xref: /openbmc/linux/include/net/tcp.h (revision 7b7090b4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
353 				     bool force_schedule);
354 
355 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
356 static inline void tcp_dec_quickack_mode(struct sock *sk,
357 					 const unsigned int pkts)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int tcp_getsockopt(struct sock *sk, int level, int optname,
406 		   char __user *optval, int __user *optlen);
407 bool tcp_bpf_bypass_getsockopt(int level, int optname);
408 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
409 		   unsigned int optlen);
410 void tcp_set_keepalive(struct sock *sk, int val);
411 void tcp_syn_ack_timeout(const struct request_sock *req);
412 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
413 		int flags, int *addr_len);
414 int tcp_set_rcvlowat(struct sock *sk, int val);
415 int tcp_set_window_clamp(struct sock *sk, int val);
416 void tcp_update_recv_tstamps(struct sk_buff *skb,
417 			     struct scm_timestamping_internal *tss);
418 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
419 			struct scm_timestamping_internal *tss);
420 void tcp_data_ready(struct sock *sk);
421 #ifdef CONFIG_MMU
422 int tcp_mmap(struct file *file, struct socket *sock,
423 	     struct vm_area_struct *vma);
424 #endif
425 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
426 		       struct tcp_options_received *opt_rx,
427 		       int estab, struct tcp_fastopen_cookie *foc);
428 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
429 
430 /*
431  *	BPF SKB-less helpers
432  */
433 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
438 			  const struct tcp_request_sock_ops *af_ops,
439 			  struct sock *sk, struct tcphdr *th);
440 /*
441  *	TCP v4 functions exported for the inet6 API
442  */
443 
444 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
445 void tcp_v4_mtu_reduced(struct sock *sk);
446 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
447 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
448 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
449 struct sock *tcp_create_openreq_child(const struct sock *sk,
450 				      struct request_sock *req,
451 				      struct sk_buff *skb);
452 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
453 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
454 				  struct request_sock *req,
455 				  struct dst_entry *dst,
456 				  struct request_sock *req_unhash,
457 				  bool *own_req);
458 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
459 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
460 int tcp_connect(struct sock *sk);
461 enum tcp_synack_type {
462 	TCP_SYNACK_NORMAL,
463 	TCP_SYNACK_FASTOPEN,
464 	TCP_SYNACK_COOKIE,
465 };
466 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
467 				struct request_sock *req,
468 				struct tcp_fastopen_cookie *foc,
469 				enum tcp_synack_type synack_type,
470 				struct sk_buff *syn_skb);
471 int tcp_disconnect(struct sock *sk, int flags);
472 
473 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
474 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
475 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
476 
477 /* From syncookies.c */
478 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
479 				 struct request_sock *req,
480 				 struct dst_entry *dst, u32 tsoff);
481 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
482 		      u32 cookie);
483 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
484 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
485 					    const struct tcp_request_sock_ops *af_ops,
486 					    struct sock *sk, struct sk_buff *skb);
487 #ifdef CONFIG_SYN_COOKIES
488 
489 /* Syncookies use a monotonic timer which increments every 60 seconds.
490  * This counter is used both as a hash input and partially encoded into
491  * the cookie value.  A cookie is only validated further if the delta
492  * between the current counter value and the encoded one is less than this,
493  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
494  * the counter advances immediately after a cookie is generated).
495  */
496 #define MAX_SYNCOOKIE_AGE	2
497 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
498 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
499 
500 /* syncookies: remember time of last synqueue overflow
501  * But do not dirty this field too often (once per second is enough)
502  * It is racy as we do not hold a lock, but race is very minor.
503  */
504 static inline void tcp_synq_overflow(const struct sock *sk)
505 {
506 	unsigned int last_overflow;
507 	unsigned int now = jiffies;
508 
509 	if (sk->sk_reuseport) {
510 		struct sock_reuseport *reuse;
511 
512 		reuse = rcu_dereference(sk->sk_reuseport_cb);
513 		if (likely(reuse)) {
514 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
515 			if (!time_between32(now, last_overflow,
516 					    last_overflow + HZ))
517 				WRITE_ONCE(reuse->synq_overflow_ts, now);
518 			return;
519 		}
520 	}
521 
522 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
523 	if (!time_between32(now, last_overflow, last_overflow + HZ))
524 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
525 }
526 
527 /* syncookies: no recent synqueue overflow on this listening socket? */
528 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
529 {
530 	unsigned int last_overflow;
531 	unsigned int now = jiffies;
532 
533 	if (sk->sk_reuseport) {
534 		struct sock_reuseport *reuse;
535 
536 		reuse = rcu_dereference(sk->sk_reuseport_cb);
537 		if (likely(reuse)) {
538 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
539 			return !time_between32(now, last_overflow - HZ,
540 					       last_overflow +
541 					       TCP_SYNCOOKIE_VALID);
542 		}
543 	}
544 
545 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
546 
547 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
548 	 * then we're under synflood. However, we have to use
549 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
550 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
551 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
552 	 * which could lead to rejecting a valid syncookie.
553 	 */
554 	return !time_between32(now, last_overflow - HZ,
555 			       last_overflow + TCP_SYNCOOKIE_VALID);
556 }
557 
558 static inline u32 tcp_cookie_time(void)
559 {
560 	u64 val = get_jiffies_64();
561 
562 	do_div(val, TCP_SYNCOOKIE_PERIOD);
563 	return val;
564 }
565 
566 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
567 			      u16 *mssp);
568 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
569 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
570 bool cookie_timestamp_decode(const struct net *net,
571 			     struct tcp_options_received *opt);
572 bool cookie_ecn_ok(const struct tcp_options_received *opt,
573 		   const struct net *net, const struct dst_entry *dst);
574 
575 /* From net/ipv6/syncookies.c */
576 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
577 		      u32 cookie);
578 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
579 
580 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
581 			      const struct tcphdr *th, u16 *mssp);
582 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
583 #endif
584 /* tcp_output.c */
585 
586 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
587 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
588 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
589 			       int nonagle);
590 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
591 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
592 void tcp_retransmit_timer(struct sock *sk);
593 void tcp_xmit_retransmit_queue(struct sock *);
594 void tcp_simple_retransmit(struct sock *);
595 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
596 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
597 enum tcp_queue {
598 	TCP_FRAG_IN_WRITE_QUEUE,
599 	TCP_FRAG_IN_RTX_QUEUE,
600 };
601 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
602 		 struct sk_buff *skb, u32 len,
603 		 unsigned int mss_now, gfp_t gfp);
604 
605 void tcp_send_probe0(struct sock *);
606 void tcp_send_partial(struct sock *);
607 int tcp_write_wakeup(struct sock *, int mib);
608 void tcp_send_fin(struct sock *sk);
609 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
610 int tcp_send_synack(struct sock *);
611 void tcp_push_one(struct sock *, unsigned int mss_now);
612 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
613 void tcp_send_ack(struct sock *sk);
614 void tcp_send_delayed_ack(struct sock *sk);
615 void tcp_send_loss_probe(struct sock *sk);
616 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
617 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
618 			     const struct sk_buff *next_skb);
619 
620 /* tcp_input.c */
621 void tcp_rearm_rto(struct sock *sk);
622 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
623 void tcp_reset(struct sock *sk, struct sk_buff *skb);
624 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
625 void tcp_fin(struct sock *sk);
626 void tcp_check_space(struct sock *sk);
627 
628 /* tcp_timer.c */
629 void tcp_init_xmit_timers(struct sock *);
630 static inline void tcp_clear_xmit_timers(struct sock *sk)
631 {
632 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
633 		__sock_put(sk);
634 
635 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
636 		__sock_put(sk);
637 
638 	inet_csk_clear_xmit_timers(sk);
639 }
640 
641 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
642 unsigned int tcp_current_mss(struct sock *sk);
643 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
644 
645 /* Bound MSS / TSO packet size with the half of the window */
646 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
647 {
648 	int cutoff;
649 
650 	/* When peer uses tiny windows, there is no use in packetizing
651 	 * to sub-MSS pieces for the sake of SWS or making sure there
652 	 * are enough packets in the pipe for fast recovery.
653 	 *
654 	 * On the other hand, for extremely large MSS devices, handling
655 	 * smaller than MSS windows in this way does make sense.
656 	 */
657 	if (tp->max_window > TCP_MSS_DEFAULT)
658 		cutoff = (tp->max_window >> 1);
659 	else
660 		cutoff = tp->max_window;
661 
662 	if (cutoff && pktsize > cutoff)
663 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
664 	else
665 		return pktsize;
666 }
667 
668 /* tcp.c */
669 void tcp_get_info(struct sock *, struct tcp_info *);
670 
671 /* Read 'sendfile()'-style from a TCP socket */
672 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
673 		  sk_read_actor_t recv_actor);
674 
675 void tcp_initialize_rcv_mss(struct sock *sk);
676 
677 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
678 int tcp_mss_to_mtu(struct sock *sk, int mss);
679 void tcp_mtup_init(struct sock *sk);
680 
681 static inline void tcp_bound_rto(const struct sock *sk)
682 {
683 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
684 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
685 }
686 
687 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
688 {
689 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
690 }
691 
692 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
693 {
694 	/* mptcp hooks are only on the slow path */
695 	if (sk_is_mptcp((struct sock *)tp))
696 		return;
697 
698 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
699 			       ntohl(TCP_FLAG_ACK) |
700 			       snd_wnd);
701 }
702 
703 static inline void tcp_fast_path_on(struct tcp_sock *tp)
704 {
705 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
706 }
707 
708 static inline void tcp_fast_path_check(struct sock *sk)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 
712 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
713 	    tp->rcv_wnd &&
714 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
715 	    !tp->urg_data)
716 		tcp_fast_path_on(tp);
717 }
718 
719 /* Compute the actual rto_min value */
720 static inline u32 tcp_rto_min(struct sock *sk)
721 {
722 	const struct dst_entry *dst = __sk_dst_get(sk);
723 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
724 
725 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
726 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
727 	return rto_min;
728 }
729 
730 static inline u32 tcp_rto_min_us(struct sock *sk)
731 {
732 	return jiffies_to_usecs(tcp_rto_min(sk));
733 }
734 
735 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
736 {
737 	return dst_metric_locked(dst, RTAX_CC_ALGO);
738 }
739 
740 /* Minimum RTT in usec. ~0 means not available. */
741 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
742 {
743 	return minmax_get(&tp->rtt_min);
744 }
745 
746 /* Compute the actual receive window we are currently advertising.
747  * Rcv_nxt can be after the window if our peer push more data
748  * than the offered window.
749  */
750 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
751 {
752 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
753 
754 	if (win < 0)
755 		win = 0;
756 	return (u32) win;
757 }
758 
759 /* Choose a new window, without checks for shrinking, and without
760  * scaling applied to the result.  The caller does these things
761  * if necessary.  This is a "raw" window selection.
762  */
763 u32 __tcp_select_window(struct sock *sk);
764 
765 void tcp_send_window_probe(struct sock *sk);
766 
767 /* TCP uses 32bit jiffies to save some space.
768  * Note that this is different from tcp_time_stamp, which
769  * historically has been the same until linux-4.13.
770  */
771 #define tcp_jiffies32 ((u32)jiffies)
772 
773 /*
774  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
775  * It is no longer tied to jiffies, but to 1 ms clock.
776  * Note: double check if you want to use tcp_jiffies32 instead of this.
777  */
778 #define TCP_TS_HZ	1000
779 
780 static inline u64 tcp_clock_ns(void)
781 {
782 	return ktime_get_ns();
783 }
784 
785 static inline u64 tcp_clock_us(void)
786 {
787 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
788 }
789 
790 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
791 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
792 {
793 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
794 }
795 
796 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
797 static inline u32 tcp_ns_to_ts(u64 ns)
798 {
799 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
800 }
801 
802 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
803 static inline u32 tcp_time_stamp_raw(void)
804 {
805 	return tcp_ns_to_ts(tcp_clock_ns());
806 }
807 
808 void tcp_mstamp_refresh(struct tcp_sock *tp);
809 
810 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
811 {
812 	return max_t(s64, t1 - t0, 0);
813 }
814 
815 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
816 {
817 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
818 }
819 
820 /* provide the departure time in us unit */
821 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
822 {
823 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
824 }
825 
826 
827 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
828 
829 #define TCPHDR_FIN 0x01
830 #define TCPHDR_SYN 0x02
831 #define TCPHDR_RST 0x04
832 #define TCPHDR_PSH 0x08
833 #define TCPHDR_ACK 0x10
834 #define TCPHDR_URG 0x20
835 #define TCPHDR_ECE 0x40
836 #define TCPHDR_CWR 0x80
837 
838 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
839 
840 /* This is what the send packet queuing engine uses to pass
841  * TCP per-packet control information to the transmission code.
842  * We also store the host-order sequence numbers in here too.
843  * This is 44 bytes if IPV6 is enabled.
844  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
845  */
846 struct tcp_skb_cb {
847 	__u32		seq;		/* Starting sequence number	*/
848 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
849 	union {
850 		/* Note : tcp_tw_isn is used in input path only
851 		 *	  (isn chosen by tcp_timewait_state_process())
852 		 *
853 		 * 	  tcp_gso_segs/size are used in write queue only,
854 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
855 		 */
856 		__u32		tcp_tw_isn;
857 		struct {
858 			u16	tcp_gso_segs;
859 			u16	tcp_gso_size;
860 		};
861 	};
862 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
863 
864 	__u8		sacked;		/* State flags for SACK.	*/
865 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
866 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
867 #define TCPCB_LOST		0x04	/* SKB is lost			*/
868 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
869 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
870 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
871 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
872 				TCPCB_REPAIRED)
873 
874 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
875 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
876 			eor:1,		/* Is skb MSG_EOR marked? */
877 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
878 			unused:5;
879 	__u32		ack_seq;	/* Sequence number ACK'd	*/
880 	union {
881 		struct {
882 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
883 			/* There is space for up to 24 bytes */
884 			__u32 is_app_limited:1, /* cwnd not fully used? */
885 			      delivered_ce:20,
886 			      unused:11;
887 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
888 			__u32 delivered;
889 			/* start of send pipeline phase */
890 			u64 first_tx_mstamp;
891 			/* when we reached the "delivered" count */
892 			u64 delivered_mstamp;
893 		} tx;   /* only used for outgoing skbs */
894 		union {
895 			struct inet_skb_parm	h4;
896 #if IS_ENABLED(CONFIG_IPV6)
897 			struct inet6_skb_parm	h6;
898 #endif
899 		} header;	/* For incoming skbs */
900 	};
901 };
902 
903 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
904 
905 extern const struct inet_connection_sock_af_ops ipv4_specific;
906 
907 #if IS_ENABLED(CONFIG_IPV6)
908 /* This is the variant of inet6_iif() that must be used by TCP,
909  * as TCP moves IP6CB into a different location in skb->cb[]
910  */
911 static inline int tcp_v6_iif(const struct sk_buff *skb)
912 {
913 	return TCP_SKB_CB(skb)->header.h6.iif;
914 }
915 
916 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
917 {
918 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
919 
920 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
921 }
922 
923 /* TCP_SKB_CB reference means this can not be used from early demux */
924 static inline int tcp_v6_sdif(const struct sk_buff *skb)
925 {
926 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
927 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
928 		return TCP_SKB_CB(skb)->header.h6.iif;
929 #endif
930 	return 0;
931 }
932 
933 extern const struct inet_connection_sock_af_ops ipv6_specific;
934 
935 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
936 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
937 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
938 
939 #endif
940 
941 /* TCP_SKB_CB reference means this can not be used from early demux */
942 static inline int tcp_v4_sdif(struct sk_buff *skb)
943 {
944 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
945 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
946 		return TCP_SKB_CB(skb)->header.h4.iif;
947 #endif
948 	return 0;
949 }
950 
951 /* Due to TSO, an SKB can be composed of multiple actual
952  * packets.  To keep these tracked properly, we use this.
953  */
954 static inline int tcp_skb_pcount(const struct sk_buff *skb)
955 {
956 	return TCP_SKB_CB(skb)->tcp_gso_segs;
957 }
958 
959 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
960 {
961 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
962 }
963 
964 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
965 {
966 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
967 }
968 
969 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
970 static inline int tcp_skb_mss(const struct sk_buff *skb)
971 {
972 	return TCP_SKB_CB(skb)->tcp_gso_size;
973 }
974 
975 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
976 {
977 	return likely(!TCP_SKB_CB(skb)->eor);
978 }
979 
980 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
981 					const struct sk_buff *from)
982 {
983 	return likely(tcp_skb_can_collapse_to(to) &&
984 		      mptcp_skb_can_collapse(to, from) &&
985 		      skb_pure_zcopy_same(to, from));
986 }
987 
988 /* Events passed to congestion control interface */
989 enum tcp_ca_event {
990 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
991 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
992 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
993 	CA_EVENT_LOSS,		/* loss timeout */
994 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
995 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
996 };
997 
998 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
999 enum tcp_ca_ack_event_flags {
1000 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1001 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1002 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1003 };
1004 
1005 /*
1006  * Interface for adding new TCP congestion control handlers
1007  */
1008 #define TCP_CA_NAME_MAX	16
1009 #define TCP_CA_MAX	128
1010 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1011 
1012 #define TCP_CA_UNSPEC	0
1013 
1014 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1015 #define TCP_CONG_NON_RESTRICTED 0x1
1016 /* Requires ECN/ECT set on all packets */
1017 #define TCP_CONG_NEEDS_ECN	0x2
1018 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1019 
1020 union tcp_cc_info;
1021 
1022 struct ack_sample {
1023 	u32 pkts_acked;
1024 	s32 rtt_us;
1025 	u32 in_flight;
1026 };
1027 
1028 /* A rate sample measures the number of (original/retransmitted) data
1029  * packets delivered "delivered" over an interval of time "interval_us".
1030  * The tcp_rate.c code fills in the rate sample, and congestion
1031  * control modules that define a cong_control function to run at the end
1032  * of ACK processing can optionally chose to consult this sample when
1033  * setting cwnd and pacing rate.
1034  * A sample is invalid if "delivered" or "interval_us" is negative.
1035  */
1036 struct rate_sample {
1037 	u64  prior_mstamp; /* starting timestamp for interval */
1038 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1039 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1040 	s32  delivered;		/* number of packets delivered over interval */
1041 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1042 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1043 	u32 snd_interval_us;	/* snd interval for delivered packets */
1044 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1045 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1046 	int  losses;		/* number of packets marked lost upon ACK */
1047 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1048 	u32  prior_in_flight;	/* in flight before this ACK */
1049 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1050 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1051 	bool is_retrans;	/* is sample from retransmission? */
1052 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1053 };
1054 
1055 struct tcp_congestion_ops {
1056 /* fast path fields are put first to fill one cache line */
1057 
1058 	/* return slow start threshold (required) */
1059 	u32 (*ssthresh)(struct sock *sk);
1060 
1061 	/* do new cwnd calculation (required) */
1062 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1063 
1064 	/* call before changing ca_state (optional) */
1065 	void (*set_state)(struct sock *sk, u8 new_state);
1066 
1067 	/* call when cwnd event occurs (optional) */
1068 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1069 
1070 	/* call when ack arrives (optional) */
1071 	void (*in_ack_event)(struct sock *sk, u32 flags);
1072 
1073 	/* hook for packet ack accounting (optional) */
1074 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1075 
1076 	/* override sysctl_tcp_min_tso_segs */
1077 	u32 (*min_tso_segs)(struct sock *sk);
1078 
1079 	/* call when packets are delivered to update cwnd and pacing rate,
1080 	 * after all the ca_state processing. (optional)
1081 	 */
1082 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1083 
1084 
1085 	/* new value of cwnd after loss (required) */
1086 	u32  (*undo_cwnd)(struct sock *sk);
1087 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1088 	u32 (*sndbuf_expand)(struct sock *sk);
1089 
1090 /* control/slow paths put last */
1091 	/* get info for inet_diag (optional) */
1092 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1093 			   union tcp_cc_info *info);
1094 
1095 	char 			name[TCP_CA_NAME_MAX];
1096 	struct module		*owner;
1097 	struct list_head	list;
1098 	u32			key;
1099 	u32			flags;
1100 
1101 	/* initialize private data (optional) */
1102 	void (*init)(struct sock *sk);
1103 	/* cleanup private data  (optional) */
1104 	void (*release)(struct sock *sk);
1105 } ____cacheline_aligned_in_smp;
1106 
1107 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1108 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1109 
1110 void tcp_assign_congestion_control(struct sock *sk);
1111 void tcp_init_congestion_control(struct sock *sk);
1112 void tcp_cleanup_congestion_control(struct sock *sk);
1113 int tcp_set_default_congestion_control(struct net *net, const char *name);
1114 void tcp_get_default_congestion_control(struct net *net, char *name);
1115 void tcp_get_available_congestion_control(char *buf, size_t len);
1116 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1117 int tcp_set_allowed_congestion_control(char *allowed);
1118 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1119 			       bool cap_net_admin);
1120 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1121 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1122 
1123 u32 tcp_reno_ssthresh(struct sock *sk);
1124 u32 tcp_reno_undo_cwnd(struct sock *sk);
1125 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1126 extern struct tcp_congestion_ops tcp_reno;
1127 
1128 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1129 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1130 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1131 #ifdef CONFIG_INET
1132 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1133 #else
1134 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1135 {
1136 	return NULL;
1137 }
1138 #endif
1139 
1140 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1141 {
1142 	const struct inet_connection_sock *icsk = inet_csk(sk);
1143 
1144 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1145 }
1146 
1147 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1148 {
1149 	const struct inet_connection_sock *icsk = inet_csk(sk);
1150 
1151 	if (icsk->icsk_ca_ops->cwnd_event)
1152 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1153 }
1154 
1155 /* From tcp_cong.c */
1156 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1157 
1158 /* From tcp_rate.c */
1159 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1160 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1161 			    struct rate_sample *rs);
1162 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1163 		  bool is_sack_reneg, struct rate_sample *rs);
1164 void tcp_rate_check_app_limited(struct sock *sk);
1165 
1166 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1167 {
1168 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1169 }
1170 
1171 /* These functions determine how the current flow behaves in respect of SACK
1172  * handling. SACK is negotiated with the peer, and therefore it can vary
1173  * between different flows.
1174  *
1175  * tcp_is_sack - SACK enabled
1176  * tcp_is_reno - No SACK
1177  */
1178 static inline int tcp_is_sack(const struct tcp_sock *tp)
1179 {
1180 	return likely(tp->rx_opt.sack_ok);
1181 }
1182 
1183 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1184 {
1185 	return !tcp_is_sack(tp);
1186 }
1187 
1188 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1189 {
1190 	return tp->sacked_out + tp->lost_out;
1191 }
1192 
1193 /* This determines how many packets are "in the network" to the best
1194  * of our knowledge.  In many cases it is conservative, but where
1195  * detailed information is available from the receiver (via SACK
1196  * blocks etc.) we can make more aggressive calculations.
1197  *
1198  * Use this for decisions involving congestion control, use just
1199  * tp->packets_out to determine if the send queue is empty or not.
1200  *
1201  * Read this equation as:
1202  *
1203  *	"Packets sent once on transmission queue" MINUS
1204  *	"Packets left network, but not honestly ACKed yet" PLUS
1205  *	"Packets fast retransmitted"
1206  */
1207 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1208 {
1209 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1210 }
1211 
1212 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1213 
1214 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1215 {
1216 	return tp->snd_cwnd;
1217 }
1218 
1219 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1220 {
1221 	WARN_ON_ONCE((int)val <= 0);
1222 	tp->snd_cwnd = val;
1223 }
1224 
1225 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1226 {
1227 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1228 }
1229 
1230 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1231 {
1232 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1233 }
1234 
1235 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1236 {
1237 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1238 	       (1 << inet_csk(sk)->icsk_ca_state);
1239 }
1240 
1241 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1242  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1243  * ssthresh.
1244  */
1245 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1246 {
1247 	const struct tcp_sock *tp = tcp_sk(sk);
1248 
1249 	if (tcp_in_cwnd_reduction(sk))
1250 		return tp->snd_ssthresh;
1251 	else
1252 		return max(tp->snd_ssthresh,
1253 			   ((tcp_snd_cwnd(tp) >> 1) +
1254 			    (tcp_snd_cwnd(tp) >> 2)));
1255 }
1256 
1257 /* Use define here intentionally to get WARN_ON location shown at the caller */
1258 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1259 
1260 void tcp_enter_cwr(struct sock *sk);
1261 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1262 
1263 /* The maximum number of MSS of available cwnd for which TSO defers
1264  * sending if not using sysctl_tcp_tso_win_divisor.
1265  */
1266 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1267 {
1268 	return 3;
1269 }
1270 
1271 /* Returns end sequence number of the receiver's advertised window */
1272 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1273 {
1274 	return tp->snd_una + tp->snd_wnd;
1275 }
1276 
1277 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1278  * flexible approach. The RFC suggests cwnd should not be raised unless
1279  * it was fully used previously. And that's exactly what we do in
1280  * congestion avoidance mode. But in slow start we allow cwnd to grow
1281  * as long as the application has used half the cwnd.
1282  * Example :
1283  *    cwnd is 10 (IW10), but application sends 9 frames.
1284  *    We allow cwnd to reach 18 when all frames are ACKed.
1285  * This check is safe because it's as aggressive as slow start which already
1286  * risks 100% overshoot. The advantage is that we discourage application to
1287  * either send more filler packets or data to artificially blow up the cwnd
1288  * usage, and allow application-limited process to probe bw more aggressively.
1289  */
1290 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1291 {
1292 	const struct tcp_sock *tp = tcp_sk(sk);
1293 
1294 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1295 	if (tcp_in_slow_start(tp))
1296 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1297 
1298 	return tp->is_cwnd_limited;
1299 }
1300 
1301 /* BBR congestion control needs pacing.
1302  * Same remark for SO_MAX_PACING_RATE.
1303  * sch_fq packet scheduler is efficiently handling pacing,
1304  * but is not always installed/used.
1305  * Return true if TCP stack should pace packets itself.
1306  */
1307 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1308 {
1309 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1310 }
1311 
1312 /* Estimates in how many jiffies next packet for this flow can be sent.
1313  * Scheduling a retransmit timer too early would be silly.
1314  */
1315 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1316 {
1317 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1318 
1319 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1320 }
1321 
1322 static inline void tcp_reset_xmit_timer(struct sock *sk,
1323 					const int what,
1324 					unsigned long when,
1325 					const unsigned long max_when)
1326 {
1327 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1328 				  max_when);
1329 }
1330 
1331 /* Something is really bad, we could not queue an additional packet,
1332  * because qdisc is full or receiver sent a 0 window, or we are paced.
1333  * We do not want to add fuel to the fire, or abort too early,
1334  * so make sure the timer we arm now is at least 200ms in the future,
1335  * regardless of current icsk_rto value (as it could be ~2ms)
1336  */
1337 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1338 {
1339 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1340 }
1341 
1342 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1343 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1344 					    unsigned long max_when)
1345 {
1346 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1347 			   inet_csk(sk)->icsk_backoff);
1348 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1349 
1350 	return (unsigned long)min_t(u64, when, max_when);
1351 }
1352 
1353 static inline void tcp_check_probe_timer(struct sock *sk)
1354 {
1355 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1356 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1357 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1358 }
1359 
1360 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1361 {
1362 	tp->snd_wl1 = seq;
1363 }
1364 
1365 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1366 {
1367 	tp->snd_wl1 = seq;
1368 }
1369 
1370 /*
1371  * Calculate(/check) TCP checksum
1372  */
1373 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1374 				   __be32 daddr, __wsum base)
1375 {
1376 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1377 }
1378 
1379 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1380 {
1381 	return !skb_csum_unnecessary(skb) &&
1382 		__skb_checksum_complete(skb);
1383 }
1384 
1385 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1386 		     enum skb_drop_reason *reason);
1387 
1388 
1389 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1390 void tcp_set_state(struct sock *sk, int state);
1391 void tcp_done(struct sock *sk);
1392 int tcp_abort(struct sock *sk, int err);
1393 
1394 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1395 {
1396 	rx_opt->dsack = 0;
1397 	rx_opt->num_sacks = 0;
1398 }
1399 
1400 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1401 
1402 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1403 {
1404 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1405 	struct tcp_sock *tp = tcp_sk(sk);
1406 	s32 delta;
1407 
1408 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1409 	    ca_ops->cong_control)
1410 		return;
1411 	delta = tcp_jiffies32 - tp->lsndtime;
1412 	if (delta > inet_csk(sk)->icsk_rto)
1413 		tcp_cwnd_restart(sk, delta);
1414 }
1415 
1416 /* Determine a window scaling and initial window to offer. */
1417 void tcp_select_initial_window(const struct sock *sk, int __space,
1418 			       __u32 mss, __u32 *rcv_wnd,
1419 			       __u32 *window_clamp, int wscale_ok,
1420 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1421 
1422 static inline int tcp_win_from_space(const struct sock *sk, int space)
1423 {
1424 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1425 
1426 	return tcp_adv_win_scale <= 0 ?
1427 		(space>>(-tcp_adv_win_scale)) :
1428 		space - (space>>tcp_adv_win_scale);
1429 }
1430 
1431 /* Note: caller must be prepared to deal with negative returns */
1432 static inline int tcp_space(const struct sock *sk)
1433 {
1434 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1435 				  READ_ONCE(sk->sk_backlog.len) -
1436 				  atomic_read(&sk->sk_rmem_alloc));
1437 }
1438 
1439 static inline int tcp_full_space(const struct sock *sk)
1440 {
1441 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1442 }
1443 
1444 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1445 {
1446 	int unused_mem = sk_unused_reserved_mem(sk);
1447 	struct tcp_sock *tp = tcp_sk(sk);
1448 
1449 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1450 	if (unused_mem)
1451 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1452 					 tcp_win_from_space(sk, unused_mem));
1453 }
1454 
1455 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1456 
1457 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1458  * If 87.5 % (7/8) of the space has been consumed, we want to override
1459  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1460  * len/truesize ratio.
1461  */
1462 static inline bool tcp_rmem_pressure(const struct sock *sk)
1463 {
1464 	int rcvbuf, threshold;
1465 
1466 	if (tcp_under_memory_pressure(sk))
1467 		return true;
1468 
1469 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1470 	threshold = rcvbuf - (rcvbuf >> 3);
1471 
1472 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1473 }
1474 
1475 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1476 {
1477 	const struct tcp_sock *tp = tcp_sk(sk);
1478 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1479 
1480 	if (avail <= 0)
1481 		return false;
1482 
1483 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1484 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1485 }
1486 
1487 extern void tcp_openreq_init_rwin(struct request_sock *req,
1488 				  const struct sock *sk_listener,
1489 				  const struct dst_entry *dst);
1490 
1491 void tcp_enter_memory_pressure(struct sock *sk);
1492 void tcp_leave_memory_pressure(struct sock *sk);
1493 
1494 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1495 {
1496 	struct net *net = sock_net((struct sock *)tp);
1497 
1498 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1499 }
1500 
1501 static inline int keepalive_time_when(const struct tcp_sock *tp)
1502 {
1503 	struct net *net = sock_net((struct sock *)tp);
1504 
1505 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1506 }
1507 
1508 static inline int keepalive_probes(const struct tcp_sock *tp)
1509 {
1510 	struct net *net = sock_net((struct sock *)tp);
1511 
1512 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1513 }
1514 
1515 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1516 {
1517 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1518 
1519 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1520 			  tcp_jiffies32 - tp->rcv_tstamp);
1521 }
1522 
1523 static inline int tcp_fin_time(const struct sock *sk)
1524 {
1525 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1526 	const int rto = inet_csk(sk)->icsk_rto;
1527 
1528 	if (fin_timeout < (rto << 2) - (rto >> 1))
1529 		fin_timeout = (rto << 2) - (rto >> 1);
1530 
1531 	return fin_timeout;
1532 }
1533 
1534 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1535 				  int paws_win)
1536 {
1537 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1538 		return true;
1539 	if (unlikely(!time_before32(ktime_get_seconds(),
1540 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1541 		return true;
1542 	/*
1543 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1544 	 * then following tcp messages have valid values. Ignore 0 value,
1545 	 * or else 'negative' tsval might forbid us to accept their packets.
1546 	 */
1547 	if (!rx_opt->ts_recent)
1548 		return true;
1549 	return false;
1550 }
1551 
1552 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1553 				   int rst)
1554 {
1555 	if (tcp_paws_check(rx_opt, 0))
1556 		return false;
1557 
1558 	/* RST segments are not recommended to carry timestamp,
1559 	   and, if they do, it is recommended to ignore PAWS because
1560 	   "their cleanup function should take precedence over timestamps."
1561 	   Certainly, it is mistake. It is necessary to understand the reasons
1562 	   of this constraint to relax it: if peer reboots, clock may go
1563 	   out-of-sync and half-open connections will not be reset.
1564 	   Actually, the problem would be not existing if all
1565 	   the implementations followed draft about maintaining clock
1566 	   via reboots. Linux-2.2 DOES NOT!
1567 
1568 	   However, we can relax time bounds for RST segments to MSL.
1569 	 */
1570 	if (rst && !time_before32(ktime_get_seconds(),
1571 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1572 		return false;
1573 	return true;
1574 }
1575 
1576 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1577 			  int mib_idx, u32 *last_oow_ack_time);
1578 
1579 static inline void tcp_mib_init(struct net *net)
1580 {
1581 	/* See RFC 2012 */
1582 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1583 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1584 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1585 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1586 }
1587 
1588 /* from STCP */
1589 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1590 {
1591 	tp->lost_skb_hint = NULL;
1592 }
1593 
1594 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1595 {
1596 	tcp_clear_retrans_hints_partial(tp);
1597 	tp->retransmit_skb_hint = NULL;
1598 }
1599 
1600 union tcp_md5_addr {
1601 	struct in_addr  a4;
1602 #if IS_ENABLED(CONFIG_IPV6)
1603 	struct in6_addr	a6;
1604 #endif
1605 };
1606 
1607 /* - key database */
1608 struct tcp_md5sig_key {
1609 	struct hlist_node	node;
1610 	u8			keylen;
1611 	u8			family; /* AF_INET or AF_INET6 */
1612 	u8			prefixlen;
1613 	u8			flags;
1614 	union tcp_md5_addr	addr;
1615 	int			l3index; /* set if key added with L3 scope */
1616 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1617 	struct rcu_head		rcu;
1618 };
1619 
1620 /* - sock block */
1621 struct tcp_md5sig_info {
1622 	struct hlist_head	head;
1623 	struct rcu_head		rcu;
1624 };
1625 
1626 /* - pseudo header */
1627 struct tcp4_pseudohdr {
1628 	__be32		saddr;
1629 	__be32		daddr;
1630 	__u8		pad;
1631 	__u8		protocol;
1632 	__be16		len;
1633 };
1634 
1635 struct tcp6_pseudohdr {
1636 	struct in6_addr	saddr;
1637 	struct in6_addr daddr;
1638 	__be32		len;
1639 	__be32		protocol;	/* including padding */
1640 };
1641 
1642 union tcp_md5sum_block {
1643 	struct tcp4_pseudohdr ip4;
1644 #if IS_ENABLED(CONFIG_IPV6)
1645 	struct tcp6_pseudohdr ip6;
1646 #endif
1647 };
1648 
1649 /* - pool: digest algorithm, hash description and scratch buffer */
1650 struct tcp_md5sig_pool {
1651 	struct ahash_request	*md5_req;
1652 	void			*scratch;
1653 };
1654 
1655 /* - functions */
1656 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1657 			const struct sock *sk, const struct sk_buff *skb);
1658 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1659 		   int family, u8 prefixlen, int l3index, u8 flags,
1660 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1661 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1662 		   int family, u8 prefixlen, int l3index, u8 flags);
1663 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1664 					 const struct sock *addr_sk);
1665 
1666 #ifdef CONFIG_TCP_MD5SIG
1667 #include <linux/jump_label.h>
1668 extern struct static_key_false tcp_md5_needed;
1669 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1670 					   const union tcp_md5_addr *addr,
1671 					   int family);
1672 static inline struct tcp_md5sig_key *
1673 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1674 		  const union tcp_md5_addr *addr, int family)
1675 {
1676 	if (!static_branch_unlikely(&tcp_md5_needed))
1677 		return NULL;
1678 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1679 }
1680 
1681 enum skb_drop_reason
1682 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1683 		     const void *saddr, const void *daddr,
1684 		     int family, int dif, int sdif);
1685 
1686 
1687 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1688 #else
1689 static inline struct tcp_md5sig_key *
1690 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1691 		  const union tcp_md5_addr *addr, int family)
1692 {
1693 	return NULL;
1694 }
1695 
1696 static inline enum skb_drop_reason
1697 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1698 		     const void *saddr, const void *daddr,
1699 		     int family, int dif, int sdif)
1700 {
1701 	return SKB_NOT_DROPPED_YET;
1702 }
1703 #define tcp_twsk_md5_key(twsk)	NULL
1704 #endif
1705 
1706 bool tcp_alloc_md5sig_pool(void);
1707 
1708 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1709 static inline void tcp_put_md5sig_pool(void)
1710 {
1711 	local_bh_enable();
1712 }
1713 
1714 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1715 			  unsigned int header_len);
1716 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1717 		     const struct tcp_md5sig_key *key);
1718 
1719 /* From tcp_fastopen.c */
1720 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1721 			    struct tcp_fastopen_cookie *cookie);
1722 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1723 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1724 			    u16 try_exp);
1725 struct tcp_fastopen_request {
1726 	/* Fast Open cookie. Size 0 means a cookie request */
1727 	struct tcp_fastopen_cookie	cookie;
1728 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1729 	size_t				size;
1730 	int				copied;	/* queued in tcp_connect() */
1731 	struct ubuf_info		*uarg;
1732 };
1733 void tcp_free_fastopen_req(struct tcp_sock *tp);
1734 void tcp_fastopen_destroy_cipher(struct sock *sk);
1735 void tcp_fastopen_ctx_destroy(struct net *net);
1736 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1737 			      void *primary_key, void *backup_key);
1738 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1739 			    u64 *key);
1740 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1741 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1742 			      struct request_sock *req,
1743 			      struct tcp_fastopen_cookie *foc,
1744 			      const struct dst_entry *dst);
1745 void tcp_fastopen_init_key_once(struct net *net);
1746 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1747 			     struct tcp_fastopen_cookie *cookie);
1748 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1749 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1750 #define TCP_FASTOPEN_KEY_MAX 2
1751 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1752 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1753 
1754 /* Fastopen key context */
1755 struct tcp_fastopen_context {
1756 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1757 	int		num;
1758 	struct rcu_head	rcu;
1759 };
1760 
1761 void tcp_fastopen_active_disable(struct sock *sk);
1762 bool tcp_fastopen_active_should_disable(struct sock *sk);
1763 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1764 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1765 
1766 /* Caller needs to wrap with rcu_read_(un)lock() */
1767 static inline
1768 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1769 {
1770 	struct tcp_fastopen_context *ctx;
1771 
1772 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1773 	if (!ctx)
1774 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1775 	return ctx;
1776 }
1777 
1778 static inline
1779 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1780 			       const struct tcp_fastopen_cookie *orig)
1781 {
1782 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1783 	    orig->len == foc->len &&
1784 	    !memcmp(orig->val, foc->val, foc->len))
1785 		return true;
1786 	return false;
1787 }
1788 
1789 static inline
1790 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1791 {
1792 	return ctx->num;
1793 }
1794 
1795 /* Latencies incurred by various limits for a sender. They are
1796  * chronograph-like stats that are mutually exclusive.
1797  */
1798 enum tcp_chrono {
1799 	TCP_CHRONO_UNSPEC,
1800 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1801 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1802 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1803 	__TCP_CHRONO_MAX,
1804 };
1805 
1806 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1807 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1808 
1809 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1810  * the same memory storage than skb->destructor/_skb_refdst
1811  */
1812 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1813 {
1814 	skb->destructor = NULL;
1815 	skb->_skb_refdst = 0UL;
1816 }
1817 
1818 #define tcp_skb_tsorted_save(skb) {		\
1819 	unsigned long _save = skb->_skb_refdst;	\
1820 	skb->_skb_refdst = 0UL;
1821 
1822 #define tcp_skb_tsorted_restore(skb)		\
1823 	skb->_skb_refdst = _save;		\
1824 }
1825 
1826 void tcp_write_queue_purge(struct sock *sk);
1827 
1828 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1829 {
1830 	return skb_rb_first(&sk->tcp_rtx_queue);
1831 }
1832 
1833 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1834 {
1835 	return skb_rb_last(&sk->tcp_rtx_queue);
1836 }
1837 
1838 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1839 {
1840 	return skb_peek_tail(&sk->sk_write_queue);
1841 }
1842 
1843 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1844 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1845 
1846 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1847 {
1848 	return skb_peek(&sk->sk_write_queue);
1849 }
1850 
1851 static inline bool tcp_skb_is_last(const struct sock *sk,
1852 				   const struct sk_buff *skb)
1853 {
1854 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1855 }
1856 
1857 /**
1858  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1859  * @sk: socket
1860  *
1861  * Since the write queue can have a temporary empty skb in it,
1862  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1863  */
1864 static inline bool tcp_write_queue_empty(const struct sock *sk)
1865 {
1866 	const struct tcp_sock *tp = tcp_sk(sk);
1867 
1868 	return tp->write_seq == tp->snd_nxt;
1869 }
1870 
1871 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1872 {
1873 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1874 }
1875 
1876 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1877 {
1878 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1879 }
1880 
1881 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1882 {
1883 	__skb_queue_tail(&sk->sk_write_queue, skb);
1884 
1885 	/* Queue it, remembering where we must start sending. */
1886 	if (sk->sk_write_queue.next == skb)
1887 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1888 }
1889 
1890 /* Insert new before skb on the write queue of sk.  */
1891 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1892 						  struct sk_buff *skb,
1893 						  struct sock *sk)
1894 {
1895 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1896 }
1897 
1898 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1899 {
1900 	tcp_skb_tsorted_anchor_cleanup(skb);
1901 	__skb_unlink(skb, &sk->sk_write_queue);
1902 }
1903 
1904 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1905 
1906 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1907 {
1908 	tcp_skb_tsorted_anchor_cleanup(skb);
1909 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1910 }
1911 
1912 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1913 {
1914 	list_del(&skb->tcp_tsorted_anchor);
1915 	tcp_rtx_queue_unlink(skb, sk);
1916 	tcp_wmem_free_skb(sk, skb);
1917 }
1918 
1919 static inline void tcp_push_pending_frames(struct sock *sk)
1920 {
1921 	if (tcp_send_head(sk)) {
1922 		struct tcp_sock *tp = tcp_sk(sk);
1923 
1924 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1925 	}
1926 }
1927 
1928 /* Start sequence of the skb just after the highest skb with SACKed
1929  * bit, valid only if sacked_out > 0 or when the caller has ensured
1930  * validity by itself.
1931  */
1932 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1933 {
1934 	if (!tp->sacked_out)
1935 		return tp->snd_una;
1936 
1937 	if (tp->highest_sack == NULL)
1938 		return tp->snd_nxt;
1939 
1940 	return TCP_SKB_CB(tp->highest_sack)->seq;
1941 }
1942 
1943 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1944 {
1945 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1946 }
1947 
1948 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1949 {
1950 	return tcp_sk(sk)->highest_sack;
1951 }
1952 
1953 static inline void tcp_highest_sack_reset(struct sock *sk)
1954 {
1955 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1956 }
1957 
1958 /* Called when old skb is about to be deleted and replaced by new skb */
1959 static inline void tcp_highest_sack_replace(struct sock *sk,
1960 					    struct sk_buff *old,
1961 					    struct sk_buff *new)
1962 {
1963 	if (old == tcp_highest_sack(sk))
1964 		tcp_sk(sk)->highest_sack = new;
1965 }
1966 
1967 /* This helper checks if socket has IP_TRANSPARENT set */
1968 static inline bool inet_sk_transparent(const struct sock *sk)
1969 {
1970 	switch (sk->sk_state) {
1971 	case TCP_TIME_WAIT:
1972 		return inet_twsk(sk)->tw_transparent;
1973 	case TCP_NEW_SYN_RECV:
1974 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1975 	}
1976 	return inet_sk(sk)->transparent;
1977 }
1978 
1979 /* Determines whether this is a thin stream (which may suffer from
1980  * increased latency). Used to trigger latency-reducing mechanisms.
1981  */
1982 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1983 {
1984 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1985 }
1986 
1987 /* /proc */
1988 enum tcp_seq_states {
1989 	TCP_SEQ_STATE_LISTENING,
1990 	TCP_SEQ_STATE_ESTABLISHED,
1991 };
1992 
1993 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1994 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1995 void tcp_seq_stop(struct seq_file *seq, void *v);
1996 
1997 struct tcp_seq_afinfo {
1998 	sa_family_t			family;
1999 };
2000 
2001 struct tcp_iter_state {
2002 	struct seq_net_private	p;
2003 	enum tcp_seq_states	state;
2004 	struct sock		*syn_wait_sk;
2005 	int			bucket, offset, sbucket, num;
2006 	loff_t			last_pos;
2007 };
2008 
2009 extern struct request_sock_ops tcp_request_sock_ops;
2010 extern struct request_sock_ops tcp6_request_sock_ops;
2011 
2012 void tcp_v4_destroy_sock(struct sock *sk);
2013 
2014 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2015 				netdev_features_t features);
2016 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2017 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2018 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2019 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2020 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2021 int tcp_gro_complete(struct sk_buff *skb);
2022 
2023 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2024 
2025 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2026 {
2027 	struct net *net = sock_net((struct sock *)tp);
2028 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
2029 }
2030 
2031 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2032 
2033 #ifdef CONFIG_PROC_FS
2034 int tcp4_proc_init(void);
2035 void tcp4_proc_exit(void);
2036 #endif
2037 
2038 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2039 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2040 		     const struct tcp_request_sock_ops *af_ops,
2041 		     struct sock *sk, struct sk_buff *skb);
2042 
2043 /* TCP af-specific functions */
2044 struct tcp_sock_af_ops {
2045 #ifdef CONFIG_TCP_MD5SIG
2046 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2047 						const struct sock *addr_sk);
2048 	int		(*calc_md5_hash)(char *location,
2049 					 const struct tcp_md5sig_key *md5,
2050 					 const struct sock *sk,
2051 					 const struct sk_buff *skb);
2052 	int		(*md5_parse)(struct sock *sk,
2053 				     int optname,
2054 				     sockptr_t optval,
2055 				     int optlen);
2056 #endif
2057 };
2058 
2059 struct tcp_request_sock_ops {
2060 	u16 mss_clamp;
2061 #ifdef CONFIG_TCP_MD5SIG
2062 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2063 						 const struct sock *addr_sk);
2064 	int		(*calc_md5_hash) (char *location,
2065 					  const struct tcp_md5sig_key *md5,
2066 					  const struct sock *sk,
2067 					  const struct sk_buff *skb);
2068 #endif
2069 #ifdef CONFIG_SYN_COOKIES
2070 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2071 				 __u16 *mss);
2072 #endif
2073 	struct dst_entry *(*route_req)(const struct sock *sk,
2074 				       struct sk_buff *skb,
2075 				       struct flowi *fl,
2076 				       struct request_sock *req);
2077 	u32 (*init_seq)(const struct sk_buff *skb);
2078 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2079 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2080 			   struct flowi *fl, struct request_sock *req,
2081 			   struct tcp_fastopen_cookie *foc,
2082 			   enum tcp_synack_type synack_type,
2083 			   struct sk_buff *syn_skb);
2084 };
2085 
2086 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2087 #if IS_ENABLED(CONFIG_IPV6)
2088 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2089 #endif
2090 
2091 #ifdef CONFIG_SYN_COOKIES
2092 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2093 					 const struct sock *sk, struct sk_buff *skb,
2094 					 __u16 *mss)
2095 {
2096 	tcp_synq_overflow(sk);
2097 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2098 	return ops->cookie_init_seq(skb, mss);
2099 }
2100 #else
2101 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2102 					 const struct sock *sk, struct sk_buff *skb,
2103 					 __u16 *mss)
2104 {
2105 	return 0;
2106 }
2107 #endif
2108 
2109 int tcpv4_offload_init(void);
2110 
2111 void tcp_v4_init(void);
2112 void tcp_init(void);
2113 
2114 /* tcp_recovery.c */
2115 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2116 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2117 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2118 				u32 reo_wnd);
2119 extern bool tcp_rack_mark_lost(struct sock *sk);
2120 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2121 			     u64 xmit_time);
2122 extern void tcp_rack_reo_timeout(struct sock *sk);
2123 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2124 
2125 /* At how many usecs into the future should the RTO fire? */
2126 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2127 {
2128 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2129 	u32 rto = inet_csk(sk)->icsk_rto;
2130 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2131 
2132 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2133 }
2134 
2135 /*
2136  * Save and compile IPv4 options, return a pointer to it
2137  */
2138 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2139 							 struct sk_buff *skb)
2140 {
2141 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2142 	struct ip_options_rcu *dopt = NULL;
2143 
2144 	if (opt->optlen) {
2145 		int opt_size = sizeof(*dopt) + opt->optlen;
2146 
2147 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2148 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2149 			kfree(dopt);
2150 			dopt = NULL;
2151 		}
2152 	}
2153 	return dopt;
2154 }
2155 
2156 /* locally generated TCP pure ACKs have skb->truesize == 2
2157  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2158  * This is much faster than dissecting the packet to find out.
2159  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2160  */
2161 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2162 {
2163 	return skb->truesize == 2;
2164 }
2165 
2166 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2167 {
2168 	skb->truesize = 2;
2169 }
2170 
2171 static inline int tcp_inq(struct sock *sk)
2172 {
2173 	struct tcp_sock *tp = tcp_sk(sk);
2174 	int answ;
2175 
2176 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2177 		answ = 0;
2178 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2179 		   !tp->urg_data ||
2180 		   before(tp->urg_seq, tp->copied_seq) ||
2181 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2182 
2183 		answ = tp->rcv_nxt - tp->copied_seq;
2184 
2185 		/* Subtract 1, if FIN was received */
2186 		if (answ && sock_flag(sk, SOCK_DONE))
2187 			answ--;
2188 	} else {
2189 		answ = tp->urg_seq - tp->copied_seq;
2190 	}
2191 
2192 	return answ;
2193 }
2194 
2195 int tcp_peek_len(struct socket *sock);
2196 
2197 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2198 {
2199 	u16 segs_in;
2200 
2201 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2202 
2203 	/* We update these fields while other threads might
2204 	 * read them from tcp_get_info()
2205 	 */
2206 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2207 	if (skb->len > tcp_hdrlen(skb))
2208 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2209 }
2210 
2211 /*
2212  * TCP listen path runs lockless.
2213  * We forced "struct sock" to be const qualified to make sure
2214  * we don't modify one of its field by mistake.
2215  * Here, we increment sk_drops which is an atomic_t, so we can safely
2216  * make sock writable again.
2217  */
2218 static inline void tcp_listendrop(const struct sock *sk)
2219 {
2220 	atomic_inc(&((struct sock *)sk)->sk_drops);
2221 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2222 }
2223 
2224 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2225 
2226 /*
2227  * Interface for adding Upper Level Protocols over TCP
2228  */
2229 
2230 #define TCP_ULP_NAME_MAX	16
2231 #define TCP_ULP_MAX		128
2232 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2233 
2234 struct tcp_ulp_ops {
2235 	struct list_head	list;
2236 
2237 	/* initialize ulp */
2238 	int (*init)(struct sock *sk);
2239 	/* update ulp */
2240 	void (*update)(struct sock *sk, struct proto *p,
2241 		       void (*write_space)(struct sock *sk));
2242 	/* cleanup ulp */
2243 	void (*release)(struct sock *sk);
2244 	/* diagnostic */
2245 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2246 	size_t (*get_info_size)(const struct sock *sk);
2247 	/* clone ulp */
2248 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2249 		      const gfp_t priority);
2250 
2251 	char		name[TCP_ULP_NAME_MAX];
2252 	struct module	*owner;
2253 };
2254 int tcp_register_ulp(struct tcp_ulp_ops *type);
2255 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2256 int tcp_set_ulp(struct sock *sk, const char *name);
2257 void tcp_get_available_ulp(char *buf, size_t len);
2258 void tcp_cleanup_ulp(struct sock *sk);
2259 void tcp_update_ulp(struct sock *sk, struct proto *p,
2260 		    void (*write_space)(struct sock *sk));
2261 
2262 #define MODULE_ALIAS_TCP_ULP(name)				\
2263 	__MODULE_INFO(alias, alias_userspace, name);		\
2264 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2265 
2266 #ifdef CONFIG_NET_SOCK_MSG
2267 struct sk_msg;
2268 struct sk_psock;
2269 
2270 #ifdef CONFIG_BPF_SYSCALL
2271 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2272 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2273 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2274 #endif /* CONFIG_BPF_SYSCALL */
2275 
2276 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2277 			  int flags);
2278 #endif /* CONFIG_NET_SOCK_MSG */
2279 
2280 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2281 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2282 {
2283 }
2284 #endif
2285 
2286 #ifdef CONFIG_CGROUP_BPF
2287 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2288 				      struct sk_buff *skb,
2289 				      unsigned int end_offset)
2290 {
2291 	skops->skb = skb;
2292 	skops->skb_data_end = skb->data + end_offset;
2293 }
2294 #else
2295 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2296 				      struct sk_buff *skb,
2297 				      unsigned int end_offset)
2298 {
2299 }
2300 #endif
2301 
2302 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2303  * is < 0, then the BPF op failed (for example if the loaded BPF
2304  * program does not support the chosen operation or there is no BPF
2305  * program loaded).
2306  */
2307 #ifdef CONFIG_BPF
2308 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2309 {
2310 	struct bpf_sock_ops_kern sock_ops;
2311 	int ret;
2312 
2313 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2314 	if (sk_fullsock(sk)) {
2315 		sock_ops.is_fullsock = 1;
2316 		sock_owned_by_me(sk);
2317 	}
2318 
2319 	sock_ops.sk = sk;
2320 	sock_ops.op = op;
2321 	if (nargs > 0)
2322 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2323 
2324 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2325 	if (ret == 0)
2326 		ret = sock_ops.reply;
2327 	else
2328 		ret = -1;
2329 	return ret;
2330 }
2331 
2332 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2333 {
2334 	u32 args[2] = {arg1, arg2};
2335 
2336 	return tcp_call_bpf(sk, op, 2, args);
2337 }
2338 
2339 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2340 				    u32 arg3)
2341 {
2342 	u32 args[3] = {arg1, arg2, arg3};
2343 
2344 	return tcp_call_bpf(sk, op, 3, args);
2345 }
2346 
2347 #else
2348 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2349 {
2350 	return -EPERM;
2351 }
2352 
2353 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2354 {
2355 	return -EPERM;
2356 }
2357 
2358 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2359 				    u32 arg3)
2360 {
2361 	return -EPERM;
2362 }
2363 
2364 #endif
2365 
2366 static inline u32 tcp_timeout_init(struct sock *sk)
2367 {
2368 	int timeout;
2369 
2370 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2371 
2372 	if (timeout <= 0)
2373 		timeout = TCP_TIMEOUT_INIT;
2374 	return min_t(int, timeout, TCP_RTO_MAX);
2375 }
2376 
2377 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2378 {
2379 	int rwnd;
2380 
2381 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2382 
2383 	if (rwnd < 0)
2384 		rwnd = 0;
2385 	return rwnd;
2386 }
2387 
2388 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2389 {
2390 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2391 }
2392 
2393 static inline void tcp_bpf_rtt(struct sock *sk)
2394 {
2395 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2396 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2397 }
2398 
2399 #if IS_ENABLED(CONFIG_SMC)
2400 extern struct static_key_false tcp_have_smc;
2401 #endif
2402 
2403 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2404 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2405 			     void (*cad)(struct sock *sk, u32 ack_seq));
2406 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2407 void clean_acked_data_flush(void);
2408 #endif
2409 
2410 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2411 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2412 				    const struct tcp_sock *tp)
2413 {
2414 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2415 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2416 }
2417 
2418 /* Compute Earliest Departure Time for some control packets
2419  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2420  */
2421 static inline u64 tcp_transmit_time(const struct sock *sk)
2422 {
2423 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2424 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2425 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2426 
2427 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2428 	}
2429 	return 0;
2430 }
2431 
2432 #endif	/* _TCP_H */
2433