xref: /openbmc/linux/include/net/tcp.h (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252 
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 		return true;
259 
260 	return tcp_memory_pressure;
261 }
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288 
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 	int orphans = percpu_counter_read_positive(ocp);
293 
294 	if (orphans << shift > sysctl_tcp_max_orphans) {
295 		orphans = percpu_counter_sum_positive(ocp);
296 		if (orphans << shift > sysctl_tcp_max_orphans)
297 			return true;
298 	}
299 	return false;
300 }
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 		 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 			size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 		 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 			 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
406 		       struct tcp_options_received *opt_rx,
407 		       int estab, struct tcp_fastopen_cookie *foc);
408 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
409 
410 /*
411  *	TCP v4 functions exported for the inet6 API
412  */
413 
414 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
415 void tcp_v4_mtu_reduced(struct sock *sk);
416 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
417 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
418 struct sock *tcp_create_openreq_child(const struct sock *sk,
419 				      struct request_sock *req,
420 				      struct sk_buff *skb);
421 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
422 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
423 				  struct request_sock *req,
424 				  struct dst_entry *dst,
425 				  struct request_sock *req_unhash,
426 				  bool *own_req);
427 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
428 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
429 int tcp_connect(struct sock *sk);
430 enum tcp_synack_type {
431 	TCP_SYNACK_NORMAL,
432 	TCP_SYNACK_FASTOPEN,
433 	TCP_SYNACK_COOKIE,
434 };
435 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
436 				struct request_sock *req,
437 				struct tcp_fastopen_cookie *foc,
438 				enum tcp_synack_type synack_type);
439 int tcp_disconnect(struct sock *sk, int flags);
440 
441 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
442 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
443 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
444 
445 /* From syncookies.c */
446 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
447 				 struct request_sock *req,
448 				 struct dst_entry *dst, u32 tsoff);
449 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
450 		      u32 cookie);
451 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
452 #ifdef CONFIG_SYN_COOKIES
453 
454 /* Syncookies use a monotonic timer which increments every 60 seconds.
455  * This counter is used both as a hash input and partially encoded into
456  * the cookie value.  A cookie is only validated further if the delta
457  * between the current counter value and the encoded one is less than this,
458  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
459  * the counter advances immediately after a cookie is generated).
460  */
461 #define MAX_SYNCOOKIE_AGE	2
462 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
463 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
464 
465 /* syncookies: remember time of last synqueue overflow
466  * But do not dirty this field too often (once per second is enough)
467  * It is racy as we do not hold a lock, but race is very minor.
468  */
469 static inline void tcp_synq_overflow(const struct sock *sk)
470 {
471 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
472 	unsigned long now = jiffies;
473 
474 	if (time_after(now, last_overflow + HZ))
475 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
476 }
477 
478 /* syncookies: no recent synqueue overflow on this listening socket? */
479 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
480 {
481 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
482 
483 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
484 }
485 
486 static inline u32 tcp_cookie_time(void)
487 {
488 	u64 val = get_jiffies_64();
489 
490 	do_div(val, TCP_SYNCOOKIE_PERIOD);
491 	return val;
492 }
493 
494 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
495 			      u16 *mssp);
496 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
497 u64 cookie_init_timestamp(struct request_sock *req);
498 bool cookie_timestamp_decode(const struct net *net,
499 			     struct tcp_options_received *opt);
500 bool cookie_ecn_ok(const struct tcp_options_received *opt,
501 		   const struct net *net, const struct dst_entry *dst);
502 
503 /* From net/ipv6/syncookies.c */
504 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
505 		      u32 cookie);
506 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
507 
508 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
509 			      const struct tcphdr *th, u16 *mssp);
510 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
511 #endif
512 /* tcp_output.c */
513 
514 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
515 		     int min_tso_segs);
516 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
517 			       int nonagle);
518 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
519 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
520 void tcp_retransmit_timer(struct sock *sk);
521 void tcp_xmit_retransmit_queue(struct sock *);
522 void tcp_simple_retransmit(struct sock *);
523 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
524 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
525 enum tcp_queue {
526 	TCP_FRAG_IN_WRITE_QUEUE,
527 	TCP_FRAG_IN_RTX_QUEUE,
528 };
529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
530 		 struct sk_buff *skb, u32 len,
531 		 unsigned int mss_now, gfp_t gfp);
532 
533 void tcp_send_probe0(struct sock *);
534 void tcp_send_partial(struct sock *);
535 int tcp_write_wakeup(struct sock *, int mib);
536 void tcp_send_fin(struct sock *sk);
537 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
538 int tcp_send_synack(struct sock *);
539 void tcp_push_one(struct sock *, unsigned int mss_now);
540 void tcp_send_ack(struct sock *sk);
541 void tcp_send_delayed_ack(struct sock *sk);
542 void tcp_send_loss_probe(struct sock *sk);
543 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
544 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
545 			     const struct sk_buff *next_skb);
546 
547 /* tcp_input.c */
548 void tcp_rearm_rto(struct sock *sk);
549 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
550 void tcp_reset(struct sock *sk);
551 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
552 void tcp_fin(struct sock *sk);
553 
554 /* tcp_timer.c */
555 void tcp_init_xmit_timers(struct sock *);
556 static inline void tcp_clear_xmit_timers(struct sock *sk)
557 {
558 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
559 	inet_csk_clear_xmit_timers(sk);
560 }
561 
562 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
563 unsigned int tcp_current_mss(struct sock *sk);
564 
565 /* Bound MSS / TSO packet size with the half of the window */
566 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
567 {
568 	int cutoff;
569 
570 	/* When peer uses tiny windows, there is no use in packetizing
571 	 * to sub-MSS pieces for the sake of SWS or making sure there
572 	 * are enough packets in the pipe for fast recovery.
573 	 *
574 	 * On the other hand, for extremely large MSS devices, handling
575 	 * smaller than MSS windows in this way does make sense.
576 	 */
577 	if (tp->max_window > TCP_MSS_DEFAULT)
578 		cutoff = (tp->max_window >> 1);
579 	else
580 		cutoff = tp->max_window;
581 
582 	if (cutoff && pktsize > cutoff)
583 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
584 	else
585 		return pktsize;
586 }
587 
588 /* tcp.c */
589 void tcp_get_info(struct sock *, struct tcp_info *);
590 
591 /* Read 'sendfile()'-style from a TCP socket */
592 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
593 		  sk_read_actor_t recv_actor);
594 
595 void tcp_initialize_rcv_mss(struct sock *sk);
596 
597 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
598 int tcp_mss_to_mtu(struct sock *sk, int mss);
599 void tcp_mtup_init(struct sock *sk);
600 void tcp_init_buffer_space(struct sock *sk);
601 
602 static inline void tcp_bound_rto(const struct sock *sk)
603 {
604 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
605 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
606 }
607 
608 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
609 {
610 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
611 }
612 
613 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
614 {
615 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
616 			       ntohl(TCP_FLAG_ACK) |
617 			       snd_wnd);
618 }
619 
620 static inline void tcp_fast_path_on(struct tcp_sock *tp)
621 {
622 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
623 }
624 
625 static inline void tcp_fast_path_check(struct sock *sk)
626 {
627 	struct tcp_sock *tp = tcp_sk(sk);
628 
629 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
630 	    tp->rcv_wnd &&
631 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
632 	    !tp->urg_data)
633 		tcp_fast_path_on(tp);
634 }
635 
636 /* Compute the actual rto_min value */
637 static inline u32 tcp_rto_min(struct sock *sk)
638 {
639 	const struct dst_entry *dst = __sk_dst_get(sk);
640 	u32 rto_min = TCP_RTO_MIN;
641 
642 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
643 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
644 	return rto_min;
645 }
646 
647 static inline u32 tcp_rto_min_us(struct sock *sk)
648 {
649 	return jiffies_to_usecs(tcp_rto_min(sk));
650 }
651 
652 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
653 {
654 	return dst_metric_locked(dst, RTAX_CC_ALGO);
655 }
656 
657 /* Minimum RTT in usec. ~0 means not available. */
658 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
659 {
660 	return minmax_get(&tp->rtt_min);
661 }
662 
663 /* Compute the actual receive window we are currently advertising.
664  * Rcv_nxt can be after the window if our peer push more data
665  * than the offered window.
666  */
667 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
668 {
669 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
670 
671 	if (win < 0)
672 		win = 0;
673 	return (u32) win;
674 }
675 
676 /* Choose a new window, without checks for shrinking, and without
677  * scaling applied to the result.  The caller does these things
678  * if necessary.  This is a "raw" window selection.
679  */
680 u32 __tcp_select_window(struct sock *sk);
681 
682 void tcp_send_window_probe(struct sock *sk);
683 
684 /* TCP uses 32bit jiffies to save some space.
685  * Note that this is different from tcp_time_stamp, which
686  * historically has been the same until linux-4.13.
687  */
688 #define tcp_jiffies32 ((u32)jiffies)
689 
690 /*
691  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
692  * It is no longer tied to jiffies, but to 1 ms clock.
693  * Note: double check if you want to use tcp_jiffies32 instead of this.
694  */
695 #define TCP_TS_HZ	1000
696 
697 static inline u64 tcp_clock_ns(void)
698 {
699 	return local_clock();
700 }
701 
702 static inline u64 tcp_clock_us(void)
703 {
704 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
705 }
706 
707 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
708 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
709 {
710 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
711 }
712 
713 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
714 static inline u32 tcp_time_stamp_raw(void)
715 {
716 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
717 }
718 
719 
720 /* Refresh 1us clock of a TCP socket,
721  * ensuring monotically increasing values.
722  */
723 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
724 {
725 	u64 val = tcp_clock_us();
726 
727 	if (val > tp->tcp_mstamp)
728 		tp->tcp_mstamp = val;
729 }
730 
731 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
732 {
733 	return max_t(s64, t1 - t0, 0);
734 }
735 
736 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
737 {
738 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
739 }
740 
741 
742 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
743 
744 #define TCPHDR_FIN 0x01
745 #define TCPHDR_SYN 0x02
746 #define TCPHDR_RST 0x04
747 #define TCPHDR_PSH 0x08
748 #define TCPHDR_ACK 0x10
749 #define TCPHDR_URG 0x20
750 #define TCPHDR_ECE 0x40
751 #define TCPHDR_CWR 0x80
752 
753 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
754 
755 /* This is what the send packet queuing engine uses to pass
756  * TCP per-packet control information to the transmission code.
757  * We also store the host-order sequence numbers in here too.
758  * This is 44 bytes if IPV6 is enabled.
759  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
760  */
761 struct tcp_skb_cb {
762 	__u32		seq;		/* Starting sequence number	*/
763 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
764 	union {
765 		/* Note : tcp_tw_isn is used in input path only
766 		 *	  (isn chosen by tcp_timewait_state_process())
767 		 *
768 		 * 	  tcp_gso_segs/size are used in write queue only,
769 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
770 		 */
771 		__u32		tcp_tw_isn;
772 		struct {
773 			u16	tcp_gso_segs;
774 			u16	tcp_gso_size;
775 		};
776 	};
777 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
778 
779 	__u8		sacked;		/* State flags for SACK.	*/
780 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
781 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
782 #define TCPCB_LOST		0x04	/* SKB is lost			*/
783 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
784 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
785 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
786 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
787 				TCPCB_REPAIRED)
788 
789 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
790 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
791 			eor:1,		/* Is skb MSG_EOR marked? */
792 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
793 			unused:5;
794 	__u32		ack_seq;	/* Sequence number ACK'd	*/
795 	union {
796 		struct {
797 			/* There is space for up to 24 bytes */
798 			__u32 in_flight:30,/* Bytes in flight at transmit */
799 			      is_app_limited:1, /* cwnd not fully used? */
800 			      unused:1;
801 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
802 			__u32 delivered;
803 			/* start of send pipeline phase */
804 			u64 first_tx_mstamp;
805 			/* when we reached the "delivered" count */
806 			u64 delivered_mstamp;
807 		} tx;   /* only used for outgoing skbs */
808 		union {
809 			struct inet_skb_parm	h4;
810 #if IS_ENABLED(CONFIG_IPV6)
811 			struct inet6_skb_parm	h6;
812 #endif
813 		} header;	/* For incoming skbs */
814 		struct {
815 			__u32 key;
816 			__u32 flags;
817 			struct bpf_map *map;
818 			void *data_end;
819 		} bpf;
820 	};
821 };
822 
823 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
824 
825 
826 #if IS_ENABLED(CONFIG_IPV6)
827 /* This is the variant of inet6_iif() that must be used by TCP,
828  * as TCP moves IP6CB into a different location in skb->cb[]
829  */
830 static inline int tcp_v6_iif(const struct sk_buff *skb)
831 {
832 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
833 
834 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
835 }
836 
837 /* TCP_SKB_CB reference means this can not be used from early demux */
838 static inline int tcp_v6_sdif(const struct sk_buff *skb)
839 {
840 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
841 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
842 		return TCP_SKB_CB(skb)->header.h6.iif;
843 #endif
844 	return 0;
845 }
846 #endif
847 
848 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
849 {
850 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
851 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
852 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
853 		return true;
854 #endif
855 	return false;
856 }
857 
858 /* TCP_SKB_CB reference means this can not be used from early demux */
859 static inline int tcp_v4_sdif(struct sk_buff *skb)
860 {
861 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
862 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
863 		return TCP_SKB_CB(skb)->header.h4.iif;
864 #endif
865 	return 0;
866 }
867 
868 /* Due to TSO, an SKB can be composed of multiple actual
869  * packets.  To keep these tracked properly, we use this.
870  */
871 static inline int tcp_skb_pcount(const struct sk_buff *skb)
872 {
873 	return TCP_SKB_CB(skb)->tcp_gso_segs;
874 }
875 
876 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
877 {
878 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
879 }
880 
881 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
882 {
883 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
884 }
885 
886 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
887 static inline int tcp_skb_mss(const struct sk_buff *skb)
888 {
889 	return TCP_SKB_CB(skb)->tcp_gso_size;
890 }
891 
892 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
893 {
894 	return likely(!TCP_SKB_CB(skb)->eor);
895 }
896 
897 /* Events passed to congestion control interface */
898 enum tcp_ca_event {
899 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
900 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
901 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
902 	CA_EVENT_LOSS,		/* loss timeout */
903 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
904 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
905 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
906 	CA_EVENT_NON_DELAYED_ACK,
907 };
908 
909 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
910 enum tcp_ca_ack_event_flags {
911 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
912 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
913 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
914 };
915 
916 /*
917  * Interface for adding new TCP congestion control handlers
918  */
919 #define TCP_CA_NAME_MAX	16
920 #define TCP_CA_MAX	128
921 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
922 
923 #define TCP_CA_UNSPEC	0
924 
925 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
926 #define TCP_CONG_NON_RESTRICTED 0x1
927 /* Requires ECN/ECT set on all packets */
928 #define TCP_CONG_NEEDS_ECN	0x2
929 
930 union tcp_cc_info;
931 
932 struct ack_sample {
933 	u32 pkts_acked;
934 	s32 rtt_us;
935 	u32 in_flight;
936 };
937 
938 /* A rate sample measures the number of (original/retransmitted) data
939  * packets delivered "delivered" over an interval of time "interval_us".
940  * The tcp_rate.c code fills in the rate sample, and congestion
941  * control modules that define a cong_control function to run at the end
942  * of ACK processing can optionally chose to consult this sample when
943  * setting cwnd and pacing rate.
944  * A sample is invalid if "delivered" or "interval_us" is negative.
945  */
946 struct rate_sample {
947 	u64  prior_mstamp; /* starting timestamp for interval */
948 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
949 	s32  delivered;		/* number of packets delivered over interval */
950 	long interval_us;	/* time for tp->delivered to incr "delivered" */
951 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
952 	int  losses;		/* number of packets marked lost upon ACK */
953 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
954 	u32  prior_in_flight;	/* in flight before this ACK */
955 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
956 	bool is_retrans;	/* is sample from retransmission? */
957 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
958 };
959 
960 struct tcp_congestion_ops {
961 	struct list_head	list;
962 	u32 key;
963 	u32 flags;
964 
965 	/* initialize private data (optional) */
966 	void (*init)(struct sock *sk);
967 	/* cleanup private data  (optional) */
968 	void (*release)(struct sock *sk);
969 
970 	/* return slow start threshold (required) */
971 	u32 (*ssthresh)(struct sock *sk);
972 	/* do new cwnd calculation (required) */
973 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
974 	/* call before changing ca_state (optional) */
975 	void (*set_state)(struct sock *sk, u8 new_state);
976 	/* call when cwnd event occurs (optional) */
977 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
978 	/* call when ack arrives (optional) */
979 	void (*in_ack_event)(struct sock *sk, u32 flags);
980 	/* new value of cwnd after loss (required) */
981 	u32  (*undo_cwnd)(struct sock *sk);
982 	/* hook for packet ack accounting (optional) */
983 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
984 	/* suggest number of segments for each skb to transmit (optional) */
985 	u32 (*tso_segs_goal)(struct sock *sk);
986 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
987 	u32 (*sndbuf_expand)(struct sock *sk);
988 	/* call when packets are delivered to update cwnd and pacing rate,
989 	 * after all the ca_state processing. (optional)
990 	 */
991 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
992 	/* get info for inet_diag (optional) */
993 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
994 			   union tcp_cc_info *info);
995 
996 	char 		name[TCP_CA_NAME_MAX];
997 	struct module 	*owner;
998 };
999 
1000 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1001 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1002 
1003 void tcp_assign_congestion_control(struct sock *sk);
1004 void tcp_init_congestion_control(struct sock *sk);
1005 void tcp_cleanup_congestion_control(struct sock *sk);
1006 int tcp_set_default_congestion_control(struct net *net, const char *name);
1007 void tcp_get_default_congestion_control(struct net *net, char *name);
1008 void tcp_get_available_congestion_control(char *buf, size_t len);
1009 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1010 int tcp_set_allowed_congestion_control(char *allowed);
1011 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1012 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1013 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1014 
1015 u32 tcp_reno_ssthresh(struct sock *sk);
1016 u32 tcp_reno_undo_cwnd(struct sock *sk);
1017 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1018 extern struct tcp_congestion_ops tcp_reno;
1019 
1020 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1021 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1022 #ifdef CONFIG_INET
1023 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1024 #else
1025 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1026 {
1027 	return NULL;
1028 }
1029 #endif
1030 
1031 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1032 {
1033 	const struct inet_connection_sock *icsk = inet_csk(sk);
1034 
1035 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1036 }
1037 
1038 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1039 {
1040 	struct inet_connection_sock *icsk = inet_csk(sk);
1041 
1042 	if (icsk->icsk_ca_ops->set_state)
1043 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1044 	icsk->icsk_ca_state = ca_state;
1045 }
1046 
1047 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1048 {
1049 	const struct inet_connection_sock *icsk = inet_csk(sk);
1050 
1051 	if (icsk->icsk_ca_ops->cwnd_event)
1052 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1053 }
1054 
1055 /* From tcp_rate.c */
1056 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1057 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1058 			    struct rate_sample *rs);
1059 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1060 		  bool is_sack_reneg, struct rate_sample *rs);
1061 void tcp_rate_check_app_limited(struct sock *sk);
1062 
1063 /* These functions determine how the current flow behaves in respect of SACK
1064  * handling. SACK is negotiated with the peer, and therefore it can vary
1065  * between different flows.
1066  *
1067  * tcp_is_sack - SACK enabled
1068  * tcp_is_reno - No SACK
1069  */
1070 static inline int tcp_is_sack(const struct tcp_sock *tp)
1071 {
1072 	return tp->rx_opt.sack_ok;
1073 }
1074 
1075 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1076 {
1077 	return !tcp_is_sack(tp);
1078 }
1079 
1080 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1081 {
1082 	return tp->sacked_out + tp->lost_out;
1083 }
1084 
1085 /* This determines how many packets are "in the network" to the best
1086  * of our knowledge.  In many cases it is conservative, but where
1087  * detailed information is available from the receiver (via SACK
1088  * blocks etc.) we can make more aggressive calculations.
1089  *
1090  * Use this for decisions involving congestion control, use just
1091  * tp->packets_out to determine if the send queue is empty or not.
1092  *
1093  * Read this equation as:
1094  *
1095  *	"Packets sent once on transmission queue" MINUS
1096  *	"Packets left network, but not honestly ACKed yet" PLUS
1097  *	"Packets fast retransmitted"
1098  */
1099 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1100 {
1101 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1102 }
1103 
1104 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1105 
1106 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1107 {
1108 	return tp->snd_cwnd < tp->snd_ssthresh;
1109 }
1110 
1111 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1112 {
1113 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1114 }
1115 
1116 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1117 {
1118 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1119 	       (1 << inet_csk(sk)->icsk_ca_state);
1120 }
1121 
1122 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1123  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1124  * ssthresh.
1125  */
1126 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1127 {
1128 	const struct tcp_sock *tp = tcp_sk(sk);
1129 
1130 	if (tcp_in_cwnd_reduction(sk))
1131 		return tp->snd_ssthresh;
1132 	else
1133 		return max(tp->snd_ssthresh,
1134 			   ((tp->snd_cwnd >> 1) +
1135 			    (tp->snd_cwnd >> 2)));
1136 }
1137 
1138 /* Use define here intentionally to get WARN_ON location shown at the caller */
1139 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1140 
1141 void tcp_enter_cwr(struct sock *sk);
1142 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1143 
1144 /* The maximum number of MSS of available cwnd for which TSO defers
1145  * sending if not using sysctl_tcp_tso_win_divisor.
1146  */
1147 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1148 {
1149 	return 3;
1150 }
1151 
1152 /* Returns end sequence number of the receiver's advertised window */
1153 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1154 {
1155 	return tp->snd_una + tp->snd_wnd;
1156 }
1157 
1158 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1159  * flexible approach. The RFC suggests cwnd should not be raised unless
1160  * it was fully used previously. And that's exactly what we do in
1161  * congestion avoidance mode. But in slow start we allow cwnd to grow
1162  * as long as the application has used half the cwnd.
1163  * Example :
1164  *    cwnd is 10 (IW10), but application sends 9 frames.
1165  *    We allow cwnd to reach 18 when all frames are ACKed.
1166  * This check is safe because it's as aggressive as slow start which already
1167  * risks 100% overshoot. The advantage is that we discourage application to
1168  * either send more filler packets or data to artificially blow up the cwnd
1169  * usage, and allow application-limited process to probe bw more aggressively.
1170  */
1171 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1172 {
1173 	const struct tcp_sock *tp = tcp_sk(sk);
1174 
1175 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1176 	if (tcp_in_slow_start(tp))
1177 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1178 
1179 	return tp->is_cwnd_limited;
1180 }
1181 
1182 /* Something is really bad, we could not queue an additional packet,
1183  * because qdisc is full or receiver sent a 0 window.
1184  * We do not want to add fuel to the fire, or abort too early,
1185  * so make sure the timer we arm now is at least 200ms in the future,
1186  * regardless of current icsk_rto value (as it could be ~2ms)
1187  */
1188 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1189 {
1190 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1191 }
1192 
1193 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1194 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1195 					    unsigned long max_when)
1196 {
1197 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1198 
1199 	return (unsigned long)min_t(u64, when, max_when);
1200 }
1201 
1202 static inline void tcp_check_probe_timer(struct sock *sk)
1203 {
1204 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1205 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1206 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1207 }
1208 
1209 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1210 {
1211 	tp->snd_wl1 = seq;
1212 }
1213 
1214 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1215 {
1216 	tp->snd_wl1 = seq;
1217 }
1218 
1219 /*
1220  * Calculate(/check) TCP checksum
1221  */
1222 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1223 				   __be32 daddr, __wsum base)
1224 {
1225 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1226 }
1227 
1228 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1229 {
1230 	return __skb_checksum_complete(skb);
1231 }
1232 
1233 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1234 {
1235 	return !skb_csum_unnecessary(skb) &&
1236 		__tcp_checksum_complete(skb);
1237 }
1238 
1239 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1240 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1241 
1242 #undef STATE_TRACE
1243 
1244 #ifdef STATE_TRACE
1245 static const char *statename[]={
1246 	"Unused","Established","Syn Sent","Syn Recv",
1247 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1248 	"Close Wait","Last ACK","Listen","Closing"
1249 };
1250 #endif
1251 void tcp_set_state(struct sock *sk, int state);
1252 
1253 void tcp_done(struct sock *sk);
1254 
1255 int tcp_abort(struct sock *sk, int err);
1256 
1257 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1258 {
1259 	rx_opt->dsack = 0;
1260 	rx_opt->num_sacks = 0;
1261 }
1262 
1263 u32 tcp_default_init_rwnd(u32 mss);
1264 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1265 
1266 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1267 {
1268 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1269 	struct tcp_sock *tp = tcp_sk(sk);
1270 	s32 delta;
1271 
1272 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1273 	    ca_ops->cong_control)
1274 		return;
1275 	delta = tcp_jiffies32 - tp->lsndtime;
1276 	if (delta > inet_csk(sk)->icsk_rto)
1277 		tcp_cwnd_restart(sk, delta);
1278 }
1279 
1280 /* Determine a window scaling and initial window to offer. */
1281 void tcp_select_initial_window(const struct sock *sk, int __space,
1282 			       __u32 mss, __u32 *rcv_wnd,
1283 			       __u32 *window_clamp, int wscale_ok,
1284 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1285 
1286 static inline int tcp_win_from_space(const struct sock *sk, int space)
1287 {
1288 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1289 
1290 	return tcp_adv_win_scale <= 0 ?
1291 		(space>>(-tcp_adv_win_scale)) :
1292 		space - (space>>tcp_adv_win_scale);
1293 }
1294 
1295 /* Note: caller must be prepared to deal with negative returns */
1296 static inline int tcp_space(const struct sock *sk)
1297 {
1298 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1299 				  atomic_read(&sk->sk_rmem_alloc));
1300 }
1301 
1302 static inline int tcp_full_space(const struct sock *sk)
1303 {
1304 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1305 }
1306 
1307 extern void tcp_openreq_init_rwin(struct request_sock *req,
1308 				  const struct sock *sk_listener,
1309 				  const struct dst_entry *dst);
1310 
1311 void tcp_enter_memory_pressure(struct sock *sk);
1312 void tcp_leave_memory_pressure(struct sock *sk);
1313 
1314 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1315 {
1316 	struct net *net = sock_net((struct sock *)tp);
1317 
1318 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1319 }
1320 
1321 static inline int keepalive_time_when(const struct tcp_sock *tp)
1322 {
1323 	struct net *net = sock_net((struct sock *)tp);
1324 
1325 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1326 }
1327 
1328 static inline int keepalive_probes(const struct tcp_sock *tp)
1329 {
1330 	struct net *net = sock_net((struct sock *)tp);
1331 
1332 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1333 }
1334 
1335 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1336 {
1337 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1338 
1339 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1340 			  tcp_jiffies32 - tp->rcv_tstamp);
1341 }
1342 
1343 static inline int tcp_fin_time(const struct sock *sk)
1344 {
1345 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1346 	const int rto = inet_csk(sk)->icsk_rto;
1347 
1348 	if (fin_timeout < (rto << 2) - (rto >> 1))
1349 		fin_timeout = (rto << 2) - (rto >> 1);
1350 
1351 	return fin_timeout;
1352 }
1353 
1354 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1355 				  int paws_win)
1356 {
1357 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1358 		return true;
1359 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1360 		return true;
1361 	/*
1362 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1363 	 * then following tcp messages have valid values. Ignore 0 value,
1364 	 * or else 'negative' tsval might forbid us to accept their packets.
1365 	 */
1366 	if (!rx_opt->ts_recent)
1367 		return true;
1368 	return false;
1369 }
1370 
1371 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1372 				   int rst)
1373 {
1374 	if (tcp_paws_check(rx_opt, 0))
1375 		return false;
1376 
1377 	/* RST segments are not recommended to carry timestamp,
1378 	   and, if they do, it is recommended to ignore PAWS because
1379 	   "their cleanup function should take precedence over timestamps."
1380 	   Certainly, it is mistake. It is necessary to understand the reasons
1381 	   of this constraint to relax it: if peer reboots, clock may go
1382 	   out-of-sync and half-open connections will not be reset.
1383 	   Actually, the problem would be not existing if all
1384 	   the implementations followed draft about maintaining clock
1385 	   via reboots. Linux-2.2 DOES NOT!
1386 
1387 	   However, we can relax time bounds for RST segments to MSL.
1388 	 */
1389 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1390 		return false;
1391 	return true;
1392 }
1393 
1394 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1395 			  int mib_idx, u32 *last_oow_ack_time);
1396 
1397 static inline void tcp_mib_init(struct net *net)
1398 {
1399 	/* See RFC 2012 */
1400 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1401 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1402 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1403 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1404 }
1405 
1406 /* from STCP */
1407 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1408 {
1409 	tp->lost_skb_hint = NULL;
1410 }
1411 
1412 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1413 {
1414 	tcp_clear_retrans_hints_partial(tp);
1415 	tp->retransmit_skb_hint = NULL;
1416 }
1417 
1418 union tcp_md5_addr {
1419 	struct in_addr  a4;
1420 #if IS_ENABLED(CONFIG_IPV6)
1421 	struct in6_addr	a6;
1422 #endif
1423 };
1424 
1425 /* - key database */
1426 struct tcp_md5sig_key {
1427 	struct hlist_node	node;
1428 	u8			keylen;
1429 	u8			family; /* AF_INET or AF_INET6 */
1430 	union tcp_md5_addr	addr;
1431 	u8			prefixlen;
1432 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1433 	struct rcu_head		rcu;
1434 };
1435 
1436 /* - sock block */
1437 struct tcp_md5sig_info {
1438 	struct hlist_head	head;
1439 	struct rcu_head		rcu;
1440 };
1441 
1442 /* - pseudo header */
1443 struct tcp4_pseudohdr {
1444 	__be32		saddr;
1445 	__be32		daddr;
1446 	__u8		pad;
1447 	__u8		protocol;
1448 	__be16		len;
1449 };
1450 
1451 struct tcp6_pseudohdr {
1452 	struct in6_addr	saddr;
1453 	struct in6_addr daddr;
1454 	__be32		len;
1455 	__be32		protocol;	/* including padding */
1456 };
1457 
1458 union tcp_md5sum_block {
1459 	struct tcp4_pseudohdr ip4;
1460 #if IS_ENABLED(CONFIG_IPV6)
1461 	struct tcp6_pseudohdr ip6;
1462 #endif
1463 };
1464 
1465 /* - pool: digest algorithm, hash description and scratch buffer */
1466 struct tcp_md5sig_pool {
1467 	struct ahash_request	*md5_req;
1468 	void			*scratch;
1469 };
1470 
1471 /* - functions */
1472 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1473 			const struct sock *sk, const struct sk_buff *skb);
1474 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1475 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1476 		   gfp_t gfp);
1477 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1478 		   int family, u8 prefixlen);
1479 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1480 					 const struct sock *addr_sk);
1481 
1482 #ifdef CONFIG_TCP_MD5SIG
1483 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1484 					 const union tcp_md5_addr *addr,
1485 					 int family);
1486 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1487 #else
1488 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1489 					 const union tcp_md5_addr *addr,
1490 					 int family)
1491 {
1492 	return NULL;
1493 }
1494 #define tcp_twsk_md5_key(twsk)	NULL
1495 #endif
1496 
1497 bool tcp_alloc_md5sig_pool(void);
1498 
1499 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1500 static inline void tcp_put_md5sig_pool(void)
1501 {
1502 	local_bh_enable();
1503 }
1504 
1505 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1506 			  unsigned int header_len);
1507 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1508 		     const struct tcp_md5sig_key *key);
1509 
1510 /* From tcp_fastopen.c */
1511 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1512 			    struct tcp_fastopen_cookie *cookie);
1513 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1514 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1515 			    u16 try_exp);
1516 struct tcp_fastopen_request {
1517 	/* Fast Open cookie. Size 0 means a cookie request */
1518 	struct tcp_fastopen_cookie	cookie;
1519 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1520 	size_t				size;
1521 	int				copied;	/* queued in tcp_connect() */
1522 };
1523 void tcp_free_fastopen_req(struct tcp_sock *tp);
1524 void tcp_fastopen_destroy_cipher(struct sock *sk);
1525 void tcp_fastopen_ctx_destroy(struct net *net);
1526 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1527 			      void *key, unsigned int len);
1528 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1529 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1530 			      struct request_sock *req,
1531 			      struct tcp_fastopen_cookie *foc,
1532 			      const struct dst_entry *dst);
1533 void tcp_fastopen_init_key_once(struct net *net);
1534 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1535 			     struct tcp_fastopen_cookie *cookie);
1536 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1537 #define TCP_FASTOPEN_KEY_LENGTH 16
1538 
1539 /* Fastopen key context */
1540 struct tcp_fastopen_context {
1541 	struct crypto_cipher	*tfm;
1542 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1543 	struct rcu_head		rcu;
1544 };
1545 
1546 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1547 void tcp_fastopen_active_disable(struct sock *sk);
1548 bool tcp_fastopen_active_should_disable(struct sock *sk);
1549 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1550 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1551 
1552 /* Latencies incurred by various limits for a sender. They are
1553  * chronograph-like stats that are mutually exclusive.
1554  */
1555 enum tcp_chrono {
1556 	TCP_CHRONO_UNSPEC,
1557 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1558 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1559 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1560 	__TCP_CHRONO_MAX,
1561 };
1562 
1563 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1564 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1565 
1566 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1567  * the same memory storage than skb->destructor/_skb_refdst
1568  */
1569 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1570 {
1571 	skb->destructor = NULL;
1572 	skb->_skb_refdst = 0UL;
1573 }
1574 
1575 #define tcp_skb_tsorted_save(skb) {		\
1576 	unsigned long _save = skb->_skb_refdst;	\
1577 	skb->_skb_refdst = 0UL;
1578 
1579 #define tcp_skb_tsorted_restore(skb)		\
1580 	skb->_skb_refdst = _save;		\
1581 }
1582 
1583 void tcp_write_queue_purge(struct sock *sk);
1584 
1585 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1586 {
1587 	return skb_rb_first(&sk->tcp_rtx_queue);
1588 }
1589 
1590 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1591 {
1592 	return skb_peek(&sk->sk_write_queue);
1593 }
1594 
1595 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1596 {
1597 	return skb_peek_tail(&sk->sk_write_queue);
1598 }
1599 
1600 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1601 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1602 
1603 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1604 {
1605 	return skb_peek(&sk->sk_write_queue);
1606 }
1607 
1608 static inline bool tcp_skb_is_last(const struct sock *sk,
1609 				   const struct sk_buff *skb)
1610 {
1611 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1612 }
1613 
1614 static inline bool tcp_write_queue_empty(const struct sock *sk)
1615 {
1616 	return skb_queue_empty(&sk->sk_write_queue);
1617 }
1618 
1619 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1620 {
1621 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1622 }
1623 
1624 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1625 {
1626 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1627 }
1628 
1629 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1630 {
1631 	if (tcp_write_queue_empty(sk))
1632 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1633 }
1634 
1635 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1636 {
1637 	__skb_queue_tail(&sk->sk_write_queue, skb);
1638 }
1639 
1640 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1641 {
1642 	__tcp_add_write_queue_tail(sk, skb);
1643 
1644 	/* Queue it, remembering where we must start sending. */
1645 	if (sk->sk_write_queue.next == skb)
1646 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1647 }
1648 
1649 /* Insert new before skb on the write queue of sk.  */
1650 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1651 						  struct sk_buff *skb,
1652 						  struct sock *sk)
1653 {
1654 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1655 }
1656 
1657 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1658 {
1659 	tcp_skb_tsorted_anchor_cleanup(skb);
1660 	__skb_unlink(skb, &sk->sk_write_queue);
1661 }
1662 
1663 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1664 
1665 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1666 {
1667 	tcp_skb_tsorted_anchor_cleanup(skb);
1668 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1669 }
1670 
1671 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1672 {
1673 	list_del(&skb->tcp_tsorted_anchor);
1674 	tcp_rtx_queue_unlink(skb, sk);
1675 	sk_wmem_free_skb(sk, skb);
1676 }
1677 
1678 static inline void tcp_push_pending_frames(struct sock *sk)
1679 {
1680 	if (tcp_send_head(sk)) {
1681 		struct tcp_sock *tp = tcp_sk(sk);
1682 
1683 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1684 	}
1685 }
1686 
1687 /* Start sequence of the skb just after the highest skb with SACKed
1688  * bit, valid only if sacked_out > 0 or when the caller has ensured
1689  * validity by itself.
1690  */
1691 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1692 {
1693 	if (!tp->sacked_out)
1694 		return tp->snd_una;
1695 
1696 	if (tp->highest_sack == NULL)
1697 		return tp->snd_nxt;
1698 
1699 	return TCP_SKB_CB(tp->highest_sack)->seq;
1700 }
1701 
1702 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1703 {
1704 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1705 }
1706 
1707 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1708 {
1709 	return tcp_sk(sk)->highest_sack;
1710 }
1711 
1712 static inline void tcp_highest_sack_reset(struct sock *sk)
1713 {
1714 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1715 }
1716 
1717 /* Called when old skb is about to be deleted and replaced by new skb */
1718 static inline void tcp_highest_sack_replace(struct sock *sk,
1719 					    struct sk_buff *old,
1720 					    struct sk_buff *new)
1721 {
1722 	if (old == tcp_highest_sack(sk))
1723 		tcp_sk(sk)->highest_sack = new;
1724 }
1725 
1726 /* This helper checks if socket has IP_TRANSPARENT set */
1727 static inline bool inet_sk_transparent(const struct sock *sk)
1728 {
1729 	switch (sk->sk_state) {
1730 	case TCP_TIME_WAIT:
1731 		return inet_twsk(sk)->tw_transparent;
1732 	case TCP_NEW_SYN_RECV:
1733 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1734 	}
1735 	return inet_sk(sk)->transparent;
1736 }
1737 
1738 /* Determines whether this is a thin stream (which may suffer from
1739  * increased latency). Used to trigger latency-reducing mechanisms.
1740  */
1741 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1742 {
1743 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1744 }
1745 
1746 /* /proc */
1747 enum tcp_seq_states {
1748 	TCP_SEQ_STATE_LISTENING,
1749 	TCP_SEQ_STATE_ESTABLISHED,
1750 };
1751 
1752 int tcp_seq_open(struct inode *inode, struct file *file);
1753 
1754 struct tcp_seq_afinfo {
1755 	char				*name;
1756 	sa_family_t			family;
1757 	const struct file_operations	*seq_fops;
1758 	struct seq_operations		seq_ops;
1759 };
1760 
1761 struct tcp_iter_state {
1762 	struct seq_net_private	p;
1763 	sa_family_t		family;
1764 	enum tcp_seq_states	state;
1765 	struct sock		*syn_wait_sk;
1766 	int			bucket, offset, sbucket, num;
1767 	loff_t			last_pos;
1768 };
1769 
1770 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1771 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1772 
1773 extern struct request_sock_ops tcp_request_sock_ops;
1774 extern struct request_sock_ops tcp6_request_sock_ops;
1775 
1776 void tcp_v4_destroy_sock(struct sock *sk);
1777 
1778 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1779 				netdev_features_t features);
1780 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1781 int tcp_gro_complete(struct sk_buff *skb);
1782 
1783 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1784 
1785 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1786 {
1787 	struct net *net = sock_net((struct sock *)tp);
1788 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1789 }
1790 
1791 static inline bool tcp_stream_memory_free(const struct sock *sk)
1792 {
1793 	const struct tcp_sock *tp = tcp_sk(sk);
1794 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1795 
1796 	return notsent_bytes < tcp_notsent_lowat(tp);
1797 }
1798 
1799 #ifdef CONFIG_PROC_FS
1800 int tcp4_proc_init(void);
1801 void tcp4_proc_exit(void);
1802 #endif
1803 
1804 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1805 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1806 		     const struct tcp_request_sock_ops *af_ops,
1807 		     struct sock *sk, struct sk_buff *skb);
1808 
1809 /* TCP af-specific functions */
1810 struct tcp_sock_af_ops {
1811 #ifdef CONFIG_TCP_MD5SIG
1812 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1813 						const struct sock *addr_sk);
1814 	int		(*calc_md5_hash)(char *location,
1815 					 const struct tcp_md5sig_key *md5,
1816 					 const struct sock *sk,
1817 					 const struct sk_buff *skb);
1818 	int		(*md5_parse)(struct sock *sk,
1819 				     int optname,
1820 				     char __user *optval,
1821 				     int optlen);
1822 #endif
1823 };
1824 
1825 struct tcp_request_sock_ops {
1826 	u16 mss_clamp;
1827 #ifdef CONFIG_TCP_MD5SIG
1828 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1829 						 const struct sock *addr_sk);
1830 	int		(*calc_md5_hash) (char *location,
1831 					  const struct tcp_md5sig_key *md5,
1832 					  const struct sock *sk,
1833 					  const struct sk_buff *skb);
1834 #endif
1835 	void (*init_req)(struct request_sock *req,
1836 			 const struct sock *sk_listener,
1837 			 struct sk_buff *skb);
1838 #ifdef CONFIG_SYN_COOKIES
1839 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1840 				 __u16 *mss);
1841 #endif
1842 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1843 				       const struct request_sock *req);
1844 	u32 (*init_seq)(const struct sk_buff *skb);
1845 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1846 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1847 			   struct flowi *fl, struct request_sock *req,
1848 			   struct tcp_fastopen_cookie *foc,
1849 			   enum tcp_synack_type synack_type);
1850 };
1851 
1852 #ifdef CONFIG_SYN_COOKIES
1853 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1854 					 const struct sock *sk, struct sk_buff *skb,
1855 					 __u16 *mss)
1856 {
1857 	tcp_synq_overflow(sk);
1858 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1859 	return ops->cookie_init_seq(skb, mss);
1860 }
1861 #else
1862 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1863 					 const struct sock *sk, struct sk_buff *skb,
1864 					 __u16 *mss)
1865 {
1866 	return 0;
1867 }
1868 #endif
1869 
1870 int tcpv4_offload_init(void);
1871 
1872 void tcp_v4_init(void);
1873 void tcp_init(void);
1874 
1875 /* tcp_recovery.c */
1876 extern void tcp_rack_mark_lost(struct sock *sk);
1877 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1878 			     u64 xmit_time);
1879 extern void tcp_rack_reo_timeout(struct sock *sk);
1880 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1881 
1882 /* At how many usecs into the future should the RTO fire? */
1883 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1884 {
1885 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1886 	u32 rto = inet_csk(sk)->icsk_rto;
1887 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1888 
1889 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1890 }
1891 
1892 /*
1893  * Save and compile IPv4 options, return a pointer to it
1894  */
1895 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1896 							 struct sk_buff *skb)
1897 {
1898 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1899 	struct ip_options_rcu *dopt = NULL;
1900 
1901 	if (opt->optlen) {
1902 		int opt_size = sizeof(*dopt) + opt->optlen;
1903 
1904 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1905 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1906 			kfree(dopt);
1907 			dopt = NULL;
1908 		}
1909 	}
1910 	return dopt;
1911 }
1912 
1913 /* locally generated TCP pure ACKs have skb->truesize == 2
1914  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1915  * This is much faster than dissecting the packet to find out.
1916  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1917  */
1918 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1919 {
1920 	return skb->truesize == 2;
1921 }
1922 
1923 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1924 {
1925 	skb->truesize = 2;
1926 }
1927 
1928 static inline int tcp_inq(struct sock *sk)
1929 {
1930 	struct tcp_sock *tp = tcp_sk(sk);
1931 	int answ;
1932 
1933 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1934 		answ = 0;
1935 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1936 		   !tp->urg_data ||
1937 		   before(tp->urg_seq, tp->copied_seq) ||
1938 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1939 
1940 		answ = tp->rcv_nxt - tp->copied_seq;
1941 
1942 		/* Subtract 1, if FIN was received */
1943 		if (answ && sock_flag(sk, SOCK_DONE))
1944 			answ--;
1945 	} else {
1946 		answ = tp->urg_seq - tp->copied_seq;
1947 	}
1948 
1949 	return answ;
1950 }
1951 
1952 int tcp_peek_len(struct socket *sock);
1953 
1954 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1955 {
1956 	u16 segs_in;
1957 
1958 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1959 	tp->segs_in += segs_in;
1960 	if (skb->len > tcp_hdrlen(skb))
1961 		tp->data_segs_in += segs_in;
1962 }
1963 
1964 /*
1965  * TCP listen path runs lockless.
1966  * We forced "struct sock" to be const qualified to make sure
1967  * we don't modify one of its field by mistake.
1968  * Here, we increment sk_drops which is an atomic_t, so we can safely
1969  * make sock writable again.
1970  */
1971 static inline void tcp_listendrop(const struct sock *sk)
1972 {
1973 	atomic_inc(&((struct sock *)sk)->sk_drops);
1974 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1975 }
1976 
1977 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1978 
1979 /*
1980  * Interface for adding Upper Level Protocols over TCP
1981  */
1982 
1983 #define TCP_ULP_NAME_MAX	16
1984 #define TCP_ULP_MAX		128
1985 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1986 
1987 enum {
1988 	TCP_ULP_TLS,
1989 	TCP_ULP_BPF,
1990 };
1991 
1992 struct tcp_ulp_ops {
1993 	struct list_head	list;
1994 
1995 	/* initialize ulp */
1996 	int (*init)(struct sock *sk);
1997 	/* cleanup ulp */
1998 	void (*release)(struct sock *sk);
1999 
2000 	int		uid;
2001 	char		name[TCP_ULP_NAME_MAX];
2002 	bool		user_visible;
2003 	struct module	*owner;
2004 };
2005 int tcp_register_ulp(struct tcp_ulp_ops *type);
2006 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2007 int tcp_set_ulp(struct sock *sk, const char *name);
2008 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2009 void tcp_get_available_ulp(char *buf, size_t len);
2010 void tcp_cleanup_ulp(struct sock *sk);
2011 
2012 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2013  * is < 0, then the BPF op failed (for example if the loaded BPF
2014  * program does not support the chosen operation or there is no BPF
2015  * program loaded).
2016  */
2017 #ifdef CONFIG_BPF
2018 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2019 {
2020 	struct bpf_sock_ops_kern sock_ops;
2021 	int ret;
2022 
2023 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2024 	if (sk_fullsock(sk)) {
2025 		sock_ops.is_fullsock = 1;
2026 		sock_owned_by_me(sk);
2027 	}
2028 
2029 	sock_ops.sk = sk;
2030 	sock_ops.op = op;
2031 	if (nargs > 0)
2032 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2033 
2034 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2035 	if (ret == 0)
2036 		ret = sock_ops.reply;
2037 	else
2038 		ret = -1;
2039 	return ret;
2040 }
2041 
2042 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2043 {
2044 	u32 args[2] = {arg1, arg2};
2045 
2046 	return tcp_call_bpf(sk, op, 2, args);
2047 }
2048 
2049 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2050 				    u32 arg3)
2051 {
2052 	u32 args[3] = {arg1, arg2, arg3};
2053 
2054 	return tcp_call_bpf(sk, op, 3, args);
2055 }
2056 
2057 #else
2058 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2059 {
2060 	return -EPERM;
2061 }
2062 
2063 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2064 {
2065 	return -EPERM;
2066 }
2067 
2068 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2069 				    u32 arg3)
2070 {
2071 	return -EPERM;
2072 }
2073 
2074 #endif
2075 
2076 static inline u32 tcp_timeout_init(struct sock *sk)
2077 {
2078 	int timeout;
2079 
2080 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2081 
2082 	if (timeout <= 0)
2083 		timeout = TCP_TIMEOUT_INIT;
2084 	return timeout;
2085 }
2086 
2087 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2088 {
2089 	int rwnd;
2090 
2091 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2092 
2093 	if (rwnd < 0)
2094 		rwnd = 0;
2095 	return rwnd;
2096 }
2097 
2098 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2099 {
2100 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2101 }
2102 
2103 #if IS_ENABLED(CONFIG_SMC)
2104 extern struct static_key_false tcp_have_smc;
2105 #endif
2106 #endif	/* _TCP_H */
2107