410 void tcp_enter_loss(struct sock *sk);
411 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
412 void tcp_clear_retrans(struct tcp_sock *tp);
413 void tcp_update_metrics(struct sock *sk);
414 void tcp_init_metrics(struct sock *sk);
415 void tcp_metrics_init(void);
416 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
417 void tcp_disable_fack(struct tcp_sock *tp);
418 void tcp_close(struct sock *sk, long timeout);
419 void tcp_init_sock(struct sock *sk);
420 unsigned int tcp_poll(struct file *file, struct socket *sock,
421 		      struct poll_table_struct *wait);
422 int tcp_getsockopt(struct sock *sk, int level, int optname,
423 		   char __user *optval, int __user *optlen);
424 int tcp_setsockopt(struct sock *sk, int level, int optname,
425 		   char __user *optval, unsigned int optlen);
426 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
427 			  char __user *optval, int __user *optlen);
428 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
429 			  char __user *optval, unsigned int optlen);
430 void tcp_set_keepalive(struct sock *sk, int val);
431 void tcp_syn_ack_timeout(const struct request_sock *req);
432 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
433 		int flags, int *addr_len);
434 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
435 		       struct tcp_options_received *opt_rx,
436 		       int estab, struct tcp_fastopen_cookie *foc);
437 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
438 
439 /*
440  *	TCP v4 functions exported for the inet6 API
441  */
442 
443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444 void tcp_v4_mtu_reduced(struct sock *sk);
445 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 				      struct request_sock *req,
449 				      struct sk_buff *skb);
450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
452 				  struct request_sock *req,
453 				  struct dst_entry *dst,
454 				  struct request_sock *req_unhash,
455 				  bool *own_req);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 enum tcp_synack_type {
460 	TCP_SYNACK_NORMAL,
461 	TCP_SYNACK_FASTOPEN,
462 	TCP_SYNACK_COOKIE,
463 };
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 				struct request_sock *req,
466 				struct tcp_fastopen_cookie *foc,
467 				enum tcp_synack_type synack_type);
468 int tcp_disconnect(struct sock *sk, int flags);
469 
470 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
471 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
472 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
473 
474 /* From syncookies.c */
475 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
476 				 struct request_sock *req,
477 				 struct dst_entry *dst, u32 tsoff);
478 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
479 		      u32 cookie);
480 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
501 	unsigned long now = jiffies;
502 
503 	if (time_after(now, last_overflow + HZ))
504 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
505 }
506 
507 /* syncookies: no recent synqueue overflow on this listening socket? */
508 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
509 {
510 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
511 
512 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
513 }
514 
515 static inline u32 tcp_cookie_time(void)
516 {
517 	u64 val = get_jiffies_64();
518 
519 	do_div(val, TCP_SYNCOOKIE_PERIOD);
520 	return val;
521 }
522 
523 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
524 			      u16 *mssp);
525 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
526 u64 cookie_init_timestamp(struct request_sock *req);
527 bool cookie_timestamp_decode(const struct net *net,
528 			     struct tcp_options_received *opt);
529 bool cookie_ecn_ok(const struct tcp_options_received *opt,
530 		   const struct net *net, const struct dst_entry *dst);
531 
532 /* From net/ipv6/syncookies.c */
533 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
534 		      u32 cookie);
535 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
536 
537 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
538 			      const struct tcphdr *th, u16 *mssp);
539 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
540 #endif
541 /* tcp_output.c */
542 
543 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
544 		     int min_tso_segs);
545 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
546 			       int nonagle);
547 bool tcp_may_send_now(struct sock *sk);
548 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 void tcp_retransmit_timer(struct sock *sk);
551 void tcp_xmit_retransmit_queue(struct sock *);
552 void tcp_simple_retransmit(struct sock *);
553 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
554 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
555 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
556 
557 void tcp_send_probe0(struct sock *);
558 void tcp_send_partial(struct sock *);
559 int tcp_write_wakeup(struct sock *, int mib);
560 void tcp_send_fin(struct sock *sk);
561 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
562 int tcp_send_synack(struct sock *);
563 void tcp_push_one(struct sock *, unsigned int mss_now);
564 void tcp_send_ack(struct sock *sk);
565 void tcp_send_delayed_ack(struct sock *sk);
566 void tcp_send_loss_probe(struct sock *sk);
567 bool tcp_schedule_loss_probe(struct sock *sk);
568 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
569 			     const struct sk_buff *next_skb);
570 
571 /* tcp_input.c */
572 void tcp_rearm_rto(struct sock *sk);
573 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
574 void tcp_reset(struct sock *sk);
575 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
576 void tcp_fin(struct sock *sk);
577 
578 /* tcp_timer.c */
579 void tcp_init_xmit_timers(struct sock *);
580 static inline void tcp_clear_xmit_timers(struct sock *sk)
581 {
582 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
583 	inet_csk_clear_xmit_timers(sk);
584 }
585 
586 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
587 unsigned int tcp_current_mss(struct sock *sk);
588 
589 /* Bound MSS / TSO packet size with the half of the window */
590 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
591 {
592 	int cutoff;
593 
594 	/* When peer uses tiny windows, there is no use in packetizing
595 	 * to sub-MSS pieces for the sake of SWS or making sure there
596 	 * are enough packets in the pipe for fast recovery.
597 	 *
598 	 * On the other hand, for extremely large MSS devices, handling
599 	 * smaller than MSS windows in this way does make sense.
600 	 */
601 	if (tp->max_window > TCP_MSS_DEFAULT)
602 		cutoff = (tp->max_window >> 1);
603 	else
604 		cutoff = tp->max_window;
605 
606 	if (cutoff && pktsize > cutoff)
607 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
608 	else
609 		return pktsize;
610 }
611 
612 /* tcp.c */
613 void tcp_get_info(struct sock *, struct tcp_info *);
614 
615 /* Read 'sendfile()'-style from a TCP socket */
616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
617 		  sk_read_actor_t recv_actor);
618 
619 void tcp_initialize_rcv_mss(struct sock *sk);
620 
621 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
622 int tcp_mss_to_mtu(struct sock *sk, int mss);
623 void tcp_mtup_init(struct sock *sk);
624 void tcp_init_buffer_space(struct sock *sk);
625 
626 static inline void tcp_bound_rto(const struct sock *sk)
627 {
628 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
629 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
630 }
631 
632 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
633 {
634 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
635 }
636 
637 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
638 {
639 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
640 			       ntohl(TCP_FLAG_ACK) |
641 			       snd_wnd);
642 }
643 
644 static inline void tcp_fast_path_on(struct tcp_sock *tp)
645 {
646 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
647 }
648 
649 static inline void tcp_fast_path_check(struct sock *sk)
650 {
651 	struct tcp_sock *tp = tcp_sk(sk);
652 
653 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
654 	    tp->rcv_wnd &&
655 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
656 	    !tp->urg_data)
657 		tcp_fast_path_on(tp);
658 }
659 
660 /* Compute the actual rto_min value */
661 static inline u32 tcp_rto_min(struct sock *sk)
662 {
663 	const struct dst_entry *dst = __sk_dst_get(sk);
664 	u32 rto_min = TCP_RTO_MIN;
665 
666 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
667 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
668 	return rto_min;
669 }
670 
671 static inline u32 tcp_rto_min_us(struct sock *sk)
672 {
673 	return jiffies_to_usecs(tcp_rto_min(sk));
674 }
675 
676 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
677 {
678 	return dst_metric_locked(dst, RTAX_CC_ALGO);
679 }
680 
681 /* Minimum RTT in usec. ~0 means not available. */
682 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
683 {
684 	return minmax_get(&tp->rtt_min);
685 }
686 
687 /* Compute the actual receive window we are currently advertising.
688  * Rcv_nxt can be after the window if our peer push more data
689  * than the offered window.
690  */
691 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
692 {
693 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
694 
695 	if (win < 0)
696 		win = 0;
697 	return (u32) win;
698 }
699 
700 /* Choose a new window, without checks for shrinking, and without
701  * scaling applied to the result.  The caller does these things
702  * if necessary.  This is a "raw" window selection.
703  */
704 u32 __tcp_select_window(struct sock *sk);
705 
706 void tcp_send_window_probe(struct sock *sk);
707 
708 /* TCP uses 32bit jiffies to save some space.
709  * Note that this is different from tcp_time_stamp, which
710  * historically has been the same until linux-4.13.
711  */
712 #define tcp_jiffies32 ((u32)jiffies)
713 
714 /*
715  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
716  * It is no longer tied to jiffies, but to 1 ms clock.
717  * Note: double check if you want to use tcp_jiffies32 instead of this.
718  */
719 #define TCP_TS_HZ	1000
720 
721 static inline u64 tcp_clock_ns(void)
722 {
723 	return local_clock();
724 }
725 
726 static inline u64 tcp_clock_us(void)
727 {
728 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
729 }
730 
731 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
732 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
733 {
734 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
735 }
736 
737 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
738 static inline u32 tcp_time_stamp_raw(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
741 }
742 
743 
744 /* Refresh 1us clock of a TCP socket,
745  * ensuring monotically increasing values.
746  */
747 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
748 {
749 	u64 val = tcp_clock_us();
750 
751 	if (val > tp->tcp_mstamp)
752 		tp->tcp_mstamp = val;
753 }
754 
755 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
756 {
757 	return max_t(s64, t1 - t0, 0);
758 }
759 
760 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
761 {
762 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
763 }
764 
765 
766 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
767 
768 #define TCPHDR_FIN 0x01
769 #define TCPHDR_SYN 0x02
770 #define TCPHDR_RST 0x04
771 #define TCPHDR_PSH 0x08
772 #define TCPHDR_ACK 0x10
773 #define TCPHDR_URG 0x20
774 #define TCPHDR_ECE 0x40
775 #define TCPHDR_CWR 0x80
776 
777 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
778 
779 /* This is what the send packet queuing engine uses to pass
780  * TCP per-packet control information to the transmission code.
781  * We also store the host-order sequence numbers in here too.
782  * This is 44 bytes if IPV6 is enabled.
783  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
784  */
785 struct tcp_skb_cb {
786 	__u32		seq;		/* Starting sequence number	*/
787 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
788 	union {
789 		/* Note : tcp_tw_isn is used in input path only
790 		 *	  (isn chosen by tcp_timewait_state_process())
791 		 *
792 		 * 	  tcp_gso_segs/size are used in write queue only,
793 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
794 		 */
795 		__u32		tcp_tw_isn;
796 		struct {
797 			u16	tcp_gso_segs;
798 			u16	tcp_gso_size;
799 		};
800 
801 		/* Used to stash the receive timestamp while this skb is in the
802 		 * out of order queue, as skb->tstamp is overwritten by the
803 		 * rbnode.
804 		 */
805 		ktime_t		swtstamp;
806 	};
807 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
808 
809 	__u8		sacked;		/* State flags for SACK/FACK.	*/
810 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
811 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
812 #define TCPCB_LOST		0x04	/* SKB is lost			*/
813 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
814 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
815 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
816 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
817 				TCPCB_REPAIRED)
818 
819 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
820 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
821 			eor:1,		/* Is skb MSG_EOR marked? */
822 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
823 			unused:5;
824 	__u32		ack_seq;	/* Sequence number ACK'd	*/
825 	union {
826 		struct {
827 			/* There is space for up to 24 bytes */
828 			__u32 in_flight:30,/* Bytes in flight at transmit */
829 			      is_app_limited:1, /* cwnd not fully used? */
830 			      unused:1;
831 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
832 			__u32 delivered;
833 			/* start of send pipeline phase */
834 			u64 first_tx_mstamp;
835 			/* when we reached the "delivered" count */
836 			u64 delivered_mstamp;
837 		} tx;   /* only used for outgoing skbs */
838 		union {
839 			struct inet_skb_parm	h4;
840 #if IS_ENABLED(CONFIG_IPV6)
841 			struct inet6_skb_parm	h6;
842 #endif
843 		} header;	/* For incoming skbs */
844 	};
845 };
846 
847 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
848 
849 
850 #if IS_ENABLED(CONFIG_IPV6)
851 /* This is the variant of inet6_iif() that must be used by TCP,
852  * as TCP moves IP6CB into a different location in skb->cb[]
853  */
854 static inline int tcp_v6_iif(const struct sk_buff *skb)
855 {
856 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
857 
858 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
859 }
860 
861 /* TCP_SKB_CB reference means this can not be used from early demux */
862 static inline int tcp_v6_sdif(const struct sk_buff *skb)
863 {
864 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
865 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
866 		return TCP_SKB_CB(skb)->header.h6.iif;
867 #endif
868 	return 0;
869 }
870 #endif
871 
872 /* TCP_SKB_CB reference means this can not be used from early demux */
873 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
874 {
875 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
876 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
877 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
878 		return true;
879 #endif
880 	return false;
881 }
882 
883 /* TCP_SKB_CB reference means this can not be used from early demux */
884 static inline int tcp_v4_sdif(struct sk_buff *skb)
885 {
886 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
887 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
888 		return TCP_SKB_CB(skb)->header.h4.iif;
889 #endif
890 	return 0;
891 }
892 
893 /* Due to TSO, an SKB can be composed of multiple actual
894  * packets.  To keep these tracked properly, we use this.
895  */
896 static inline int tcp_skb_pcount(const struct sk_buff *skb)
897 {
898 	return TCP_SKB_CB(skb)->tcp_gso_segs;
899 }
900 
901 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
902 {
903 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
904 }
905 
906 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
907 {
908 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
909 }
910 
911 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
912 static inline int tcp_skb_mss(const struct sk_buff *skb)
913 {
914 	return TCP_SKB_CB(skb)->tcp_gso_size;
915 }
916 
917 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
918 {
919 	return likely(!TCP_SKB_CB(skb)->eor);
920 }
921 
922 /* Events passed to congestion control interface */
923 enum tcp_ca_event {
924 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
925 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
926 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
927 	CA_EVENT_LOSS,		/* loss timeout */
928 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
929 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
930 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
931 	CA_EVENT_NON_DELAYED_ACK,
932 };
933 
934 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
935 enum tcp_ca_ack_event_flags {
936 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
937 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
938 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
939 };
940 
941 /*
942  * Interface for adding new TCP congestion control handlers
943  */
944 #define TCP_CA_NAME_MAX	16
945 #define TCP_CA_MAX	128
946 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
947 
948 #define TCP_CA_UNSPEC	0
949 
950 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
951 #define TCP_CONG_NON_RESTRICTED 0x1
952 /* Requires ECN/ECT set on all packets */
953 #define TCP_CONG_NEEDS_ECN	0x2
954 
955 union tcp_cc_info;
956 
957 struct ack_sample {
958 	u32 pkts_acked;
959 	s32 rtt_us;
960 	u32 in_flight;
961 };
962 
963 /* A rate sample measures the number of (original/retransmitted) data
964  * packets delivered "delivered" over an interval of time "interval_us".
965  * The tcp_rate.c code fills in the rate sample, and congestion
966  * control modules that define a cong_control function to run at the end
967  * of ACK processing can optionally chose to consult this sample when
968  * setting cwnd and pacing rate.
969  * A sample is invalid if "delivered" or "interval_us" is negative.
970  */
971 struct rate_sample {
972 	u64  prior_mstamp; /* starting timestamp for interval */
973 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
974 	s32  delivered;		/* number of packets delivered over interval */
975 	long interval_us;	/* time for tp->delivered to incr "delivered" */
976 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
977 	int  losses;		/* number of packets marked lost upon ACK */
978 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
979 	u32  prior_in_flight;	/* in flight before this ACK */
980 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
981 	bool is_retrans;	/* is sample from retransmission? */
982 };
983 
984 struct tcp_congestion_ops {
985 	struct list_head	list;
986 	u32 key;
987 	u32 flags;
988 
989 	/* initialize private data (optional) */
990 	void (*init)(struct sock *sk);
991 	/* cleanup private data  (optional) */
992 	void (*release)(struct sock *sk);
993 
994 	/* return slow start threshold (required) */
995 	u32 (*ssthresh)(struct sock *sk);
996 	/* do new cwnd calculation (required) */
997 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
998 	/* call before changing ca_state (optional) */
999 	void (*set_state)(struct sock *sk, u8 new_state);
1000 	/* call when cwnd event occurs (optional) */
1001 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1002 	/* call when ack arrives (optional) */
1003 	void (*in_ack_event)(struct sock *sk, u32 flags);
1004 	/* new value of cwnd after loss (required) */
1005 	u32  (*undo_cwnd)(struct sock *sk);
1006 	/* hook for packet ack accounting (optional) */
1007 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1008 	/* suggest number of segments for each skb to transmit (optional) */
1009 	u32 (*tso_segs_goal)(struct sock *sk);
1010 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1011 	u32 (*sndbuf_expand)(struct sock *sk);
1012 	/* call when packets are delivered to update cwnd and pacing rate,
1013 	 * after all the ca_state processing. (optional)
1014 	 */
1015 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1016 	/* get info for inet_diag (optional) */
1017 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1018 			   union tcp_cc_info *info);
1019 
1020 	char 		name[TCP_CA_NAME_MAX];
1021 	struct module 	*owner;
1022 };
1023 
1024 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1025 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1026 
1027 void tcp_assign_congestion_control(struct sock *sk);
1028 void tcp_init_congestion_control(struct sock *sk);
1029 void tcp_cleanup_congestion_control(struct sock *sk);
1030 int tcp_set_default_congestion_control(const char *name);
1031 void tcp_get_default_congestion_control(char *name);
1032 void tcp_get_available_congestion_control(char *buf, size_t len);
1033 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1034 int tcp_set_allowed_congestion_control(char *allowed);
1035 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1036 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1037 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1038 
1039 u32 tcp_reno_ssthresh(struct sock *sk);
1040 u32 tcp_reno_undo_cwnd(struct sock *sk);
1041 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1042 extern struct tcp_congestion_ops tcp_reno;
1043 
1044 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1045 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1046 #ifdef CONFIG_INET
1047 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1048 #else
1049 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1050 {
1051 	return NULL;
1052 }
1053 #endif
1054 
1055 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1056 {
1057 	const struct inet_connection_sock *icsk = inet_csk(sk);
1058 
1059 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1060 }
1061 
1062 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1063 {
1064 	struct inet_connection_sock *icsk = inet_csk(sk);
1065 
1066 	if (icsk->icsk_ca_ops->set_state)
1067 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1068 	icsk->icsk_ca_state = ca_state;
1069 }
1070 
1071 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1072 {
1073 	const struct inet_connection_sock *icsk = inet_csk(sk);
1074 
1075 	if (icsk->icsk_ca_ops->cwnd_event)
1076 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1077 }
1078 
1079 /* From tcp_rate.c */
1080 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1081 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1082 			    struct rate_sample *rs);
1083 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1084 		  struct rate_sample *rs);
1085 void tcp_rate_check_app_limited(struct sock *sk);
1086 
1087 /* These functions determine how the current flow behaves in respect of SACK
1088  * handling. SACK is negotiated with the peer, and therefore it can vary
1089  * between different flows.
1090  *
1091  * tcp_is_sack - SACK enabled
1092  * tcp_is_reno - No SACK
1093  * tcp_is_fack - FACK enabled, implies SACK enabled
1094  */
1095 static inline int tcp_is_sack(const struct tcp_sock *tp)
1096 {
1097 	return tp->rx_opt.sack_ok;
1098 }
1099 
1100 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1101 {
1102 	return !tcp_is_sack(tp);
1103 }
1104 
1105 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1106 {
1107 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1108 }
1109 
1110 static inline void tcp_enable_fack(struct tcp_sock *tp)
1111 {
1112 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1113 }
1114 
1115 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1116 {
1117 	return tp->sacked_out + tp->lost_out;
1118 }
1119 
1120 /* This determines how many packets are "in the network" to the best
1121  * of our knowledge.  In many cases it is conservative, but where
1122  * detailed information is available from the receiver (via SACK
1123  * blocks etc.) we can make more aggressive calculations.
1124  *
1125  * Use this for decisions involving congestion control, use just
1126  * tp->packets_out to determine if the send queue is empty or not.
1127  *
1128  * Read this equation as:
1129  *
1130  *	"Packets sent once on transmission queue" MINUS
1131  *	"Packets left network, but not honestly ACKed yet" PLUS
1132  *	"Packets fast retransmitted"
1133  */
1134 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1135 {
1136 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1137 }
1138 
1139 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1140 
1141 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1142 {
1143 	return tp->snd_cwnd < tp->snd_ssthresh;
1144 }
1145 
1146 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1147 {
1148 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1149 }
1150 
1151 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1152 {
1153 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1154 	       (1 << inet_csk(sk)->icsk_ca_state);
1155 }
1156 
1157 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1158  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1159  * ssthresh.
1160  */
1161 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1162 {
1163 	const struct tcp_sock *tp = tcp_sk(sk);
1164 
1165 	if (tcp_in_cwnd_reduction(sk))
1166 		return tp->snd_ssthresh;
1167 	else
1168 		return max(tp->snd_ssthresh,
1169 			   ((tp->snd_cwnd >> 1) +
1170 			    (tp->snd_cwnd >> 2)));
1171 }
1172 
1173 /* Use define here intentionally to get WARN_ON location shown at the caller */
1174 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1175 
1176 void tcp_enter_cwr(struct sock *sk);
1177 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1178 
1179 /* The maximum number of MSS of available cwnd for which TSO defers
1180  * sending if not using sysctl_tcp_tso_win_divisor.
1181  */
1182 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1183 {
1184 	return 3;
1185 }
1186 
1187 /* Returns end sequence number of the receiver's advertised window */
1188 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1189 {
1190 	return tp->snd_una + tp->snd_wnd;
1191 }
1192 
1193 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1194  * flexible approach. The RFC suggests cwnd should not be raised unless
1195  * it was fully used previously. And that's exactly what we do in
1196  * congestion avoidance mode. But in slow start we allow cwnd to grow
1197  * as long as the application has used half the cwnd.
1198  * Example :
1199  *    cwnd is 10 (IW10), but application sends 9 frames.
1200  *    We allow cwnd to reach 18 when all frames are ACKed.
1201  * This check is safe because it's as aggressive as slow start which already
1202  * risks 100% overshoot. The advantage is that we discourage application to
1203  * either send more filler packets or data to artificially blow up the cwnd
1204  * usage, and allow application-limited process to probe bw more aggressively.
1205  */
1206 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1207 {
1208 	const struct tcp_sock *tp = tcp_sk(sk);
1209 
1210 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1211 	if (tcp_in_slow_start(tp))
1212 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1213 
1214 	return tp->is_cwnd_limited;
1215 }
1216 
1217 /* Something is really bad, we could not queue an additional packet,
1218  * because qdisc is full or receiver sent a 0 window.
1219  * We do not want to add fuel to the fire, or abort too early,
1220  * so make sure the timer we arm now is at least 200ms in the future,
1221  * regardless of current icsk_rto value (as it could be ~2ms)
1222  */
1223 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1224 {
1225 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1226 }
1227 
1228 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1229 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1230 					    unsigned long max_when)
1231 {
1232 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1233 
1234 	return (unsigned long)min_t(u64, when, max_when);
1235 }
1236 
1237 static inline void tcp_check_probe_timer(struct sock *sk)
1238 {
1239 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1240 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1241 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1242 }
1243 
1244 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1245 {
1246 	tp->snd_wl1 = seq;
1247 }
1248 
1249 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1250 {
1251 	tp->snd_wl1 = seq;
1252 }
1253 
1254 /*
1255  * Calculate(/check) TCP checksum
1256  */
1257 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1258 				   __be32 daddr, __wsum base)
1259 {
1260 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1261 }
1262 
1263 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1264 {
1265 	return __skb_checksum_complete(skb);
1266 }
1267 
1268 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1269 {
1270 	return !skb_csum_unnecessary(skb) &&
1271 		__tcp_checksum_complete(skb);
1272 }
1273 
1274 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1275 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1276 
1277 #undef STATE_TRACE
1278 
1279 #ifdef STATE_TRACE
1280 static const char *statename[]={
1281 	"Unused","Established","Syn Sent","Syn Recv",
1282 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1283 	"Close Wait","Last ACK","Listen","Closing"
1284 };
1285 #endif
1286 void tcp_set_state(struct sock *sk, int state);
1287 
1288 void tcp_done(struct sock *sk);
1289 
1290 int tcp_abort(struct sock *sk, int err);
1291 
1292 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1293 {
1294 	rx_opt->dsack = 0;
1295 	rx_opt->num_sacks = 0;
1296 }
1297 
1298 u32 tcp_default_init_rwnd(u32 mss);
1299 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1300 
1301 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1302 {
1303 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1304 	struct tcp_sock *tp = tcp_sk(sk);
1305 	s32 delta;
1306 
1307 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1308 	    ca_ops->cong_control)
1309 		return;
1310 	delta = tcp_jiffies32 - tp->lsndtime;
1311 	if (delta > inet_csk(sk)->icsk_rto)
1312 		tcp_cwnd_restart(sk, delta);
1313 }
1314 
1315 /* Determine a window scaling and initial window to offer. */
1316 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1317 			       __u32 *window_clamp, int wscale_ok,
1318 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1319 
1320 static inline int tcp_win_from_space(int space)
1321 {
1322 	int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1323 
1324 	return tcp_adv_win_scale <= 0 ?
1325 		(space>>(-tcp_adv_win_scale)) :
1326 		space - (space>>tcp_adv_win_scale);
1327 }
1328 
1329 /* Note: caller must be prepared to deal with negative returns */
1330 static inline int tcp_space(const struct sock *sk)
1331 {
1332 	return tcp_win_from_space(sk->sk_rcvbuf -
1333 				  atomic_read(&sk->sk_rmem_alloc));
1334 }
1335 
1336 static inline int tcp_full_space(const struct sock *sk)
1337 {
1338 	return tcp_win_from_space(sk->sk_rcvbuf);
1339 }
1340 
1341 extern void tcp_openreq_init_rwin(struct request_sock *req,
1342 				  const struct sock *sk_listener,
1343 				  const struct dst_entry *dst);
1344 
1345 void tcp_enter_memory_pressure(struct sock *sk);
1346 void tcp_leave_memory_pressure(struct sock *sk);
1347 
1348 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1349 {
1350 	struct net *net = sock_net((struct sock *)tp);
1351 
1352 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1353 }
1354 
1355 static inline int keepalive_time_when(const struct tcp_sock *tp)
1356 {
1357 	struct net *net = sock_net((struct sock *)tp);
1358 
1359 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1360 }
1361 
1362 static inline int keepalive_probes(const struct tcp_sock *tp)
1363 {
1364 	struct net *net = sock_net((struct sock *)tp);
1365 
1366 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1367 }
1368 
1369 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1370 {
1371 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1372 
1373 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1374 			  tcp_jiffies32 - tp->rcv_tstamp);
1375 }
1376 
1377 static inline int tcp_fin_time(const struct sock *sk)
1378 {
1379 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1380 	const int rto = inet_csk(sk)->icsk_rto;
1381 
1382 	if (fin_timeout < (rto << 2) - (rto >> 1))
1383 		fin_timeout = (rto << 2) - (rto >> 1);
1384 
1385 	return fin_timeout;
1386 }
1387 
1388 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1389 				  int paws_win)
1390 {
1391 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1392 		return true;
1393 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1394 		return true;
1395 	/*
1396 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1397 	 * then following tcp messages have valid values. Ignore 0 value,
1398 	 * or else 'negative' tsval might forbid us to accept their packets.
1399 	 */
1400 	if (!rx_opt->ts_recent)
1401 		return true;
1402 	return false;
1403 }
1404 
1405 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1406 				   int rst)
1407 {
1408 	if (tcp_paws_check(rx_opt, 0))
1409 		return false;
1410 
1411 	/* RST segments are not recommended to carry timestamp,
1412 	   and, if they do, it is recommended to ignore PAWS because
1413 	   "their cleanup function should take precedence over timestamps."
1414 	   Certainly, it is mistake. It is necessary to understand the reasons
1415 	   of this constraint to relax it: if peer reboots, clock may go
1416 	   out-of-sync and half-open connections will not be reset.
1417 	   Actually, the problem would be not existing if all
1418 	   the implementations followed draft about maintaining clock
1419 	   via reboots. Linux-2.2 DOES NOT!
1420 
1421 	   However, we can relax time bounds for RST segments to MSL.
1422 	 */
1423 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1424 		return false;
1425 	return true;
1426 }
1427 
1428 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1429 			  int mib_idx, u32 *last_oow_ack_time);
1430 
1431 static inline void tcp_mib_init(struct net *net)
1432 {
1433 	/* See RFC 2012 */
1434 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1435 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1436 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1437 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1438 }
1439 
1440 /* from STCP */
1441 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1442 {
1443 	tp->lost_skb_hint = NULL;
1444 }
1445 
1446 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1447 {
1448 	tcp_clear_retrans_hints_partial(tp);
1449 	tp->retransmit_skb_hint = NULL;
1450 }
1451 
1452 union tcp_md5_addr {
1453 	struct in_addr  a4;
1454 #if IS_ENABLED(CONFIG_IPV6)
1455 	struct in6_addr	a6;
1456 #endif
1457 };
1458 
1459 /* - key database */
1460 struct tcp_md5sig_key {
1461 	struct hlist_node	node;
1462 	u8			keylen;
1463 	u8			family; /* AF_INET or AF_INET6 */
1464 	union tcp_md5_addr	addr;
1465 	u8			prefixlen;
1466 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1467 	struct rcu_head		rcu;
1468 };
1469 
1470 /* - sock block */
1471 struct tcp_md5sig_info {
1472 	struct hlist_head	head;
1473 	struct rcu_head		rcu;
1474 };
1475 
1476 /* - pseudo header */
1477 struct tcp4_pseudohdr {
1478 	__be32		saddr;
1479 	__be32		daddr;
1480 	__u8		pad;
1481 	__u8		protocol;
1482 	__be16		len;
1483 };
1484 
1485 struct tcp6_pseudohdr {
1486 	struct in6_addr	saddr;
1487 	struct in6_addr daddr;
1488 	__be32		len;
1489 	__be32		protocol;	/* including padding */
1490 };
1491 
1492 union tcp_md5sum_block {
1493 	struct tcp4_pseudohdr ip4;
1494 #if IS_ENABLED(CONFIG_IPV6)
1495 	struct tcp6_pseudohdr ip6;
1496 #endif
1497 };
1498 
1499 /* - pool: digest algorithm, hash description and scratch buffer */
1500 struct tcp_md5sig_pool {
1501 	struct ahash_request	*md5_req;
1502 	void			*scratch;
1503 };
1504 
1505 /* - functions */
1506 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1507 			const struct sock *sk, const struct sk_buff *skb);
1508 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1509 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1510 		   gfp_t gfp);
1511 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1512 		   int family, u8 prefixlen);
1513 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1514 					 const struct sock *addr_sk);
1515 
1516 #ifdef CONFIG_TCP_MD5SIG
1517 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1518 					 const union tcp_md5_addr *addr,
1519 					 int family);
1520 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1521 #else
1522 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1523 					 const union tcp_md5_addr *addr,
1524 					 int family)
1525 {
1526 	return NULL;
1527 }
1528 #define tcp_twsk_md5_key(twsk)	NULL
1529 #endif
1530 
1531 bool tcp_alloc_md5sig_pool(void);
1532 
1533 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1534 static inline void tcp_put_md5sig_pool(void)
1535 {
1536 	local_bh_enable();
1537 }
1538 
1539 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1540 			  unsigned int header_len);
1541 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1542 		     const struct tcp_md5sig_key *key);
1543 
1544 /* From tcp_fastopen.c */
1545 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1546 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1547 			    unsigned long *last_syn_loss);
1548 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1549 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1550 			    u16 try_exp);
1551 struct tcp_fastopen_request {
1552 	/* Fast Open cookie. Size 0 means a cookie request */
1553 	struct tcp_fastopen_cookie	cookie;
1554 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1555 	size_t				size;
1556 	int				copied;	/* queued in tcp_connect() */
1557 };
1558 void tcp_free_fastopen_req(struct tcp_sock *tp);
1559 
1560 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1561 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1562 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1563 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1564 			      struct request_sock *req,
1565 			      struct tcp_fastopen_cookie *foc);
1566 void tcp_fastopen_init_key_once(bool publish);
1567 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1568 			     struct tcp_fastopen_cookie *cookie);
1569 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1570 #define TCP_FASTOPEN_KEY_LENGTH 16
1571 
1572 /* Fastopen key context */
1573 struct tcp_fastopen_context {
1574 	struct crypto_cipher	*tfm;
1575 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1576 	struct rcu_head		rcu;
1577 };
1578 
1579 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1580 void tcp_fastopen_active_disable(struct sock *sk);
1581 bool tcp_fastopen_active_should_disable(struct sock *sk);
1582 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1583 void tcp_fastopen_active_timeout_reset(void);
1584 
1585 /* Latencies incurred by various limits for a sender. They are
1586  * chronograph-like stats that are mutually exclusive.
1587  */
1588 enum tcp_chrono {
1589 	TCP_CHRONO_UNSPEC,
1590 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1591 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1592 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1593 	__TCP_CHRONO_MAX,
1594 };
1595 
1596 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1597 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1598 
1599 /* write queue abstraction */
1600 static inline void tcp_write_queue_purge(struct sock *sk)
1601 {
1602 	struct sk_buff *skb;
1603 
1604 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1605 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1606 		sk_wmem_free_skb(sk, skb);
1607 	sk_mem_reclaim(sk);
1608 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1609 }
1610 
1611 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1612 {
1613 	return skb_peek(&sk->sk_write_queue);
1614 }
1615 
1616 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1617 {
1618 	return skb_peek_tail(&sk->sk_write_queue);
1619 }
1620 
1621 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1622 						   const struct sk_buff *skb)
1623 {
1624 	return skb_queue_next(&sk->sk_write_queue, skb);
1625 }
1626 
1627 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1628 						   const struct sk_buff *skb)
1629 {
1630 	return skb_queue_prev(&sk->sk_write_queue, skb);
1631 }
1632 
1633 #define tcp_for_write_queue(skb, sk)					\
1634 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1635 
1636 #define tcp_for_write_queue_from(skb, sk)				\
1637 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1638 
1639 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1640 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1641 
1642 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1643 {
1644 	return sk->sk_send_head;
1645 }
1646 
1647 static inline bool tcp_skb_is_last(const struct sock *sk,
1648 				   const struct sk_buff *skb)
1649 {
1650 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1651 }
1652 
1653 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1654 {
1655 	if (tcp_skb_is_last(sk, skb))
1656 		sk->sk_send_head = NULL;
1657 	else
1658 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1659 }
1660 
1661 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1662 {
1663 	if (sk->sk_send_head == skb_unlinked) {
1664 		sk->sk_send_head = NULL;
1665 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1666 	}
1667 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1668 		tcp_sk(sk)->highest_sack = NULL;
1669 }
1670 
1671 static inline void tcp_init_send_head(struct sock *sk)
1672 {
1673 	sk->sk_send_head = NULL;
1674 }
1675 
1676 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1677 {
1678 	__skb_queue_tail(&sk->sk_write_queue, skb);
1679 }
1680 
1681 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1682 {
1683 	__tcp_add_write_queue_tail(sk, skb);
1684 
1685 	/* Queue it, remembering where we must start sending. */
1686 	if (sk->sk_send_head == NULL) {
1687 		sk->sk_send_head = skb;
1688 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1689 
1690 		if (tcp_sk(sk)->highest_sack == NULL)
1691 			tcp_sk(sk)->highest_sack = skb;
1692 	}
1693 }
1694 
1695 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1696 {
1697 	__skb_queue_head(&sk->sk_write_queue, skb);
1698 }
1699 
1700 /* Insert buff after skb on the write queue of sk.  */
1701 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1702 						struct sk_buff *buff,
1703 						struct sock *sk)
1704 {
1705 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1706 }
1707 
1708 /* Insert new before skb on the write queue of sk.  */
1709 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1710 						  struct sk_buff *skb,
1711 						  struct sock *sk)
1712 {
1713 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1714 
1715 	if (sk->sk_send_head == skb)
1716 		sk->sk_send_head = new;
1717 }
1718 
1719 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1720 {
1721 	__skb_unlink(skb, &sk->sk_write_queue);
1722 }
1723 
1724 static inline bool tcp_write_queue_empty(struct sock *sk)
1725 {
1726 	return skb_queue_empty(&sk->sk_write_queue);
1727 }
1728 
1729 static inline void tcp_push_pending_frames(struct sock *sk)
1730 {
1731 	if (tcp_send_head(sk)) {
1732 		struct tcp_sock *tp = tcp_sk(sk);
1733 
1734 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1735 	}
1736 }
1737 
1738 /* Start sequence of the skb just after the highest skb with SACKed
1739  * bit, valid only if sacked_out > 0 or when the caller has ensured
1740  * validity by itself.
1741  */
1742 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1743 {
1744 	if (!tp->sacked_out)
1745 		return tp->snd_una;
1746 
1747 	if (tp->highest_sack == NULL)
1748 		return tp->snd_nxt;
1749 
1750 	return TCP_SKB_CB(tp->highest_sack)->seq;
1751 }
1752 
1753 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1754 {
1755 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1756 						tcp_write_queue_next(sk, skb);
1757 }
1758 
1759 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1760 {
1761 	return tcp_sk(sk)->highest_sack;
1762 }
1763 
1764 static inline void tcp_highest_sack_reset(struct sock *sk)
1765 {
1766 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1767 }
1768 
1769 /* Called when old skb is about to be deleted (to be combined with new skb) */
1770 static inline void tcp_highest_sack_combine(struct sock *sk,
1771 					    struct sk_buff *old,
1772 					    struct sk_buff *new)
1773 {
1774 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1775 		tcp_sk(sk)->highest_sack = new;
1776 }
1777 
1778 /* This helper checks if socket has IP_TRANSPARENT set */
1779 static inline bool inet_sk_transparent(const struct sock *sk)
1780 {
1781 	switch (sk->sk_state) {
1782 	case TCP_TIME_WAIT:
1783 		return inet_twsk(sk)->tw_transparent;
1784 	case TCP_NEW_SYN_RECV:
1785 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1786 	}
1787 	return inet_sk(sk)->transparent;
1788 }
1789 
1790 /* Determines whether this is a thin stream (which may suffer from
1791  * increased latency). Used to trigger latency-reducing mechanisms.
1792  */
1793 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1794 {
1795 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1796 }
1797 
1798 /* /proc */
1799 enum tcp_seq_states {
1800 	TCP_SEQ_STATE_LISTENING,
1801 	TCP_SEQ_STATE_ESTABLISHED,
1802 };
1803 
1804 int tcp_seq_open(struct inode *inode, struct file *file);
1805 
1806 struct tcp_seq_afinfo {
1807 	char				*name;
1808 	sa_family_t			family;
1809 	const struct file_operations	*seq_fops;
1810 	struct seq_operations		seq_ops;
1811 };
1812 
1813 struct tcp_iter_state {
1814 	struct seq_net_private	p;
1815 	sa_family_t		family;
1816 	enum tcp_seq_states	state;
1817 	struct sock		*syn_wait_sk;
1818 	int			bucket, offset, sbucket, num;
1819 	loff_t			last_pos;
1820 };
1821 
1822 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1823 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1824 
1825 extern struct request_sock_ops tcp_request_sock_ops;
1826 extern struct request_sock_ops tcp6_request_sock_ops;
1827 
1828 void tcp_v4_destroy_sock(struct sock *sk);
1829 
1830 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1831 				netdev_features_t features);
1832 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1833 int tcp_gro_complete(struct sk_buff *skb);
1834 
1835 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1836 
1837 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1838 {
1839 	struct net *net = sock_net((struct sock *)tp);
1840 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1841 }
1842 
1843 static inline bool tcp_stream_memory_free(const struct sock *sk)
1844 {
1845 	const struct tcp_sock *tp = tcp_sk(sk);
1846 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1847 
1848 	return notsent_bytes < tcp_notsent_lowat(tp);
1849 }
1850 
1851 #ifdef CONFIG_PROC_FS
1852 int tcp4_proc_init(void);
1853 void tcp4_proc_exit(void);
1854 #endif
1855 
1856 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1857 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1858 		     const struct tcp_request_sock_ops *af_ops,
1859 		     struct sock *sk, struct sk_buff *skb);
1860 
1861 /* TCP af-specific functions */
1862 struct tcp_sock_af_ops {
1863 #ifdef CONFIG_TCP_MD5SIG
1864 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1865 						const struct sock *addr_sk);
1866 	int		(*calc_md5_hash)(char *location,
1867 					 const struct tcp_md5sig_key *md5,
1868 					 const struct sock *sk,
1869 					 const struct sk_buff *skb);
1870 	int		(*md5_parse)(struct sock *sk,
1871 				     int optname,
1872 				     char __user *optval,
1873 				     int optlen);
1874 #endif
1875 };
1876 
1877 struct tcp_request_sock_ops {
1878 	u16 mss_clamp;
1879 #ifdef CONFIG_TCP_MD5SIG
1880 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1881 						 const struct sock *addr_sk);
1882 	int		(*calc_md5_hash) (char *location,
1883 					  const struct tcp_md5sig_key *md5,
1884 					  const struct sock *sk,
1885 					  const struct sk_buff *skb);
1886 #endif
1887 	void (*init_req)(struct request_sock *req,
1888 			 const struct sock *sk_listener,
1889 			 struct sk_buff *skb);
1890 #ifdef CONFIG_SYN_COOKIES
1891 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1892 				 __u16 *mss);
1893 #endif
1894 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1895 				       const struct request_sock *req);
1896 	u32 (*init_seq)(const struct sk_buff *skb);
1897 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1898 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1899 			   struct flowi *fl, struct request_sock *req,
1900 			   struct tcp_fastopen_cookie *foc,
1901 			   enum tcp_synack_type synack_type);
1902 };
1903 
1904 #ifdef CONFIG_SYN_COOKIES
1905 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1906 					 const struct sock *sk, struct sk_buff *skb,
1907 					 __u16 *mss)
1908 {
1909 	tcp_synq_overflow(sk);
1910 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1911 	return ops->cookie_init_seq(skb, mss);
1912 }
1913 #else
1914 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1915 					 const struct sock *sk, struct sk_buff *skb,
1916 					 __u16 *mss)
1917 {
1918 	return 0;
1919 }
1920 #endif
1921 
1922 int tcpv4_offload_init(void);
1923 
1924 void tcp_v4_init(void);
1925 void tcp_init(void);
1926 
1927 /* tcp_recovery.c */
1928 extern void tcp_rack_mark_lost(struct sock *sk);
1929 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1930 			     u64 xmit_time);
1931 extern void tcp_rack_reo_timeout(struct sock *sk);
1932 
1933 /* At how many usecs into the future should the RTO fire? */
1934 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1935 {
1936 	const struct sk_buff *skb = tcp_write_queue_head(sk);
1937 	u32 rto = inet_csk(sk)->icsk_rto;
1938 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1939 
1940 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1941 }
1942 
1943 /*
1944  * Save and compile IPv4 options, return a pointer to it
1945  */
1946 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1947 							 struct sk_buff *skb)
1948 {
1949 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1950 	struct ip_options_rcu *dopt = NULL;
1951 
1952 	if (opt->optlen) {
1953 		int opt_size = sizeof(*dopt) + opt->optlen;
1954 
1955 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1956 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1957 			kfree(dopt);
1958 			dopt = NULL;
1959 		}
1960 	}
1961 	return dopt;
1962 }
1963 
1964 /* locally generated TCP pure ACKs have skb->truesize == 2
1965  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1966  * This is much faster than dissecting the packet to find out.
1967  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1968  */
1969 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1970 {
1971 	return skb->truesize == 2;
1972 }
1973 
1974 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1975 {
1976 	skb->truesize = 2;
1977 }
1978 
1979 static inline int tcp_inq(struct sock *sk)
1980 {
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	int answ;
1983 
1984 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1985 		answ = 0;
1986 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1987 		   !tp->urg_data ||
1988 		   before(tp->urg_seq, tp->copied_seq) ||
1989 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1990 
1991 		answ = tp->rcv_nxt - tp->copied_seq;
1992 
1993 		/* Subtract 1, if FIN was received */
1994 		if (answ && sock_flag(sk, SOCK_DONE))
1995 			answ--;
1996 	} else {
1997 		answ = tp->urg_seq - tp->copied_seq;
1998 	}
1999 
2000 	return answ;
2001 }
2002 
2003 int tcp_peek_len(struct socket *sock);
2004 
2005 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2006 {
2007 	u16 segs_in;
2008 
2009 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2010 	tp->segs_in += segs_in;
2011 	if (skb->len > tcp_hdrlen(skb))
2012 		tp->data_segs_in += segs_in;
2013 }
2014 
2015 /*
2016  * TCP listen path runs lockless.
2017  * We forced "struct sock" to be const qualified to make sure
2018  * we don't modify one of its field by mistake.
2019  * Here, we increment sk_drops which is an atomic_t, so we can safely
2020  * make sock writable again.
2021  */
2022 static inline void tcp_listendrop(const struct sock *sk)
2023 {
2024 	atomic_inc(&((struct sock *)sk)->sk_drops);
2025 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2026 }
2027 
2028 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2029 
2030 /*
2031  * Interface for adding Upper Level Protocols over TCP
2032  */
2033 
2034 #define TCP_ULP_NAME_MAX	16
2035 #define TCP_ULP_MAX		128
2036 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2037 
2038 struct tcp_ulp_ops {
2039 	struct list_head	list;
2040 
2041 	/* initialize ulp */
2042 	int (*init)(struct sock *sk);
2043 	/* cleanup ulp */
2044 	void (*release)(struct sock *sk);
2045 
2046 	char		name[TCP_ULP_NAME_MAX];
2047 	struct module	*owner;
2048 };
2049 int tcp_register_ulp(struct tcp_ulp_ops *type);
2050 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2051 int tcp_set_ulp(struct sock *sk, const char *name);
2052 void tcp_get_available_ulp(char *buf, size_t len);
2053 void tcp_cleanup_ulp(struct sock *sk);
2054 
2055 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2056  * is < 0, then the BPF op failed (for example if the loaded BPF
2057  * program does not support the chosen operation or there is no BPF
2058  * program loaded).
2059  */
2060 #ifdef CONFIG_BPF
2061 static inline int tcp_call_bpf(struct sock *sk, int op)
2062 {
2063 	struct bpf_sock_ops_kern sock_ops;
2064 	int ret;
2065 
2066 	if (sk_fullsock(sk))
2067 		sock_owned_by_me(sk);
2068 
2069 	memset(&sock_ops, 0, sizeof(sock_ops));
2070 	sock_ops.sk = sk;
2071 	sock_ops.op = op;
2072 
2073 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2074 	if (ret == 0)
2075 		ret = sock_ops.reply;
2076 	else
2077 		ret = -1;
2078 	return ret;
2079 }
2080 #else
2081 static inline int tcp_call_bpf(struct sock *sk, int op)
2082 {
2083 	return -EPERM;
2084 }
2085 #endif
2086 
2087 static inline u32 tcp_timeout_init(struct sock *sk)
2088 {
2089 	int timeout;
2090 
2091 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2092 
2093 	if (timeout <= 0)
2094 		timeout = TCP_TIMEOUT_INIT;
2095 	return timeout;
2096 }
2097 
2098 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2099 {
2100 	int rwnd;
2101 
2102 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2103 
2104 	if (rwnd < 0)
2105 		rwnd = 0;
2106 	return rwnd;
2107 }
2108 
2109 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2110 {
2111 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2112 }
2113 #endif	/* _TCP_H */
2114