1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 52 int tcp_orphan_count_sum(void); 53 54 void tcp_time_wait(struct sock *sk, int state, int timeo); 55 56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 57 #define MAX_TCP_OPTION_SPACE 40 58 #define TCP_MIN_SND_MSS 48 59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 60 61 /* 62 * Never offer a window over 32767 without using window scaling. Some 63 * poor stacks do signed 16bit maths! 64 */ 65 #define MAX_TCP_WINDOW 32767U 66 67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 68 #define TCP_MIN_MSS 88U 69 70 /* The initial MTU to use for probing */ 71 #define TCP_BASE_MSS 1024 72 73 /* probing interval, default to 10 minutes as per RFC4821 */ 74 #define TCP_PROBE_INTERVAL 600 75 76 /* Specify interval when tcp mtu probing will stop */ 77 #define TCP_PROBE_THRESHOLD 8 78 79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 80 #define TCP_FASTRETRANS_THRESH 3 81 82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 83 #define TCP_MAX_QUICKACKS 16U 84 85 /* Maximal number of window scale according to RFC1323 */ 86 #define TCP_MAX_WSCALE 14U 87 88 /* urg_data states */ 89 #define TCP_URG_VALID 0x0100 90 #define TCP_URG_NOTYET 0x0200 91 #define TCP_URG_READ 0x0400 92 93 #define TCP_RETR1 3 /* 94 * This is how many retries it does before it 95 * tries to figure out if the gateway is 96 * down. Minimal RFC value is 3; it corresponds 97 * to ~3sec-8min depending on RTO. 98 */ 99 100 #define TCP_RETR2 15 /* 101 * This should take at least 102 * 90 minutes to time out. 103 * RFC1122 says that the limit is 100 sec. 104 * 15 is ~13-30min depending on RTO. 105 */ 106 107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 108 * when active opening a connection. 109 * RFC1122 says the minimum retry MUST 110 * be at least 180secs. Nevertheless 111 * this value is corresponding to 112 * 63secs of retransmission with the 113 * current initial RTO. 114 */ 115 116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 117 * when passive opening a connection. 118 * This is corresponding to 31secs of 119 * retransmission with the current 120 * initial RTO. 121 */ 122 123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 124 * state, about 60 seconds */ 125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 126 /* BSD style FIN_WAIT2 deadlock breaker. 127 * It used to be 3min, new value is 60sec, 128 * to combine FIN-WAIT-2 timeout with 129 * TIME-WAIT timer. 130 */ 131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 132 133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 134 #if HZ >= 100 135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 136 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 137 #else 138 #define TCP_DELACK_MIN 4U 139 #define TCP_ATO_MIN 4U 140 #endif 141 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 142 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 146 * used as a fallback RTO for the 147 * initial data transmission if no 148 * valid RTT sample has been acquired, 149 * most likely due to retrans in 3WHS. 150 */ 151 152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 153 * for local resources. 154 */ 155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 157 #define TCP_KEEPALIVE_INTVL (75*HZ) 158 159 #define MAX_TCP_KEEPIDLE 32767 160 #define MAX_TCP_KEEPINTVL 32767 161 #define MAX_TCP_KEEPCNT 127 162 #define MAX_TCP_SYNCNT 127 163 164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 165 166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 168 * after this time. It should be equal 169 * (or greater than) TCP_TIMEWAIT_LEN 170 * to provide reliability equal to one 171 * provided by timewait state. 172 */ 173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 174 * timestamps. It must be less than 175 * minimal timewait lifetime. 176 */ 177 /* 178 * TCP option 179 */ 180 181 #define TCPOPT_NOP 1 /* Padding */ 182 #define TCPOPT_EOL 0 /* End of options */ 183 #define TCPOPT_MSS 2 /* Segment size negotiating */ 184 #define TCPOPT_WINDOW 3 /* Window scaling */ 185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 186 #define TCPOPT_SACK 5 /* SACK Block */ 187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 189 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 190 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 191 #define TCPOPT_EXP 254 /* Experimental */ 192 /* Magic number to be after the option value for sharing TCP 193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 194 */ 195 #define TCPOPT_FASTOPEN_MAGIC 0xF989 196 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 197 198 /* 199 * TCP option lengths 200 */ 201 202 #define TCPOLEN_MSS 4 203 #define TCPOLEN_WINDOW 3 204 #define TCPOLEN_SACK_PERM 2 205 #define TCPOLEN_TIMESTAMP 10 206 #define TCPOLEN_MD5SIG 18 207 #define TCPOLEN_FASTOPEN_BASE 2 208 #define TCPOLEN_EXP_FASTOPEN_BASE 4 209 #define TCPOLEN_EXP_SMC_BASE 6 210 211 /* But this is what stacks really send out. */ 212 #define TCPOLEN_TSTAMP_ALIGNED 12 213 #define TCPOLEN_WSCALE_ALIGNED 4 214 #define TCPOLEN_SACKPERM_ALIGNED 4 215 #define TCPOLEN_SACK_BASE 2 216 #define TCPOLEN_SACK_BASE_ALIGNED 4 217 #define TCPOLEN_SACK_PERBLOCK 8 218 #define TCPOLEN_MD5SIG_ALIGNED 20 219 #define TCPOLEN_MSS_ALIGNED 4 220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 221 222 /* Flags in tp->nonagle */ 223 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 224 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 225 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 226 227 /* TCP thin-stream limits */ 228 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 229 230 /* TCP initial congestion window as per rfc6928 */ 231 #define TCP_INIT_CWND 10 232 233 /* Bit Flags for sysctl_tcp_fastopen */ 234 #define TFO_CLIENT_ENABLE 1 235 #define TFO_SERVER_ENABLE 2 236 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 237 238 /* Accept SYN data w/o any cookie option */ 239 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 240 241 /* Force enable TFO on all listeners, i.e., not requiring the 242 * TCP_FASTOPEN socket option. 243 */ 244 #define TFO_SERVER_WO_SOCKOPT1 0x400 245 246 247 /* sysctl variables for tcp */ 248 extern int sysctl_tcp_max_orphans; 249 extern long sysctl_tcp_mem[3]; 250 251 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 252 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 253 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 254 255 extern atomic_long_t tcp_memory_allocated; 256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 257 258 extern struct percpu_counter tcp_sockets_allocated; 259 extern unsigned long tcp_memory_pressure; 260 261 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 262 static inline bool tcp_under_memory_pressure(const struct sock *sk) 263 { 264 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 265 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 266 return true; 267 268 return READ_ONCE(tcp_memory_pressure); 269 } 270 /* 271 * The next routines deal with comparing 32 bit unsigned ints 272 * and worry about wraparound (automatic with unsigned arithmetic). 273 */ 274 275 static inline bool before(__u32 seq1, __u32 seq2) 276 { 277 return (__s32)(seq1-seq2) < 0; 278 } 279 #define after(seq2, seq1) before(seq1, seq2) 280 281 /* is s2<=s1<=s3 ? */ 282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 283 { 284 return seq3 - seq2 >= seq1 - seq2; 285 } 286 287 static inline bool tcp_out_of_memory(struct sock *sk) 288 { 289 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 290 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 291 return true; 292 return false; 293 } 294 295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 296 { 297 sk_wmem_queued_add(sk, -skb->truesize); 298 if (!skb_zcopy_pure(skb)) 299 sk_mem_uncharge(sk, skb->truesize); 300 else 301 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 302 __kfree_skb(skb); 303 } 304 305 void sk_forced_mem_schedule(struct sock *sk, int size); 306 307 bool tcp_check_oom(struct sock *sk, int shift); 308 309 310 extern struct proto tcp_prot; 311 312 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 315 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 316 317 void tcp_tasklet_init(void); 318 319 int tcp_v4_err(struct sk_buff *skb, u32); 320 321 void tcp_shutdown(struct sock *sk, int how); 322 323 int tcp_v4_early_demux(struct sk_buff *skb); 324 int tcp_v4_rcv(struct sk_buff *skb); 325 326 void tcp_remove_empty_skb(struct sock *sk); 327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 330 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 331 size_t size, struct ubuf_info *uarg); 332 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 333 int flags); 334 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 335 size_t size, int flags); 336 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 337 size_t size, int flags); 338 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 339 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 340 int size_goal); 341 void tcp_release_cb(struct sock *sk); 342 void tcp_wfree(struct sk_buff *skb); 343 void tcp_write_timer_handler(struct sock *sk); 344 void tcp_delack_timer_handler(struct sock *sk); 345 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 346 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 348 void tcp_rcv_space_adjust(struct sock *sk); 349 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 350 void tcp_twsk_destructor(struct sock *sk); 351 void tcp_twsk_purge(struct list_head *net_exit_list, int family); 352 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 353 struct pipe_inode_info *pipe, size_t len, 354 unsigned int flags); 355 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 356 bool force_schedule); 357 358 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 359 static inline void tcp_dec_quickack_mode(struct sock *sk, 360 const unsigned int pkts) 361 { 362 struct inet_connection_sock *icsk = inet_csk(sk); 363 364 if (icsk->icsk_ack.quick) { 365 if (pkts >= icsk->icsk_ack.quick) { 366 icsk->icsk_ack.quick = 0; 367 /* Leaving quickack mode we deflate ATO. */ 368 icsk->icsk_ack.ato = TCP_ATO_MIN; 369 } else 370 icsk->icsk_ack.quick -= pkts; 371 } 372 } 373 374 #define TCP_ECN_OK 1 375 #define TCP_ECN_QUEUE_CWR 2 376 #define TCP_ECN_DEMAND_CWR 4 377 #define TCP_ECN_SEEN 8 378 379 enum tcp_tw_status { 380 TCP_TW_SUCCESS = 0, 381 TCP_TW_RST = 1, 382 TCP_TW_ACK = 2, 383 TCP_TW_SYN = 3 384 }; 385 386 387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 388 struct sk_buff *skb, 389 const struct tcphdr *th); 390 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 391 struct request_sock *req, bool fastopen, 392 bool *lost_race); 393 int tcp_child_process(struct sock *parent, struct sock *child, 394 struct sk_buff *skb); 395 void tcp_enter_loss(struct sock *sk); 396 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 397 void tcp_clear_retrans(struct tcp_sock *tp); 398 void tcp_update_metrics(struct sock *sk); 399 void tcp_init_metrics(struct sock *sk); 400 void tcp_metrics_init(void); 401 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 402 void __tcp_close(struct sock *sk, long timeout); 403 void tcp_close(struct sock *sk, long timeout); 404 void tcp_init_sock(struct sock *sk); 405 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 406 __poll_t tcp_poll(struct file *file, struct socket *sock, 407 struct poll_table_struct *wait); 408 int do_tcp_getsockopt(struct sock *sk, int level, 409 int optname, sockptr_t optval, sockptr_t optlen); 410 int tcp_getsockopt(struct sock *sk, int level, int optname, 411 char __user *optval, int __user *optlen); 412 bool tcp_bpf_bypass_getsockopt(int level, int optname); 413 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 414 sockptr_t optval, unsigned int optlen); 415 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 416 unsigned int optlen); 417 void tcp_set_keepalive(struct sock *sk, int val); 418 void tcp_syn_ack_timeout(const struct request_sock *req); 419 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 420 int flags, int *addr_len); 421 int tcp_set_rcvlowat(struct sock *sk, int val); 422 int tcp_set_window_clamp(struct sock *sk, int val); 423 void tcp_update_recv_tstamps(struct sk_buff *skb, 424 struct scm_timestamping_internal *tss); 425 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 426 struct scm_timestamping_internal *tss); 427 void tcp_data_ready(struct sock *sk); 428 #ifdef CONFIG_MMU 429 int tcp_mmap(struct file *file, struct socket *sock, 430 struct vm_area_struct *vma); 431 #endif 432 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 433 struct tcp_options_received *opt_rx, 434 int estab, struct tcp_fastopen_cookie *foc); 435 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 436 437 /* 438 * BPF SKB-less helpers 439 */ 440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 441 struct tcphdr *th, u32 *cookie); 442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 443 struct tcphdr *th, u32 *cookie); 444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 446 const struct tcp_request_sock_ops *af_ops, 447 struct sock *sk, struct tcphdr *th); 448 /* 449 * TCP v4 functions exported for the inet6 API 450 */ 451 452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 453 void tcp_v4_mtu_reduced(struct sock *sk); 454 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 457 struct sock *tcp_create_openreq_child(const struct sock *sk, 458 struct request_sock *req, 459 struct sk_buff *skb); 460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 462 struct request_sock *req, 463 struct dst_entry *dst, 464 struct request_sock *req_unhash, 465 bool *own_req); 466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 468 int tcp_connect(struct sock *sk); 469 enum tcp_synack_type { 470 TCP_SYNACK_NORMAL, 471 TCP_SYNACK_FASTOPEN, 472 TCP_SYNACK_COOKIE, 473 }; 474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 475 struct request_sock *req, 476 struct tcp_fastopen_cookie *foc, 477 enum tcp_synack_type synack_type, 478 struct sk_buff *syn_skb); 479 int tcp_disconnect(struct sock *sk, int flags); 480 481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 484 485 /* From syncookies.c */ 486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct dst_entry *dst, u32 tsoff); 489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 490 u32 cookie); 491 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 492 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 493 const struct tcp_request_sock_ops *af_ops, 494 struct sock *sk, struct sk_buff *skb); 495 #ifdef CONFIG_SYN_COOKIES 496 497 /* Syncookies use a monotonic timer which increments every 60 seconds. 498 * This counter is used both as a hash input and partially encoded into 499 * the cookie value. A cookie is only validated further if the delta 500 * between the current counter value and the encoded one is less than this, 501 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 502 * the counter advances immediately after a cookie is generated). 503 */ 504 #define MAX_SYNCOOKIE_AGE 2 505 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 506 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 507 508 /* syncookies: remember time of last synqueue overflow 509 * But do not dirty this field too often (once per second is enough) 510 * It is racy as we do not hold a lock, but race is very minor. 511 */ 512 static inline void tcp_synq_overflow(const struct sock *sk) 513 { 514 unsigned int last_overflow; 515 unsigned int now = jiffies; 516 517 if (sk->sk_reuseport) { 518 struct sock_reuseport *reuse; 519 520 reuse = rcu_dereference(sk->sk_reuseport_cb); 521 if (likely(reuse)) { 522 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 523 if (!time_between32(now, last_overflow, 524 last_overflow + HZ)) 525 WRITE_ONCE(reuse->synq_overflow_ts, now); 526 return; 527 } 528 } 529 530 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 531 if (!time_between32(now, last_overflow, last_overflow + HZ)) 532 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 533 } 534 535 /* syncookies: no recent synqueue overflow on this listening socket? */ 536 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 537 { 538 unsigned int last_overflow; 539 unsigned int now = jiffies; 540 541 if (sk->sk_reuseport) { 542 struct sock_reuseport *reuse; 543 544 reuse = rcu_dereference(sk->sk_reuseport_cb); 545 if (likely(reuse)) { 546 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 547 return !time_between32(now, last_overflow - HZ, 548 last_overflow + 549 TCP_SYNCOOKIE_VALID); 550 } 551 } 552 553 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 554 555 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 556 * then we're under synflood. However, we have to use 557 * 'last_overflow - HZ' as lower bound. That's because a concurrent 558 * tcp_synq_overflow() could update .ts_recent_stamp after we read 559 * jiffies but before we store .ts_recent_stamp into last_overflow, 560 * which could lead to rejecting a valid syncookie. 561 */ 562 return !time_between32(now, last_overflow - HZ, 563 last_overflow + TCP_SYNCOOKIE_VALID); 564 } 565 566 static inline u32 tcp_cookie_time(void) 567 { 568 u64 val = get_jiffies_64(); 569 570 do_div(val, TCP_SYNCOOKIE_PERIOD); 571 return val; 572 } 573 574 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 575 u16 *mssp); 576 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 577 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 578 bool cookie_timestamp_decode(const struct net *net, 579 struct tcp_options_received *opt); 580 bool cookie_ecn_ok(const struct tcp_options_received *opt, 581 const struct net *net, const struct dst_entry *dst); 582 583 /* From net/ipv6/syncookies.c */ 584 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 585 u32 cookie); 586 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 587 588 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 589 const struct tcphdr *th, u16 *mssp); 590 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 591 #endif 592 /* tcp_output.c */ 593 594 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 595 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 596 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 597 int nonagle); 598 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 599 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 600 void tcp_retransmit_timer(struct sock *sk); 601 void tcp_xmit_retransmit_queue(struct sock *); 602 void tcp_simple_retransmit(struct sock *); 603 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 604 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 605 enum tcp_queue { 606 TCP_FRAG_IN_WRITE_QUEUE, 607 TCP_FRAG_IN_RTX_QUEUE, 608 }; 609 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 610 struct sk_buff *skb, u32 len, 611 unsigned int mss_now, gfp_t gfp); 612 613 void tcp_send_probe0(struct sock *); 614 void tcp_send_partial(struct sock *); 615 int tcp_write_wakeup(struct sock *, int mib); 616 void tcp_send_fin(struct sock *sk); 617 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 618 int tcp_send_synack(struct sock *); 619 void tcp_push_one(struct sock *, unsigned int mss_now); 620 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 621 void tcp_send_ack(struct sock *sk); 622 void tcp_send_delayed_ack(struct sock *sk); 623 void tcp_send_loss_probe(struct sock *sk); 624 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 625 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 626 const struct sk_buff *next_skb); 627 628 /* tcp_input.c */ 629 void tcp_rearm_rto(struct sock *sk); 630 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 631 void tcp_reset(struct sock *sk, struct sk_buff *skb); 632 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 633 void tcp_fin(struct sock *sk); 634 void tcp_check_space(struct sock *sk); 635 void tcp_sack_compress_send_ack(struct sock *sk); 636 637 /* tcp_timer.c */ 638 void tcp_init_xmit_timers(struct sock *); 639 static inline void tcp_clear_xmit_timers(struct sock *sk) 640 { 641 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 642 __sock_put(sk); 643 644 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 645 __sock_put(sk); 646 647 inet_csk_clear_xmit_timers(sk); 648 } 649 650 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 651 unsigned int tcp_current_mss(struct sock *sk); 652 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 653 654 /* Bound MSS / TSO packet size with the half of the window */ 655 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 656 { 657 int cutoff; 658 659 /* When peer uses tiny windows, there is no use in packetizing 660 * to sub-MSS pieces for the sake of SWS or making sure there 661 * are enough packets in the pipe for fast recovery. 662 * 663 * On the other hand, for extremely large MSS devices, handling 664 * smaller than MSS windows in this way does make sense. 665 */ 666 if (tp->max_window > TCP_MSS_DEFAULT) 667 cutoff = (tp->max_window >> 1); 668 else 669 cutoff = tp->max_window; 670 671 if (cutoff && pktsize > cutoff) 672 return max_t(int, cutoff, 68U - tp->tcp_header_len); 673 else 674 return pktsize; 675 } 676 677 /* tcp.c */ 678 void tcp_get_info(struct sock *, struct tcp_info *); 679 680 /* Read 'sendfile()'-style from a TCP socket */ 681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 682 sk_read_actor_t recv_actor); 683 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 684 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 685 void tcp_read_done(struct sock *sk, size_t len); 686 687 void tcp_initialize_rcv_mss(struct sock *sk); 688 689 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 690 int tcp_mss_to_mtu(struct sock *sk, int mss); 691 void tcp_mtup_init(struct sock *sk); 692 693 static inline void tcp_bound_rto(const struct sock *sk) 694 { 695 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 696 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 697 } 698 699 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 700 { 701 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 702 } 703 704 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 705 { 706 /* mptcp hooks are only on the slow path */ 707 if (sk_is_mptcp((struct sock *)tp)) 708 return; 709 710 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 711 ntohl(TCP_FLAG_ACK) | 712 snd_wnd); 713 } 714 715 static inline void tcp_fast_path_on(struct tcp_sock *tp) 716 { 717 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 718 } 719 720 static inline void tcp_fast_path_check(struct sock *sk) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 724 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 725 tp->rcv_wnd && 726 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 727 !tp->urg_data) 728 tcp_fast_path_on(tp); 729 } 730 731 /* Compute the actual rto_min value */ 732 static inline u32 tcp_rto_min(struct sock *sk) 733 { 734 const struct dst_entry *dst = __sk_dst_get(sk); 735 u32 rto_min = inet_csk(sk)->icsk_rto_min; 736 737 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 738 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 739 return rto_min; 740 } 741 742 static inline u32 tcp_rto_min_us(struct sock *sk) 743 { 744 return jiffies_to_usecs(tcp_rto_min(sk)); 745 } 746 747 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 748 { 749 return dst_metric_locked(dst, RTAX_CC_ALGO); 750 } 751 752 /* Minimum RTT in usec. ~0 means not available. */ 753 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 754 { 755 return minmax_get(&tp->rtt_min); 756 } 757 758 /* Compute the actual receive window we are currently advertising. 759 * Rcv_nxt can be after the window if our peer push more data 760 * than the offered window. 761 */ 762 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 763 { 764 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 765 766 if (win < 0) 767 win = 0; 768 return (u32) win; 769 } 770 771 /* Choose a new window, without checks for shrinking, and without 772 * scaling applied to the result. The caller does these things 773 * if necessary. This is a "raw" window selection. 774 */ 775 u32 __tcp_select_window(struct sock *sk); 776 777 void tcp_send_window_probe(struct sock *sk); 778 779 /* TCP uses 32bit jiffies to save some space. 780 * Note that this is different from tcp_time_stamp, which 781 * historically has been the same until linux-4.13. 782 */ 783 #define tcp_jiffies32 ((u32)jiffies) 784 785 /* 786 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 787 * It is no longer tied to jiffies, but to 1 ms clock. 788 * Note: double check if you want to use tcp_jiffies32 instead of this. 789 */ 790 #define TCP_TS_HZ 1000 791 792 static inline u64 tcp_clock_ns(void) 793 { 794 return ktime_get_ns(); 795 } 796 797 static inline u64 tcp_clock_us(void) 798 { 799 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 800 } 801 802 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 803 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 804 { 805 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 806 } 807 808 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 809 static inline u32 tcp_ns_to_ts(u64 ns) 810 { 811 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 812 } 813 814 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 815 static inline u32 tcp_time_stamp_raw(void) 816 { 817 return tcp_ns_to_ts(tcp_clock_ns()); 818 } 819 820 void tcp_mstamp_refresh(struct tcp_sock *tp); 821 822 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 823 { 824 return max_t(s64, t1 - t0, 0); 825 } 826 827 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 828 { 829 return tcp_ns_to_ts(skb->skb_mstamp_ns); 830 } 831 832 /* provide the departure time in us unit */ 833 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 834 { 835 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 836 } 837 838 839 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 840 841 #define TCPHDR_FIN 0x01 842 #define TCPHDR_SYN 0x02 843 #define TCPHDR_RST 0x04 844 #define TCPHDR_PSH 0x08 845 #define TCPHDR_ACK 0x10 846 #define TCPHDR_URG 0x20 847 #define TCPHDR_ECE 0x40 848 #define TCPHDR_CWR 0x80 849 850 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 851 852 /* This is what the send packet queuing engine uses to pass 853 * TCP per-packet control information to the transmission code. 854 * We also store the host-order sequence numbers in here too. 855 * This is 44 bytes if IPV6 is enabled. 856 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 857 */ 858 struct tcp_skb_cb { 859 __u32 seq; /* Starting sequence number */ 860 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 861 union { 862 /* Note : tcp_tw_isn is used in input path only 863 * (isn chosen by tcp_timewait_state_process()) 864 * 865 * tcp_gso_segs/size are used in write queue only, 866 * cf tcp_skb_pcount()/tcp_skb_mss() 867 */ 868 __u32 tcp_tw_isn; 869 struct { 870 u16 tcp_gso_segs; 871 u16 tcp_gso_size; 872 }; 873 }; 874 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 875 876 __u8 sacked; /* State flags for SACK. */ 877 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 878 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 879 #define TCPCB_LOST 0x04 /* SKB is lost */ 880 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 881 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 882 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 883 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 884 TCPCB_REPAIRED) 885 886 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 887 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 888 eor:1, /* Is skb MSG_EOR marked? */ 889 has_rxtstamp:1, /* SKB has a RX timestamp */ 890 unused:5; 891 __u32 ack_seq; /* Sequence number ACK'd */ 892 union { 893 struct { 894 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 895 /* There is space for up to 24 bytes */ 896 __u32 is_app_limited:1, /* cwnd not fully used? */ 897 delivered_ce:20, 898 unused:11; 899 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 900 __u32 delivered; 901 /* start of send pipeline phase */ 902 u64 first_tx_mstamp; 903 /* when we reached the "delivered" count */ 904 u64 delivered_mstamp; 905 } tx; /* only used for outgoing skbs */ 906 union { 907 struct inet_skb_parm h4; 908 #if IS_ENABLED(CONFIG_IPV6) 909 struct inet6_skb_parm h6; 910 #endif 911 } header; /* For incoming skbs */ 912 }; 913 }; 914 915 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 916 917 extern const struct inet_connection_sock_af_ops ipv4_specific; 918 919 #if IS_ENABLED(CONFIG_IPV6) 920 /* This is the variant of inet6_iif() that must be used by TCP, 921 * as TCP moves IP6CB into a different location in skb->cb[] 922 */ 923 static inline int tcp_v6_iif(const struct sk_buff *skb) 924 { 925 return TCP_SKB_CB(skb)->header.h6.iif; 926 } 927 928 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 929 { 930 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 931 932 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 933 } 934 935 /* TCP_SKB_CB reference means this can not be used from early demux */ 936 static inline int tcp_v6_sdif(const struct sk_buff *skb) 937 { 938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 939 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 940 return TCP_SKB_CB(skb)->header.h6.iif; 941 #endif 942 return 0; 943 } 944 945 extern const struct inet_connection_sock_af_ops ipv6_specific; 946 947 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 948 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 949 void tcp_v6_early_demux(struct sk_buff *skb); 950 951 #endif 952 953 /* TCP_SKB_CB reference means this can not be used from early demux */ 954 static inline int tcp_v4_sdif(struct sk_buff *skb) 955 { 956 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 957 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 958 return TCP_SKB_CB(skb)->header.h4.iif; 959 #endif 960 return 0; 961 } 962 963 /* Due to TSO, an SKB can be composed of multiple actual 964 * packets. To keep these tracked properly, we use this. 965 */ 966 static inline int tcp_skb_pcount(const struct sk_buff *skb) 967 { 968 return TCP_SKB_CB(skb)->tcp_gso_segs; 969 } 970 971 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 972 { 973 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 974 } 975 976 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 977 { 978 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 979 } 980 981 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 982 static inline int tcp_skb_mss(const struct sk_buff *skb) 983 { 984 return TCP_SKB_CB(skb)->tcp_gso_size; 985 } 986 987 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 988 { 989 return likely(!TCP_SKB_CB(skb)->eor); 990 } 991 992 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 993 const struct sk_buff *from) 994 { 995 return likely(tcp_skb_can_collapse_to(to) && 996 mptcp_skb_can_collapse(to, from) && 997 skb_pure_zcopy_same(to, from)); 998 } 999 1000 /* Events passed to congestion control interface */ 1001 enum tcp_ca_event { 1002 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1003 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1004 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1005 CA_EVENT_LOSS, /* loss timeout */ 1006 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1007 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1008 }; 1009 1010 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1011 enum tcp_ca_ack_event_flags { 1012 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1013 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1014 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1015 }; 1016 1017 /* 1018 * Interface for adding new TCP congestion control handlers 1019 */ 1020 #define TCP_CA_NAME_MAX 16 1021 #define TCP_CA_MAX 128 1022 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1023 1024 #define TCP_CA_UNSPEC 0 1025 1026 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1027 #define TCP_CONG_NON_RESTRICTED 0x1 1028 /* Requires ECN/ECT set on all packets */ 1029 #define TCP_CONG_NEEDS_ECN 0x2 1030 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1031 1032 union tcp_cc_info; 1033 1034 struct ack_sample { 1035 u32 pkts_acked; 1036 s32 rtt_us; 1037 u32 in_flight; 1038 }; 1039 1040 /* A rate sample measures the number of (original/retransmitted) data 1041 * packets delivered "delivered" over an interval of time "interval_us". 1042 * The tcp_rate.c code fills in the rate sample, and congestion 1043 * control modules that define a cong_control function to run at the end 1044 * of ACK processing can optionally chose to consult this sample when 1045 * setting cwnd and pacing rate. 1046 * A sample is invalid if "delivered" or "interval_us" is negative. 1047 */ 1048 struct rate_sample { 1049 u64 prior_mstamp; /* starting timestamp for interval */ 1050 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1051 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1052 s32 delivered; /* number of packets delivered over interval */ 1053 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1054 long interval_us; /* time for tp->delivered to incr "delivered" */ 1055 u32 snd_interval_us; /* snd interval for delivered packets */ 1056 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1057 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1058 int losses; /* number of packets marked lost upon ACK */ 1059 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1060 u32 prior_in_flight; /* in flight before this ACK */ 1061 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1062 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1063 bool is_retrans; /* is sample from retransmission? */ 1064 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1065 }; 1066 1067 struct tcp_congestion_ops { 1068 /* fast path fields are put first to fill one cache line */ 1069 1070 /* return slow start threshold (required) */ 1071 u32 (*ssthresh)(struct sock *sk); 1072 1073 /* do new cwnd calculation (required) */ 1074 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1075 1076 /* call before changing ca_state (optional) */ 1077 void (*set_state)(struct sock *sk, u8 new_state); 1078 1079 /* call when cwnd event occurs (optional) */ 1080 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1081 1082 /* call when ack arrives (optional) */ 1083 void (*in_ack_event)(struct sock *sk, u32 flags); 1084 1085 /* hook for packet ack accounting (optional) */ 1086 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1087 1088 /* override sysctl_tcp_min_tso_segs */ 1089 u32 (*min_tso_segs)(struct sock *sk); 1090 1091 /* call when packets are delivered to update cwnd and pacing rate, 1092 * after all the ca_state processing. (optional) 1093 */ 1094 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1095 1096 1097 /* new value of cwnd after loss (required) */ 1098 u32 (*undo_cwnd)(struct sock *sk); 1099 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1100 u32 (*sndbuf_expand)(struct sock *sk); 1101 1102 /* control/slow paths put last */ 1103 /* get info for inet_diag (optional) */ 1104 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1105 union tcp_cc_info *info); 1106 1107 char name[TCP_CA_NAME_MAX]; 1108 struct module *owner; 1109 struct list_head list; 1110 u32 key; 1111 u32 flags; 1112 1113 /* initialize private data (optional) */ 1114 void (*init)(struct sock *sk); 1115 /* cleanup private data (optional) */ 1116 void (*release)(struct sock *sk); 1117 } ____cacheline_aligned_in_smp; 1118 1119 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1120 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1121 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1122 struct tcp_congestion_ops *old_type); 1123 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1124 1125 void tcp_assign_congestion_control(struct sock *sk); 1126 void tcp_init_congestion_control(struct sock *sk); 1127 void tcp_cleanup_congestion_control(struct sock *sk); 1128 int tcp_set_default_congestion_control(struct net *net, const char *name); 1129 void tcp_get_default_congestion_control(struct net *net, char *name); 1130 void tcp_get_available_congestion_control(char *buf, size_t len); 1131 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1132 int tcp_set_allowed_congestion_control(char *allowed); 1133 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1134 bool cap_net_admin); 1135 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1136 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1137 1138 u32 tcp_reno_ssthresh(struct sock *sk); 1139 u32 tcp_reno_undo_cwnd(struct sock *sk); 1140 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1141 extern struct tcp_congestion_ops tcp_reno; 1142 1143 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1144 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1145 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1146 #ifdef CONFIG_INET 1147 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1148 #else 1149 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1150 { 1151 return NULL; 1152 } 1153 #endif 1154 1155 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1156 { 1157 const struct inet_connection_sock *icsk = inet_csk(sk); 1158 1159 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1160 } 1161 1162 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1163 { 1164 const struct inet_connection_sock *icsk = inet_csk(sk); 1165 1166 if (icsk->icsk_ca_ops->cwnd_event) 1167 icsk->icsk_ca_ops->cwnd_event(sk, event); 1168 } 1169 1170 /* From tcp_cong.c */ 1171 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1172 1173 /* From tcp_rate.c */ 1174 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1175 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1176 struct rate_sample *rs); 1177 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1178 bool is_sack_reneg, struct rate_sample *rs); 1179 void tcp_rate_check_app_limited(struct sock *sk); 1180 1181 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1182 { 1183 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1184 } 1185 1186 /* These functions determine how the current flow behaves in respect of SACK 1187 * handling. SACK is negotiated with the peer, and therefore it can vary 1188 * between different flows. 1189 * 1190 * tcp_is_sack - SACK enabled 1191 * tcp_is_reno - No SACK 1192 */ 1193 static inline int tcp_is_sack(const struct tcp_sock *tp) 1194 { 1195 return likely(tp->rx_opt.sack_ok); 1196 } 1197 1198 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1199 { 1200 return !tcp_is_sack(tp); 1201 } 1202 1203 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1204 { 1205 return tp->sacked_out + tp->lost_out; 1206 } 1207 1208 /* This determines how many packets are "in the network" to the best 1209 * of our knowledge. In many cases it is conservative, but where 1210 * detailed information is available from the receiver (via SACK 1211 * blocks etc.) we can make more aggressive calculations. 1212 * 1213 * Use this for decisions involving congestion control, use just 1214 * tp->packets_out to determine if the send queue is empty or not. 1215 * 1216 * Read this equation as: 1217 * 1218 * "Packets sent once on transmission queue" MINUS 1219 * "Packets left network, but not honestly ACKed yet" PLUS 1220 * "Packets fast retransmitted" 1221 */ 1222 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1223 { 1224 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1225 } 1226 1227 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1228 1229 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1230 { 1231 return tp->snd_cwnd; 1232 } 1233 1234 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1235 { 1236 WARN_ON_ONCE((int)val <= 0); 1237 tp->snd_cwnd = val; 1238 } 1239 1240 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1241 { 1242 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1243 } 1244 1245 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1246 { 1247 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1248 } 1249 1250 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1251 { 1252 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1253 (1 << inet_csk(sk)->icsk_ca_state); 1254 } 1255 1256 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1257 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1258 * ssthresh. 1259 */ 1260 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1261 { 1262 const struct tcp_sock *tp = tcp_sk(sk); 1263 1264 if (tcp_in_cwnd_reduction(sk)) 1265 return tp->snd_ssthresh; 1266 else 1267 return max(tp->snd_ssthresh, 1268 ((tcp_snd_cwnd(tp) >> 1) + 1269 (tcp_snd_cwnd(tp) >> 2))); 1270 } 1271 1272 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1273 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1274 1275 void tcp_enter_cwr(struct sock *sk); 1276 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1277 1278 /* The maximum number of MSS of available cwnd for which TSO defers 1279 * sending if not using sysctl_tcp_tso_win_divisor. 1280 */ 1281 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1282 { 1283 return 3; 1284 } 1285 1286 /* Returns end sequence number of the receiver's advertised window */ 1287 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1288 { 1289 return tp->snd_una + tp->snd_wnd; 1290 } 1291 1292 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1293 * flexible approach. The RFC suggests cwnd should not be raised unless 1294 * it was fully used previously. And that's exactly what we do in 1295 * congestion avoidance mode. But in slow start we allow cwnd to grow 1296 * as long as the application has used half the cwnd. 1297 * Example : 1298 * cwnd is 10 (IW10), but application sends 9 frames. 1299 * We allow cwnd to reach 18 when all frames are ACKed. 1300 * This check is safe because it's as aggressive as slow start which already 1301 * risks 100% overshoot. The advantage is that we discourage application to 1302 * either send more filler packets or data to artificially blow up the cwnd 1303 * usage, and allow application-limited process to probe bw more aggressively. 1304 */ 1305 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1306 { 1307 const struct tcp_sock *tp = tcp_sk(sk); 1308 1309 if (tp->is_cwnd_limited) 1310 return true; 1311 1312 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1313 if (tcp_in_slow_start(tp)) 1314 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1315 1316 return false; 1317 } 1318 1319 /* BBR congestion control needs pacing. 1320 * Same remark for SO_MAX_PACING_RATE. 1321 * sch_fq packet scheduler is efficiently handling pacing, 1322 * but is not always installed/used. 1323 * Return true if TCP stack should pace packets itself. 1324 */ 1325 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1326 { 1327 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1328 } 1329 1330 /* Estimates in how many jiffies next packet for this flow can be sent. 1331 * Scheduling a retransmit timer too early would be silly. 1332 */ 1333 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1334 { 1335 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1336 1337 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1338 } 1339 1340 static inline void tcp_reset_xmit_timer(struct sock *sk, 1341 const int what, 1342 unsigned long when, 1343 const unsigned long max_when) 1344 { 1345 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1346 max_when); 1347 } 1348 1349 /* Something is really bad, we could not queue an additional packet, 1350 * because qdisc is full or receiver sent a 0 window, or we are paced. 1351 * We do not want to add fuel to the fire, or abort too early, 1352 * so make sure the timer we arm now is at least 200ms in the future, 1353 * regardless of current icsk_rto value (as it could be ~2ms) 1354 */ 1355 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1356 { 1357 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1358 } 1359 1360 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1361 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1362 unsigned long max_when) 1363 { 1364 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1365 inet_csk(sk)->icsk_backoff); 1366 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1367 1368 return (unsigned long)min_t(u64, when, max_when); 1369 } 1370 1371 static inline void tcp_check_probe_timer(struct sock *sk) 1372 { 1373 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1374 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1375 tcp_probe0_base(sk), TCP_RTO_MAX); 1376 } 1377 1378 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1379 { 1380 tp->snd_wl1 = seq; 1381 } 1382 1383 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1384 { 1385 tp->snd_wl1 = seq; 1386 } 1387 1388 /* 1389 * Calculate(/check) TCP checksum 1390 */ 1391 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1392 __be32 daddr, __wsum base) 1393 { 1394 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1395 } 1396 1397 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1398 { 1399 return !skb_csum_unnecessary(skb) && 1400 __skb_checksum_complete(skb); 1401 } 1402 1403 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1404 enum skb_drop_reason *reason); 1405 1406 1407 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1408 void tcp_set_state(struct sock *sk, int state); 1409 void tcp_done(struct sock *sk); 1410 int tcp_abort(struct sock *sk, int err); 1411 1412 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1413 { 1414 rx_opt->dsack = 0; 1415 rx_opt->num_sacks = 0; 1416 } 1417 1418 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1419 1420 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1421 { 1422 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1423 struct tcp_sock *tp = tcp_sk(sk); 1424 s32 delta; 1425 1426 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1427 tp->packets_out || ca_ops->cong_control) 1428 return; 1429 delta = tcp_jiffies32 - tp->lsndtime; 1430 if (delta > inet_csk(sk)->icsk_rto) 1431 tcp_cwnd_restart(sk, delta); 1432 } 1433 1434 /* Determine a window scaling and initial window to offer. */ 1435 void tcp_select_initial_window(const struct sock *sk, int __space, 1436 __u32 mss, __u32 *rcv_wnd, 1437 __u32 *window_clamp, int wscale_ok, 1438 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1439 1440 static inline int tcp_win_from_space(const struct sock *sk, int space) 1441 { 1442 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale); 1443 1444 return tcp_adv_win_scale <= 0 ? 1445 (space>>(-tcp_adv_win_scale)) : 1446 space - (space>>tcp_adv_win_scale); 1447 } 1448 1449 /* Note: caller must be prepared to deal with negative returns */ 1450 static inline int tcp_space(const struct sock *sk) 1451 { 1452 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1453 READ_ONCE(sk->sk_backlog.len) - 1454 atomic_read(&sk->sk_rmem_alloc)); 1455 } 1456 1457 static inline int tcp_full_space(const struct sock *sk) 1458 { 1459 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1460 } 1461 1462 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1463 { 1464 int unused_mem = sk_unused_reserved_mem(sk); 1465 struct tcp_sock *tp = tcp_sk(sk); 1466 1467 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1468 if (unused_mem) 1469 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1470 tcp_win_from_space(sk, unused_mem)); 1471 } 1472 1473 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1474 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1475 1476 1477 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1478 * If 87.5 % (7/8) of the space has been consumed, we want to override 1479 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1480 * len/truesize ratio. 1481 */ 1482 static inline bool tcp_rmem_pressure(const struct sock *sk) 1483 { 1484 int rcvbuf, threshold; 1485 1486 if (tcp_under_memory_pressure(sk)) 1487 return true; 1488 1489 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1490 threshold = rcvbuf - (rcvbuf >> 3); 1491 1492 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1493 } 1494 1495 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1496 { 1497 const struct tcp_sock *tp = tcp_sk(sk); 1498 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1499 1500 if (avail <= 0) 1501 return false; 1502 1503 return (avail >= target) || tcp_rmem_pressure(sk) || 1504 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1505 } 1506 1507 extern void tcp_openreq_init_rwin(struct request_sock *req, 1508 const struct sock *sk_listener, 1509 const struct dst_entry *dst); 1510 1511 void tcp_enter_memory_pressure(struct sock *sk); 1512 void tcp_leave_memory_pressure(struct sock *sk); 1513 1514 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1515 { 1516 struct net *net = sock_net((struct sock *)tp); 1517 1518 return tp->keepalive_intvl ? : 1519 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1520 } 1521 1522 static inline int keepalive_time_when(const struct tcp_sock *tp) 1523 { 1524 struct net *net = sock_net((struct sock *)tp); 1525 1526 return tp->keepalive_time ? : 1527 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1528 } 1529 1530 static inline int keepalive_probes(const struct tcp_sock *tp) 1531 { 1532 struct net *net = sock_net((struct sock *)tp); 1533 1534 return tp->keepalive_probes ? : 1535 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1536 } 1537 1538 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1539 { 1540 const struct inet_connection_sock *icsk = &tp->inet_conn; 1541 1542 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1543 tcp_jiffies32 - tp->rcv_tstamp); 1544 } 1545 1546 static inline int tcp_fin_time(const struct sock *sk) 1547 { 1548 int fin_timeout = tcp_sk(sk)->linger2 ? : 1549 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1550 const int rto = inet_csk(sk)->icsk_rto; 1551 1552 if (fin_timeout < (rto << 2) - (rto >> 1)) 1553 fin_timeout = (rto << 2) - (rto >> 1); 1554 1555 return fin_timeout; 1556 } 1557 1558 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1559 int paws_win) 1560 { 1561 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1562 return true; 1563 if (unlikely(!time_before32(ktime_get_seconds(), 1564 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1565 return true; 1566 /* 1567 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1568 * then following tcp messages have valid values. Ignore 0 value, 1569 * or else 'negative' tsval might forbid us to accept their packets. 1570 */ 1571 if (!rx_opt->ts_recent) 1572 return true; 1573 return false; 1574 } 1575 1576 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1577 int rst) 1578 { 1579 if (tcp_paws_check(rx_opt, 0)) 1580 return false; 1581 1582 /* RST segments are not recommended to carry timestamp, 1583 and, if they do, it is recommended to ignore PAWS because 1584 "their cleanup function should take precedence over timestamps." 1585 Certainly, it is mistake. It is necessary to understand the reasons 1586 of this constraint to relax it: if peer reboots, clock may go 1587 out-of-sync and half-open connections will not be reset. 1588 Actually, the problem would be not existing if all 1589 the implementations followed draft about maintaining clock 1590 via reboots. Linux-2.2 DOES NOT! 1591 1592 However, we can relax time bounds for RST segments to MSL. 1593 */ 1594 if (rst && !time_before32(ktime_get_seconds(), 1595 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1596 return false; 1597 return true; 1598 } 1599 1600 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1601 int mib_idx, u32 *last_oow_ack_time); 1602 1603 static inline void tcp_mib_init(struct net *net) 1604 { 1605 /* See RFC 2012 */ 1606 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1607 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1608 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1609 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1610 } 1611 1612 /* from STCP */ 1613 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1614 { 1615 tp->lost_skb_hint = NULL; 1616 } 1617 1618 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1619 { 1620 tcp_clear_retrans_hints_partial(tp); 1621 tp->retransmit_skb_hint = NULL; 1622 } 1623 1624 union tcp_md5_addr { 1625 struct in_addr a4; 1626 #if IS_ENABLED(CONFIG_IPV6) 1627 struct in6_addr a6; 1628 #endif 1629 }; 1630 1631 /* - key database */ 1632 struct tcp_md5sig_key { 1633 struct hlist_node node; 1634 u8 keylen; 1635 u8 family; /* AF_INET or AF_INET6 */ 1636 u8 prefixlen; 1637 u8 flags; 1638 union tcp_md5_addr addr; 1639 int l3index; /* set if key added with L3 scope */ 1640 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1641 struct rcu_head rcu; 1642 }; 1643 1644 /* - sock block */ 1645 struct tcp_md5sig_info { 1646 struct hlist_head head; 1647 struct rcu_head rcu; 1648 }; 1649 1650 /* - pseudo header */ 1651 struct tcp4_pseudohdr { 1652 __be32 saddr; 1653 __be32 daddr; 1654 __u8 pad; 1655 __u8 protocol; 1656 __be16 len; 1657 }; 1658 1659 struct tcp6_pseudohdr { 1660 struct in6_addr saddr; 1661 struct in6_addr daddr; 1662 __be32 len; 1663 __be32 protocol; /* including padding */ 1664 }; 1665 1666 union tcp_md5sum_block { 1667 struct tcp4_pseudohdr ip4; 1668 #if IS_ENABLED(CONFIG_IPV6) 1669 struct tcp6_pseudohdr ip6; 1670 #endif 1671 }; 1672 1673 /* - pool: digest algorithm, hash description and scratch buffer */ 1674 struct tcp_md5sig_pool { 1675 struct ahash_request *md5_req; 1676 void *scratch; 1677 }; 1678 1679 /* - functions */ 1680 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1681 const struct sock *sk, const struct sk_buff *skb); 1682 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1683 int family, u8 prefixlen, int l3index, u8 flags, 1684 const u8 *newkey, u8 newkeylen); 1685 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1686 int family, u8 prefixlen, int l3index, 1687 struct tcp_md5sig_key *key); 1688 1689 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1690 int family, u8 prefixlen, int l3index, u8 flags); 1691 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1692 const struct sock *addr_sk); 1693 1694 #ifdef CONFIG_TCP_MD5SIG 1695 #include <linux/jump_label.h> 1696 extern struct static_key_false_deferred tcp_md5_needed; 1697 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1698 const union tcp_md5_addr *addr, 1699 int family); 1700 static inline struct tcp_md5sig_key * 1701 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1702 const union tcp_md5_addr *addr, int family) 1703 { 1704 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1705 return NULL; 1706 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1707 } 1708 1709 enum skb_drop_reason 1710 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1711 const void *saddr, const void *daddr, 1712 int family, int dif, int sdif); 1713 1714 1715 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1716 #else 1717 static inline struct tcp_md5sig_key * 1718 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1719 const union tcp_md5_addr *addr, int family) 1720 { 1721 return NULL; 1722 } 1723 1724 static inline enum skb_drop_reason 1725 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1726 const void *saddr, const void *daddr, 1727 int family, int dif, int sdif) 1728 { 1729 return SKB_NOT_DROPPED_YET; 1730 } 1731 #define tcp_twsk_md5_key(twsk) NULL 1732 #endif 1733 1734 bool tcp_alloc_md5sig_pool(void); 1735 1736 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1737 static inline void tcp_put_md5sig_pool(void) 1738 { 1739 local_bh_enable(); 1740 } 1741 1742 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1743 unsigned int header_len); 1744 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1745 const struct tcp_md5sig_key *key); 1746 1747 /* From tcp_fastopen.c */ 1748 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1749 struct tcp_fastopen_cookie *cookie); 1750 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1751 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1752 u16 try_exp); 1753 struct tcp_fastopen_request { 1754 /* Fast Open cookie. Size 0 means a cookie request */ 1755 struct tcp_fastopen_cookie cookie; 1756 struct msghdr *data; /* data in MSG_FASTOPEN */ 1757 size_t size; 1758 int copied; /* queued in tcp_connect() */ 1759 struct ubuf_info *uarg; 1760 }; 1761 void tcp_free_fastopen_req(struct tcp_sock *tp); 1762 void tcp_fastopen_destroy_cipher(struct sock *sk); 1763 void tcp_fastopen_ctx_destroy(struct net *net); 1764 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1765 void *primary_key, void *backup_key); 1766 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1767 u64 *key); 1768 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1769 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1770 struct request_sock *req, 1771 struct tcp_fastopen_cookie *foc, 1772 const struct dst_entry *dst); 1773 void tcp_fastopen_init_key_once(struct net *net); 1774 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1775 struct tcp_fastopen_cookie *cookie); 1776 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1777 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1778 #define TCP_FASTOPEN_KEY_MAX 2 1779 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1780 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1781 1782 /* Fastopen key context */ 1783 struct tcp_fastopen_context { 1784 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1785 int num; 1786 struct rcu_head rcu; 1787 }; 1788 1789 void tcp_fastopen_active_disable(struct sock *sk); 1790 bool tcp_fastopen_active_should_disable(struct sock *sk); 1791 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1792 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1793 1794 /* Caller needs to wrap with rcu_read_(un)lock() */ 1795 static inline 1796 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1797 { 1798 struct tcp_fastopen_context *ctx; 1799 1800 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1801 if (!ctx) 1802 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1803 return ctx; 1804 } 1805 1806 static inline 1807 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1808 const struct tcp_fastopen_cookie *orig) 1809 { 1810 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1811 orig->len == foc->len && 1812 !memcmp(orig->val, foc->val, foc->len)) 1813 return true; 1814 return false; 1815 } 1816 1817 static inline 1818 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1819 { 1820 return ctx->num; 1821 } 1822 1823 /* Latencies incurred by various limits for a sender. They are 1824 * chronograph-like stats that are mutually exclusive. 1825 */ 1826 enum tcp_chrono { 1827 TCP_CHRONO_UNSPEC, 1828 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1829 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1830 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1831 __TCP_CHRONO_MAX, 1832 }; 1833 1834 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1835 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1836 1837 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1838 * the same memory storage than skb->destructor/_skb_refdst 1839 */ 1840 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1841 { 1842 skb->destructor = NULL; 1843 skb->_skb_refdst = 0UL; 1844 } 1845 1846 #define tcp_skb_tsorted_save(skb) { \ 1847 unsigned long _save = skb->_skb_refdst; \ 1848 skb->_skb_refdst = 0UL; 1849 1850 #define tcp_skb_tsorted_restore(skb) \ 1851 skb->_skb_refdst = _save; \ 1852 } 1853 1854 void tcp_write_queue_purge(struct sock *sk); 1855 1856 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1857 { 1858 return skb_rb_first(&sk->tcp_rtx_queue); 1859 } 1860 1861 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1862 { 1863 return skb_rb_last(&sk->tcp_rtx_queue); 1864 } 1865 1866 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1867 { 1868 return skb_peek_tail(&sk->sk_write_queue); 1869 } 1870 1871 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1872 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1873 1874 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1875 { 1876 return skb_peek(&sk->sk_write_queue); 1877 } 1878 1879 static inline bool tcp_skb_is_last(const struct sock *sk, 1880 const struct sk_buff *skb) 1881 { 1882 return skb_queue_is_last(&sk->sk_write_queue, skb); 1883 } 1884 1885 /** 1886 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1887 * @sk: socket 1888 * 1889 * Since the write queue can have a temporary empty skb in it, 1890 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1891 */ 1892 static inline bool tcp_write_queue_empty(const struct sock *sk) 1893 { 1894 const struct tcp_sock *tp = tcp_sk(sk); 1895 1896 return tp->write_seq == tp->snd_nxt; 1897 } 1898 1899 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1900 { 1901 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1902 } 1903 1904 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1905 { 1906 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1907 } 1908 1909 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1910 { 1911 __skb_queue_tail(&sk->sk_write_queue, skb); 1912 1913 /* Queue it, remembering where we must start sending. */ 1914 if (sk->sk_write_queue.next == skb) 1915 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1916 } 1917 1918 /* Insert new before skb on the write queue of sk. */ 1919 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1920 struct sk_buff *skb, 1921 struct sock *sk) 1922 { 1923 __skb_queue_before(&sk->sk_write_queue, skb, new); 1924 } 1925 1926 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1927 { 1928 tcp_skb_tsorted_anchor_cleanup(skb); 1929 __skb_unlink(skb, &sk->sk_write_queue); 1930 } 1931 1932 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1933 1934 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1935 { 1936 tcp_skb_tsorted_anchor_cleanup(skb); 1937 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1938 } 1939 1940 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1941 { 1942 list_del(&skb->tcp_tsorted_anchor); 1943 tcp_rtx_queue_unlink(skb, sk); 1944 tcp_wmem_free_skb(sk, skb); 1945 } 1946 1947 static inline void tcp_push_pending_frames(struct sock *sk) 1948 { 1949 if (tcp_send_head(sk)) { 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 1952 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1953 } 1954 } 1955 1956 /* Start sequence of the skb just after the highest skb with SACKed 1957 * bit, valid only if sacked_out > 0 or when the caller has ensured 1958 * validity by itself. 1959 */ 1960 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1961 { 1962 if (!tp->sacked_out) 1963 return tp->snd_una; 1964 1965 if (tp->highest_sack == NULL) 1966 return tp->snd_nxt; 1967 1968 return TCP_SKB_CB(tp->highest_sack)->seq; 1969 } 1970 1971 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1972 { 1973 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1974 } 1975 1976 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1977 { 1978 return tcp_sk(sk)->highest_sack; 1979 } 1980 1981 static inline void tcp_highest_sack_reset(struct sock *sk) 1982 { 1983 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1984 } 1985 1986 /* Called when old skb is about to be deleted and replaced by new skb */ 1987 static inline void tcp_highest_sack_replace(struct sock *sk, 1988 struct sk_buff *old, 1989 struct sk_buff *new) 1990 { 1991 if (old == tcp_highest_sack(sk)) 1992 tcp_sk(sk)->highest_sack = new; 1993 } 1994 1995 /* This helper checks if socket has IP_TRANSPARENT set */ 1996 static inline bool inet_sk_transparent(const struct sock *sk) 1997 { 1998 switch (sk->sk_state) { 1999 case TCP_TIME_WAIT: 2000 return inet_twsk(sk)->tw_transparent; 2001 case TCP_NEW_SYN_RECV: 2002 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2003 } 2004 return inet_sk(sk)->transparent; 2005 } 2006 2007 /* Determines whether this is a thin stream (which may suffer from 2008 * increased latency). Used to trigger latency-reducing mechanisms. 2009 */ 2010 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2011 { 2012 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2013 } 2014 2015 /* /proc */ 2016 enum tcp_seq_states { 2017 TCP_SEQ_STATE_LISTENING, 2018 TCP_SEQ_STATE_ESTABLISHED, 2019 }; 2020 2021 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2022 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2023 void tcp_seq_stop(struct seq_file *seq, void *v); 2024 2025 struct tcp_seq_afinfo { 2026 sa_family_t family; 2027 }; 2028 2029 struct tcp_iter_state { 2030 struct seq_net_private p; 2031 enum tcp_seq_states state; 2032 struct sock *syn_wait_sk; 2033 int bucket, offset, sbucket, num; 2034 loff_t last_pos; 2035 }; 2036 2037 extern struct request_sock_ops tcp_request_sock_ops; 2038 extern struct request_sock_ops tcp6_request_sock_ops; 2039 2040 void tcp_v4_destroy_sock(struct sock *sk); 2041 2042 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2043 netdev_features_t features); 2044 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2045 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2046 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2047 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2048 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2049 int tcp_gro_complete(struct sk_buff *skb); 2050 2051 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2052 2053 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2054 { 2055 struct net *net = sock_net((struct sock *)tp); 2056 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2057 } 2058 2059 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2060 2061 #ifdef CONFIG_PROC_FS 2062 int tcp4_proc_init(void); 2063 void tcp4_proc_exit(void); 2064 #endif 2065 2066 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2067 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2068 const struct tcp_request_sock_ops *af_ops, 2069 struct sock *sk, struct sk_buff *skb); 2070 2071 /* TCP af-specific functions */ 2072 struct tcp_sock_af_ops { 2073 #ifdef CONFIG_TCP_MD5SIG 2074 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2075 const struct sock *addr_sk); 2076 int (*calc_md5_hash)(char *location, 2077 const struct tcp_md5sig_key *md5, 2078 const struct sock *sk, 2079 const struct sk_buff *skb); 2080 int (*md5_parse)(struct sock *sk, 2081 int optname, 2082 sockptr_t optval, 2083 int optlen); 2084 #endif 2085 }; 2086 2087 struct tcp_request_sock_ops { 2088 u16 mss_clamp; 2089 #ifdef CONFIG_TCP_MD5SIG 2090 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2091 const struct sock *addr_sk); 2092 int (*calc_md5_hash) (char *location, 2093 const struct tcp_md5sig_key *md5, 2094 const struct sock *sk, 2095 const struct sk_buff *skb); 2096 #endif 2097 #ifdef CONFIG_SYN_COOKIES 2098 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2099 __u16 *mss); 2100 #endif 2101 struct dst_entry *(*route_req)(const struct sock *sk, 2102 struct sk_buff *skb, 2103 struct flowi *fl, 2104 struct request_sock *req); 2105 u32 (*init_seq)(const struct sk_buff *skb); 2106 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2107 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2108 struct flowi *fl, struct request_sock *req, 2109 struct tcp_fastopen_cookie *foc, 2110 enum tcp_synack_type synack_type, 2111 struct sk_buff *syn_skb); 2112 }; 2113 2114 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2115 #if IS_ENABLED(CONFIG_IPV6) 2116 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2117 #endif 2118 2119 #ifdef CONFIG_SYN_COOKIES 2120 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2121 const struct sock *sk, struct sk_buff *skb, 2122 __u16 *mss) 2123 { 2124 tcp_synq_overflow(sk); 2125 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2126 return ops->cookie_init_seq(skb, mss); 2127 } 2128 #else 2129 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2130 const struct sock *sk, struct sk_buff *skb, 2131 __u16 *mss) 2132 { 2133 return 0; 2134 } 2135 #endif 2136 2137 int tcpv4_offload_init(void); 2138 2139 void tcp_v4_init(void); 2140 void tcp_init(void); 2141 2142 /* tcp_recovery.c */ 2143 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2144 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2145 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2146 u32 reo_wnd); 2147 extern bool tcp_rack_mark_lost(struct sock *sk); 2148 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2149 u64 xmit_time); 2150 extern void tcp_rack_reo_timeout(struct sock *sk); 2151 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2152 2153 /* tcp_plb.c */ 2154 2155 /* 2156 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2157 * expects cong_ratio which represents fraction of traffic that experienced 2158 * congestion over a single RTT. In order to avoid floating point operations, 2159 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2160 */ 2161 #define TCP_PLB_SCALE 8 2162 2163 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2164 struct tcp_plb_state { 2165 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2166 unused:3; 2167 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2168 }; 2169 2170 static inline void tcp_plb_init(const struct sock *sk, 2171 struct tcp_plb_state *plb) 2172 { 2173 plb->consec_cong_rounds = 0; 2174 plb->pause_until = 0; 2175 } 2176 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2177 const int cong_ratio); 2178 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2179 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2180 2181 /* At how many usecs into the future should the RTO fire? */ 2182 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2183 { 2184 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2185 u32 rto = inet_csk(sk)->icsk_rto; 2186 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2187 2188 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2189 } 2190 2191 /* 2192 * Save and compile IPv4 options, return a pointer to it 2193 */ 2194 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2195 struct sk_buff *skb) 2196 { 2197 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2198 struct ip_options_rcu *dopt = NULL; 2199 2200 if (opt->optlen) { 2201 int opt_size = sizeof(*dopt) + opt->optlen; 2202 2203 dopt = kmalloc(opt_size, GFP_ATOMIC); 2204 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2205 kfree(dopt); 2206 dopt = NULL; 2207 } 2208 } 2209 return dopt; 2210 } 2211 2212 /* locally generated TCP pure ACKs have skb->truesize == 2 2213 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2214 * This is much faster than dissecting the packet to find out. 2215 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2216 */ 2217 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2218 { 2219 return skb->truesize == 2; 2220 } 2221 2222 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2223 { 2224 skb->truesize = 2; 2225 } 2226 2227 static inline int tcp_inq(struct sock *sk) 2228 { 2229 struct tcp_sock *tp = tcp_sk(sk); 2230 int answ; 2231 2232 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2233 answ = 0; 2234 } else if (sock_flag(sk, SOCK_URGINLINE) || 2235 !tp->urg_data || 2236 before(tp->urg_seq, tp->copied_seq) || 2237 !before(tp->urg_seq, tp->rcv_nxt)) { 2238 2239 answ = tp->rcv_nxt - tp->copied_seq; 2240 2241 /* Subtract 1, if FIN was received */ 2242 if (answ && sock_flag(sk, SOCK_DONE)) 2243 answ--; 2244 } else { 2245 answ = tp->urg_seq - tp->copied_seq; 2246 } 2247 2248 return answ; 2249 } 2250 2251 int tcp_peek_len(struct socket *sock); 2252 2253 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2254 { 2255 u16 segs_in; 2256 2257 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2258 2259 /* We update these fields while other threads might 2260 * read them from tcp_get_info() 2261 */ 2262 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2263 if (skb->len > tcp_hdrlen(skb)) 2264 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2265 } 2266 2267 /* 2268 * TCP listen path runs lockless. 2269 * We forced "struct sock" to be const qualified to make sure 2270 * we don't modify one of its field by mistake. 2271 * Here, we increment sk_drops which is an atomic_t, so we can safely 2272 * make sock writable again. 2273 */ 2274 static inline void tcp_listendrop(const struct sock *sk) 2275 { 2276 atomic_inc(&((struct sock *)sk)->sk_drops); 2277 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2278 } 2279 2280 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2281 2282 /* 2283 * Interface for adding Upper Level Protocols over TCP 2284 */ 2285 2286 #define TCP_ULP_NAME_MAX 16 2287 #define TCP_ULP_MAX 128 2288 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2289 2290 struct tcp_ulp_ops { 2291 struct list_head list; 2292 2293 /* initialize ulp */ 2294 int (*init)(struct sock *sk); 2295 /* update ulp */ 2296 void (*update)(struct sock *sk, struct proto *p, 2297 void (*write_space)(struct sock *sk)); 2298 /* cleanup ulp */ 2299 void (*release)(struct sock *sk); 2300 /* diagnostic */ 2301 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2302 size_t (*get_info_size)(const struct sock *sk); 2303 /* clone ulp */ 2304 void (*clone)(const struct request_sock *req, struct sock *newsk, 2305 const gfp_t priority); 2306 2307 char name[TCP_ULP_NAME_MAX]; 2308 struct module *owner; 2309 }; 2310 int tcp_register_ulp(struct tcp_ulp_ops *type); 2311 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2312 int tcp_set_ulp(struct sock *sk, const char *name); 2313 void tcp_get_available_ulp(char *buf, size_t len); 2314 void tcp_cleanup_ulp(struct sock *sk); 2315 void tcp_update_ulp(struct sock *sk, struct proto *p, 2316 void (*write_space)(struct sock *sk)); 2317 2318 #define MODULE_ALIAS_TCP_ULP(name) \ 2319 __MODULE_INFO(alias, alias_userspace, name); \ 2320 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2321 2322 #ifdef CONFIG_NET_SOCK_MSG 2323 struct sk_msg; 2324 struct sk_psock; 2325 2326 #ifdef CONFIG_BPF_SYSCALL 2327 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2328 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2329 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2330 #endif /* CONFIG_BPF_SYSCALL */ 2331 2332 #ifdef CONFIG_INET 2333 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2334 #else 2335 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2336 { 2337 } 2338 #endif 2339 2340 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2341 struct sk_msg *msg, u32 bytes, int flags); 2342 #endif /* CONFIG_NET_SOCK_MSG */ 2343 2344 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2345 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2346 { 2347 } 2348 #endif 2349 2350 #ifdef CONFIG_CGROUP_BPF 2351 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2352 struct sk_buff *skb, 2353 unsigned int end_offset) 2354 { 2355 skops->skb = skb; 2356 skops->skb_data_end = skb->data + end_offset; 2357 } 2358 #else 2359 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2360 struct sk_buff *skb, 2361 unsigned int end_offset) 2362 { 2363 } 2364 #endif 2365 2366 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2367 * is < 0, then the BPF op failed (for example if the loaded BPF 2368 * program does not support the chosen operation or there is no BPF 2369 * program loaded). 2370 */ 2371 #ifdef CONFIG_BPF 2372 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2373 { 2374 struct bpf_sock_ops_kern sock_ops; 2375 int ret; 2376 2377 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2378 if (sk_fullsock(sk)) { 2379 sock_ops.is_fullsock = 1; 2380 sock_owned_by_me(sk); 2381 } 2382 2383 sock_ops.sk = sk; 2384 sock_ops.op = op; 2385 if (nargs > 0) 2386 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2387 2388 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2389 if (ret == 0) 2390 ret = sock_ops.reply; 2391 else 2392 ret = -1; 2393 return ret; 2394 } 2395 2396 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2397 { 2398 u32 args[2] = {arg1, arg2}; 2399 2400 return tcp_call_bpf(sk, op, 2, args); 2401 } 2402 2403 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2404 u32 arg3) 2405 { 2406 u32 args[3] = {arg1, arg2, arg3}; 2407 2408 return tcp_call_bpf(sk, op, 3, args); 2409 } 2410 2411 #else 2412 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2413 { 2414 return -EPERM; 2415 } 2416 2417 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2418 { 2419 return -EPERM; 2420 } 2421 2422 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2423 u32 arg3) 2424 { 2425 return -EPERM; 2426 } 2427 2428 #endif 2429 2430 static inline u32 tcp_timeout_init(struct sock *sk) 2431 { 2432 int timeout; 2433 2434 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2435 2436 if (timeout <= 0) 2437 timeout = TCP_TIMEOUT_INIT; 2438 return min_t(int, timeout, TCP_RTO_MAX); 2439 } 2440 2441 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2442 { 2443 int rwnd; 2444 2445 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2446 2447 if (rwnd < 0) 2448 rwnd = 0; 2449 return rwnd; 2450 } 2451 2452 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2453 { 2454 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2455 } 2456 2457 static inline void tcp_bpf_rtt(struct sock *sk) 2458 { 2459 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2460 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2461 } 2462 2463 #if IS_ENABLED(CONFIG_SMC) 2464 extern struct static_key_false tcp_have_smc; 2465 #endif 2466 2467 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2468 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2469 void (*cad)(struct sock *sk, u32 ack_seq)); 2470 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2471 void clean_acked_data_flush(void); 2472 #endif 2473 2474 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2475 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2476 const struct tcp_sock *tp) 2477 { 2478 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2479 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2480 } 2481 2482 /* Compute Earliest Departure Time for some control packets 2483 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2484 */ 2485 static inline u64 tcp_transmit_time(const struct sock *sk) 2486 { 2487 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2488 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2489 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2490 2491 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2492 } 2493 return 0; 2494 } 2495 2496 #endif /* _TCP_H */ 2497