xref: /openbmc/linux/include/net/tcp.h (revision 7aacf86b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
52 
53 extern struct inet_hashinfo tcp_hashinfo;
54 
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 
58 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 
132 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN	((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN	4U
138 #define TCP_ATO_MIN	4U
139 #endif
140 #define TCP_RTO_MAX	((unsigned)(120*HZ))
141 #define TCP_RTO_MIN	((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_REO_TIMEOUT_MIN	(2000) /* Min RACK reordering timeout in usec */
154 
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
190 #define TCPOPT_EXP		254	/* Experimental */
191 /* Magic number to be after the option value for sharing TCP
192  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193  */
194 #define TCPOPT_FASTOPEN_MAGIC	0xF989
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 
208 /* But this is what stacks really send out. */
209 #define TCPOLEN_TSTAMP_ALIGNED		12
210 #define TCPOLEN_WSCALE_ALIGNED		4
211 #define TCPOLEN_SACKPERM_ALIGNED	4
212 #define TCPOLEN_SACK_BASE		2
213 #define TCPOLEN_SACK_BASE_ALIGNED	4
214 #define TCPOLEN_SACK_PERBLOCK		8
215 #define TCPOLEN_MD5SIG_ALIGNED		20
216 #define TCPOLEN_MSS_ALIGNED		4
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_fastopen;
245 extern int sysctl_tcp_retrans_collapse;
246 extern int sysctl_tcp_stdurg;
247 extern int sysctl_tcp_rfc1337;
248 extern int sysctl_tcp_abort_on_overflow;
249 extern int sysctl_tcp_max_orphans;
250 extern int sysctl_tcp_fack;
251 extern int sysctl_tcp_reordering;
252 extern int sysctl_tcp_max_reordering;
253 extern int sysctl_tcp_dsack;
254 extern long sysctl_tcp_mem[3];
255 extern int sysctl_tcp_wmem[3];
256 extern int sysctl_tcp_rmem[3];
257 extern int sysctl_tcp_app_win;
258 extern int sysctl_tcp_adv_win_scale;
259 extern int sysctl_tcp_frto;
260 extern int sysctl_tcp_low_latency;
261 extern int sysctl_tcp_nometrics_save;
262 extern int sysctl_tcp_moderate_rcvbuf;
263 extern int sysctl_tcp_tso_win_divisor;
264 extern int sysctl_tcp_workaround_signed_windows;
265 extern int sysctl_tcp_slow_start_after_idle;
266 extern int sysctl_tcp_thin_linear_timeouts;
267 extern int sysctl_tcp_thin_dupack;
268 extern int sysctl_tcp_early_retrans;
269 extern int sysctl_tcp_recovery;
270 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
271 
272 extern int sysctl_tcp_limit_output_bytes;
273 extern int sysctl_tcp_challenge_ack_limit;
274 extern int sysctl_tcp_min_tso_segs;
275 extern int sysctl_tcp_min_rtt_wlen;
276 extern int sysctl_tcp_autocorking;
277 extern int sysctl_tcp_invalid_ratelimit;
278 extern int sysctl_tcp_pacing_ss_ratio;
279 extern int sysctl_tcp_pacing_ca_ratio;
280 
281 extern atomic_long_t tcp_memory_allocated;
282 extern struct percpu_counter tcp_sockets_allocated;
283 extern unsigned long tcp_memory_pressure;
284 
285 /* optimized version of sk_under_memory_pressure() for TCP sockets */
286 static inline bool tcp_under_memory_pressure(const struct sock *sk)
287 {
288 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
289 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
290 		return true;
291 
292 	return tcp_memory_pressure;
293 }
294 /*
295  * The next routines deal with comparing 32 bit unsigned ints
296  * and worry about wraparound (automatic with unsigned arithmetic).
297  */
298 
299 static inline bool before(__u32 seq1, __u32 seq2)
300 {
301         return (__s32)(seq1-seq2) < 0;
302 }
303 #define after(seq2, seq1) 	before(seq1, seq2)
304 
305 /* is s2<=s1<=s3 ? */
306 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
307 {
308 	return seq3 - seq2 >= seq1 - seq2;
309 }
310 
311 static inline bool tcp_out_of_memory(struct sock *sk)
312 {
313 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
314 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
315 		return true;
316 	return false;
317 }
318 
319 void sk_forced_mem_schedule(struct sock *sk, int size);
320 
321 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
322 {
323 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
324 	int orphans = percpu_counter_read_positive(ocp);
325 
326 	if (orphans << shift > sysctl_tcp_max_orphans) {
327 		orphans = percpu_counter_sum_positive(ocp);
328 		if (orphans << shift > sysctl_tcp_max_orphans)
329 			return true;
330 	}
331 	return false;
332 }
333 
334 bool tcp_check_oom(struct sock *sk, int shift);
335 
336 
337 extern struct proto tcp_prot;
338 
339 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
341 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
343 
344 void tcp_tasklet_init(void);
345 
346 void tcp_v4_err(struct sk_buff *skb, u32);
347 
348 void tcp_shutdown(struct sock *sk, int how);
349 
350 void tcp_v4_early_demux(struct sk_buff *skb);
351 int tcp_v4_rcv(struct sk_buff *skb);
352 
353 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
354 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
355 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
356 		 int flags);
357 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
358 		 size_t size, int flags);
359 void tcp_release_cb(struct sock *sk);
360 void tcp_wfree(struct sk_buff *skb);
361 void tcp_write_timer_handler(struct sock *sk);
362 void tcp_delack_timer_handler(struct sock *sk);
363 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
364 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
365 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
366 			 const struct tcphdr *th, unsigned int len);
367 void tcp_rcv_space_adjust(struct sock *sk);
368 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
369 void tcp_twsk_destructor(struct sock *sk);
370 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
371 			struct pipe_inode_info *pipe, size_t len,
372 			unsigned int flags);
373 
374 static inline void tcp_dec_quickack_mode(struct sock *sk,
375 					 const unsigned int pkts)
376 {
377 	struct inet_connection_sock *icsk = inet_csk(sk);
378 
379 	if (icsk->icsk_ack.quick) {
380 		if (pkts >= icsk->icsk_ack.quick) {
381 			icsk->icsk_ack.quick = 0;
382 			/* Leaving quickack mode we deflate ATO. */
383 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
384 		} else
385 			icsk->icsk_ack.quick -= pkts;
386 	}
387 }
388 
389 #define	TCP_ECN_OK		1
390 #define	TCP_ECN_QUEUE_CWR	2
391 #define	TCP_ECN_DEMAND_CWR	4
392 #define	TCP_ECN_SEEN		8
393 
394 enum tcp_tw_status {
395 	TCP_TW_SUCCESS = 0,
396 	TCP_TW_RST = 1,
397 	TCP_TW_ACK = 2,
398 	TCP_TW_SYN = 3
399 };
400 
401 
402 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
403 					      struct sk_buff *skb,
404 					      const struct tcphdr *th);
405 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
406 			   struct request_sock *req, bool fastopen);
407 int tcp_child_process(struct sock *parent, struct sock *child,
408 		      struct sk_buff *skb);
409 void tcp_enter_loss(struct sock *sk);
410 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
411 void tcp_clear_retrans(struct tcp_sock *tp);
412 void tcp_update_metrics(struct sock *sk);
413 void tcp_init_metrics(struct sock *sk);
414 void tcp_metrics_init(void);
415 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
416 void tcp_disable_fack(struct tcp_sock *tp);
417 void tcp_close(struct sock *sk, long timeout);
418 void tcp_init_sock(struct sock *sk);
419 unsigned int tcp_poll(struct file *file, struct socket *sock,
420 		      struct poll_table_struct *wait);
421 int tcp_getsockopt(struct sock *sk, int level, int optname,
422 		   char __user *optval, int __user *optlen);
423 int tcp_setsockopt(struct sock *sk, int level, int optname,
424 		   char __user *optval, unsigned int optlen);
425 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
426 			  char __user *optval, int __user *optlen);
427 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
428 			  char __user *optval, unsigned int optlen);
429 void tcp_set_keepalive(struct sock *sk, int val);
430 void tcp_syn_ack_timeout(const struct request_sock *req);
431 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
432 		int flags, int *addr_len);
433 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
434 		       struct tcp_options_received *opt_rx,
435 		       int estab, struct tcp_fastopen_cookie *foc);
436 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
437 
438 /*
439  *	TCP v4 functions exported for the inet6 API
440  */
441 
442 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
443 void tcp_v4_mtu_reduced(struct sock *sk);
444 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
445 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
446 struct sock *tcp_create_openreq_child(const struct sock *sk,
447 				      struct request_sock *req,
448 				      struct sk_buff *skb);
449 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
450 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
451 				  struct request_sock *req,
452 				  struct dst_entry *dst,
453 				  struct request_sock *req_unhash,
454 				  bool *own_req);
455 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
456 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
457 int tcp_connect(struct sock *sk);
458 enum tcp_synack_type {
459 	TCP_SYNACK_NORMAL,
460 	TCP_SYNACK_FASTOPEN,
461 	TCP_SYNACK_COOKIE,
462 };
463 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
464 				struct request_sock *req,
465 				struct tcp_fastopen_cookie *foc,
466 				enum tcp_synack_type synack_type);
467 int tcp_disconnect(struct sock *sk, int flags);
468 
469 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
470 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
471 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
472 
473 /* From syncookies.c */
474 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
475 				 struct request_sock *req,
476 				 struct dst_entry *dst, u32 tsoff);
477 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
478 		      u32 cookie);
479 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
480 #ifdef CONFIG_SYN_COOKIES
481 
482 /* Syncookies use a monotonic timer which increments every 60 seconds.
483  * This counter is used both as a hash input and partially encoded into
484  * the cookie value.  A cookie is only validated further if the delta
485  * between the current counter value and the encoded one is less than this,
486  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
487  * the counter advances immediately after a cookie is generated).
488  */
489 #define MAX_SYNCOOKIE_AGE	2
490 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
491 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
492 
493 /* syncookies: remember time of last synqueue overflow
494  * But do not dirty this field too often (once per second is enough)
495  * It is racy as we do not hold a lock, but race is very minor.
496  */
497 static inline void tcp_synq_overflow(const struct sock *sk)
498 {
499 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
500 	unsigned long now = jiffies;
501 
502 	if (time_after(now, last_overflow + HZ))
503 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
504 }
505 
506 /* syncookies: no recent synqueue overflow on this listening socket? */
507 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
508 {
509 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
510 
511 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
512 }
513 
514 static inline u32 tcp_cookie_time(void)
515 {
516 	u64 val = get_jiffies_64();
517 
518 	do_div(val, TCP_SYNCOOKIE_PERIOD);
519 	return val;
520 }
521 
522 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
523 			      u16 *mssp);
524 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
525 u64 cookie_init_timestamp(struct request_sock *req);
526 bool cookie_timestamp_decode(const struct net *net,
527 			     struct tcp_options_received *opt);
528 bool cookie_ecn_ok(const struct tcp_options_received *opt,
529 		   const struct net *net, const struct dst_entry *dst);
530 
531 /* From net/ipv6/syncookies.c */
532 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
533 		      u32 cookie);
534 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
535 
536 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
537 			      const struct tcphdr *th, u16 *mssp);
538 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
539 #endif
540 /* tcp_output.c */
541 
542 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
543 		     int min_tso_segs);
544 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
545 			       int nonagle);
546 bool tcp_may_send_now(struct sock *sk);
547 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
548 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 void tcp_retransmit_timer(struct sock *sk);
550 void tcp_xmit_retransmit_queue(struct sock *);
551 void tcp_simple_retransmit(struct sock *);
552 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
553 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
554 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
555 
556 void tcp_send_probe0(struct sock *);
557 void tcp_send_partial(struct sock *);
558 int tcp_write_wakeup(struct sock *, int mib);
559 void tcp_send_fin(struct sock *sk);
560 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
561 int tcp_send_synack(struct sock *);
562 void tcp_push_one(struct sock *, unsigned int mss_now);
563 void tcp_send_ack(struct sock *sk);
564 void tcp_send_delayed_ack(struct sock *sk);
565 void tcp_send_loss_probe(struct sock *sk);
566 bool tcp_schedule_loss_probe(struct sock *sk);
567 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
568 			     const struct sk_buff *next_skb);
569 
570 /* tcp_input.c */
571 void tcp_rearm_rto(struct sock *sk);
572 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
573 void tcp_reset(struct sock *sk);
574 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
575 void tcp_fin(struct sock *sk);
576 
577 /* tcp_timer.c */
578 void tcp_init_xmit_timers(struct sock *);
579 static inline void tcp_clear_xmit_timers(struct sock *sk)
580 {
581 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
582 	inet_csk_clear_xmit_timers(sk);
583 }
584 
585 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
586 unsigned int tcp_current_mss(struct sock *sk);
587 
588 /* Bound MSS / TSO packet size with the half of the window */
589 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
590 {
591 	int cutoff;
592 
593 	/* When peer uses tiny windows, there is no use in packetizing
594 	 * to sub-MSS pieces for the sake of SWS or making sure there
595 	 * are enough packets in the pipe for fast recovery.
596 	 *
597 	 * On the other hand, for extremely large MSS devices, handling
598 	 * smaller than MSS windows in this way does make sense.
599 	 */
600 	if (tp->max_window > TCP_MSS_DEFAULT)
601 		cutoff = (tp->max_window >> 1);
602 	else
603 		cutoff = tp->max_window;
604 
605 	if (cutoff && pktsize > cutoff)
606 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
607 	else
608 		return pktsize;
609 }
610 
611 /* tcp.c */
612 void tcp_get_info(struct sock *, struct tcp_info *);
613 
614 /* Read 'sendfile()'-style from a TCP socket */
615 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
616 		  sk_read_actor_t recv_actor);
617 
618 void tcp_initialize_rcv_mss(struct sock *sk);
619 
620 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
621 int tcp_mss_to_mtu(struct sock *sk, int mss);
622 void tcp_mtup_init(struct sock *sk);
623 void tcp_init_buffer_space(struct sock *sk);
624 
625 static inline void tcp_bound_rto(const struct sock *sk)
626 {
627 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
628 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
629 }
630 
631 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
632 {
633 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
634 }
635 
636 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
637 {
638 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
639 			       ntohl(TCP_FLAG_ACK) |
640 			       snd_wnd);
641 }
642 
643 static inline void tcp_fast_path_on(struct tcp_sock *tp)
644 {
645 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
646 }
647 
648 static inline void tcp_fast_path_check(struct sock *sk)
649 {
650 	struct tcp_sock *tp = tcp_sk(sk);
651 
652 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
653 	    tp->rcv_wnd &&
654 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
655 	    !tp->urg_data)
656 		tcp_fast_path_on(tp);
657 }
658 
659 /* Compute the actual rto_min value */
660 static inline u32 tcp_rto_min(struct sock *sk)
661 {
662 	const struct dst_entry *dst = __sk_dst_get(sk);
663 	u32 rto_min = TCP_RTO_MIN;
664 
665 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
666 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
667 	return rto_min;
668 }
669 
670 static inline u32 tcp_rto_min_us(struct sock *sk)
671 {
672 	return jiffies_to_usecs(tcp_rto_min(sk));
673 }
674 
675 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
676 {
677 	return dst_metric_locked(dst, RTAX_CC_ALGO);
678 }
679 
680 /* Minimum RTT in usec. ~0 means not available. */
681 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
682 {
683 	return minmax_get(&tp->rtt_min);
684 }
685 
686 /* Compute the actual receive window we are currently advertising.
687  * Rcv_nxt can be after the window if our peer push more data
688  * than the offered window.
689  */
690 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
691 {
692 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
693 
694 	if (win < 0)
695 		win = 0;
696 	return (u32) win;
697 }
698 
699 /* Choose a new window, without checks for shrinking, and without
700  * scaling applied to the result.  The caller does these things
701  * if necessary.  This is a "raw" window selection.
702  */
703 u32 __tcp_select_window(struct sock *sk);
704 
705 void tcp_send_window_probe(struct sock *sk);
706 
707 /* TCP uses 32bit jiffies to save some space.
708  * Note that this is different from tcp_time_stamp, which
709  * historically has been the same until linux-4.13.
710  */
711 #define tcp_jiffies32 ((u32)jiffies)
712 
713 /*
714  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
715  * It is no longer tied to jiffies, but to 1 ms clock.
716  * Note: double check if you want to use tcp_jiffies32 instead of this.
717  */
718 #define TCP_TS_HZ	1000
719 
720 static inline u64 tcp_clock_ns(void)
721 {
722 	return local_clock();
723 }
724 
725 static inline u64 tcp_clock_us(void)
726 {
727 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
728 }
729 
730 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
731 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
732 {
733 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
734 }
735 
736 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
737 static inline u32 tcp_time_stamp_raw(void)
738 {
739 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
740 }
741 
742 
743 /* Refresh 1us clock of a TCP socket,
744  * ensuring monotically increasing values.
745  */
746 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
747 {
748 	u64 val = tcp_clock_us();
749 
750 	if (val > tp->tcp_mstamp)
751 		tp->tcp_mstamp = val;
752 }
753 
754 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
755 {
756 	return max_t(s64, t1 - t0, 0);
757 }
758 
759 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
760 {
761 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
762 }
763 
764 
765 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
766 
767 #define TCPHDR_FIN 0x01
768 #define TCPHDR_SYN 0x02
769 #define TCPHDR_RST 0x04
770 #define TCPHDR_PSH 0x08
771 #define TCPHDR_ACK 0x10
772 #define TCPHDR_URG 0x20
773 #define TCPHDR_ECE 0x40
774 #define TCPHDR_CWR 0x80
775 
776 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
777 
778 /* This is what the send packet queuing engine uses to pass
779  * TCP per-packet control information to the transmission code.
780  * We also store the host-order sequence numbers in here too.
781  * This is 44 bytes if IPV6 is enabled.
782  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
783  */
784 struct tcp_skb_cb {
785 	__u32		seq;		/* Starting sequence number	*/
786 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
787 	union {
788 		/* Note : tcp_tw_isn is used in input path only
789 		 *	  (isn chosen by tcp_timewait_state_process())
790 		 *
791 		 * 	  tcp_gso_segs/size are used in write queue only,
792 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
793 		 */
794 		__u32		tcp_tw_isn;
795 		struct {
796 			u16	tcp_gso_segs;
797 			u16	tcp_gso_size;
798 		};
799 	};
800 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
801 
802 	__u8		sacked;		/* State flags for SACK/FACK.	*/
803 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
804 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
805 #define TCPCB_LOST		0x04	/* SKB is lost			*/
806 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
807 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
808 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
809 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
810 				TCPCB_REPAIRED)
811 
812 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
813 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
814 			eor:1,		/* Is skb MSG_EOR marked? */
815 			unused:6;
816 	__u32		ack_seq;	/* Sequence number ACK'd	*/
817 	union {
818 		struct {
819 			/* There is space for up to 24 bytes */
820 			__u32 in_flight:30,/* Bytes in flight at transmit */
821 			      is_app_limited:1, /* cwnd not fully used? */
822 			      unused:1;
823 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
824 			__u32 delivered;
825 			/* start of send pipeline phase */
826 			u64 first_tx_mstamp;
827 			/* when we reached the "delivered" count */
828 			u64 delivered_mstamp;
829 		} tx;   /* only used for outgoing skbs */
830 		union {
831 			struct inet_skb_parm	h4;
832 #if IS_ENABLED(CONFIG_IPV6)
833 			struct inet6_skb_parm	h6;
834 #endif
835 		} header;	/* For incoming skbs */
836 	};
837 };
838 
839 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
840 
841 
842 #if IS_ENABLED(CONFIG_IPV6)
843 /* This is the variant of inet6_iif() that must be used by TCP,
844  * as TCP moves IP6CB into a different location in skb->cb[]
845  */
846 static inline int tcp_v6_iif(const struct sk_buff *skb)
847 {
848 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
849 
850 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
851 }
852 #endif
853 
854 /* TCP_SKB_CB reference means this can not be used from early demux */
855 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
856 {
857 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
858 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
859 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
860 		return true;
861 #endif
862 	return false;
863 }
864 
865 /* Due to TSO, an SKB can be composed of multiple actual
866  * packets.  To keep these tracked properly, we use this.
867  */
868 static inline int tcp_skb_pcount(const struct sk_buff *skb)
869 {
870 	return TCP_SKB_CB(skb)->tcp_gso_segs;
871 }
872 
873 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
874 {
875 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
876 }
877 
878 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
879 {
880 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
881 }
882 
883 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
884 static inline int tcp_skb_mss(const struct sk_buff *skb)
885 {
886 	return TCP_SKB_CB(skb)->tcp_gso_size;
887 }
888 
889 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
890 {
891 	return likely(!TCP_SKB_CB(skb)->eor);
892 }
893 
894 /* Events passed to congestion control interface */
895 enum tcp_ca_event {
896 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
897 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
898 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
899 	CA_EVENT_LOSS,		/* loss timeout */
900 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
901 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
902 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
903 	CA_EVENT_NON_DELAYED_ACK,
904 };
905 
906 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
907 enum tcp_ca_ack_event_flags {
908 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
909 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
910 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
911 };
912 
913 /*
914  * Interface for adding new TCP congestion control handlers
915  */
916 #define TCP_CA_NAME_MAX	16
917 #define TCP_CA_MAX	128
918 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
919 
920 #define TCP_CA_UNSPEC	0
921 
922 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
923 #define TCP_CONG_NON_RESTRICTED 0x1
924 /* Requires ECN/ECT set on all packets */
925 #define TCP_CONG_NEEDS_ECN	0x2
926 
927 union tcp_cc_info;
928 
929 struct ack_sample {
930 	u32 pkts_acked;
931 	s32 rtt_us;
932 	u32 in_flight;
933 };
934 
935 /* A rate sample measures the number of (original/retransmitted) data
936  * packets delivered "delivered" over an interval of time "interval_us".
937  * The tcp_rate.c code fills in the rate sample, and congestion
938  * control modules that define a cong_control function to run at the end
939  * of ACK processing can optionally chose to consult this sample when
940  * setting cwnd and pacing rate.
941  * A sample is invalid if "delivered" or "interval_us" is negative.
942  */
943 struct rate_sample {
944 	u64  prior_mstamp; /* starting timestamp for interval */
945 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
946 	s32  delivered;		/* number of packets delivered over interval */
947 	long interval_us;	/* time for tp->delivered to incr "delivered" */
948 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
949 	int  losses;		/* number of packets marked lost upon ACK */
950 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
951 	u32  prior_in_flight;	/* in flight before this ACK */
952 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
953 	bool is_retrans;	/* is sample from retransmission? */
954 };
955 
956 struct tcp_congestion_ops {
957 	struct list_head	list;
958 	u32 key;
959 	u32 flags;
960 
961 	/* initialize private data (optional) */
962 	void (*init)(struct sock *sk);
963 	/* cleanup private data  (optional) */
964 	void (*release)(struct sock *sk);
965 
966 	/* return slow start threshold (required) */
967 	u32 (*ssthresh)(struct sock *sk);
968 	/* do new cwnd calculation (required) */
969 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
970 	/* call before changing ca_state (optional) */
971 	void (*set_state)(struct sock *sk, u8 new_state);
972 	/* call when cwnd event occurs (optional) */
973 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
974 	/* call when ack arrives (optional) */
975 	void (*in_ack_event)(struct sock *sk, u32 flags);
976 	/* new value of cwnd after loss (required) */
977 	u32  (*undo_cwnd)(struct sock *sk);
978 	/* hook for packet ack accounting (optional) */
979 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
980 	/* suggest number of segments for each skb to transmit (optional) */
981 	u32 (*tso_segs_goal)(struct sock *sk);
982 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
983 	u32 (*sndbuf_expand)(struct sock *sk);
984 	/* call when packets are delivered to update cwnd and pacing rate,
985 	 * after all the ca_state processing. (optional)
986 	 */
987 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
988 	/* get info for inet_diag (optional) */
989 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
990 			   union tcp_cc_info *info);
991 
992 	char 		name[TCP_CA_NAME_MAX];
993 	struct module 	*owner;
994 };
995 
996 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
997 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
998 
999 void tcp_assign_congestion_control(struct sock *sk);
1000 void tcp_init_congestion_control(struct sock *sk);
1001 void tcp_cleanup_congestion_control(struct sock *sk);
1002 int tcp_set_default_congestion_control(const char *name);
1003 void tcp_get_default_congestion_control(char *name);
1004 void tcp_get_available_congestion_control(char *buf, size_t len);
1005 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1006 int tcp_set_allowed_congestion_control(char *allowed);
1007 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load);
1008 void tcp_reinit_congestion_control(struct sock *sk,
1009 				   const struct tcp_congestion_ops *ca);
1010 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1011 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1012 
1013 u32 tcp_reno_ssthresh(struct sock *sk);
1014 u32 tcp_reno_undo_cwnd(struct sock *sk);
1015 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1016 extern struct tcp_congestion_ops tcp_reno;
1017 
1018 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1019 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1020 #ifdef CONFIG_INET
1021 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1022 #else
1023 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1024 {
1025 	return NULL;
1026 }
1027 #endif
1028 
1029 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1030 {
1031 	const struct inet_connection_sock *icsk = inet_csk(sk);
1032 
1033 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1034 }
1035 
1036 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1037 {
1038 	struct inet_connection_sock *icsk = inet_csk(sk);
1039 
1040 	if (icsk->icsk_ca_ops->set_state)
1041 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1042 	icsk->icsk_ca_state = ca_state;
1043 }
1044 
1045 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1046 {
1047 	const struct inet_connection_sock *icsk = inet_csk(sk);
1048 
1049 	if (icsk->icsk_ca_ops->cwnd_event)
1050 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1051 }
1052 
1053 /* From tcp_rate.c */
1054 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1055 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1056 			    struct rate_sample *rs);
1057 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1058 		  struct rate_sample *rs);
1059 void tcp_rate_check_app_limited(struct sock *sk);
1060 
1061 /* These functions determine how the current flow behaves in respect of SACK
1062  * handling. SACK is negotiated with the peer, and therefore it can vary
1063  * between different flows.
1064  *
1065  * tcp_is_sack - SACK enabled
1066  * tcp_is_reno - No SACK
1067  * tcp_is_fack - FACK enabled, implies SACK enabled
1068  */
1069 static inline int tcp_is_sack(const struct tcp_sock *tp)
1070 {
1071 	return tp->rx_opt.sack_ok;
1072 }
1073 
1074 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1075 {
1076 	return !tcp_is_sack(tp);
1077 }
1078 
1079 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1080 {
1081 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1082 }
1083 
1084 static inline void tcp_enable_fack(struct tcp_sock *tp)
1085 {
1086 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1087 }
1088 
1089 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1090 {
1091 	return tp->sacked_out + tp->lost_out;
1092 }
1093 
1094 /* This determines how many packets are "in the network" to the best
1095  * of our knowledge.  In many cases it is conservative, but where
1096  * detailed information is available from the receiver (via SACK
1097  * blocks etc.) we can make more aggressive calculations.
1098  *
1099  * Use this for decisions involving congestion control, use just
1100  * tp->packets_out to determine if the send queue is empty or not.
1101  *
1102  * Read this equation as:
1103  *
1104  *	"Packets sent once on transmission queue" MINUS
1105  *	"Packets left network, but not honestly ACKed yet" PLUS
1106  *	"Packets fast retransmitted"
1107  */
1108 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1109 {
1110 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1111 }
1112 
1113 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1114 
1115 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1116 {
1117 	return tp->snd_cwnd < tp->snd_ssthresh;
1118 }
1119 
1120 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1121 {
1122 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1123 }
1124 
1125 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1126 {
1127 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1128 	       (1 << inet_csk(sk)->icsk_ca_state);
1129 }
1130 
1131 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1132  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1133  * ssthresh.
1134  */
1135 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1136 {
1137 	const struct tcp_sock *tp = tcp_sk(sk);
1138 
1139 	if (tcp_in_cwnd_reduction(sk))
1140 		return tp->snd_ssthresh;
1141 	else
1142 		return max(tp->snd_ssthresh,
1143 			   ((tp->snd_cwnd >> 1) +
1144 			    (tp->snd_cwnd >> 2)));
1145 }
1146 
1147 /* Use define here intentionally to get WARN_ON location shown at the caller */
1148 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1149 
1150 void tcp_enter_cwr(struct sock *sk);
1151 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1152 
1153 /* The maximum number of MSS of available cwnd for which TSO defers
1154  * sending if not using sysctl_tcp_tso_win_divisor.
1155  */
1156 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1157 {
1158 	return 3;
1159 }
1160 
1161 /* Returns end sequence number of the receiver's advertised window */
1162 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1163 {
1164 	return tp->snd_una + tp->snd_wnd;
1165 }
1166 
1167 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1168  * flexible approach. The RFC suggests cwnd should not be raised unless
1169  * it was fully used previously. And that's exactly what we do in
1170  * congestion avoidance mode. But in slow start we allow cwnd to grow
1171  * as long as the application has used half the cwnd.
1172  * Example :
1173  *    cwnd is 10 (IW10), but application sends 9 frames.
1174  *    We allow cwnd to reach 18 when all frames are ACKed.
1175  * This check is safe because it's as aggressive as slow start which already
1176  * risks 100% overshoot. The advantage is that we discourage application to
1177  * either send more filler packets or data to artificially blow up the cwnd
1178  * usage, and allow application-limited process to probe bw more aggressively.
1179  */
1180 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1181 {
1182 	const struct tcp_sock *tp = tcp_sk(sk);
1183 
1184 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1185 	if (tcp_in_slow_start(tp))
1186 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1187 
1188 	return tp->is_cwnd_limited;
1189 }
1190 
1191 /* Something is really bad, we could not queue an additional packet,
1192  * because qdisc is full or receiver sent a 0 window.
1193  * We do not want to add fuel to the fire, or abort too early,
1194  * so make sure the timer we arm now is at least 200ms in the future,
1195  * regardless of current icsk_rto value (as it could be ~2ms)
1196  */
1197 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1198 {
1199 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1200 }
1201 
1202 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1203 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1204 					    unsigned long max_when)
1205 {
1206 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1207 
1208 	return (unsigned long)min_t(u64, when, max_when);
1209 }
1210 
1211 static inline void tcp_check_probe_timer(struct sock *sk)
1212 {
1213 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1214 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1215 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1216 }
1217 
1218 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1219 {
1220 	tp->snd_wl1 = seq;
1221 }
1222 
1223 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1224 {
1225 	tp->snd_wl1 = seq;
1226 }
1227 
1228 /*
1229  * Calculate(/check) TCP checksum
1230  */
1231 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1232 				   __be32 daddr, __wsum base)
1233 {
1234 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1235 }
1236 
1237 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1238 {
1239 	return __skb_checksum_complete(skb);
1240 }
1241 
1242 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1243 {
1244 	return !skb_csum_unnecessary(skb) &&
1245 		__tcp_checksum_complete(skb);
1246 }
1247 
1248 /* Prequeue for VJ style copy to user, combined with checksumming. */
1249 
1250 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1251 {
1252 	tp->ucopy.task = NULL;
1253 	tp->ucopy.len = 0;
1254 	tp->ucopy.memory = 0;
1255 	skb_queue_head_init(&tp->ucopy.prequeue);
1256 }
1257 
1258 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1259 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1260 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1261 
1262 #undef STATE_TRACE
1263 
1264 #ifdef STATE_TRACE
1265 static const char *statename[]={
1266 	"Unused","Established","Syn Sent","Syn Recv",
1267 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1268 	"Close Wait","Last ACK","Listen","Closing"
1269 };
1270 #endif
1271 void tcp_set_state(struct sock *sk, int state);
1272 
1273 void tcp_done(struct sock *sk);
1274 
1275 int tcp_abort(struct sock *sk, int err);
1276 
1277 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1278 {
1279 	rx_opt->dsack = 0;
1280 	rx_opt->num_sacks = 0;
1281 }
1282 
1283 u32 tcp_default_init_rwnd(u32 mss);
1284 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1285 
1286 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1287 {
1288 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	s32 delta;
1291 
1292 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1293 	    ca_ops->cong_control)
1294 		return;
1295 	delta = tcp_jiffies32 - tp->lsndtime;
1296 	if (delta > inet_csk(sk)->icsk_rto)
1297 		tcp_cwnd_restart(sk, delta);
1298 }
1299 
1300 /* Determine a window scaling and initial window to offer. */
1301 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1302 			       __u32 *window_clamp, int wscale_ok,
1303 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1304 
1305 static inline int tcp_win_from_space(int space)
1306 {
1307 	int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1308 
1309 	return tcp_adv_win_scale <= 0 ?
1310 		(space>>(-tcp_adv_win_scale)) :
1311 		space - (space>>tcp_adv_win_scale);
1312 }
1313 
1314 /* Note: caller must be prepared to deal with negative returns */
1315 static inline int tcp_space(const struct sock *sk)
1316 {
1317 	return tcp_win_from_space(sk->sk_rcvbuf -
1318 				  atomic_read(&sk->sk_rmem_alloc));
1319 }
1320 
1321 static inline int tcp_full_space(const struct sock *sk)
1322 {
1323 	return tcp_win_from_space(sk->sk_rcvbuf);
1324 }
1325 
1326 extern void tcp_openreq_init_rwin(struct request_sock *req,
1327 				  const struct sock *sk_listener,
1328 				  const struct dst_entry *dst);
1329 
1330 void tcp_enter_memory_pressure(struct sock *sk);
1331 void tcp_leave_memory_pressure(struct sock *sk);
1332 
1333 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1334 {
1335 	struct net *net = sock_net((struct sock *)tp);
1336 
1337 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1338 }
1339 
1340 static inline int keepalive_time_when(const struct tcp_sock *tp)
1341 {
1342 	struct net *net = sock_net((struct sock *)tp);
1343 
1344 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1345 }
1346 
1347 static inline int keepalive_probes(const struct tcp_sock *tp)
1348 {
1349 	struct net *net = sock_net((struct sock *)tp);
1350 
1351 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1352 }
1353 
1354 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1355 {
1356 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1357 
1358 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1359 			  tcp_jiffies32 - tp->rcv_tstamp);
1360 }
1361 
1362 static inline int tcp_fin_time(const struct sock *sk)
1363 {
1364 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1365 	const int rto = inet_csk(sk)->icsk_rto;
1366 
1367 	if (fin_timeout < (rto << 2) - (rto >> 1))
1368 		fin_timeout = (rto << 2) - (rto >> 1);
1369 
1370 	return fin_timeout;
1371 }
1372 
1373 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1374 				  int paws_win)
1375 {
1376 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1377 		return true;
1378 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1379 		return true;
1380 	/*
1381 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1382 	 * then following tcp messages have valid values. Ignore 0 value,
1383 	 * or else 'negative' tsval might forbid us to accept their packets.
1384 	 */
1385 	if (!rx_opt->ts_recent)
1386 		return true;
1387 	return false;
1388 }
1389 
1390 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1391 				   int rst)
1392 {
1393 	if (tcp_paws_check(rx_opt, 0))
1394 		return false;
1395 
1396 	/* RST segments are not recommended to carry timestamp,
1397 	   and, if they do, it is recommended to ignore PAWS because
1398 	   "their cleanup function should take precedence over timestamps."
1399 	   Certainly, it is mistake. It is necessary to understand the reasons
1400 	   of this constraint to relax it: if peer reboots, clock may go
1401 	   out-of-sync and half-open connections will not be reset.
1402 	   Actually, the problem would be not existing if all
1403 	   the implementations followed draft about maintaining clock
1404 	   via reboots. Linux-2.2 DOES NOT!
1405 
1406 	   However, we can relax time bounds for RST segments to MSL.
1407 	 */
1408 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1409 		return false;
1410 	return true;
1411 }
1412 
1413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1414 			  int mib_idx, u32 *last_oow_ack_time);
1415 
1416 static inline void tcp_mib_init(struct net *net)
1417 {
1418 	/* See RFC 2012 */
1419 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1420 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1421 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1422 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1423 }
1424 
1425 /* from STCP */
1426 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1427 {
1428 	tp->lost_skb_hint = NULL;
1429 }
1430 
1431 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1432 {
1433 	tcp_clear_retrans_hints_partial(tp);
1434 	tp->retransmit_skb_hint = NULL;
1435 }
1436 
1437 union tcp_md5_addr {
1438 	struct in_addr  a4;
1439 #if IS_ENABLED(CONFIG_IPV6)
1440 	struct in6_addr	a6;
1441 #endif
1442 };
1443 
1444 /* - key database */
1445 struct tcp_md5sig_key {
1446 	struct hlist_node	node;
1447 	u8			keylen;
1448 	u8			family; /* AF_INET or AF_INET6 */
1449 	union tcp_md5_addr	addr;
1450 	u8			prefixlen;
1451 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1452 	struct rcu_head		rcu;
1453 };
1454 
1455 /* - sock block */
1456 struct tcp_md5sig_info {
1457 	struct hlist_head	head;
1458 	struct rcu_head		rcu;
1459 };
1460 
1461 /* - pseudo header */
1462 struct tcp4_pseudohdr {
1463 	__be32		saddr;
1464 	__be32		daddr;
1465 	__u8		pad;
1466 	__u8		protocol;
1467 	__be16		len;
1468 };
1469 
1470 struct tcp6_pseudohdr {
1471 	struct in6_addr	saddr;
1472 	struct in6_addr daddr;
1473 	__be32		len;
1474 	__be32		protocol;	/* including padding */
1475 };
1476 
1477 union tcp_md5sum_block {
1478 	struct tcp4_pseudohdr ip4;
1479 #if IS_ENABLED(CONFIG_IPV6)
1480 	struct tcp6_pseudohdr ip6;
1481 #endif
1482 };
1483 
1484 /* - pool: digest algorithm, hash description and scratch buffer */
1485 struct tcp_md5sig_pool {
1486 	struct ahash_request	*md5_req;
1487 	void			*scratch;
1488 };
1489 
1490 /* - functions */
1491 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1492 			const struct sock *sk, const struct sk_buff *skb);
1493 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1494 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1495 		   gfp_t gfp);
1496 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1497 		   int family, u8 prefixlen);
1498 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1499 					 const struct sock *addr_sk);
1500 
1501 #ifdef CONFIG_TCP_MD5SIG
1502 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1503 					 const union tcp_md5_addr *addr,
1504 					 int family);
1505 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1506 #else
1507 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1508 					 const union tcp_md5_addr *addr,
1509 					 int family)
1510 {
1511 	return NULL;
1512 }
1513 #define tcp_twsk_md5_key(twsk)	NULL
1514 #endif
1515 
1516 bool tcp_alloc_md5sig_pool(void);
1517 
1518 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1519 static inline void tcp_put_md5sig_pool(void)
1520 {
1521 	local_bh_enable();
1522 }
1523 
1524 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1525 			  unsigned int header_len);
1526 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1527 		     const struct tcp_md5sig_key *key);
1528 
1529 /* From tcp_fastopen.c */
1530 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1531 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1532 			    unsigned long *last_syn_loss);
1533 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1534 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1535 			    u16 try_exp);
1536 struct tcp_fastopen_request {
1537 	/* Fast Open cookie. Size 0 means a cookie request */
1538 	struct tcp_fastopen_cookie	cookie;
1539 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1540 	size_t				size;
1541 	int				copied;	/* queued in tcp_connect() */
1542 };
1543 void tcp_free_fastopen_req(struct tcp_sock *tp);
1544 
1545 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1546 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1547 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1548 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1549 			      struct request_sock *req,
1550 			      struct tcp_fastopen_cookie *foc,
1551 			      struct dst_entry *dst);
1552 void tcp_fastopen_init_key_once(bool publish);
1553 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1554 			     struct tcp_fastopen_cookie *cookie);
1555 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1556 #define TCP_FASTOPEN_KEY_LENGTH 16
1557 
1558 /* Fastopen key context */
1559 struct tcp_fastopen_context {
1560 	struct crypto_cipher	*tfm;
1561 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1562 	struct rcu_head		rcu;
1563 };
1564 
1565 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1566 void tcp_fastopen_active_disable(struct sock *sk);
1567 bool tcp_fastopen_active_should_disable(struct sock *sk);
1568 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1569 void tcp_fastopen_active_timeout_reset(void);
1570 
1571 /* Latencies incurred by various limits for a sender. They are
1572  * chronograph-like stats that are mutually exclusive.
1573  */
1574 enum tcp_chrono {
1575 	TCP_CHRONO_UNSPEC,
1576 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1577 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1578 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1579 	__TCP_CHRONO_MAX,
1580 };
1581 
1582 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1583 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1584 
1585 /* write queue abstraction */
1586 static inline void tcp_write_queue_purge(struct sock *sk)
1587 {
1588 	struct sk_buff *skb;
1589 
1590 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1591 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1592 		sk_wmem_free_skb(sk, skb);
1593 	sk_mem_reclaim(sk);
1594 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1595 }
1596 
1597 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1598 {
1599 	return skb_peek(&sk->sk_write_queue);
1600 }
1601 
1602 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1603 {
1604 	return skb_peek_tail(&sk->sk_write_queue);
1605 }
1606 
1607 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1608 						   const struct sk_buff *skb)
1609 {
1610 	return skb_queue_next(&sk->sk_write_queue, skb);
1611 }
1612 
1613 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1614 						   const struct sk_buff *skb)
1615 {
1616 	return skb_queue_prev(&sk->sk_write_queue, skb);
1617 }
1618 
1619 #define tcp_for_write_queue(skb, sk)					\
1620 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1621 
1622 #define tcp_for_write_queue_from(skb, sk)				\
1623 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1624 
1625 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1626 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1627 
1628 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1629 {
1630 	return sk->sk_send_head;
1631 }
1632 
1633 static inline bool tcp_skb_is_last(const struct sock *sk,
1634 				   const struct sk_buff *skb)
1635 {
1636 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1637 }
1638 
1639 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1640 {
1641 	if (tcp_skb_is_last(sk, skb))
1642 		sk->sk_send_head = NULL;
1643 	else
1644 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1645 }
1646 
1647 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1648 {
1649 	if (sk->sk_send_head == skb_unlinked) {
1650 		sk->sk_send_head = NULL;
1651 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1652 	}
1653 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1654 		tcp_sk(sk)->highest_sack = NULL;
1655 }
1656 
1657 static inline void tcp_init_send_head(struct sock *sk)
1658 {
1659 	sk->sk_send_head = NULL;
1660 }
1661 
1662 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1663 {
1664 	__skb_queue_tail(&sk->sk_write_queue, skb);
1665 }
1666 
1667 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1668 {
1669 	__tcp_add_write_queue_tail(sk, skb);
1670 
1671 	/* Queue it, remembering where we must start sending. */
1672 	if (sk->sk_send_head == NULL) {
1673 		sk->sk_send_head = skb;
1674 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1675 
1676 		if (tcp_sk(sk)->highest_sack == NULL)
1677 			tcp_sk(sk)->highest_sack = skb;
1678 	}
1679 }
1680 
1681 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1682 {
1683 	__skb_queue_head(&sk->sk_write_queue, skb);
1684 }
1685 
1686 /* Insert buff after skb on the write queue of sk.  */
1687 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1688 						struct sk_buff *buff,
1689 						struct sock *sk)
1690 {
1691 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1692 }
1693 
1694 /* Insert new before skb on the write queue of sk.  */
1695 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1696 						  struct sk_buff *skb,
1697 						  struct sock *sk)
1698 {
1699 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1700 
1701 	if (sk->sk_send_head == skb)
1702 		sk->sk_send_head = new;
1703 }
1704 
1705 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1706 {
1707 	__skb_unlink(skb, &sk->sk_write_queue);
1708 }
1709 
1710 static inline bool tcp_write_queue_empty(struct sock *sk)
1711 {
1712 	return skb_queue_empty(&sk->sk_write_queue);
1713 }
1714 
1715 static inline void tcp_push_pending_frames(struct sock *sk)
1716 {
1717 	if (tcp_send_head(sk)) {
1718 		struct tcp_sock *tp = tcp_sk(sk);
1719 
1720 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1721 	}
1722 }
1723 
1724 /* Start sequence of the skb just after the highest skb with SACKed
1725  * bit, valid only if sacked_out > 0 or when the caller has ensured
1726  * validity by itself.
1727  */
1728 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1729 {
1730 	if (!tp->sacked_out)
1731 		return tp->snd_una;
1732 
1733 	if (tp->highest_sack == NULL)
1734 		return tp->snd_nxt;
1735 
1736 	return TCP_SKB_CB(tp->highest_sack)->seq;
1737 }
1738 
1739 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1740 {
1741 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1742 						tcp_write_queue_next(sk, skb);
1743 }
1744 
1745 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1746 {
1747 	return tcp_sk(sk)->highest_sack;
1748 }
1749 
1750 static inline void tcp_highest_sack_reset(struct sock *sk)
1751 {
1752 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1753 }
1754 
1755 /* Called when old skb is about to be deleted (to be combined with new skb) */
1756 static inline void tcp_highest_sack_combine(struct sock *sk,
1757 					    struct sk_buff *old,
1758 					    struct sk_buff *new)
1759 {
1760 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1761 		tcp_sk(sk)->highest_sack = new;
1762 }
1763 
1764 /* This helper checks if socket has IP_TRANSPARENT set */
1765 static inline bool inet_sk_transparent(const struct sock *sk)
1766 {
1767 	switch (sk->sk_state) {
1768 	case TCP_TIME_WAIT:
1769 		return inet_twsk(sk)->tw_transparent;
1770 	case TCP_NEW_SYN_RECV:
1771 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1772 	}
1773 	return inet_sk(sk)->transparent;
1774 }
1775 
1776 /* Determines whether this is a thin stream (which may suffer from
1777  * increased latency). Used to trigger latency-reducing mechanisms.
1778  */
1779 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1780 {
1781 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1782 }
1783 
1784 /* /proc */
1785 enum tcp_seq_states {
1786 	TCP_SEQ_STATE_LISTENING,
1787 	TCP_SEQ_STATE_ESTABLISHED,
1788 };
1789 
1790 int tcp_seq_open(struct inode *inode, struct file *file);
1791 
1792 struct tcp_seq_afinfo {
1793 	char				*name;
1794 	sa_family_t			family;
1795 	const struct file_operations	*seq_fops;
1796 	struct seq_operations		seq_ops;
1797 };
1798 
1799 struct tcp_iter_state {
1800 	struct seq_net_private	p;
1801 	sa_family_t		family;
1802 	enum tcp_seq_states	state;
1803 	struct sock		*syn_wait_sk;
1804 	int			bucket, offset, sbucket, num;
1805 	loff_t			last_pos;
1806 };
1807 
1808 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1809 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1810 
1811 extern struct request_sock_ops tcp_request_sock_ops;
1812 extern struct request_sock_ops tcp6_request_sock_ops;
1813 
1814 void tcp_v4_destroy_sock(struct sock *sk);
1815 
1816 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1817 				netdev_features_t features);
1818 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1819 int tcp_gro_complete(struct sk_buff *skb);
1820 
1821 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1822 
1823 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1824 {
1825 	struct net *net = sock_net((struct sock *)tp);
1826 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1827 }
1828 
1829 static inline bool tcp_stream_memory_free(const struct sock *sk)
1830 {
1831 	const struct tcp_sock *tp = tcp_sk(sk);
1832 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1833 
1834 	return notsent_bytes < tcp_notsent_lowat(tp);
1835 }
1836 
1837 #ifdef CONFIG_PROC_FS
1838 int tcp4_proc_init(void);
1839 void tcp4_proc_exit(void);
1840 #endif
1841 
1842 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1843 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1844 		     const struct tcp_request_sock_ops *af_ops,
1845 		     struct sock *sk, struct sk_buff *skb);
1846 
1847 /* TCP af-specific functions */
1848 struct tcp_sock_af_ops {
1849 #ifdef CONFIG_TCP_MD5SIG
1850 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1851 						const struct sock *addr_sk);
1852 	int		(*calc_md5_hash)(char *location,
1853 					 const struct tcp_md5sig_key *md5,
1854 					 const struct sock *sk,
1855 					 const struct sk_buff *skb);
1856 	int		(*md5_parse)(struct sock *sk,
1857 				     int optname,
1858 				     char __user *optval,
1859 				     int optlen);
1860 #endif
1861 };
1862 
1863 struct tcp_request_sock_ops {
1864 	u16 mss_clamp;
1865 #ifdef CONFIG_TCP_MD5SIG
1866 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1867 						 const struct sock *addr_sk);
1868 	int		(*calc_md5_hash) (char *location,
1869 					  const struct tcp_md5sig_key *md5,
1870 					  const struct sock *sk,
1871 					  const struct sk_buff *skb);
1872 #endif
1873 	void (*init_req)(struct request_sock *req,
1874 			 const struct sock *sk_listener,
1875 			 struct sk_buff *skb);
1876 #ifdef CONFIG_SYN_COOKIES
1877 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1878 				 __u16 *mss);
1879 #endif
1880 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1881 				       const struct request_sock *req);
1882 	u32 (*init_seq)(const struct sk_buff *skb);
1883 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1884 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1885 			   struct flowi *fl, struct request_sock *req,
1886 			   struct tcp_fastopen_cookie *foc,
1887 			   enum tcp_synack_type synack_type);
1888 };
1889 
1890 #ifdef CONFIG_SYN_COOKIES
1891 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1892 					 const struct sock *sk, struct sk_buff *skb,
1893 					 __u16 *mss)
1894 {
1895 	tcp_synq_overflow(sk);
1896 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1897 	return ops->cookie_init_seq(skb, mss);
1898 }
1899 #else
1900 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1901 					 const struct sock *sk, struct sk_buff *skb,
1902 					 __u16 *mss)
1903 {
1904 	return 0;
1905 }
1906 #endif
1907 
1908 int tcpv4_offload_init(void);
1909 
1910 void tcp_v4_init(void);
1911 void tcp_init(void);
1912 
1913 /* tcp_recovery.c */
1914 extern void tcp_rack_mark_lost(struct sock *sk);
1915 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1916 			     u64 xmit_time);
1917 extern void tcp_rack_reo_timeout(struct sock *sk);
1918 
1919 /* At how many usecs into the future should the RTO fire? */
1920 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1921 {
1922 	const struct sk_buff *skb = tcp_write_queue_head(sk);
1923 	u32 rto = inet_csk(sk)->icsk_rto;
1924 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1925 
1926 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1927 }
1928 
1929 /*
1930  * Save and compile IPv4 options, return a pointer to it
1931  */
1932 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1933 {
1934 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1935 	struct ip_options_rcu *dopt = NULL;
1936 
1937 	if (opt->optlen) {
1938 		int opt_size = sizeof(*dopt) + opt->optlen;
1939 
1940 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1941 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1942 			kfree(dopt);
1943 			dopt = NULL;
1944 		}
1945 	}
1946 	return dopt;
1947 }
1948 
1949 /* locally generated TCP pure ACKs have skb->truesize == 2
1950  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1951  * This is much faster than dissecting the packet to find out.
1952  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1953  */
1954 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1955 {
1956 	return skb->truesize == 2;
1957 }
1958 
1959 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1960 {
1961 	skb->truesize = 2;
1962 }
1963 
1964 static inline int tcp_inq(struct sock *sk)
1965 {
1966 	struct tcp_sock *tp = tcp_sk(sk);
1967 	int answ;
1968 
1969 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1970 		answ = 0;
1971 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1972 		   !tp->urg_data ||
1973 		   before(tp->urg_seq, tp->copied_seq) ||
1974 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1975 
1976 		answ = tp->rcv_nxt - tp->copied_seq;
1977 
1978 		/* Subtract 1, if FIN was received */
1979 		if (answ && sock_flag(sk, SOCK_DONE))
1980 			answ--;
1981 	} else {
1982 		answ = tp->urg_seq - tp->copied_seq;
1983 	}
1984 
1985 	return answ;
1986 }
1987 
1988 int tcp_peek_len(struct socket *sock);
1989 
1990 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1991 {
1992 	u16 segs_in;
1993 
1994 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1995 	tp->segs_in += segs_in;
1996 	if (skb->len > tcp_hdrlen(skb))
1997 		tp->data_segs_in += segs_in;
1998 }
1999 
2000 /*
2001  * TCP listen path runs lockless.
2002  * We forced "struct sock" to be const qualified to make sure
2003  * we don't modify one of its field by mistake.
2004  * Here, we increment sk_drops which is an atomic_t, so we can safely
2005  * make sock writable again.
2006  */
2007 static inline void tcp_listendrop(const struct sock *sk)
2008 {
2009 	atomic_inc(&((struct sock *)sk)->sk_drops);
2010 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2011 }
2012 
2013 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2014 
2015 /*
2016  * Interface for adding Upper Level Protocols over TCP
2017  */
2018 
2019 #define TCP_ULP_NAME_MAX	16
2020 #define TCP_ULP_MAX		128
2021 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2022 
2023 struct tcp_ulp_ops {
2024 	struct list_head	list;
2025 
2026 	/* initialize ulp */
2027 	int (*init)(struct sock *sk);
2028 	/* cleanup ulp */
2029 	void (*release)(struct sock *sk);
2030 
2031 	char		name[TCP_ULP_NAME_MAX];
2032 	struct module	*owner;
2033 };
2034 int tcp_register_ulp(struct tcp_ulp_ops *type);
2035 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2036 int tcp_set_ulp(struct sock *sk, const char *name);
2037 void tcp_get_available_ulp(char *buf, size_t len);
2038 void tcp_cleanup_ulp(struct sock *sk);
2039 
2040 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2041  * is < 0, then the BPF op failed (for example if the loaded BPF
2042  * program does not support the chosen operation or there is no BPF
2043  * program loaded).
2044  */
2045 #ifdef CONFIG_BPF
2046 static inline int tcp_call_bpf(struct sock *sk, int op)
2047 {
2048 	struct bpf_sock_ops_kern sock_ops;
2049 	int ret;
2050 
2051 	if (sk_fullsock(sk))
2052 		sock_owned_by_me(sk);
2053 
2054 	memset(&sock_ops, 0, sizeof(sock_ops));
2055 	sock_ops.sk = sk;
2056 	sock_ops.op = op;
2057 
2058 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2059 	if (ret == 0)
2060 		ret = sock_ops.reply;
2061 	else
2062 		ret = -1;
2063 	return ret;
2064 }
2065 #else
2066 static inline int tcp_call_bpf(struct sock *sk, int op)
2067 {
2068 	return -EPERM;
2069 }
2070 #endif
2071 
2072 static inline u32 tcp_timeout_init(struct sock *sk)
2073 {
2074 	int timeout;
2075 
2076 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2077 
2078 	if (timeout <= 0)
2079 		timeout = TCP_TIMEOUT_INIT;
2080 	return timeout;
2081 }
2082 
2083 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2084 {
2085 	int rwnd;
2086 
2087 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2088 
2089 	if (rwnd < 0)
2090 		rwnd = 0;
2091 	return rwnd;
2092 }
2093 
2094 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2095 {
2096 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2097 }
2098 #endif	/* _TCP_H */
2099