xref: /openbmc/linux/include/net/tcp.h (revision 7490ca1e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/slab.h>
26 #include <linux/cache.h>
27 #include <linux/percpu.h>
28 #include <linux/skbuff.h>
29 #include <linux/dmaengine.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Offer an initial receive window of 10 mss. */
64 #define TCP_DEFAULT_INIT_RCVWND	10
65 
66 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
67 #define TCP_MIN_MSS		88U
68 
69 /* The least MTU to use for probing */
70 #define TCP_BASE_MSS		512
71 
72 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
73 #define TCP_FASTRETRANS_THRESH 3
74 
75 /* Maximal reordering. */
76 #define TCP_MAX_REORDERING	127
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
104 				 * connection: ~180sec is RFC minimum	*/
105 
106 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
107 				  * state, about 60 seconds	*/
108 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
109                                  /* BSD style FIN_WAIT2 deadlock breaker.
110 				  * It used to be 3min, new value is 60sec,
111 				  * to combine FIN-WAIT-2 timeout with
112 				  * TIME-WAIT timer.
113 				  */
114 
115 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
116 #if HZ >= 100
117 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
118 #define TCP_ATO_MIN	((unsigned)(HZ/25))
119 #else
120 #define TCP_DELACK_MIN	4U
121 #define TCP_ATO_MIN	4U
122 #endif
123 #define TCP_RTO_MAX	((unsigned)(120*HZ))
124 #define TCP_RTO_MIN	((unsigned)(HZ/5))
125 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC2988bis initial RTO value	*/
126 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
127 						 * used as a fallback RTO for the
128 						 * initial data transmission if no
129 						 * valid RTT sample has been acquired,
130 						 * most likely due to retrans in 3WHS.
131 						 */
132 
133 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
134 					                 * for local resources.
135 					                 */
136 
137 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
138 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
139 #define TCP_KEEPALIVE_INTVL	(75*HZ)
140 
141 #define MAX_TCP_KEEPIDLE	32767
142 #define MAX_TCP_KEEPINTVL	32767
143 #define MAX_TCP_KEEPCNT		127
144 #define MAX_TCP_SYNCNT		127
145 
146 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
147 
148 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
149 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
150 					 * after this time. It should be equal
151 					 * (or greater than) TCP_TIMEWAIT_LEN
152 					 * to provide reliability equal to one
153 					 * provided by timewait state.
154 					 */
155 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
156 					 * timestamps. It must be less than
157 					 * minimal timewait lifetime.
158 					 */
159 /*
160  *	TCP option
161  */
162 
163 #define TCPOPT_NOP		1	/* Padding */
164 #define TCPOPT_EOL		0	/* End of options */
165 #define TCPOPT_MSS		2	/* Segment size negotiating */
166 #define TCPOPT_WINDOW		3	/* Window scaling */
167 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
168 #define TCPOPT_SACK             5       /* SACK Block */
169 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
170 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
171 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
172 
173 /*
174  *     TCP option lengths
175  */
176 
177 #define TCPOLEN_MSS            4
178 #define TCPOLEN_WINDOW         3
179 #define TCPOLEN_SACK_PERM      2
180 #define TCPOLEN_TIMESTAMP      10
181 #define TCPOLEN_MD5SIG         18
182 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
183 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
184 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
185 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
186 
187 /* But this is what stacks really send out. */
188 #define TCPOLEN_TSTAMP_ALIGNED		12
189 #define TCPOLEN_WSCALE_ALIGNED		4
190 #define TCPOLEN_SACKPERM_ALIGNED	4
191 #define TCPOLEN_SACK_BASE		2
192 #define TCPOLEN_SACK_BASE_ALIGNED	4
193 #define TCPOLEN_SACK_PERBLOCK		8
194 #define TCPOLEN_MD5SIG_ALIGNED		20
195 #define TCPOLEN_MSS_ALIGNED		4
196 
197 /* Flags in tp->nonagle */
198 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
199 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
200 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
201 
202 /* TCP thin-stream limits */
203 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
204 
205 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
206 #define TCP_INIT_CWND		10
207 
208 extern struct inet_timewait_death_row tcp_death_row;
209 
210 /* sysctl variables for tcp */
211 extern int sysctl_tcp_timestamps;
212 extern int sysctl_tcp_window_scaling;
213 extern int sysctl_tcp_sack;
214 extern int sysctl_tcp_fin_timeout;
215 extern int sysctl_tcp_keepalive_time;
216 extern int sysctl_tcp_keepalive_probes;
217 extern int sysctl_tcp_keepalive_intvl;
218 extern int sysctl_tcp_syn_retries;
219 extern int sysctl_tcp_synack_retries;
220 extern int sysctl_tcp_retries1;
221 extern int sysctl_tcp_retries2;
222 extern int sysctl_tcp_orphan_retries;
223 extern int sysctl_tcp_syncookies;
224 extern int sysctl_tcp_retrans_collapse;
225 extern int sysctl_tcp_stdurg;
226 extern int sysctl_tcp_rfc1337;
227 extern int sysctl_tcp_abort_on_overflow;
228 extern int sysctl_tcp_max_orphans;
229 extern int sysctl_tcp_fack;
230 extern int sysctl_tcp_reordering;
231 extern int sysctl_tcp_ecn;
232 extern int sysctl_tcp_dsack;
233 extern int sysctl_tcp_wmem[3];
234 extern int sysctl_tcp_rmem[3];
235 extern int sysctl_tcp_app_win;
236 extern int sysctl_tcp_adv_win_scale;
237 extern int sysctl_tcp_tw_reuse;
238 extern int sysctl_tcp_frto;
239 extern int sysctl_tcp_frto_response;
240 extern int sysctl_tcp_low_latency;
241 extern int sysctl_tcp_dma_copybreak;
242 extern int sysctl_tcp_nometrics_save;
243 extern int sysctl_tcp_moderate_rcvbuf;
244 extern int sysctl_tcp_tso_win_divisor;
245 extern int sysctl_tcp_abc;
246 extern int sysctl_tcp_mtu_probing;
247 extern int sysctl_tcp_base_mss;
248 extern int sysctl_tcp_workaround_signed_windows;
249 extern int sysctl_tcp_slow_start_after_idle;
250 extern int sysctl_tcp_max_ssthresh;
251 extern int sysctl_tcp_cookie_size;
252 extern int sysctl_tcp_thin_linear_timeouts;
253 extern int sysctl_tcp_thin_dupack;
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern int tcp_memory_pressure;
258 
259 /*
260  * The next routines deal with comparing 32 bit unsigned ints
261  * and worry about wraparound (automatic with unsigned arithmetic).
262  */
263 
264 static inline int before(__u32 seq1, __u32 seq2)
265 {
266         return (__s32)(seq1-seq2) < 0;
267 }
268 #define after(seq2, seq1) 	before(seq1, seq2)
269 
270 /* is s2<=s1<=s3 ? */
271 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
272 {
273 	return seq3 - seq2 >= seq1 - seq2;
274 }
275 
276 static inline bool tcp_out_of_memory(struct sock *sk)
277 {
278 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
279 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
280 		return true;
281 	return false;
282 }
283 
284 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
285 {
286 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
287 	int orphans = percpu_counter_read_positive(ocp);
288 
289 	if (orphans << shift > sysctl_tcp_max_orphans) {
290 		orphans = percpu_counter_sum_positive(ocp);
291 		if (orphans << shift > sysctl_tcp_max_orphans)
292 			return true;
293 	}
294 	return false;
295 }
296 
297 extern bool tcp_check_oom(struct sock *sk, int shift);
298 
299 /* syncookies: remember time of last synqueue overflow */
300 static inline void tcp_synq_overflow(struct sock *sk)
301 {
302 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
303 }
304 
305 /* syncookies: no recent synqueue overflow on this listening socket? */
306 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
307 {
308 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
309 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
310 }
311 
312 extern struct proto tcp_prot;
313 
314 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
316 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
318 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
319 
320 extern void tcp_init_mem(struct net *net);
321 
322 extern void tcp_v4_err(struct sk_buff *skb, u32);
323 
324 extern void tcp_shutdown (struct sock *sk, int how);
325 
326 extern int tcp_v4_rcv(struct sk_buff *skb);
327 
328 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
329 extern void *tcp_v4_tw_get_peer(struct sock *sk);
330 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
331 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
332 		       size_t size);
333 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
334 			size_t size, int flags);
335 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
337 				 const struct tcphdr *th, unsigned int len);
338 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
339 			       const struct tcphdr *th, unsigned int len);
340 extern void tcp_rcv_space_adjust(struct sock *sk);
341 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
342 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343 extern void tcp_twsk_destructor(struct sock *sk);
344 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
345 			       struct pipe_inode_info *pipe, size_t len,
346 			       unsigned int flags);
347 
348 static inline void tcp_dec_quickack_mode(struct sock *sk,
349 					 const unsigned int pkts)
350 {
351 	struct inet_connection_sock *icsk = inet_csk(sk);
352 
353 	if (icsk->icsk_ack.quick) {
354 		if (pkts >= icsk->icsk_ack.quick) {
355 			icsk->icsk_ack.quick = 0;
356 			/* Leaving quickack mode we deflate ATO. */
357 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
358 		} else
359 			icsk->icsk_ack.quick -= pkts;
360 	}
361 }
362 
363 #define	TCP_ECN_OK		1
364 #define	TCP_ECN_QUEUE_CWR	2
365 #define	TCP_ECN_DEMAND_CWR	4
366 #define	TCP_ECN_SEEN		8
367 
368 static __inline__ void
369 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
370 {
371 	if (sysctl_tcp_ecn && th->ece && th->cwr)
372 		inet_rsk(req)->ecn_ok = 1;
373 }
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 						     struct sk_buff *skb,
385 						     const struct tcphdr *th);
386 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
387 				   struct request_sock *req,
388 				   struct request_sock **prev);
389 extern int tcp_child_process(struct sock *parent, struct sock *child,
390 			     struct sk_buff *skb);
391 extern int tcp_use_frto(struct sock *sk);
392 extern void tcp_enter_frto(struct sock *sk);
393 extern void tcp_enter_loss(struct sock *sk, int how);
394 extern void tcp_clear_retrans(struct tcp_sock *tp);
395 extern void tcp_update_metrics(struct sock *sk);
396 extern void tcp_close(struct sock *sk, long timeout);
397 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
398 			     struct poll_table_struct *wait);
399 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
404 				 char __user *optval, int __user *optlen);
405 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
406 				 char __user *optval, unsigned int optlen);
407 extern void tcp_set_keepalive(struct sock *sk, int val);
408 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
409 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
410 		       size_t len, int nonblock, int flags, int *addr_len);
411 extern void tcp_parse_options(const struct sk_buff *skb,
412 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
413 			      int estab);
414 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
421 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 extern struct sock * tcp_create_openreq_child(struct sock *sk,
423 					      struct request_sock *req,
424 					      struct sk_buff *skb);
425 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
426 					  struct request_sock *req,
427 					  struct dst_entry *dst);
428 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
429 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
430 			  int addr_len);
431 extern int tcp_connect(struct sock *sk);
432 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
433 					struct request_sock *req,
434 					struct request_values *rvp);
435 extern int tcp_disconnect(struct sock *sk, int flags);
436 
437 
438 /* From syncookies.c */
439 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
440 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
441 				    struct ip_options *opt);
442 #ifdef CONFIG_SYN_COOKIES
443 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
444 				     __u16 *mss);
445 #else
446 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
447 					    struct sk_buff *skb,
448 					    __u16 *mss)
449 {
450 	return 0;
451 }
452 #endif
453 
454 extern __u32 cookie_init_timestamp(struct request_sock *req);
455 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
456 
457 /* From net/ipv6/syncookies.c */
458 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
459 #ifdef CONFIG_SYN_COOKIES
460 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
461 				     __u16 *mss);
462 #else
463 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
464 					    struct sk_buff *skb,
465 					    __u16 *mss)
466 {
467 	return 0;
468 }
469 #endif
470 /* tcp_output.c */
471 
472 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
473 				      int nonagle);
474 extern int tcp_may_send_now(struct sock *sk);
475 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
476 extern void tcp_retransmit_timer(struct sock *sk);
477 extern void tcp_xmit_retransmit_queue(struct sock *);
478 extern void tcp_simple_retransmit(struct sock *);
479 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
480 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
481 
482 extern void tcp_send_probe0(struct sock *);
483 extern void tcp_send_partial(struct sock *);
484 extern int tcp_write_wakeup(struct sock *);
485 extern void tcp_send_fin(struct sock *sk);
486 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
487 extern int tcp_send_synack(struct sock *);
488 extern int tcp_syn_flood_action(struct sock *sk,
489 				const struct sk_buff *skb,
490 				const char *proto);
491 extern void tcp_push_one(struct sock *, unsigned int mss_now);
492 extern void tcp_send_ack(struct sock *sk);
493 extern void tcp_send_delayed_ack(struct sock *sk);
494 
495 /* tcp_input.c */
496 extern void tcp_cwnd_application_limited(struct sock *sk);
497 
498 /* tcp_timer.c */
499 extern void tcp_init_xmit_timers(struct sock *);
500 static inline void tcp_clear_xmit_timers(struct sock *sk)
501 {
502 	inet_csk_clear_xmit_timers(sk);
503 }
504 
505 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
506 extern unsigned int tcp_current_mss(struct sock *sk);
507 
508 /* Bound MSS / TSO packet size with the half of the window */
509 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
510 {
511 	int cutoff;
512 
513 	/* When peer uses tiny windows, there is no use in packetizing
514 	 * to sub-MSS pieces for the sake of SWS or making sure there
515 	 * are enough packets in the pipe for fast recovery.
516 	 *
517 	 * On the other hand, for extremely large MSS devices, handling
518 	 * smaller than MSS windows in this way does make sense.
519 	 */
520 	if (tp->max_window >= 512)
521 		cutoff = (tp->max_window >> 1);
522 	else
523 		cutoff = tp->max_window;
524 
525 	if (cutoff && pktsize > cutoff)
526 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
527 	else
528 		return pktsize;
529 }
530 
531 /* tcp.c */
532 extern void tcp_get_info(const struct sock *, struct tcp_info *);
533 
534 /* Read 'sendfile()'-style from a TCP socket */
535 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
536 				unsigned int, size_t);
537 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
538 			 sk_read_actor_t recv_actor);
539 
540 extern void tcp_initialize_rcv_mss(struct sock *sk);
541 
542 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
543 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
544 extern void tcp_mtup_init(struct sock *sk);
545 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
546 
547 static inline void tcp_bound_rto(const struct sock *sk)
548 {
549 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
550 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
551 }
552 
553 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
554 {
555 	return (tp->srtt >> 3) + tp->rttvar;
556 }
557 
558 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
559 {
560 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
561 			       ntohl(TCP_FLAG_ACK) |
562 			       snd_wnd);
563 }
564 
565 static inline void tcp_fast_path_on(struct tcp_sock *tp)
566 {
567 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
568 }
569 
570 static inline void tcp_fast_path_check(struct sock *sk)
571 {
572 	struct tcp_sock *tp = tcp_sk(sk);
573 
574 	if (skb_queue_empty(&tp->out_of_order_queue) &&
575 	    tp->rcv_wnd &&
576 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
577 	    !tp->urg_data)
578 		tcp_fast_path_on(tp);
579 }
580 
581 /* Compute the actual rto_min value */
582 static inline u32 tcp_rto_min(struct sock *sk)
583 {
584 	const struct dst_entry *dst = __sk_dst_get(sk);
585 	u32 rto_min = TCP_RTO_MIN;
586 
587 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
588 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
589 	return rto_min;
590 }
591 
592 /* Compute the actual receive window we are currently advertising.
593  * Rcv_nxt can be after the window if our peer push more data
594  * than the offered window.
595  */
596 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
597 {
598 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
599 
600 	if (win < 0)
601 		win = 0;
602 	return (u32) win;
603 }
604 
605 /* Choose a new window, without checks for shrinking, and without
606  * scaling applied to the result.  The caller does these things
607  * if necessary.  This is a "raw" window selection.
608  */
609 extern u32 __tcp_select_window(struct sock *sk);
610 
611 /* TCP timestamps are only 32-bits, this causes a slight
612  * complication on 64-bit systems since we store a snapshot
613  * of jiffies in the buffer control blocks below.  We decided
614  * to use only the low 32-bits of jiffies and hide the ugly
615  * casts with the following macro.
616  */
617 #define tcp_time_stamp		((__u32)(jiffies))
618 
619 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
620 
621 #define TCPHDR_FIN 0x01
622 #define TCPHDR_SYN 0x02
623 #define TCPHDR_RST 0x04
624 #define TCPHDR_PSH 0x08
625 #define TCPHDR_ACK 0x10
626 #define TCPHDR_URG 0x20
627 #define TCPHDR_ECE 0x40
628 #define TCPHDR_CWR 0x80
629 
630 /* This is what the send packet queuing engine uses to pass
631  * TCP per-packet control information to the transmission code.
632  * We also store the host-order sequence numbers in here too.
633  * This is 44 bytes if IPV6 is enabled.
634  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
635  */
636 struct tcp_skb_cb {
637 	union {
638 		struct inet_skb_parm	h4;
639 #if IS_ENABLED(CONFIG_IPV6)
640 		struct inet6_skb_parm	h6;
641 #endif
642 	} header;	/* For incoming frames		*/
643 	__u32		seq;		/* Starting sequence number	*/
644 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
645 	__u32		when;		/* used to compute rtt's	*/
646 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
647 	__u8		sacked;		/* State flags for SACK/FACK.	*/
648 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
649 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
650 #define TCPCB_LOST		0x04	/* SKB is lost			*/
651 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
652 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
653 	/* 1 byte hole */
654 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
655 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
656 
657 	__u32		ack_seq;	/* Sequence number ACK'd	*/
658 };
659 
660 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
661 
662 /* Due to TSO, an SKB can be composed of multiple actual
663  * packets.  To keep these tracked properly, we use this.
664  */
665 static inline int tcp_skb_pcount(const struct sk_buff *skb)
666 {
667 	return skb_shinfo(skb)->gso_segs;
668 }
669 
670 /* This is valid iff tcp_skb_pcount() > 1. */
671 static inline int tcp_skb_mss(const struct sk_buff *skb)
672 {
673 	return skb_shinfo(skb)->gso_size;
674 }
675 
676 /* Events passed to congestion control interface */
677 enum tcp_ca_event {
678 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
679 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
680 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
681 	CA_EVENT_FRTO,		/* fast recovery timeout */
682 	CA_EVENT_LOSS,		/* loss timeout */
683 	CA_EVENT_FAST_ACK,	/* in sequence ack */
684 	CA_EVENT_SLOW_ACK,	/* other ack */
685 };
686 
687 /*
688  * Interface for adding new TCP congestion control handlers
689  */
690 #define TCP_CA_NAME_MAX	16
691 #define TCP_CA_MAX	128
692 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
693 
694 #define TCP_CONG_NON_RESTRICTED 0x1
695 #define TCP_CONG_RTT_STAMP	0x2
696 
697 struct tcp_congestion_ops {
698 	struct list_head	list;
699 	unsigned long flags;
700 
701 	/* initialize private data (optional) */
702 	void (*init)(struct sock *sk);
703 	/* cleanup private data  (optional) */
704 	void (*release)(struct sock *sk);
705 
706 	/* return slow start threshold (required) */
707 	u32 (*ssthresh)(struct sock *sk);
708 	/* lower bound for congestion window (optional) */
709 	u32 (*min_cwnd)(const struct sock *sk);
710 	/* do new cwnd calculation (required) */
711 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
712 	/* call before changing ca_state (optional) */
713 	void (*set_state)(struct sock *sk, u8 new_state);
714 	/* call when cwnd event occurs (optional) */
715 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
716 	/* new value of cwnd after loss (optional) */
717 	u32  (*undo_cwnd)(struct sock *sk);
718 	/* hook for packet ack accounting (optional) */
719 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
720 	/* get info for inet_diag (optional) */
721 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
722 
723 	char 		name[TCP_CA_NAME_MAX];
724 	struct module 	*owner;
725 };
726 
727 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
728 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
729 
730 extern void tcp_init_congestion_control(struct sock *sk);
731 extern void tcp_cleanup_congestion_control(struct sock *sk);
732 extern int tcp_set_default_congestion_control(const char *name);
733 extern void tcp_get_default_congestion_control(char *name);
734 extern void tcp_get_available_congestion_control(char *buf, size_t len);
735 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
736 extern int tcp_set_allowed_congestion_control(char *allowed);
737 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
738 extern void tcp_slow_start(struct tcp_sock *tp);
739 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
740 
741 extern struct tcp_congestion_ops tcp_init_congestion_ops;
742 extern u32 tcp_reno_ssthresh(struct sock *sk);
743 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
744 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
745 extern struct tcp_congestion_ops tcp_reno;
746 
747 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
748 {
749 	struct inet_connection_sock *icsk = inet_csk(sk);
750 
751 	if (icsk->icsk_ca_ops->set_state)
752 		icsk->icsk_ca_ops->set_state(sk, ca_state);
753 	icsk->icsk_ca_state = ca_state;
754 }
755 
756 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
757 {
758 	const struct inet_connection_sock *icsk = inet_csk(sk);
759 
760 	if (icsk->icsk_ca_ops->cwnd_event)
761 		icsk->icsk_ca_ops->cwnd_event(sk, event);
762 }
763 
764 /* These functions determine how the current flow behaves in respect of SACK
765  * handling. SACK is negotiated with the peer, and therefore it can vary
766  * between different flows.
767  *
768  * tcp_is_sack - SACK enabled
769  * tcp_is_reno - No SACK
770  * tcp_is_fack - FACK enabled, implies SACK enabled
771  */
772 static inline int tcp_is_sack(const struct tcp_sock *tp)
773 {
774 	return tp->rx_opt.sack_ok;
775 }
776 
777 static inline int tcp_is_reno(const struct tcp_sock *tp)
778 {
779 	return !tcp_is_sack(tp);
780 }
781 
782 static inline int tcp_is_fack(const struct tcp_sock *tp)
783 {
784 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
785 }
786 
787 static inline void tcp_enable_fack(struct tcp_sock *tp)
788 {
789 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
790 }
791 
792 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
793 {
794 	return tp->sacked_out + tp->lost_out;
795 }
796 
797 /* This determines how many packets are "in the network" to the best
798  * of our knowledge.  In many cases it is conservative, but where
799  * detailed information is available from the receiver (via SACK
800  * blocks etc.) we can make more aggressive calculations.
801  *
802  * Use this for decisions involving congestion control, use just
803  * tp->packets_out to determine if the send queue is empty or not.
804  *
805  * Read this equation as:
806  *
807  *	"Packets sent once on transmission queue" MINUS
808  *	"Packets left network, but not honestly ACKed yet" PLUS
809  *	"Packets fast retransmitted"
810  */
811 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
812 {
813 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
814 }
815 
816 #define TCP_INFINITE_SSTHRESH	0x7fffffff
817 
818 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
819 {
820 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
821 }
822 
823 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
824  * The exception is rate halving phase, when cwnd is decreasing towards
825  * ssthresh.
826  */
827 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
828 {
829 	const struct tcp_sock *tp = tcp_sk(sk);
830 
831 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
832 		return tp->snd_ssthresh;
833 	else
834 		return max(tp->snd_ssthresh,
835 			   ((tp->snd_cwnd >> 1) +
836 			    (tp->snd_cwnd >> 2)));
837 }
838 
839 /* Use define here intentionally to get WARN_ON location shown at the caller */
840 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
841 
842 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
843 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
844 
845 /* The maximum number of MSS of available cwnd for which TSO defers
846  * sending if not using sysctl_tcp_tso_win_divisor.
847  */
848 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
849 {
850 	return 3;
851 }
852 
853 /* Slow start with delack produces 3 packets of burst, so that
854  * it is safe "de facto".  This will be the default - same as
855  * the default reordering threshold - but if reordering increases,
856  * we must be able to allow cwnd to burst at least this much in order
857  * to not pull it back when holes are filled.
858  */
859 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
860 {
861 	return tp->reordering;
862 }
863 
864 /* Returns end sequence number of the receiver's advertised window */
865 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
866 {
867 	return tp->snd_una + tp->snd_wnd;
868 }
869 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
870 
871 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
872 				       const struct sk_buff *skb)
873 {
874 	if (skb->len < mss)
875 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
876 }
877 
878 static inline void tcp_check_probe_timer(struct sock *sk)
879 {
880 	const struct tcp_sock *tp = tcp_sk(sk);
881 	const struct inet_connection_sock *icsk = inet_csk(sk);
882 
883 	if (!tp->packets_out && !icsk->icsk_pending)
884 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
885 					  icsk->icsk_rto, TCP_RTO_MAX);
886 }
887 
888 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
889 {
890 	tp->snd_wl1 = seq;
891 }
892 
893 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
894 {
895 	tp->snd_wl1 = seq;
896 }
897 
898 /*
899  * Calculate(/check) TCP checksum
900  */
901 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
902 				   __be32 daddr, __wsum base)
903 {
904 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
905 }
906 
907 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
908 {
909 	return __skb_checksum_complete(skb);
910 }
911 
912 static inline int tcp_checksum_complete(struct sk_buff *skb)
913 {
914 	return !skb_csum_unnecessary(skb) &&
915 		__tcp_checksum_complete(skb);
916 }
917 
918 /* Prequeue for VJ style copy to user, combined with checksumming. */
919 
920 static inline void tcp_prequeue_init(struct tcp_sock *tp)
921 {
922 	tp->ucopy.task = NULL;
923 	tp->ucopy.len = 0;
924 	tp->ucopy.memory = 0;
925 	skb_queue_head_init(&tp->ucopy.prequeue);
926 #ifdef CONFIG_NET_DMA
927 	tp->ucopy.dma_chan = NULL;
928 	tp->ucopy.wakeup = 0;
929 	tp->ucopy.pinned_list = NULL;
930 	tp->ucopy.dma_cookie = 0;
931 #endif
932 }
933 
934 /* Packet is added to VJ-style prequeue for processing in process
935  * context, if a reader task is waiting. Apparently, this exciting
936  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
937  * failed somewhere. Latency? Burstiness? Well, at least now we will
938  * see, why it failed. 8)8)				  --ANK
939  *
940  * NOTE: is this not too big to inline?
941  */
942 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
943 {
944 	struct tcp_sock *tp = tcp_sk(sk);
945 
946 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
947 		return 0;
948 
949 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
950 	tp->ucopy.memory += skb->truesize;
951 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
952 		struct sk_buff *skb1;
953 
954 		BUG_ON(sock_owned_by_user(sk));
955 
956 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
957 			sk_backlog_rcv(sk, skb1);
958 			NET_INC_STATS_BH(sock_net(sk),
959 					 LINUX_MIB_TCPPREQUEUEDROPPED);
960 		}
961 
962 		tp->ucopy.memory = 0;
963 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
964 		wake_up_interruptible_sync_poll(sk_sleep(sk),
965 					   POLLIN | POLLRDNORM | POLLRDBAND);
966 		if (!inet_csk_ack_scheduled(sk))
967 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
968 						  (3 * tcp_rto_min(sk)) / 4,
969 						  TCP_RTO_MAX);
970 	}
971 	return 1;
972 }
973 
974 
975 #undef STATE_TRACE
976 
977 #ifdef STATE_TRACE
978 static const char *statename[]={
979 	"Unused","Established","Syn Sent","Syn Recv",
980 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
981 	"Close Wait","Last ACK","Listen","Closing"
982 };
983 #endif
984 extern void tcp_set_state(struct sock *sk, int state);
985 
986 extern void tcp_done(struct sock *sk);
987 
988 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
989 {
990 	rx_opt->dsack = 0;
991 	rx_opt->num_sacks = 0;
992 }
993 
994 /* Determine a window scaling and initial window to offer. */
995 extern void tcp_select_initial_window(int __space, __u32 mss,
996 				      __u32 *rcv_wnd, __u32 *window_clamp,
997 				      int wscale_ok, __u8 *rcv_wscale,
998 				      __u32 init_rcv_wnd);
999 
1000 static inline int tcp_win_from_space(int space)
1001 {
1002 	return sysctl_tcp_adv_win_scale<=0 ?
1003 		(space>>(-sysctl_tcp_adv_win_scale)) :
1004 		space - (space>>sysctl_tcp_adv_win_scale);
1005 }
1006 
1007 /* Note: caller must be prepared to deal with negative returns */
1008 static inline int tcp_space(const struct sock *sk)
1009 {
1010 	return tcp_win_from_space(sk->sk_rcvbuf -
1011 				  atomic_read(&sk->sk_rmem_alloc));
1012 }
1013 
1014 static inline int tcp_full_space(const struct sock *sk)
1015 {
1016 	return tcp_win_from_space(sk->sk_rcvbuf);
1017 }
1018 
1019 static inline void tcp_openreq_init(struct request_sock *req,
1020 				    struct tcp_options_received *rx_opt,
1021 				    struct sk_buff *skb)
1022 {
1023 	struct inet_request_sock *ireq = inet_rsk(req);
1024 
1025 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1026 	req->cookie_ts = 0;
1027 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1028 	req->mss = rx_opt->mss_clamp;
1029 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1030 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1031 	ireq->sack_ok = rx_opt->sack_ok;
1032 	ireq->snd_wscale = rx_opt->snd_wscale;
1033 	ireq->wscale_ok = rx_opt->wscale_ok;
1034 	ireq->acked = 0;
1035 	ireq->ecn_ok = 0;
1036 	ireq->rmt_port = tcp_hdr(skb)->source;
1037 	ireq->loc_port = tcp_hdr(skb)->dest;
1038 }
1039 
1040 extern void tcp_enter_memory_pressure(struct sock *sk);
1041 
1042 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1043 {
1044 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1045 }
1046 
1047 static inline int keepalive_time_when(const struct tcp_sock *tp)
1048 {
1049 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1050 }
1051 
1052 static inline int keepalive_probes(const struct tcp_sock *tp)
1053 {
1054 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1055 }
1056 
1057 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1058 {
1059 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1060 
1061 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1062 			  tcp_time_stamp - tp->rcv_tstamp);
1063 }
1064 
1065 static inline int tcp_fin_time(const struct sock *sk)
1066 {
1067 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1068 	const int rto = inet_csk(sk)->icsk_rto;
1069 
1070 	if (fin_timeout < (rto << 2) - (rto >> 1))
1071 		fin_timeout = (rto << 2) - (rto >> 1);
1072 
1073 	return fin_timeout;
1074 }
1075 
1076 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1077 				 int paws_win)
1078 {
1079 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1080 		return 1;
1081 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1082 		return 1;
1083 	/*
1084 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1085 	 * then following tcp messages have valid values. Ignore 0 value,
1086 	 * or else 'negative' tsval might forbid us to accept their packets.
1087 	 */
1088 	if (!rx_opt->ts_recent)
1089 		return 1;
1090 	return 0;
1091 }
1092 
1093 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1094 				  int rst)
1095 {
1096 	if (tcp_paws_check(rx_opt, 0))
1097 		return 0;
1098 
1099 	/* RST segments are not recommended to carry timestamp,
1100 	   and, if they do, it is recommended to ignore PAWS because
1101 	   "their cleanup function should take precedence over timestamps."
1102 	   Certainly, it is mistake. It is necessary to understand the reasons
1103 	   of this constraint to relax it: if peer reboots, clock may go
1104 	   out-of-sync and half-open connections will not be reset.
1105 	   Actually, the problem would be not existing if all
1106 	   the implementations followed draft about maintaining clock
1107 	   via reboots. Linux-2.2 DOES NOT!
1108 
1109 	   However, we can relax time bounds for RST segments to MSL.
1110 	 */
1111 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1112 		return 0;
1113 	return 1;
1114 }
1115 
1116 static inline void tcp_mib_init(struct net *net)
1117 {
1118 	/* See RFC 2012 */
1119 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1120 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1121 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1122 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1123 }
1124 
1125 /* from STCP */
1126 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1127 {
1128 	tp->lost_skb_hint = NULL;
1129 	tp->scoreboard_skb_hint = NULL;
1130 }
1131 
1132 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1133 {
1134 	tcp_clear_retrans_hints_partial(tp);
1135 	tp->retransmit_skb_hint = NULL;
1136 }
1137 
1138 /* MD5 Signature */
1139 struct crypto_hash;
1140 
1141 /* - key database */
1142 struct tcp_md5sig_key {
1143 	u8			*key;
1144 	u8			keylen;
1145 };
1146 
1147 struct tcp4_md5sig_key {
1148 	struct tcp_md5sig_key	base;
1149 	__be32			addr;
1150 };
1151 
1152 struct tcp6_md5sig_key {
1153 	struct tcp_md5sig_key	base;
1154 #if 0
1155 	u32			scope_id;	/* XXX */
1156 #endif
1157 	struct in6_addr		addr;
1158 };
1159 
1160 /* - sock block */
1161 struct tcp_md5sig_info {
1162 	struct tcp4_md5sig_key	*keys4;
1163 #if IS_ENABLED(CONFIG_IPV6)
1164 	struct tcp6_md5sig_key	*keys6;
1165 	u32			entries6;
1166 	u32			alloced6;
1167 #endif
1168 	u32			entries4;
1169 	u32			alloced4;
1170 };
1171 
1172 /* - pseudo header */
1173 struct tcp4_pseudohdr {
1174 	__be32		saddr;
1175 	__be32		daddr;
1176 	__u8		pad;
1177 	__u8		protocol;
1178 	__be16		len;
1179 };
1180 
1181 struct tcp6_pseudohdr {
1182 	struct in6_addr	saddr;
1183 	struct in6_addr daddr;
1184 	__be32		len;
1185 	__be32		protocol;	/* including padding */
1186 };
1187 
1188 union tcp_md5sum_block {
1189 	struct tcp4_pseudohdr ip4;
1190 #if IS_ENABLED(CONFIG_IPV6)
1191 	struct tcp6_pseudohdr ip6;
1192 #endif
1193 };
1194 
1195 /* - pool: digest algorithm, hash description and scratch buffer */
1196 struct tcp_md5sig_pool {
1197 	struct hash_desc	md5_desc;
1198 	union tcp_md5sum_block	md5_blk;
1199 };
1200 
1201 /* - functions */
1202 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1203 			       const struct sock *sk,
1204 			       const struct request_sock *req,
1205 			       const struct sk_buff *skb);
1206 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1207 						 struct sock *addr_sk);
1208 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1209 			     u8 newkeylen);
1210 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1211 
1212 #ifdef CONFIG_TCP_MD5SIG
1213 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1214 				 &(struct tcp_md5sig_key) {		 \
1215 					.key = (twsk)->tw_md5_key,	 \
1216 					.keylen = (twsk)->tw_md5_keylen, \
1217 				} : NULL)
1218 #else
1219 #define tcp_twsk_md5_key(twsk)	NULL
1220 #endif
1221 
1222 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1223 extern void tcp_free_md5sig_pool(void);
1224 
1225 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1226 extern void tcp_put_md5sig_pool(void);
1227 
1228 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1229 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1230 				 unsigned header_len);
1231 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1232 			    const struct tcp_md5sig_key *key);
1233 
1234 /* write queue abstraction */
1235 static inline void tcp_write_queue_purge(struct sock *sk)
1236 {
1237 	struct sk_buff *skb;
1238 
1239 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1240 		sk_wmem_free_skb(sk, skb);
1241 	sk_mem_reclaim(sk);
1242 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1243 }
1244 
1245 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1246 {
1247 	return skb_peek(&sk->sk_write_queue);
1248 }
1249 
1250 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1251 {
1252 	return skb_peek_tail(&sk->sk_write_queue);
1253 }
1254 
1255 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1256 						   const struct sk_buff *skb)
1257 {
1258 	return skb_queue_next(&sk->sk_write_queue, skb);
1259 }
1260 
1261 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1262 						   const struct sk_buff *skb)
1263 {
1264 	return skb_queue_prev(&sk->sk_write_queue, skb);
1265 }
1266 
1267 #define tcp_for_write_queue(skb, sk)					\
1268 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1269 
1270 #define tcp_for_write_queue_from(skb, sk)				\
1271 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1272 
1273 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1274 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1275 
1276 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1277 {
1278 	return sk->sk_send_head;
1279 }
1280 
1281 static inline bool tcp_skb_is_last(const struct sock *sk,
1282 				   const struct sk_buff *skb)
1283 {
1284 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1285 }
1286 
1287 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1288 {
1289 	if (tcp_skb_is_last(sk, skb))
1290 		sk->sk_send_head = NULL;
1291 	else
1292 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1293 }
1294 
1295 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1296 {
1297 	if (sk->sk_send_head == skb_unlinked)
1298 		sk->sk_send_head = NULL;
1299 }
1300 
1301 static inline void tcp_init_send_head(struct sock *sk)
1302 {
1303 	sk->sk_send_head = NULL;
1304 }
1305 
1306 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1307 {
1308 	__skb_queue_tail(&sk->sk_write_queue, skb);
1309 }
1310 
1311 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1312 {
1313 	__tcp_add_write_queue_tail(sk, skb);
1314 
1315 	/* Queue it, remembering where we must start sending. */
1316 	if (sk->sk_send_head == NULL) {
1317 		sk->sk_send_head = skb;
1318 
1319 		if (tcp_sk(sk)->highest_sack == NULL)
1320 			tcp_sk(sk)->highest_sack = skb;
1321 	}
1322 }
1323 
1324 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1325 {
1326 	__skb_queue_head(&sk->sk_write_queue, skb);
1327 }
1328 
1329 /* Insert buff after skb on the write queue of sk.  */
1330 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1331 						struct sk_buff *buff,
1332 						struct sock *sk)
1333 {
1334 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1335 }
1336 
1337 /* Insert new before skb on the write queue of sk.  */
1338 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1339 						  struct sk_buff *skb,
1340 						  struct sock *sk)
1341 {
1342 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1343 
1344 	if (sk->sk_send_head == skb)
1345 		sk->sk_send_head = new;
1346 }
1347 
1348 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1349 {
1350 	__skb_unlink(skb, &sk->sk_write_queue);
1351 }
1352 
1353 static inline int tcp_write_queue_empty(struct sock *sk)
1354 {
1355 	return skb_queue_empty(&sk->sk_write_queue);
1356 }
1357 
1358 static inline void tcp_push_pending_frames(struct sock *sk)
1359 {
1360 	if (tcp_send_head(sk)) {
1361 		struct tcp_sock *tp = tcp_sk(sk);
1362 
1363 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1364 	}
1365 }
1366 
1367 /* Start sequence of the highest skb with SACKed bit, valid only if
1368  * sacked > 0 or when the caller has ensured validity by itself.
1369  */
1370 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1371 {
1372 	if (!tp->sacked_out)
1373 		return tp->snd_una;
1374 
1375 	if (tp->highest_sack == NULL)
1376 		return tp->snd_nxt;
1377 
1378 	return TCP_SKB_CB(tp->highest_sack)->seq;
1379 }
1380 
1381 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1384 						tcp_write_queue_next(sk, skb);
1385 }
1386 
1387 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1388 {
1389 	return tcp_sk(sk)->highest_sack;
1390 }
1391 
1392 static inline void tcp_highest_sack_reset(struct sock *sk)
1393 {
1394 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1395 }
1396 
1397 /* Called when old skb is about to be deleted (to be combined with new skb) */
1398 static inline void tcp_highest_sack_combine(struct sock *sk,
1399 					    struct sk_buff *old,
1400 					    struct sk_buff *new)
1401 {
1402 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1403 		tcp_sk(sk)->highest_sack = new;
1404 }
1405 
1406 /* Determines whether this is a thin stream (which may suffer from
1407  * increased latency). Used to trigger latency-reducing mechanisms.
1408  */
1409 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1410 {
1411 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1412 }
1413 
1414 /* /proc */
1415 enum tcp_seq_states {
1416 	TCP_SEQ_STATE_LISTENING,
1417 	TCP_SEQ_STATE_OPENREQ,
1418 	TCP_SEQ_STATE_ESTABLISHED,
1419 	TCP_SEQ_STATE_TIME_WAIT,
1420 };
1421 
1422 int tcp_seq_open(struct inode *inode, struct file *file);
1423 
1424 struct tcp_seq_afinfo {
1425 	char				*name;
1426 	sa_family_t			family;
1427 	const struct file_operations	*seq_fops;
1428 	struct seq_operations		seq_ops;
1429 };
1430 
1431 struct tcp_iter_state {
1432 	struct seq_net_private	p;
1433 	sa_family_t		family;
1434 	enum tcp_seq_states	state;
1435 	struct sock		*syn_wait_sk;
1436 	int			bucket, offset, sbucket, num, uid;
1437 	loff_t			last_pos;
1438 };
1439 
1440 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1441 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1442 
1443 extern struct request_sock_ops tcp_request_sock_ops;
1444 extern struct request_sock_ops tcp6_request_sock_ops;
1445 
1446 extern void tcp_v4_destroy_sock(struct sock *sk);
1447 
1448 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1449 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1450 				       netdev_features_t features);
1451 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1452 					struct sk_buff *skb);
1453 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1454 					 struct sk_buff *skb);
1455 extern int tcp_gro_complete(struct sk_buff *skb);
1456 extern int tcp4_gro_complete(struct sk_buff *skb);
1457 
1458 #ifdef CONFIG_PROC_FS
1459 extern int tcp4_proc_init(void);
1460 extern void tcp4_proc_exit(void);
1461 #endif
1462 
1463 /* TCP af-specific functions */
1464 struct tcp_sock_af_ops {
1465 #ifdef CONFIG_TCP_MD5SIG
1466 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1467 						struct sock *addr_sk);
1468 	int			(*calc_md5_hash) (char *location,
1469 						  struct tcp_md5sig_key *md5,
1470 						  const struct sock *sk,
1471 						  const struct request_sock *req,
1472 						  const struct sk_buff *skb);
1473 	int			(*md5_add) (struct sock *sk,
1474 					    struct sock *addr_sk,
1475 					    u8 *newkey,
1476 					    u8 len);
1477 	int			(*md5_parse) (struct sock *sk,
1478 					      char __user *optval,
1479 					      int optlen);
1480 #endif
1481 };
1482 
1483 struct tcp_request_sock_ops {
1484 #ifdef CONFIG_TCP_MD5SIG
1485 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1486 						struct request_sock *req);
1487 	int			(*calc_md5_hash) (char *location,
1488 						  struct tcp_md5sig_key *md5,
1489 						  const struct sock *sk,
1490 						  const struct request_sock *req,
1491 						  const struct sk_buff *skb);
1492 #endif
1493 };
1494 
1495 /* Using SHA1 for now, define some constants.
1496  */
1497 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1498 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1499 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1500 
1501 extern int tcp_cookie_generator(u32 *bakery);
1502 
1503 /**
1504  *	struct tcp_cookie_values - each socket needs extra space for the
1505  *	cookies, together with (optional) space for any SYN data.
1506  *
1507  *	A tcp_sock contains a pointer to the current value, and this is
1508  *	cloned to the tcp_timewait_sock.
1509  *
1510  * @cookie_pair:	variable data from the option exchange.
1511  *
1512  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1513  *			indicates default (sysctl_tcp_cookie_size).
1514  *			After cookie sent, remembers size of cookie.
1515  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1516  *
1517  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1518  *			constant payload is specified (@s_data_constant),
1519  *			holds its length instead.
1520  *			Range 0 to TCP_MSS_DESIRED.
1521  *
1522  * @s_data_payload:	constant data that is to be included in the
1523  *			payload of SYN or SYNACK segments when the
1524  *			cookie option is present.
1525  */
1526 struct tcp_cookie_values {
1527 	struct kref	kref;
1528 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1529 	u8		cookie_pair_size;
1530 	u8		cookie_desired;
1531 	u16		s_data_desired:11,
1532 			s_data_constant:1,
1533 			s_data_in:1,
1534 			s_data_out:1,
1535 			s_data_unused:2;
1536 	u8		s_data_payload[0];
1537 };
1538 
1539 static inline void tcp_cookie_values_release(struct kref *kref)
1540 {
1541 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1542 }
1543 
1544 /* The length of constant payload data.  Note that s_data_desired is
1545  * overloaded, depending on s_data_constant: either the length of constant
1546  * data (returned here) or the limit on variable data.
1547  */
1548 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1549 {
1550 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1551 		? tp->cookie_values->s_data_desired
1552 		: 0;
1553 }
1554 
1555 /**
1556  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1557  *
1558  *	As tcp_request_sock has already been extended in other places, the
1559  *	only remaining method is to pass stack values along as function
1560  *	parameters.  These parameters are not needed after sending SYNACK.
1561  *
1562  * @cookie_bakery:	cryptographic secret and message workspace.
1563  *
1564  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1565  *			struct tcp_options_received (above).
1566  */
1567 struct tcp_extend_values {
1568 	struct request_values		rv;
1569 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1570 	u8				cookie_plus:6,
1571 					cookie_out_never:1,
1572 					cookie_in_always:1;
1573 };
1574 
1575 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1576 {
1577 	return (struct tcp_extend_values *)rvp;
1578 }
1579 
1580 extern void tcp_v4_init(void);
1581 extern void tcp_init(void);
1582 
1583 #endif	/* _TCP_H */
1584