xref: /openbmc/linux/include/net/tcp.h (revision 8bd1369b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 int tcp_set_rcvlowat(struct sock *sk, int val);
406 void tcp_data_ready(struct sock *sk);
407 int tcp_mmap(struct file *file, struct socket *sock,
408 	     struct vm_area_struct *vma);
409 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
410 		       struct tcp_options_received *opt_rx,
411 		       int estab, struct tcp_fastopen_cookie *foc);
412 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
413 
414 /*
415  *	TCP v4 functions exported for the inet6 API
416  */
417 
418 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
419 void tcp_v4_mtu_reduced(struct sock *sk);
420 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
421 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 struct sock *tcp_create_openreq_child(const struct sock *sk,
423 				      struct request_sock *req,
424 				      struct sk_buff *skb);
425 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
426 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
427 				  struct request_sock *req,
428 				  struct dst_entry *dst,
429 				  struct request_sock *req_unhash,
430 				  bool *own_req);
431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
433 int tcp_connect(struct sock *sk);
434 enum tcp_synack_type {
435 	TCP_SYNACK_NORMAL,
436 	TCP_SYNACK_FASTOPEN,
437 	TCP_SYNACK_COOKIE,
438 };
439 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
440 				struct request_sock *req,
441 				struct tcp_fastopen_cookie *foc,
442 				enum tcp_synack_type synack_type);
443 int tcp_disconnect(struct sock *sk, int flags);
444 
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
448 
449 /* From syncookies.c */
450 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
451 				 struct request_sock *req,
452 				 struct dst_entry *dst, u32 tsoff);
453 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
454 		      u32 cookie);
455 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
456 #ifdef CONFIG_SYN_COOKIES
457 
458 /* Syncookies use a monotonic timer which increments every 60 seconds.
459  * This counter is used both as a hash input and partially encoded into
460  * the cookie value.  A cookie is only validated further if the delta
461  * between the current counter value and the encoded one is less than this,
462  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
463  * the counter advances immediately after a cookie is generated).
464  */
465 #define MAX_SYNCOOKIE_AGE	2
466 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
467 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
468 
469 /* syncookies: remember time of last synqueue overflow
470  * But do not dirty this field too often (once per second is enough)
471  * It is racy as we do not hold a lock, but race is very minor.
472  */
473 static inline void tcp_synq_overflow(const struct sock *sk)
474 {
475 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
476 	unsigned long now = jiffies;
477 
478 	if (time_after(now, last_overflow + HZ))
479 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
480 }
481 
482 /* syncookies: no recent synqueue overflow on this listening socket? */
483 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
484 {
485 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
486 
487 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
488 }
489 
490 static inline u32 tcp_cookie_time(void)
491 {
492 	u64 val = get_jiffies_64();
493 
494 	do_div(val, TCP_SYNCOOKIE_PERIOD);
495 	return val;
496 }
497 
498 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
499 			      u16 *mssp);
500 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
501 u64 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_timestamp_decode(const struct net *net,
503 			     struct tcp_options_received *opt);
504 bool cookie_ecn_ok(const struct tcp_options_received *opt,
505 		   const struct net *net, const struct dst_entry *dst);
506 
507 /* From net/ipv6/syncookies.c */
508 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
509 		      u32 cookie);
510 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
511 
512 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
513 			      const struct tcphdr *th, u16 *mssp);
514 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
515 #endif
516 /* tcp_output.c */
517 
518 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
519 			       int nonagle);
520 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
526 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
527 enum tcp_queue {
528 	TCP_FRAG_IN_WRITE_QUEUE,
529 	TCP_FRAG_IN_RTX_QUEUE,
530 };
531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
532 		 struct sk_buff *skb, u32 len,
533 		 unsigned int mss_now, gfp_t gfp);
534 
535 void tcp_send_probe0(struct sock *);
536 void tcp_send_partial(struct sock *);
537 int tcp_write_wakeup(struct sock *, int mib);
538 void tcp_send_fin(struct sock *sk);
539 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
540 int tcp_send_synack(struct sock *);
541 void tcp_push_one(struct sock *, unsigned int mss_now);
542 void tcp_send_ack(struct sock *sk);
543 void tcp_send_delayed_ack(struct sock *sk);
544 void tcp_send_loss_probe(struct sock *sk);
545 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
546 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
547 			     const struct sk_buff *next_skb);
548 
549 /* tcp_input.c */
550 void tcp_rearm_rto(struct sock *sk);
551 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
552 void tcp_reset(struct sock *sk);
553 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
554 void tcp_fin(struct sock *sk);
555 
556 /* tcp_timer.c */
557 void tcp_init_xmit_timers(struct sock *);
558 static inline void tcp_clear_xmit_timers(struct sock *sk)
559 {
560 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
561 		__sock_put(sk);
562 
563 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
564 		__sock_put(sk);
565 
566 	inet_csk_clear_xmit_timers(sk);
567 }
568 
569 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
570 unsigned int tcp_current_mss(struct sock *sk);
571 
572 /* Bound MSS / TSO packet size with the half of the window */
573 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
574 {
575 	int cutoff;
576 
577 	/* When peer uses tiny windows, there is no use in packetizing
578 	 * to sub-MSS pieces for the sake of SWS or making sure there
579 	 * are enough packets in the pipe for fast recovery.
580 	 *
581 	 * On the other hand, for extremely large MSS devices, handling
582 	 * smaller than MSS windows in this way does make sense.
583 	 */
584 	if (tp->max_window > TCP_MSS_DEFAULT)
585 		cutoff = (tp->max_window >> 1);
586 	else
587 		cutoff = tp->max_window;
588 
589 	if (cutoff && pktsize > cutoff)
590 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
591 	else
592 		return pktsize;
593 }
594 
595 /* tcp.c */
596 void tcp_get_info(struct sock *, struct tcp_info *);
597 
598 /* Read 'sendfile()'-style from a TCP socket */
599 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
600 		  sk_read_actor_t recv_actor);
601 
602 void tcp_initialize_rcv_mss(struct sock *sk);
603 
604 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
605 int tcp_mss_to_mtu(struct sock *sk, int mss);
606 void tcp_mtup_init(struct sock *sk);
607 void tcp_init_buffer_space(struct sock *sk);
608 
609 static inline void tcp_bound_rto(const struct sock *sk)
610 {
611 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
612 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
613 }
614 
615 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
616 {
617 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
618 }
619 
620 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
621 {
622 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
623 			       ntohl(TCP_FLAG_ACK) |
624 			       snd_wnd);
625 }
626 
627 static inline void tcp_fast_path_on(struct tcp_sock *tp)
628 {
629 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
630 }
631 
632 static inline void tcp_fast_path_check(struct sock *sk)
633 {
634 	struct tcp_sock *tp = tcp_sk(sk);
635 
636 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
637 	    tp->rcv_wnd &&
638 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
639 	    !tp->urg_data)
640 		tcp_fast_path_on(tp);
641 }
642 
643 /* Compute the actual rto_min value */
644 static inline u32 tcp_rto_min(struct sock *sk)
645 {
646 	const struct dst_entry *dst = __sk_dst_get(sk);
647 	u32 rto_min = TCP_RTO_MIN;
648 
649 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
650 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
651 	return rto_min;
652 }
653 
654 static inline u32 tcp_rto_min_us(struct sock *sk)
655 {
656 	return jiffies_to_usecs(tcp_rto_min(sk));
657 }
658 
659 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
660 {
661 	return dst_metric_locked(dst, RTAX_CC_ALGO);
662 }
663 
664 /* Minimum RTT in usec. ~0 means not available. */
665 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
666 {
667 	return minmax_get(&tp->rtt_min);
668 }
669 
670 /* Compute the actual receive window we are currently advertising.
671  * Rcv_nxt can be after the window if our peer push more data
672  * than the offered window.
673  */
674 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
675 {
676 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
677 
678 	if (win < 0)
679 		win = 0;
680 	return (u32) win;
681 }
682 
683 /* Choose a new window, without checks for shrinking, and without
684  * scaling applied to the result.  The caller does these things
685  * if necessary.  This is a "raw" window selection.
686  */
687 u32 __tcp_select_window(struct sock *sk);
688 
689 void tcp_send_window_probe(struct sock *sk);
690 
691 /* TCP uses 32bit jiffies to save some space.
692  * Note that this is different from tcp_time_stamp, which
693  * historically has been the same until linux-4.13.
694  */
695 #define tcp_jiffies32 ((u32)jiffies)
696 
697 /*
698  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
699  * It is no longer tied to jiffies, but to 1 ms clock.
700  * Note: double check if you want to use tcp_jiffies32 instead of this.
701  */
702 #define TCP_TS_HZ	1000
703 
704 static inline u64 tcp_clock_ns(void)
705 {
706 	return local_clock();
707 }
708 
709 static inline u64 tcp_clock_us(void)
710 {
711 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
712 }
713 
714 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
715 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
716 {
717 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
718 }
719 
720 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
721 static inline u32 tcp_time_stamp_raw(void)
722 {
723 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
724 }
725 
726 
727 /* Refresh 1us clock of a TCP socket,
728  * ensuring monotically increasing values.
729  */
730 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
731 {
732 	u64 val = tcp_clock_us();
733 
734 	if (val > tp->tcp_mstamp)
735 		tp->tcp_mstamp = val;
736 }
737 
738 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
739 {
740 	return max_t(s64, t1 - t0, 0);
741 }
742 
743 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
744 {
745 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
746 }
747 
748 
749 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
750 
751 #define TCPHDR_FIN 0x01
752 #define TCPHDR_SYN 0x02
753 #define TCPHDR_RST 0x04
754 #define TCPHDR_PSH 0x08
755 #define TCPHDR_ACK 0x10
756 #define TCPHDR_URG 0x20
757 #define TCPHDR_ECE 0x40
758 #define TCPHDR_CWR 0x80
759 
760 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
761 
762 /* This is what the send packet queuing engine uses to pass
763  * TCP per-packet control information to the transmission code.
764  * We also store the host-order sequence numbers in here too.
765  * This is 44 bytes if IPV6 is enabled.
766  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
767  */
768 struct tcp_skb_cb {
769 	__u32		seq;		/* Starting sequence number	*/
770 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
771 	union {
772 		/* Note : tcp_tw_isn is used in input path only
773 		 *	  (isn chosen by tcp_timewait_state_process())
774 		 *
775 		 * 	  tcp_gso_segs/size are used in write queue only,
776 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
777 		 */
778 		__u32		tcp_tw_isn;
779 		struct {
780 			u16	tcp_gso_segs;
781 			u16	tcp_gso_size;
782 		};
783 	};
784 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
785 
786 	__u8		sacked;		/* State flags for SACK.	*/
787 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
788 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
789 #define TCPCB_LOST		0x04	/* SKB is lost			*/
790 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
791 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
792 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
793 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
794 				TCPCB_REPAIRED)
795 
796 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
797 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
798 			eor:1,		/* Is skb MSG_EOR marked? */
799 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
800 			unused:5;
801 	__u32		ack_seq;	/* Sequence number ACK'd	*/
802 	union {
803 		struct {
804 			/* There is space for up to 24 bytes */
805 			__u32 in_flight:30,/* Bytes in flight at transmit */
806 			      is_app_limited:1, /* cwnd not fully used? */
807 			      unused:1;
808 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
809 			__u32 delivered;
810 			/* start of send pipeline phase */
811 			u64 first_tx_mstamp;
812 			/* when we reached the "delivered" count */
813 			u64 delivered_mstamp;
814 		} tx;   /* only used for outgoing skbs */
815 		union {
816 			struct inet_skb_parm	h4;
817 #if IS_ENABLED(CONFIG_IPV6)
818 			struct inet6_skb_parm	h6;
819 #endif
820 		} header;	/* For incoming skbs */
821 		struct {
822 			__u32 flags;
823 			struct sock *sk_redir;
824 			void *data_end;
825 		} bpf;
826 	};
827 };
828 
829 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
830 
831 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
832 {
833 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
834 }
835 
836 #if IS_ENABLED(CONFIG_IPV6)
837 /* This is the variant of inet6_iif() that must be used by TCP,
838  * as TCP moves IP6CB into a different location in skb->cb[]
839  */
840 static inline int tcp_v6_iif(const struct sk_buff *skb)
841 {
842 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
843 
844 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
845 }
846 
847 /* TCP_SKB_CB reference means this can not be used from early demux */
848 static inline int tcp_v6_sdif(const struct sk_buff *skb)
849 {
850 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
851 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
852 		return TCP_SKB_CB(skb)->header.h6.iif;
853 #endif
854 	return 0;
855 }
856 #endif
857 
858 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
859 {
860 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
861 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
862 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
863 		return true;
864 #endif
865 	return false;
866 }
867 
868 /* TCP_SKB_CB reference means this can not be used from early demux */
869 static inline int tcp_v4_sdif(struct sk_buff *skb)
870 {
871 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
872 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
873 		return TCP_SKB_CB(skb)->header.h4.iif;
874 #endif
875 	return 0;
876 }
877 
878 /* Due to TSO, an SKB can be composed of multiple actual
879  * packets.  To keep these tracked properly, we use this.
880  */
881 static inline int tcp_skb_pcount(const struct sk_buff *skb)
882 {
883 	return TCP_SKB_CB(skb)->tcp_gso_segs;
884 }
885 
886 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
887 {
888 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
889 }
890 
891 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
892 {
893 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
894 }
895 
896 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
897 static inline int tcp_skb_mss(const struct sk_buff *skb)
898 {
899 	return TCP_SKB_CB(skb)->tcp_gso_size;
900 }
901 
902 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
903 {
904 	return likely(!TCP_SKB_CB(skb)->eor);
905 }
906 
907 /* Events passed to congestion control interface */
908 enum tcp_ca_event {
909 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
910 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
911 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
912 	CA_EVENT_LOSS,		/* loss timeout */
913 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
914 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
915 };
916 
917 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
918 enum tcp_ca_ack_event_flags {
919 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
920 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
921 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
922 };
923 
924 /*
925  * Interface for adding new TCP congestion control handlers
926  */
927 #define TCP_CA_NAME_MAX	16
928 #define TCP_CA_MAX	128
929 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
930 
931 #define TCP_CA_UNSPEC	0
932 
933 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
934 #define TCP_CONG_NON_RESTRICTED 0x1
935 /* Requires ECN/ECT set on all packets */
936 #define TCP_CONG_NEEDS_ECN	0x2
937 
938 union tcp_cc_info;
939 
940 struct ack_sample {
941 	u32 pkts_acked;
942 	s32 rtt_us;
943 	u32 in_flight;
944 };
945 
946 /* A rate sample measures the number of (original/retransmitted) data
947  * packets delivered "delivered" over an interval of time "interval_us".
948  * The tcp_rate.c code fills in the rate sample, and congestion
949  * control modules that define a cong_control function to run at the end
950  * of ACK processing can optionally chose to consult this sample when
951  * setting cwnd and pacing rate.
952  * A sample is invalid if "delivered" or "interval_us" is negative.
953  */
954 struct rate_sample {
955 	u64  prior_mstamp; /* starting timestamp for interval */
956 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
957 	s32  delivered;		/* number of packets delivered over interval */
958 	long interval_us;	/* time for tp->delivered to incr "delivered" */
959 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
960 	int  losses;		/* number of packets marked lost upon ACK */
961 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
962 	u32  prior_in_flight;	/* in flight before this ACK */
963 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
964 	bool is_retrans;	/* is sample from retransmission? */
965 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
966 };
967 
968 struct tcp_congestion_ops {
969 	struct list_head	list;
970 	u32 key;
971 	u32 flags;
972 
973 	/* initialize private data (optional) */
974 	void (*init)(struct sock *sk);
975 	/* cleanup private data  (optional) */
976 	void (*release)(struct sock *sk);
977 
978 	/* return slow start threshold (required) */
979 	u32 (*ssthresh)(struct sock *sk);
980 	/* do new cwnd calculation (required) */
981 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
982 	/* call before changing ca_state (optional) */
983 	void (*set_state)(struct sock *sk, u8 new_state);
984 	/* call when cwnd event occurs (optional) */
985 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
986 	/* call when ack arrives (optional) */
987 	void (*in_ack_event)(struct sock *sk, u32 flags);
988 	/* new value of cwnd after loss (required) */
989 	u32  (*undo_cwnd)(struct sock *sk);
990 	/* hook for packet ack accounting (optional) */
991 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
992 	/* override sysctl_tcp_min_tso_segs */
993 	u32 (*min_tso_segs)(struct sock *sk);
994 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
995 	u32 (*sndbuf_expand)(struct sock *sk);
996 	/* call when packets are delivered to update cwnd and pacing rate,
997 	 * after all the ca_state processing. (optional)
998 	 */
999 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1000 	/* get info for inet_diag (optional) */
1001 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1002 			   union tcp_cc_info *info);
1003 
1004 	char 		name[TCP_CA_NAME_MAX];
1005 	struct module 	*owner;
1006 };
1007 
1008 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1009 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1010 
1011 void tcp_assign_congestion_control(struct sock *sk);
1012 void tcp_init_congestion_control(struct sock *sk);
1013 void tcp_cleanup_congestion_control(struct sock *sk);
1014 int tcp_set_default_congestion_control(struct net *net, const char *name);
1015 void tcp_get_default_congestion_control(struct net *net, char *name);
1016 void tcp_get_available_congestion_control(char *buf, size_t len);
1017 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1018 int tcp_set_allowed_congestion_control(char *allowed);
1019 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1020 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1021 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1022 
1023 u32 tcp_reno_ssthresh(struct sock *sk);
1024 u32 tcp_reno_undo_cwnd(struct sock *sk);
1025 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1026 extern struct tcp_congestion_ops tcp_reno;
1027 
1028 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1029 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1030 #ifdef CONFIG_INET
1031 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1032 #else
1033 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1034 {
1035 	return NULL;
1036 }
1037 #endif
1038 
1039 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1040 {
1041 	const struct inet_connection_sock *icsk = inet_csk(sk);
1042 
1043 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1044 }
1045 
1046 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1047 {
1048 	struct inet_connection_sock *icsk = inet_csk(sk);
1049 
1050 	if (icsk->icsk_ca_ops->set_state)
1051 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1052 	icsk->icsk_ca_state = ca_state;
1053 }
1054 
1055 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1056 {
1057 	const struct inet_connection_sock *icsk = inet_csk(sk);
1058 
1059 	if (icsk->icsk_ca_ops->cwnd_event)
1060 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1061 }
1062 
1063 /* From tcp_rate.c */
1064 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1065 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1066 			    struct rate_sample *rs);
1067 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1068 		  bool is_sack_reneg, struct rate_sample *rs);
1069 void tcp_rate_check_app_limited(struct sock *sk);
1070 
1071 /* These functions determine how the current flow behaves in respect of SACK
1072  * handling. SACK is negotiated with the peer, and therefore it can vary
1073  * between different flows.
1074  *
1075  * tcp_is_sack - SACK enabled
1076  * tcp_is_reno - No SACK
1077  */
1078 static inline int tcp_is_sack(const struct tcp_sock *tp)
1079 {
1080 	return tp->rx_opt.sack_ok;
1081 }
1082 
1083 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1084 {
1085 	return !tcp_is_sack(tp);
1086 }
1087 
1088 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1089 {
1090 	return tp->sacked_out + tp->lost_out;
1091 }
1092 
1093 /* This determines how many packets are "in the network" to the best
1094  * of our knowledge.  In many cases it is conservative, but where
1095  * detailed information is available from the receiver (via SACK
1096  * blocks etc.) we can make more aggressive calculations.
1097  *
1098  * Use this for decisions involving congestion control, use just
1099  * tp->packets_out to determine if the send queue is empty or not.
1100  *
1101  * Read this equation as:
1102  *
1103  *	"Packets sent once on transmission queue" MINUS
1104  *	"Packets left network, but not honestly ACKed yet" PLUS
1105  *	"Packets fast retransmitted"
1106  */
1107 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1108 {
1109 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1110 }
1111 
1112 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1113 
1114 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1115 {
1116 	return tp->snd_cwnd < tp->snd_ssthresh;
1117 }
1118 
1119 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1120 {
1121 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1122 }
1123 
1124 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1125 {
1126 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1127 	       (1 << inet_csk(sk)->icsk_ca_state);
1128 }
1129 
1130 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1131  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1132  * ssthresh.
1133  */
1134 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1135 {
1136 	const struct tcp_sock *tp = tcp_sk(sk);
1137 
1138 	if (tcp_in_cwnd_reduction(sk))
1139 		return tp->snd_ssthresh;
1140 	else
1141 		return max(tp->snd_ssthresh,
1142 			   ((tp->snd_cwnd >> 1) +
1143 			    (tp->snd_cwnd >> 2)));
1144 }
1145 
1146 /* Use define here intentionally to get WARN_ON location shown at the caller */
1147 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1148 
1149 void tcp_enter_cwr(struct sock *sk);
1150 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1151 
1152 /* The maximum number of MSS of available cwnd for which TSO defers
1153  * sending if not using sysctl_tcp_tso_win_divisor.
1154  */
1155 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1156 {
1157 	return 3;
1158 }
1159 
1160 /* Returns end sequence number of the receiver's advertised window */
1161 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1162 {
1163 	return tp->snd_una + tp->snd_wnd;
1164 }
1165 
1166 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1167  * flexible approach. The RFC suggests cwnd should not be raised unless
1168  * it was fully used previously. And that's exactly what we do in
1169  * congestion avoidance mode. But in slow start we allow cwnd to grow
1170  * as long as the application has used half the cwnd.
1171  * Example :
1172  *    cwnd is 10 (IW10), but application sends 9 frames.
1173  *    We allow cwnd to reach 18 when all frames are ACKed.
1174  * This check is safe because it's as aggressive as slow start which already
1175  * risks 100% overshoot. The advantage is that we discourage application to
1176  * either send more filler packets or data to artificially blow up the cwnd
1177  * usage, and allow application-limited process to probe bw more aggressively.
1178  */
1179 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1180 {
1181 	const struct tcp_sock *tp = tcp_sk(sk);
1182 
1183 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1184 	if (tcp_in_slow_start(tp))
1185 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1186 
1187 	return tp->is_cwnd_limited;
1188 }
1189 
1190 /* Something is really bad, we could not queue an additional packet,
1191  * because qdisc is full or receiver sent a 0 window.
1192  * We do not want to add fuel to the fire, or abort too early,
1193  * so make sure the timer we arm now is at least 200ms in the future,
1194  * regardless of current icsk_rto value (as it could be ~2ms)
1195  */
1196 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1197 {
1198 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1199 }
1200 
1201 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1202 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1203 					    unsigned long max_when)
1204 {
1205 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1206 
1207 	return (unsigned long)min_t(u64, when, max_when);
1208 }
1209 
1210 static inline void tcp_check_probe_timer(struct sock *sk)
1211 {
1212 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1213 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1214 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1215 }
1216 
1217 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1218 {
1219 	tp->snd_wl1 = seq;
1220 }
1221 
1222 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1223 {
1224 	tp->snd_wl1 = seq;
1225 }
1226 
1227 /*
1228  * Calculate(/check) TCP checksum
1229  */
1230 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1231 				   __be32 daddr, __wsum base)
1232 {
1233 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1234 }
1235 
1236 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1237 {
1238 	return __skb_checksum_complete(skb);
1239 }
1240 
1241 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1242 {
1243 	return !skb_csum_unnecessary(skb) &&
1244 		__tcp_checksum_complete(skb);
1245 }
1246 
1247 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1248 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1249 
1250 #undef STATE_TRACE
1251 
1252 #ifdef STATE_TRACE
1253 static const char *statename[]={
1254 	"Unused","Established","Syn Sent","Syn Recv",
1255 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1256 	"Close Wait","Last ACK","Listen","Closing"
1257 };
1258 #endif
1259 void tcp_set_state(struct sock *sk, int state);
1260 
1261 void tcp_done(struct sock *sk);
1262 
1263 int tcp_abort(struct sock *sk, int err);
1264 
1265 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1266 {
1267 	rx_opt->dsack = 0;
1268 	rx_opt->num_sacks = 0;
1269 }
1270 
1271 u32 tcp_default_init_rwnd(u32 mss);
1272 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1273 
1274 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1275 {
1276 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1277 	struct tcp_sock *tp = tcp_sk(sk);
1278 	s32 delta;
1279 
1280 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1281 	    ca_ops->cong_control)
1282 		return;
1283 	delta = tcp_jiffies32 - tp->lsndtime;
1284 	if (delta > inet_csk(sk)->icsk_rto)
1285 		tcp_cwnd_restart(sk, delta);
1286 }
1287 
1288 /* Determine a window scaling and initial window to offer. */
1289 void tcp_select_initial_window(const struct sock *sk, int __space,
1290 			       __u32 mss, __u32 *rcv_wnd,
1291 			       __u32 *window_clamp, int wscale_ok,
1292 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1293 
1294 static inline int tcp_win_from_space(const struct sock *sk, int space)
1295 {
1296 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1297 
1298 	return tcp_adv_win_scale <= 0 ?
1299 		(space>>(-tcp_adv_win_scale)) :
1300 		space - (space>>tcp_adv_win_scale);
1301 }
1302 
1303 /* Note: caller must be prepared to deal with negative returns */
1304 static inline int tcp_space(const struct sock *sk)
1305 {
1306 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1307 				  atomic_read(&sk->sk_rmem_alloc));
1308 }
1309 
1310 static inline int tcp_full_space(const struct sock *sk)
1311 {
1312 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1313 }
1314 
1315 extern void tcp_openreq_init_rwin(struct request_sock *req,
1316 				  const struct sock *sk_listener,
1317 				  const struct dst_entry *dst);
1318 
1319 void tcp_enter_memory_pressure(struct sock *sk);
1320 void tcp_leave_memory_pressure(struct sock *sk);
1321 
1322 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1323 {
1324 	struct net *net = sock_net((struct sock *)tp);
1325 
1326 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1327 }
1328 
1329 static inline int keepalive_time_when(const struct tcp_sock *tp)
1330 {
1331 	struct net *net = sock_net((struct sock *)tp);
1332 
1333 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1334 }
1335 
1336 static inline int keepalive_probes(const struct tcp_sock *tp)
1337 {
1338 	struct net *net = sock_net((struct sock *)tp);
1339 
1340 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1341 }
1342 
1343 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1344 {
1345 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1346 
1347 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1348 			  tcp_jiffies32 - tp->rcv_tstamp);
1349 }
1350 
1351 static inline int tcp_fin_time(const struct sock *sk)
1352 {
1353 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1354 	const int rto = inet_csk(sk)->icsk_rto;
1355 
1356 	if (fin_timeout < (rto << 2) - (rto >> 1))
1357 		fin_timeout = (rto << 2) - (rto >> 1);
1358 
1359 	return fin_timeout;
1360 }
1361 
1362 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1363 				  int paws_win)
1364 {
1365 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1366 		return true;
1367 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1368 		return true;
1369 	/*
1370 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1371 	 * then following tcp messages have valid values. Ignore 0 value,
1372 	 * or else 'negative' tsval might forbid us to accept their packets.
1373 	 */
1374 	if (!rx_opt->ts_recent)
1375 		return true;
1376 	return false;
1377 }
1378 
1379 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1380 				   int rst)
1381 {
1382 	if (tcp_paws_check(rx_opt, 0))
1383 		return false;
1384 
1385 	/* RST segments are not recommended to carry timestamp,
1386 	   and, if they do, it is recommended to ignore PAWS because
1387 	   "their cleanup function should take precedence over timestamps."
1388 	   Certainly, it is mistake. It is necessary to understand the reasons
1389 	   of this constraint to relax it: if peer reboots, clock may go
1390 	   out-of-sync and half-open connections will not be reset.
1391 	   Actually, the problem would be not existing if all
1392 	   the implementations followed draft about maintaining clock
1393 	   via reboots. Linux-2.2 DOES NOT!
1394 
1395 	   However, we can relax time bounds for RST segments to MSL.
1396 	 */
1397 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1398 		return false;
1399 	return true;
1400 }
1401 
1402 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1403 			  int mib_idx, u32 *last_oow_ack_time);
1404 
1405 static inline void tcp_mib_init(struct net *net)
1406 {
1407 	/* See RFC 2012 */
1408 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1409 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1410 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1411 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1412 }
1413 
1414 /* from STCP */
1415 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1416 {
1417 	tp->lost_skb_hint = NULL;
1418 }
1419 
1420 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1421 {
1422 	tcp_clear_retrans_hints_partial(tp);
1423 	tp->retransmit_skb_hint = NULL;
1424 }
1425 
1426 union tcp_md5_addr {
1427 	struct in_addr  a4;
1428 #if IS_ENABLED(CONFIG_IPV6)
1429 	struct in6_addr	a6;
1430 #endif
1431 };
1432 
1433 /* - key database */
1434 struct tcp_md5sig_key {
1435 	struct hlist_node	node;
1436 	u8			keylen;
1437 	u8			family; /* AF_INET or AF_INET6 */
1438 	union tcp_md5_addr	addr;
1439 	u8			prefixlen;
1440 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1441 	struct rcu_head		rcu;
1442 };
1443 
1444 /* - sock block */
1445 struct tcp_md5sig_info {
1446 	struct hlist_head	head;
1447 	struct rcu_head		rcu;
1448 };
1449 
1450 /* - pseudo header */
1451 struct tcp4_pseudohdr {
1452 	__be32		saddr;
1453 	__be32		daddr;
1454 	__u8		pad;
1455 	__u8		protocol;
1456 	__be16		len;
1457 };
1458 
1459 struct tcp6_pseudohdr {
1460 	struct in6_addr	saddr;
1461 	struct in6_addr daddr;
1462 	__be32		len;
1463 	__be32		protocol;	/* including padding */
1464 };
1465 
1466 union tcp_md5sum_block {
1467 	struct tcp4_pseudohdr ip4;
1468 #if IS_ENABLED(CONFIG_IPV6)
1469 	struct tcp6_pseudohdr ip6;
1470 #endif
1471 };
1472 
1473 /* - pool: digest algorithm, hash description and scratch buffer */
1474 struct tcp_md5sig_pool {
1475 	struct ahash_request	*md5_req;
1476 	void			*scratch;
1477 };
1478 
1479 /* - functions */
1480 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1481 			const struct sock *sk, const struct sk_buff *skb);
1482 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1483 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1484 		   gfp_t gfp);
1485 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1486 		   int family, u8 prefixlen);
1487 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1488 					 const struct sock *addr_sk);
1489 
1490 #ifdef CONFIG_TCP_MD5SIG
1491 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1492 					 const union tcp_md5_addr *addr,
1493 					 int family);
1494 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1495 #else
1496 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1497 					 const union tcp_md5_addr *addr,
1498 					 int family)
1499 {
1500 	return NULL;
1501 }
1502 #define tcp_twsk_md5_key(twsk)	NULL
1503 #endif
1504 
1505 bool tcp_alloc_md5sig_pool(void);
1506 
1507 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1508 static inline void tcp_put_md5sig_pool(void)
1509 {
1510 	local_bh_enable();
1511 }
1512 
1513 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1514 			  unsigned int header_len);
1515 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1516 		     const struct tcp_md5sig_key *key);
1517 
1518 /* From tcp_fastopen.c */
1519 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1520 			    struct tcp_fastopen_cookie *cookie);
1521 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1522 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1523 			    u16 try_exp);
1524 struct tcp_fastopen_request {
1525 	/* Fast Open cookie. Size 0 means a cookie request */
1526 	struct tcp_fastopen_cookie	cookie;
1527 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1528 	size_t				size;
1529 	int				copied;	/* queued in tcp_connect() */
1530 };
1531 void tcp_free_fastopen_req(struct tcp_sock *tp);
1532 void tcp_fastopen_destroy_cipher(struct sock *sk);
1533 void tcp_fastopen_ctx_destroy(struct net *net);
1534 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1535 			      void *key, unsigned int len);
1536 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1537 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1538 			      struct request_sock *req,
1539 			      struct tcp_fastopen_cookie *foc,
1540 			      const struct dst_entry *dst);
1541 void tcp_fastopen_init_key_once(struct net *net);
1542 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1543 			     struct tcp_fastopen_cookie *cookie);
1544 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1545 #define TCP_FASTOPEN_KEY_LENGTH 16
1546 
1547 /* Fastopen key context */
1548 struct tcp_fastopen_context {
1549 	struct crypto_cipher	*tfm;
1550 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1551 	struct rcu_head		rcu;
1552 };
1553 
1554 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1555 void tcp_fastopen_active_disable(struct sock *sk);
1556 bool tcp_fastopen_active_should_disable(struct sock *sk);
1557 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1558 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1559 
1560 /* Latencies incurred by various limits for a sender. They are
1561  * chronograph-like stats that are mutually exclusive.
1562  */
1563 enum tcp_chrono {
1564 	TCP_CHRONO_UNSPEC,
1565 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1566 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1567 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1568 	__TCP_CHRONO_MAX,
1569 };
1570 
1571 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1572 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1573 
1574 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1575  * the same memory storage than skb->destructor/_skb_refdst
1576  */
1577 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1578 {
1579 	skb->destructor = NULL;
1580 	skb->_skb_refdst = 0UL;
1581 }
1582 
1583 #define tcp_skb_tsorted_save(skb) {		\
1584 	unsigned long _save = skb->_skb_refdst;	\
1585 	skb->_skb_refdst = 0UL;
1586 
1587 #define tcp_skb_tsorted_restore(skb)		\
1588 	skb->_skb_refdst = _save;		\
1589 }
1590 
1591 void tcp_write_queue_purge(struct sock *sk);
1592 
1593 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1594 {
1595 	return skb_rb_first(&sk->tcp_rtx_queue);
1596 }
1597 
1598 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1599 {
1600 	return skb_peek(&sk->sk_write_queue);
1601 }
1602 
1603 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1604 {
1605 	return skb_peek_tail(&sk->sk_write_queue);
1606 }
1607 
1608 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1609 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1610 
1611 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1612 {
1613 	return skb_peek(&sk->sk_write_queue);
1614 }
1615 
1616 static inline bool tcp_skb_is_last(const struct sock *sk,
1617 				   const struct sk_buff *skb)
1618 {
1619 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1620 }
1621 
1622 static inline bool tcp_write_queue_empty(const struct sock *sk)
1623 {
1624 	return skb_queue_empty(&sk->sk_write_queue);
1625 }
1626 
1627 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1628 {
1629 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1630 }
1631 
1632 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1633 {
1634 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1635 }
1636 
1637 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1638 {
1639 	if (tcp_write_queue_empty(sk))
1640 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1641 }
1642 
1643 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1644 {
1645 	__skb_queue_tail(&sk->sk_write_queue, skb);
1646 }
1647 
1648 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1649 {
1650 	__tcp_add_write_queue_tail(sk, skb);
1651 
1652 	/* Queue it, remembering where we must start sending. */
1653 	if (sk->sk_write_queue.next == skb)
1654 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1655 }
1656 
1657 /* Insert new before skb on the write queue of sk.  */
1658 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1659 						  struct sk_buff *skb,
1660 						  struct sock *sk)
1661 {
1662 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1663 }
1664 
1665 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1666 {
1667 	tcp_skb_tsorted_anchor_cleanup(skb);
1668 	__skb_unlink(skb, &sk->sk_write_queue);
1669 }
1670 
1671 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1672 
1673 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1674 {
1675 	tcp_skb_tsorted_anchor_cleanup(skb);
1676 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1677 }
1678 
1679 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1680 {
1681 	list_del(&skb->tcp_tsorted_anchor);
1682 	tcp_rtx_queue_unlink(skb, sk);
1683 	sk_wmem_free_skb(sk, skb);
1684 }
1685 
1686 static inline void tcp_push_pending_frames(struct sock *sk)
1687 {
1688 	if (tcp_send_head(sk)) {
1689 		struct tcp_sock *tp = tcp_sk(sk);
1690 
1691 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1692 	}
1693 }
1694 
1695 /* Start sequence of the skb just after the highest skb with SACKed
1696  * bit, valid only if sacked_out > 0 or when the caller has ensured
1697  * validity by itself.
1698  */
1699 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1700 {
1701 	if (!tp->sacked_out)
1702 		return tp->snd_una;
1703 
1704 	if (tp->highest_sack == NULL)
1705 		return tp->snd_nxt;
1706 
1707 	return TCP_SKB_CB(tp->highest_sack)->seq;
1708 }
1709 
1710 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1711 {
1712 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1713 }
1714 
1715 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1716 {
1717 	return tcp_sk(sk)->highest_sack;
1718 }
1719 
1720 static inline void tcp_highest_sack_reset(struct sock *sk)
1721 {
1722 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1723 }
1724 
1725 /* Called when old skb is about to be deleted and replaced by new skb */
1726 static inline void tcp_highest_sack_replace(struct sock *sk,
1727 					    struct sk_buff *old,
1728 					    struct sk_buff *new)
1729 {
1730 	if (old == tcp_highest_sack(sk))
1731 		tcp_sk(sk)->highest_sack = new;
1732 }
1733 
1734 /* This helper checks if socket has IP_TRANSPARENT set */
1735 static inline bool inet_sk_transparent(const struct sock *sk)
1736 {
1737 	switch (sk->sk_state) {
1738 	case TCP_TIME_WAIT:
1739 		return inet_twsk(sk)->tw_transparent;
1740 	case TCP_NEW_SYN_RECV:
1741 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1742 	}
1743 	return inet_sk(sk)->transparent;
1744 }
1745 
1746 /* Determines whether this is a thin stream (which may suffer from
1747  * increased latency). Used to trigger latency-reducing mechanisms.
1748  */
1749 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1750 {
1751 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1752 }
1753 
1754 /* /proc */
1755 enum tcp_seq_states {
1756 	TCP_SEQ_STATE_LISTENING,
1757 	TCP_SEQ_STATE_ESTABLISHED,
1758 };
1759 
1760 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1761 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1762 void tcp_seq_stop(struct seq_file *seq, void *v);
1763 
1764 struct tcp_seq_afinfo {
1765 	sa_family_t			family;
1766 };
1767 
1768 struct tcp_iter_state {
1769 	struct seq_net_private	p;
1770 	enum tcp_seq_states	state;
1771 	struct sock		*syn_wait_sk;
1772 	int			bucket, offset, sbucket, num;
1773 	loff_t			last_pos;
1774 };
1775 
1776 extern struct request_sock_ops tcp_request_sock_ops;
1777 extern struct request_sock_ops tcp6_request_sock_ops;
1778 
1779 void tcp_v4_destroy_sock(struct sock *sk);
1780 
1781 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1782 				netdev_features_t features);
1783 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1784 int tcp_gro_complete(struct sk_buff *skb);
1785 
1786 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1787 
1788 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1789 {
1790 	struct net *net = sock_net((struct sock *)tp);
1791 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1792 }
1793 
1794 static inline bool tcp_stream_memory_free(const struct sock *sk)
1795 {
1796 	const struct tcp_sock *tp = tcp_sk(sk);
1797 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1798 
1799 	return notsent_bytes < tcp_notsent_lowat(tp);
1800 }
1801 
1802 #ifdef CONFIG_PROC_FS
1803 int tcp4_proc_init(void);
1804 void tcp4_proc_exit(void);
1805 #endif
1806 
1807 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1808 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1809 		     const struct tcp_request_sock_ops *af_ops,
1810 		     struct sock *sk, struct sk_buff *skb);
1811 
1812 /* TCP af-specific functions */
1813 struct tcp_sock_af_ops {
1814 #ifdef CONFIG_TCP_MD5SIG
1815 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1816 						const struct sock *addr_sk);
1817 	int		(*calc_md5_hash)(char *location,
1818 					 const struct tcp_md5sig_key *md5,
1819 					 const struct sock *sk,
1820 					 const struct sk_buff *skb);
1821 	int		(*md5_parse)(struct sock *sk,
1822 				     int optname,
1823 				     char __user *optval,
1824 				     int optlen);
1825 #endif
1826 };
1827 
1828 struct tcp_request_sock_ops {
1829 	u16 mss_clamp;
1830 #ifdef CONFIG_TCP_MD5SIG
1831 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1832 						 const struct sock *addr_sk);
1833 	int		(*calc_md5_hash) (char *location,
1834 					  const struct tcp_md5sig_key *md5,
1835 					  const struct sock *sk,
1836 					  const struct sk_buff *skb);
1837 #endif
1838 	void (*init_req)(struct request_sock *req,
1839 			 const struct sock *sk_listener,
1840 			 struct sk_buff *skb);
1841 #ifdef CONFIG_SYN_COOKIES
1842 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1843 				 __u16 *mss);
1844 #endif
1845 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1846 				       const struct request_sock *req);
1847 	u32 (*init_seq)(const struct sk_buff *skb);
1848 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1849 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1850 			   struct flowi *fl, struct request_sock *req,
1851 			   struct tcp_fastopen_cookie *foc,
1852 			   enum tcp_synack_type synack_type);
1853 };
1854 
1855 #ifdef CONFIG_SYN_COOKIES
1856 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1857 					 const struct sock *sk, struct sk_buff *skb,
1858 					 __u16 *mss)
1859 {
1860 	tcp_synq_overflow(sk);
1861 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1862 	return ops->cookie_init_seq(skb, mss);
1863 }
1864 #else
1865 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1866 					 const struct sock *sk, struct sk_buff *skb,
1867 					 __u16 *mss)
1868 {
1869 	return 0;
1870 }
1871 #endif
1872 
1873 int tcpv4_offload_init(void);
1874 
1875 void tcp_v4_init(void);
1876 void tcp_init(void);
1877 
1878 /* tcp_recovery.c */
1879 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1880 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1881 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1882 				u32 reo_wnd);
1883 extern void tcp_rack_mark_lost(struct sock *sk);
1884 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1885 			     u64 xmit_time);
1886 extern void tcp_rack_reo_timeout(struct sock *sk);
1887 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1888 
1889 /* At how many usecs into the future should the RTO fire? */
1890 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1891 {
1892 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1893 	u32 rto = inet_csk(sk)->icsk_rto;
1894 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1895 
1896 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1897 }
1898 
1899 /*
1900  * Save and compile IPv4 options, return a pointer to it
1901  */
1902 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1903 							 struct sk_buff *skb)
1904 {
1905 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1906 	struct ip_options_rcu *dopt = NULL;
1907 
1908 	if (opt->optlen) {
1909 		int opt_size = sizeof(*dopt) + opt->optlen;
1910 
1911 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1912 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1913 			kfree(dopt);
1914 			dopt = NULL;
1915 		}
1916 	}
1917 	return dopt;
1918 }
1919 
1920 /* locally generated TCP pure ACKs have skb->truesize == 2
1921  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1922  * This is much faster than dissecting the packet to find out.
1923  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1924  */
1925 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1926 {
1927 	return skb->truesize == 2;
1928 }
1929 
1930 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1931 {
1932 	skb->truesize = 2;
1933 }
1934 
1935 static inline int tcp_inq(struct sock *sk)
1936 {
1937 	struct tcp_sock *tp = tcp_sk(sk);
1938 	int answ;
1939 
1940 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1941 		answ = 0;
1942 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1943 		   !tp->urg_data ||
1944 		   before(tp->urg_seq, tp->copied_seq) ||
1945 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1946 
1947 		answ = tp->rcv_nxt - tp->copied_seq;
1948 
1949 		/* Subtract 1, if FIN was received */
1950 		if (answ && sock_flag(sk, SOCK_DONE))
1951 			answ--;
1952 	} else {
1953 		answ = tp->urg_seq - tp->copied_seq;
1954 	}
1955 
1956 	return answ;
1957 }
1958 
1959 int tcp_peek_len(struct socket *sock);
1960 
1961 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1962 {
1963 	u16 segs_in;
1964 
1965 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1966 	tp->segs_in += segs_in;
1967 	if (skb->len > tcp_hdrlen(skb))
1968 		tp->data_segs_in += segs_in;
1969 }
1970 
1971 /*
1972  * TCP listen path runs lockless.
1973  * We forced "struct sock" to be const qualified to make sure
1974  * we don't modify one of its field by mistake.
1975  * Here, we increment sk_drops which is an atomic_t, so we can safely
1976  * make sock writable again.
1977  */
1978 static inline void tcp_listendrop(const struct sock *sk)
1979 {
1980 	atomic_inc(&((struct sock *)sk)->sk_drops);
1981 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1982 }
1983 
1984 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1985 
1986 /*
1987  * Interface for adding Upper Level Protocols over TCP
1988  */
1989 
1990 #define TCP_ULP_NAME_MAX	16
1991 #define TCP_ULP_MAX		128
1992 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1993 
1994 enum {
1995 	TCP_ULP_TLS,
1996 	TCP_ULP_BPF,
1997 };
1998 
1999 struct tcp_ulp_ops {
2000 	struct list_head	list;
2001 
2002 	/* initialize ulp */
2003 	int (*init)(struct sock *sk);
2004 	/* cleanup ulp */
2005 	void (*release)(struct sock *sk);
2006 
2007 	int		uid;
2008 	char		name[TCP_ULP_NAME_MAX];
2009 	bool		user_visible;
2010 	struct module	*owner;
2011 };
2012 int tcp_register_ulp(struct tcp_ulp_ops *type);
2013 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2014 int tcp_set_ulp(struct sock *sk, const char *name);
2015 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2016 void tcp_get_available_ulp(char *buf, size_t len);
2017 void tcp_cleanup_ulp(struct sock *sk);
2018 
2019 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2020  * is < 0, then the BPF op failed (for example if the loaded BPF
2021  * program does not support the chosen operation or there is no BPF
2022  * program loaded).
2023  */
2024 #ifdef CONFIG_BPF
2025 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2026 {
2027 	struct bpf_sock_ops_kern sock_ops;
2028 	int ret;
2029 
2030 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2031 	if (sk_fullsock(sk)) {
2032 		sock_ops.is_fullsock = 1;
2033 		sock_owned_by_me(sk);
2034 	}
2035 
2036 	sock_ops.sk = sk;
2037 	sock_ops.op = op;
2038 	if (nargs > 0)
2039 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2040 
2041 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2042 	if (ret == 0)
2043 		ret = sock_ops.reply;
2044 	else
2045 		ret = -1;
2046 	return ret;
2047 }
2048 
2049 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2050 {
2051 	u32 args[2] = {arg1, arg2};
2052 
2053 	return tcp_call_bpf(sk, op, 2, args);
2054 }
2055 
2056 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2057 				    u32 arg3)
2058 {
2059 	u32 args[3] = {arg1, arg2, arg3};
2060 
2061 	return tcp_call_bpf(sk, op, 3, args);
2062 }
2063 
2064 #else
2065 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2066 {
2067 	return -EPERM;
2068 }
2069 
2070 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2071 {
2072 	return -EPERM;
2073 }
2074 
2075 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2076 				    u32 arg3)
2077 {
2078 	return -EPERM;
2079 }
2080 
2081 #endif
2082 
2083 static inline u32 tcp_timeout_init(struct sock *sk)
2084 {
2085 	int timeout;
2086 
2087 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2088 
2089 	if (timeout <= 0)
2090 		timeout = TCP_TIMEOUT_INIT;
2091 	return timeout;
2092 }
2093 
2094 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2095 {
2096 	int rwnd;
2097 
2098 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2099 
2100 	if (rwnd < 0)
2101 		rwnd = 0;
2102 	return rwnd;
2103 }
2104 
2105 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2106 {
2107 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2108 }
2109 
2110 #if IS_ENABLED(CONFIG_SMC)
2111 extern struct static_key_false tcp_have_smc;
2112 #endif
2113 
2114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2115 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2116 			     void (*cad)(struct sock *sk, u32 ack_seq));
2117 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2118 
2119 #endif
2120 
2121 #endif	/* _TCP_H */
2122