xref: /openbmc/linux/include/net/tcp.h (revision 63dc02bd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND	10
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		512
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING	127
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
102 				 * connection: ~180sec is RFC minimum	*/
103 
104 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
105 				 * connection: ~180sec is RFC minimum	*/
106 
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 				  * state, about 60 seconds	*/
109 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
110                                  /* BSD style FIN_WAIT2 deadlock breaker.
111 				  * It used to be 3min, new value is 60sec,
112 				  * to combine FIN-WAIT-2 timeout with
113 				  * TIME-WAIT timer.
114 				  */
115 
116 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN	((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN	4U
122 #define TCP_ATO_MIN	4U
123 #endif
124 #define TCP_RTO_MAX	((unsigned)(120*HZ))
125 #define TCP_RTO_MIN	((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC2988bis initial RTO value	*/
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
128 						 * used as a fallback RTO for the
129 						 * initial data transmission if no
130 						 * valid RTT sample has been acquired,
131 						 * most likely due to retrans in 3WHS.
132 						 */
133 
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 					                 * for local resources.
136 					                 */
137 
138 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
139 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
140 #define TCP_KEEPALIVE_INTVL	(75*HZ)
141 
142 #define MAX_TCP_KEEPIDLE	32767
143 #define MAX_TCP_KEEPINTVL	32767
144 #define MAX_TCP_KEEPCNT		127
145 #define MAX_TCP_SYNCNT		127
146 
147 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
148 
149 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
151 					 * after this time. It should be equal
152 					 * (or greater than) TCP_TIMEWAIT_LEN
153 					 * to provide reliability equal to one
154 					 * provided by timewait state.
155 					 */
156 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
157 					 * timestamps. It must be less than
158 					 * minimal timewait lifetime.
159 					 */
160 /*
161  *	TCP option
162  */
163 
164 #define TCPOPT_NOP		1	/* Padding */
165 #define TCPOPT_EOL		0	/* End of options */
166 #define TCPOPT_MSS		2	/* Segment size negotiating */
167 #define TCPOPT_WINDOW		3	/* Window scaling */
168 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
169 #define TCPOPT_SACK             5       /* SACK Block */
170 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
173 
174 /*
175  *     TCP option lengths
176  */
177 
178 #define TCPOLEN_MSS            4
179 #define TCPOLEN_WINDOW         3
180 #define TCPOLEN_SACK_PERM      2
181 #define TCPOLEN_TIMESTAMP      10
182 #define TCPOLEN_MD5SIG         18
183 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
184 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
185 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
186 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
187 
188 /* But this is what stacks really send out. */
189 #define TCPOLEN_TSTAMP_ALIGNED		12
190 #define TCPOLEN_WSCALE_ALIGNED		4
191 #define TCPOLEN_SACKPERM_ALIGNED	4
192 #define TCPOLEN_SACK_BASE		2
193 #define TCPOLEN_SACK_BASE_ALIGNED	4
194 #define TCPOLEN_SACK_PERBLOCK		8
195 #define TCPOLEN_MD5SIG_ALIGNED		20
196 #define TCPOLEN_MSS_ALIGNED		4
197 
198 /* Flags in tp->nonagle */
199 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
200 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
201 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
202 
203 /* TCP thin-stream limits */
204 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
205 
206 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
207 #define TCP_INIT_CWND		10
208 
209 extern struct inet_timewait_death_row tcp_death_row;
210 
211 /* sysctl variables for tcp */
212 extern int sysctl_tcp_timestamps;
213 extern int sysctl_tcp_window_scaling;
214 extern int sysctl_tcp_sack;
215 extern int sysctl_tcp_fin_timeout;
216 extern int sysctl_tcp_keepalive_time;
217 extern int sysctl_tcp_keepalive_probes;
218 extern int sysctl_tcp_keepalive_intvl;
219 extern int sysctl_tcp_syn_retries;
220 extern int sysctl_tcp_synack_retries;
221 extern int sysctl_tcp_retries1;
222 extern int sysctl_tcp_retries2;
223 extern int sysctl_tcp_orphan_retries;
224 extern int sysctl_tcp_syncookies;
225 extern int sysctl_tcp_retrans_collapse;
226 extern int sysctl_tcp_stdurg;
227 extern int sysctl_tcp_rfc1337;
228 extern int sysctl_tcp_abort_on_overflow;
229 extern int sysctl_tcp_max_orphans;
230 extern int sysctl_tcp_fack;
231 extern int sysctl_tcp_reordering;
232 extern int sysctl_tcp_ecn;
233 extern int sysctl_tcp_dsack;
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255 
256 extern atomic_long_t tcp_memory_allocated;
257 extern struct percpu_counter tcp_sockets_allocated;
258 extern int tcp_memory_pressure;
259 
260 /*
261  * The next routines deal with comparing 32 bit unsigned ints
262  * and worry about wraparound (automatic with unsigned arithmetic).
263  */
264 
265 static inline int before(__u32 seq1, __u32 seq2)
266 {
267         return (__s32)(seq1-seq2) < 0;
268 }
269 #define after(seq2, seq1) 	before(seq1, seq2)
270 
271 /* is s2<=s1<=s3 ? */
272 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
273 {
274 	return seq3 - seq2 >= seq1 - seq2;
275 }
276 
277 static inline bool tcp_out_of_memory(struct sock *sk)
278 {
279 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
280 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
281 		return true;
282 	return false;
283 }
284 
285 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
286 {
287 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
288 	int orphans = percpu_counter_read_positive(ocp);
289 
290 	if (orphans << shift > sysctl_tcp_max_orphans) {
291 		orphans = percpu_counter_sum_positive(ocp);
292 		if (orphans << shift > sysctl_tcp_max_orphans)
293 			return true;
294 	}
295 	return false;
296 }
297 
298 extern bool tcp_check_oom(struct sock *sk, int shift);
299 
300 /* syncookies: remember time of last synqueue overflow */
301 static inline void tcp_synq_overflow(struct sock *sk)
302 {
303 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
304 }
305 
306 /* syncookies: no recent synqueue overflow on this listening socket? */
307 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
308 {
309 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
310 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
311 }
312 
313 extern struct proto tcp_prot;
314 
315 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
317 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
319 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
320 
321 extern void tcp_init_mem(struct net *net);
322 
323 extern void tcp_v4_err(struct sk_buff *skb, u32);
324 
325 extern void tcp_shutdown (struct sock *sk, int how);
326 
327 extern int tcp_v4_rcv(struct sk_buff *skb);
328 
329 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
330 extern void *tcp_v4_tw_get_peer(struct sock *sk);
331 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
332 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
333 		       size_t size);
334 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
335 			size_t size, int flags);
336 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
338 				 const struct tcphdr *th, unsigned int len);
339 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
340 			       const struct tcphdr *th, unsigned int len);
341 extern void tcp_rcv_space_adjust(struct sock *sk);
342 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
343 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344 extern void tcp_twsk_destructor(struct sock *sk);
345 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
346 			       struct pipe_inode_info *pipe, size_t len,
347 			       unsigned int flags);
348 
349 static inline void tcp_dec_quickack_mode(struct sock *sk,
350 					 const unsigned int pkts)
351 {
352 	struct inet_connection_sock *icsk = inet_csk(sk);
353 
354 	if (icsk->icsk_ack.quick) {
355 		if (pkts >= icsk->icsk_ack.quick) {
356 			icsk->icsk_ack.quick = 0;
357 			/* Leaving quickack mode we deflate ATO. */
358 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
359 		} else
360 			icsk->icsk_ack.quick -= pkts;
361 	}
362 }
363 
364 #define	TCP_ECN_OK		1
365 #define	TCP_ECN_QUEUE_CWR	2
366 #define	TCP_ECN_DEMAND_CWR	4
367 #define	TCP_ECN_SEEN		8
368 
369 static __inline__ void
370 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
371 {
372 	if (sysctl_tcp_ecn && th->ece && th->cwr)
373 		inet_rsk(req)->ecn_ok = 1;
374 }
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 						     struct sk_buff *skb,
386 						     const struct tcphdr *th);
387 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
388 				   struct request_sock *req,
389 				   struct request_sock **prev);
390 extern int tcp_child_process(struct sock *parent, struct sock *child,
391 			     struct sk_buff *skb);
392 extern int tcp_use_frto(struct sock *sk);
393 extern void tcp_enter_frto(struct sock *sk);
394 extern void tcp_enter_loss(struct sock *sk, int how);
395 extern void tcp_clear_retrans(struct tcp_sock *tp);
396 extern void tcp_update_metrics(struct sock *sk);
397 extern void tcp_close(struct sock *sk, long timeout);
398 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
399 			     struct poll_table_struct *wait);
400 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, int __user *optlen);
402 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
403 			  char __user *optval, unsigned int optlen);
404 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405 				 char __user *optval, int __user *optlen);
406 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407 				 char __user *optval, unsigned int optlen);
408 extern void tcp_set_keepalive(struct sock *sk, int val);
409 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
410 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
411 		       size_t len, int nonblock, int flags, int *addr_len);
412 extern void tcp_parse_options(const struct sk_buff *skb,
413 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
414 			      int estab);
415 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416 
417 /*
418  *	TCP v4 functions exported for the inet6 API
419  */
420 
421 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
422 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
423 extern struct sock * tcp_create_openreq_child(struct sock *sk,
424 					      struct request_sock *req,
425 					      struct sk_buff *skb);
426 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
427 					  struct request_sock *req,
428 					  struct dst_entry *dst);
429 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
430 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
431 			  int addr_len);
432 extern int tcp_connect(struct sock *sk);
433 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
434 					struct request_sock *req,
435 					struct request_values *rvp);
436 extern int tcp_disconnect(struct sock *sk, int flags);
437 
438 
439 /* From syncookies.c */
440 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
441 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
442 				    struct ip_options *opt);
443 #ifdef CONFIG_SYN_COOKIES
444 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
445 				     __u16 *mss);
446 #else
447 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
448 					    struct sk_buff *skb,
449 					    __u16 *mss)
450 {
451 	return 0;
452 }
453 #endif
454 
455 extern __u32 cookie_init_timestamp(struct request_sock *req);
456 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
457 
458 /* From net/ipv6/syncookies.c */
459 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
460 #ifdef CONFIG_SYN_COOKIES
461 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
462 				     __u16 *mss);
463 #else
464 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
465 					    struct sk_buff *skb,
466 					    __u16 *mss)
467 {
468 	return 0;
469 }
470 #endif
471 /* tcp_output.c */
472 
473 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
474 				      int nonagle);
475 extern int tcp_may_send_now(struct sock *sk);
476 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
477 extern void tcp_retransmit_timer(struct sock *sk);
478 extern void tcp_xmit_retransmit_queue(struct sock *);
479 extern void tcp_simple_retransmit(struct sock *);
480 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
481 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
482 
483 extern void tcp_send_probe0(struct sock *);
484 extern void tcp_send_partial(struct sock *);
485 extern int tcp_write_wakeup(struct sock *);
486 extern void tcp_send_fin(struct sock *sk);
487 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
488 extern int tcp_send_synack(struct sock *);
489 extern int tcp_syn_flood_action(struct sock *sk,
490 				const struct sk_buff *skb,
491 				const char *proto);
492 extern void tcp_push_one(struct sock *, unsigned int mss_now);
493 extern void tcp_send_ack(struct sock *sk);
494 extern void tcp_send_delayed_ack(struct sock *sk);
495 
496 /* tcp_input.c */
497 extern void tcp_cwnd_application_limited(struct sock *sk);
498 
499 /* tcp_timer.c */
500 extern void tcp_init_xmit_timers(struct sock *);
501 static inline void tcp_clear_xmit_timers(struct sock *sk)
502 {
503 	inet_csk_clear_xmit_timers(sk);
504 }
505 
506 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
507 extern unsigned int tcp_current_mss(struct sock *sk);
508 
509 /* Bound MSS / TSO packet size with the half of the window */
510 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
511 {
512 	int cutoff;
513 
514 	/* When peer uses tiny windows, there is no use in packetizing
515 	 * to sub-MSS pieces for the sake of SWS or making sure there
516 	 * are enough packets in the pipe for fast recovery.
517 	 *
518 	 * On the other hand, for extremely large MSS devices, handling
519 	 * smaller than MSS windows in this way does make sense.
520 	 */
521 	if (tp->max_window >= 512)
522 		cutoff = (tp->max_window >> 1);
523 	else
524 		cutoff = tp->max_window;
525 
526 	if (cutoff && pktsize > cutoff)
527 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
528 	else
529 		return pktsize;
530 }
531 
532 /* tcp.c */
533 extern void tcp_get_info(const struct sock *, struct tcp_info *);
534 
535 /* Read 'sendfile()'-style from a TCP socket */
536 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
537 				unsigned int, size_t);
538 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
539 			 sk_read_actor_t recv_actor);
540 
541 extern void tcp_initialize_rcv_mss(struct sock *sk);
542 
543 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
544 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
545 extern void tcp_mtup_init(struct sock *sk);
546 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
547 
548 static inline void tcp_bound_rto(const struct sock *sk)
549 {
550 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
551 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
552 }
553 
554 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
555 {
556 	return (tp->srtt >> 3) + tp->rttvar;
557 }
558 
559 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
560 {
561 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
562 			       ntohl(TCP_FLAG_ACK) |
563 			       snd_wnd);
564 }
565 
566 static inline void tcp_fast_path_on(struct tcp_sock *tp)
567 {
568 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
569 }
570 
571 static inline void tcp_fast_path_check(struct sock *sk)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 
575 	if (skb_queue_empty(&tp->out_of_order_queue) &&
576 	    tp->rcv_wnd &&
577 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
578 	    !tp->urg_data)
579 		tcp_fast_path_on(tp);
580 }
581 
582 /* Compute the actual rto_min value */
583 static inline u32 tcp_rto_min(struct sock *sk)
584 {
585 	const struct dst_entry *dst = __sk_dst_get(sk);
586 	u32 rto_min = TCP_RTO_MIN;
587 
588 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
589 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
590 	return rto_min;
591 }
592 
593 /* Compute the actual receive window we are currently advertising.
594  * Rcv_nxt can be after the window if our peer push more data
595  * than the offered window.
596  */
597 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
598 {
599 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
600 
601 	if (win < 0)
602 		win = 0;
603 	return (u32) win;
604 }
605 
606 /* Choose a new window, without checks for shrinking, and without
607  * scaling applied to the result.  The caller does these things
608  * if necessary.  This is a "raw" window selection.
609  */
610 extern u32 __tcp_select_window(struct sock *sk);
611 
612 /* TCP timestamps are only 32-bits, this causes a slight
613  * complication on 64-bit systems since we store a snapshot
614  * of jiffies in the buffer control blocks below.  We decided
615  * to use only the low 32-bits of jiffies and hide the ugly
616  * casts with the following macro.
617  */
618 #define tcp_time_stamp		((__u32)(jiffies))
619 
620 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
621 
622 #define TCPHDR_FIN 0x01
623 #define TCPHDR_SYN 0x02
624 #define TCPHDR_RST 0x04
625 #define TCPHDR_PSH 0x08
626 #define TCPHDR_ACK 0x10
627 #define TCPHDR_URG 0x20
628 #define TCPHDR_ECE 0x40
629 #define TCPHDR_CWR 0x80
630 
631 /* This is what the send packet queuing engine uses to pass
632  * TCP per-packet control information to the transmission code.
633  * We also store the host-order sequence numbers in here too.
634  * This is 44 bytes if IPV6 is enabled.
635  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
636  */
637 struct tcp_skb_cb {
638 	union {
639 		struct inet_skb_parm	h4;
640 #if IS_ENABLED(CONFIG_IPV6)
641 		struct inet6_skb_parm	h6;
642 #endif
643 	} header;	/* For incoming frames		*/
644 	__u32		seq;		/* Starting sequence number	*/
645 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
646 	__u32		when;		/* used to compute rtt's	*/
647 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
648 	__u8		sacked;		/* State flags for SACK/FACK.	*/
649 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
650 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
651 #define TCPCB_LOST		0x04	/* SKB is lost			*/
652 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
653 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
654 	/* 1 byte hole */
655 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
656 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
657 
658 	__u32		ack_seq;	/* Sequence number ACK'd	*/
659 };
660 
661 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
662 
663 /* Due to TSO, an SKB can be composed of multiple actual
664  * packets.  To keep these tracked properly, we use this.
665  */
666 static inline int tcp_skb_pcount(const struct sk_buff *skb)
667 {
668 	return skb_shinfo(skb)->gso_segs;
669 }
670 
671 /* This is valid iff tcp_skb_pcount() > 1. */
672 static inline int tcp_skb_mss(const struct sk_buff *skb)
673 {
674 	return skb_shinfo(skb)->gso_size;
675 }
676 
677 /* Events passed to congestion control interface */
678 enum tcp_ca_event {
679 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
680 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
681 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
682 	CA_EVENT_FRTO,		/* fast recovery timeout */
683 	CA_EVENT_LOSS,		/* loss timeout */
684 	CA_EVENT_FAST_ACK,	/* in sequence ack */
685 	CA_EVENT_SLOW_ACK,	/* other ack */
686 };
687 
688 /*
689  * Interface for adding new TCP congestion control handlers
690  */
691 #define TCP_CA_NAME_MAX	16
692 #define TCP_CA_MAX	128
693 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
694 
695 #define TCP_CONG_NON_RESTRICTED 0x1
696 #define TCP_CONG_RTT_STAMP	0x2
697 
698 struct tcp_congestion_ops {
699 	struct list_head	list;
700 	unsigned long flags;
701 
702 	/* initialize private data (optional) */
703 	void (*init)(struct sock *sk);
704 	/* cleanup private data  (optional) */
705 	void (*release)(struct sock *sk);
706 
707 	/* return slow start threshold (required) */
708 	u32 (*ssthresh)(struct sock *sk);
709 	/* lower bound for congestion window (optional) */
710 	u32 (*min_cwnd)(const struct sock *sk);
711 	/* do new cwnd calculation (required) */
712 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
713 	/* call before changing ca_state (optional) */
714 	void (*set_state)(struct sock *sk, u8 new_state);
715 	/* call when cwnd event occurs (optional) */
716 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
717 	/* new value of cwnd after loss (optional) */
718 	u32  (*undo_cwnd)(struct sock *sk);
719 	/* hook for packet ack accounting (optional) */
720 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
721 	/* get info for inet_diag (optional) */
722 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
723 
724 	char 		name[TCP_CA_NAME_MAX];
725 	struct module 	*owner;
726 };
727 
728 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
729 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
730 
731 extern void tcp_init_congestion_control(struct sock *sk);
732 extern void tcp_cleanup_congestion_control(struct sock *sk);
733 extern int tcp_set_default_congestion_control(const char *name);
734 extern void tcp_get_default_congestion_control(char *name);
735 extern void tcp_get_available_congestion_control(char *buf, size_t len);
736 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
737 extern int tcp_set_allowed_congestion_control(char *allowed);
738 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
739 extern void tcp_slow_start(struct tcp_sock *tp);
740 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
741 
742 extern struct tcp_congestion_ops tcp_init_congestion_ops;
743 extern u32 tcp_reno_ssthresh(struct sock *sk);
744 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
745 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
746 extern struct tcp_congestion_ops tcp_reno;
747 
748 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
749 {
750 	struct inet_connection_sock *icsk = inet_csk(sk);
751 
752 	if (icsk->icsk_ca_ops->set_state)
753 		icsk->icsk_ca_ops->set_state(sk, ca_state);
754 	icsk->icsk_ca_state = ca_state;
755 }
756 
757 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
758 {
759 	const struct inet_connection_sock *icsk = inet_csk(sk);
760 
761 	if (icsk->icsk_ca_ops->cwnd_event)
762 		icsk->icsk_ca_ops->cwnd_event(sk, event);
763 }
764 
765 /* These functions determine how the current flow behaves in respect of SACK
766  * handling. SACK is negotiated with the peer, and therefore it can vary
767  * between different flows.
768  *
769  * tcp_is_sack - SACK enabled
770  * tcp_is_reno - No SACK
771  * tcp_is_fack - FACK enabled, implies SACK enabled
772  */
773 static inline int tcp_is_sack(const struct tcp_sock *tp)
774 {
775 	return tp->rx_opt.sack_ok;
776 }
777 
778 static inline int tcp_is_reno(const struct tcp_sock *tp)
779 {
780 	return !tcp_is_sack(tp);
781 }
782 
783 static inline int tcp_is_fack(const struct tcp_sock *tp)
784 {
785 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
786 }
787 
788 static inline void tcp_enable_fack(struct tcp_sock *tp)
789 {
790 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
791 }
792 
793 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
794 {
795 	return tp->sacked_out + tp->lost_out;
796 }
797 
798 /* This determines how many packets are "in the network" to the best
799  * of our knowledge.  In many cases it is conservative, but where
800  * detailed information is available from the receiver (via SACK
801  * blocks etc.) we can make more aggressive calculations.
802  *
803  * Use this for decisions involving congestion control, use just
804  * tp->packets_out to determine if the send queue is empty or not.
805  *
806  * Read this equation as:
807  *
808  *	"Packets sent once on transmission queue" MINUS
809  *	"Packets left network, but not honestly ACKed yet" PLUS
810  *	"Packets fast retransmitted"
811  */
812 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
813 {
814 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
815 }
816 
817 #define TCP_INFINITE_SSTHRESH	0x7fffffff
818 
819 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
820 {
821 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
822 }
823 
824 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
825  * The exception is rate halving phase, when cwnd is decreasing towards
826  * ssthresh.
827  */
828 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
829 {
830 	const struct tcp_sock *tp = tcp_sk(sk);
831 
832 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
833 		return tp->snd_ssthresh;
834 	else
835 		return max(tp->snd_ssthresh,
836 			   ((tp->snd_cwnd >> 1) +
837 			    (tp->snd_cwnd >> 2)));
838 }
839 
840 /* Use define here intentionally to get WARN_ON location shown at the caller */
841 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
842 
843 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
844 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
845 
846 /* The maximum number of MSS of available cwnd for which TSO defers
847  * sending if not using sysctl_tcp_tso_win_divisor.
848  */
849 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
850 {
851 	return 3;
852 }
853 
854 /* Slow start with delack produces 3 packets of burst, so that
855  * it is safe "de facto".  This will be the default - same as
856  * the default reordering threshold - but if reordering increases,
857  * we must be able to allow cwnd to burst at least this much in order
858  * to not pull it back when holes are filled.
859  */
860 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
861 {
862 	return tp->reordering;
863 }
864 
865 /* Returns end sequence number of the receiver's advertised window */
866 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
867 {
868 	return tp->snd_una + tp->snd_wnd;
869 }
870 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
871 
872 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
873 				       const struct sk_buff *skb)
874 {
875 	if (skb->len < mss)
876 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
877 }
878 
879 static inline void tcp_check_probe_timer(struct sock *sk)
880 {
881 	const struct tcp_sock *tp = tcp_sk(sk);
882 	const struct inet_connection_sock *icsk = inet_csk(sk);
883 
884 	if (!tp->packets_out && !icsk->icsk_pending)
885 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
886 					  icsk->icsk_rto, TCP_RTO_MAX);
887 }
888 
889 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
890 {
891 	tp->snd_wl1 = seq;
892 }
893 
894 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
895 {
896 	tp->snd_wl1 = seq;
897 }
898 
899 /*
900  * Calculate(/check) TCP checksum
901  */
902 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
903 				   __be32 daddr, __wsum base)
904 {
905 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
906 }
907 
908 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
909 {
910 	return __skb_checksum_complete(skb);
911 }
912 
913 static inline int tcp_checksum_complete(struct sk_buff *skb)
914 {
915 	return !skb_csum_unnecessary(skb) &&
916 		__tcp_checksum_complete(skb);
917 }
918 
919 /* Prequeue for VJ style copy to user, combined with checksumming. */
920 
921 static inline void tcp_prequeue_init(struct tcp_sock *tp)
922 {
923 	tp->ucopy.task = NULL;
924 	tp->ucopy.len = 0;
925 	tp->ucopy.memory = 0;
926 	skb_queue_head_init(&tp->ucopy.prequeue);
927 #ifdef CONFIG_NET_DMA
928 	tp->ucopy.dma_chan = NULL;
929 	tp->ucopy.wakeup = 0;
930 	tp->ucopy.pinned_list = NULL;
931 	tp->ucopy.dma_cookie = 0;
932 #endif
933 }
934 
935 /* Packet is added to VJ-style prequeue for processing in process
936  * context, if a reader task is waiting. Apparently, this exciting
937  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
938  * failed somewhere. Latency? Burstiness? Well, at least now we will
939  * see, why it failed. 8)8)				  --ANK
940  *
941  * NOTE: is this not too big to inline?
942  */
943 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
944 {
945 	struct tcp_sock *tp = tcp_sk(sk);
946 
947 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
948 		return 0;
949 
950 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
951 	tp->ucopy.memory += skb->truesize;
952 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
953 		struct sk_buff *skb1;
954 
955 		BUG_ON(sock_owned_by_user(sk));
956 
957 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
958 			sk_backlog_rcv(sk, skb1);
959 			NET_INC_STATS_BH(sock_net(sk),
960 					 LINUX_MIB_TCPPREQUEUEDROPPED);
961 		}
962 
963 		tp->ucopy.memory = 0;
964 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
965 		wake_up_interruptible_sync_poll(sk_sleep(sk),
966 					   POLLIN | POLLRDNORM | POLLRDBAND);
967 		if (!inet_csk_ack_scheduled(sk))
968 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
969 						  (3 * tcp_rto_min(sk)) / 4,
970 						  TCP_RTO_MAX);
971 	}
972 	return 1;
973 }
974 
975 
976 #undef STATE_TRACE
977 
978 #ifdef STATE_TRACE
979 static const char *statename[]={
980 	"Unused","Established","Syn Sent","Syn Recv",
981 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
982 	"Close Wait","Last ACK","Listen","Closing"
983 };
984 #endif
985 extern void tcp_set_state(struct sock *sk, int state);
986 
987 extern void tcp_done(struct sock *sk);
988 
989 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
990 {
991 	rx_opt->dsack = 0;
992 	rx_opt->num_sacks = 0;
993 }
994 
995 /* Determine a window scaling and initial window to offer. */
996 extern void tcp_select_initial_window(int __space, __u32 mss,
997 				      __u32 *rcv_wnd, __u32 *window_clamp,
998 				      int wscale_ok, __u8 *rcv_wscale,
999 				      __u32 init_rcv_wnd);
1000 
1001 static inline int tcp_win_from_space(int space)
1002 {
1003 	return sysctl_tcp_adv_win_scale<=0 ?
1004 		(space>>(-sysctl_tcp_adv_win_scale)) :
1005 		space - (space>>sysctl_tcp_adv_win_scale);
1006 }
1007 
1008 /* Note: caller must be prepared to deal with negative returns */
1009 static inline int tcp_space(const struct sock *sk)
1010 {
1011 	return tcp_win_from_space(sk->sk_rcvbuf -
1012 				  atomic_read(&sk->sk_rmem_alloc));
1013 }
1014 
1015 static inline int tcp_full_space(const struct sock *sk)
1016 {
1017 	return tcp_win_from_space(sk->sk_rcvbuf);
1018 }
1019 
1020 static inline void tcp_openreq_init(struct request_sock *req,
1021 				    struct tcp_options_received *rx_opt,
1022 				    struct sk_buff *skb)
1023 {
1024 	struct inet_request_sock *ireq = inet_rsk(req);
1025 
1026 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1027 	req->cookie_ts = 0;
1028 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1029 	req->mss = rx_opt->mss_clamp;
1030 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1031 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1032 	ireq->sack_ok = rx_opt->sack_ok;
1033 	ireq->snd_wscale = rx_opt->snd_wscale;
1034 	ireq->wscale_ok = rx_opt->wscale_ok;
1035 	ireq->acked = 0;
1036 	ireq->ecn_ok = 0;
1037 	ireq->rmt_port = tcp_hdr(skb)->source;
1038 	ireq->loc_port = tcp_hdr(skb)->dest;
1039 }
1040 
1041 extern void tcp_enter_memory_pressure(struct sock *sk);
1042 
1043 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1044 {
1045 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1046 }
1047 
1048 static inline int keepalive_time_when(const struct tcp_sock *tp)
1049 {
1050 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1051 }
1052 
1053 static inline int keepalive_probes(const struct tcp_sock *tp)
1054 {
1055 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1056 }
1057 
1058 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1059 {
1060 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1061 
1062 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1063 			  tcp_time_stamp - tp->rcv_tstamp);
1064 }
1065 
1066 static inline int tcp_fin_time(const struct sock *sk)
1067 {
1068 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1069 	const int rto = inet_csk(sk)->icsk_rto;
1070 
1071 	if (fin_timeout < (rto << 2) - (rto >> 1))
1072 		fin_timeout = (rto << 2) - (rto >> 1);
1073 
1074 	return fin_timeout;
1075 }
1076 
1077 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1078 				 int paws_win)
1079 {
1080 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1081 		return 1;
1082 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1083 		return 1;
1084 	/*
1085 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1086 	 * then following tcp messages have valid values. Ignore 0 value,
1087 	 * or else 'negative' tsval might forbid us to accept their packets.
1088 	 */
1089 	if (!rx_opt->ts_recent)
1090 		return 1;
1091 	return 0;
1092 }
1093 
1094 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1095 				  int rst)
1096 {
1097 	if (tcp_paws_check(rx_opt, 0))
1098 		return 0;
1099 
1100 	/* RST segments are not recommended to carry timestamp,
1101 	   and, if they do, it is recommended to ignore PAWS because
1102 	   "their cleanup function should take precedence over timestamps."
1103 	   Certainly, it is mistake. It is necessary to understand the reasons
1104 	   of this constraint to relax it: if peer reboots, clock may go
1105 	   out-of-sync and half-open connections will not be reset.
1106 	   Actually, the problem would be not existing if all
1107 	   the implementations followed draft about maintaining clock
1108 	   via reboots. Linux-2.2 DOES NOT!
1109 
1110 	   However, we can relax time bounds for RST segments to MSL.
1111 	 */
1112 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1113 		return 0;
1114 	return 1;
1115 }
1116 
1117 static inline void tcp_mib_init(struct net *net)
1118 {
1119 	/* See RFC 2012 */
1120 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1121 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1122 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1123 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1124 }
1125 
1126 /* from STCP */
1127 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1128 {
1129 	tp->lost_skb_hint = NULL;
1130 	tp->scoreboard_skb_hint = NULL;
1131 }
1132 
1133 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1134 {
1135 	tcp_clear_retrans_hints_partial(tp);
1136 	tp->retransmit_skb_hint = NULL;
1137 }
1138 
1139 /* MD5 Signature */
1140 struct crypto_hash;
1141 
1142 union tcp_md5_addr {
1143 	struct in_addr  a4;
1144 #if IS_ENABLED(CONFIG_IPV6)
1145 	struct in6_addr	a6;
1146 #endif
1147 };
1148 
1149 /* - key database */
1150 struct tcp_md5sig_key {
1151 	struct hlist_node	node;
1152 	u8			keylen;
1153 	u8			family; /* AF_INET or AF_INET6 */
1154 	union tcp_md5_addr	addr;
1155 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1156 	struct rcu_head		rcu;
1157 };
1158 
1159 /* - sock block */
1160 struct tcp_md5sig_info {
1161 	struct hlist_head	head;
1162 	struct rcu_head		rcu;
1163 };
1164 
1165 /* - pseudo header */
1166 struct tcp4_pseudohdr {
1167 	__be32		saddr;
1168 	__be32		daddr;
1169 	__u8		pad;
1170 	__u8		protocol;
1171 	__be16		len;
1172 };
1173 
1174 struct tcp6_pseudohdr {
1175 	struct in6_addr	saddr;
1176 	struct in6_addr daddr;
1177 	__be32		len;
1178 	__be32		protocol;	/* including padding */
1179 };
1180 
1181 union tcp_md5sum_block {
1182 	struct tcp4_pseudohdr ip4;
1183 #if IS_ENABLED(CONFIG_IPV6)
1184 	struct tcp6_pseudohdr ip6;
1185 #endif
1186 };
1187 
1188 /* - pool: digest algorithm, hash description and scratch buffer */
1189 struct tcp_md5sig_pool {
1190 	struct hash_desc	md5_desc;
1191 	union tcp_md5sum_block	md5_blk;
1192 };
1193 
1194 /* - functions */
1195 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1196 			       const struct sock *sk,
1197 			       const struct request_sock *req,
1198 			       const struct sk_buff *skb);
1199 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1200 			  int family, const u8 *newkey,
1201 			  u8 newkeylen, gfp_t gfp);
1202 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1203 			  int family);
1204 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1205 					 struct sock *addr_sk);
1206 
1207 #ifdef CONFIG_TCP_MD5SIG
1208 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1209 			const union tcp_md5_addr *addr, int family);
1210 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1211 #else
1212 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1213 					 const union tcp_md5_addr *addr,
1214 					 int family)
1215 {
1216 	return NULL;
1217 }
1218 #define tcp_twsk_md5_key(twsk)	NULL
1219 #endif
1220 
1221 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1222 extern void tcp_free_md5sig_pool(void);
1223 
1224 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1225 extern void tcp_put_md5sig_pool(void);
1226 
1227 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1228 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1229 				 unsigned header_len);
1230 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1231 			    const struct tcp_md5sig_key *key);
1232 
1233 /* write queue abstraction */
1234 static inline void tcp_write_queue_purge(struct sock *sk)
1235 {
1236 	struct sk_buff *skb;
1237 
1238 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1239 		sk_wmem_free_skb(sk, skb);
1240 	sk_mem_reclaim(sk);
1241 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1242 }
1243 
1244 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1245 {
1246 	return skb_peek(&sk->sk_write_queue);
1247 }
1248 
1249 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1250 {
1251 	return skb_peek_tail(&sk->sk_write_queue);
1252 }
1253 
1254 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1255 						   const struct sk_buff *skb)
1256 {
1257 	return skb_queue_next(&sk->sk_write_queue, skb);
1258 }
1259 
1260 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1261 						   const struct sk_buff *skb)
1262 {
1263 	return skb_queue_prev(&sk->sk_write_queue, skb);
1264 }
1265 
1266 #define tcp_for_write_queue(skb, sk)					\
1267 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1268 
1269 #define tcp_for_write_queue_from(skb, sk)				\
1270 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1271 
1272 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1273 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1274 
1275 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1276 {
1277 	return sk->sk_send_head;
1278 }
1279 
1280 static inline bool tcp_skb_is_last(const struct sock *sk,
1281 				   const struct sk_buff *skb)
1282 {
1283 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1284 }
1285 
1286 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1287 {
1288 	if (tcp_skb_is_last(sk, skb))
1289 		sk->sk_send_head = NULL;
1290 	else
1291 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1292 }
1293 
1294 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1295 {
1296 	if (sk->sk_send_head == skb_unlinked)
1297 		sk->sk_send_head = NULL;
1298 }
1299 
1300 static inline void tcp_init_send_head(struct sock *sk)
1301 {
1302 	sk->sk_send_head = NULL;
1303 }
1304 
1305 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1306 {
1307 	__skb_queue_tail(&sk->sk_write_queue, skb);
1308 }
1309 
1310 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1311 {
1312 	__tcp_add_write_queue_tail(sk, skb);
1313 
1314 	/* Queue it, remembering where we must start sending. */
1315 	if (sk->sk_send_head == NULL) {
1316 		sk->sk_send_head = skb;
1317 
1318 		if (tcp_sk(sk)->highest_sack == NULL)
1319 			tcp_sk(sk)->highest_sack = skb;
1320 	}
1321 }
1322 
1323 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1324 {
1325 	__skb_queue_head(&sk->sk_write_queue, skb);
1326 }
1327 
1328 /* Insert buff after skb on the write queue of sk.  */
1329 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1330 						struct sk_buff *buff,
1331 						struct sock *sk)
1332 {
1333 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1334 }
1335 
1336 /* Insert new before skb on the write queue of sk.  */
1337 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1338 						  struct sk_buff *skb,
1339 						  struct sock *sk)
1340 {
1341 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1342 
1343 	if (sk->sk_send_head == skb)
1344 		sk->sk_send_head = new;
1345 }
1346 
1347 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1348 {
1349 	__skb_unlink(skb, &sk->sk_write_queue);
1350 }
1351 
1352 static inline int tcp_write_queue_empty(struct sock *sk)
1353 {
1354 	return skb_queue_empty(&sk->sk_write_queue);
1355 }
1356 
1357 static inline void tcp_push_pending_frames(struct sock *sk)
1358 {
1359 	if (tcp_send_head(sk)) {
1360 		struct tcp_sock *tp = tcp_sk(sk);
1361 
1362 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1363 	}
1364 }
1365 
1366 /* Start sequence of the skb just after the highest skb with SACKed
1367  * bit, valid only if sacked_out > 0 or when the caller has ensured
1368  * validity by itself.
1369  */
1370 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1371 {
1372 	if (!tp->sacked_out)
1373 		return tp->snd_una;
1374 
1375 	if (tp->highest_sack == NULL)
1376 		return tp->snd_nxt;
1377 
1378 	return TCP_SKB_CB(tp->highest_sack)->seq;
1379 }
1380 
1381 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1384 						tcp_write_queue_next(sk, skb);
1385 }
1386 
1387 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1388 {
1389 	return tcp_sk(sk)->highest_sack;
1390 }
1391 
1392 static inline void tcp_highest_sack_reset(struct sock *sk)
1393 {
1394 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1395 }
1396 
1397 /* Called when old skb is about to be deleted (to be combined with new skb) */
1398 static inline void tcp_highest_sack_combine(struct sock *sk,
1399 					    struct sk_buff *old,
1400 					    struct sk_buff *new)
1401 {
1402 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1403 		tcp_sk(sk)->highest_sack = new;
1404 }
1405 
1406 /* Determines whether this is a thin stream (which may suffer from
1407  * increased latency). Used to trigger latency-reducing mechanisms.
1408  */
1409 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1410 {
1411 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1412 }
1413 
1414 /* /proc */
1415 enum tcp_seq_states {
1416 	TCP_SEQ_STATE_LISTENING,
1417 	TCP_SEQ_STATE_OPENREQ,
1418 	TCP_SEQ_STATE_ESTABLISHED,
1419 	TCP_SEQ_STATE_TIME_WAIT,
1420 };
1421 
1422 int tcp_seq_open(struct inode *inode, struct file *file);
1423 
1424 struct tcp_seq_afinfo {
1425 	char				*name;
1426 	sa_family_t			family;
1427 	const struct file_operations	*seq_fops;
1428 	struct seq_operations		seq_ops;
1429 };
1430 
1431 struct tcp_iter_state {
1432 	struct seq_net_private	p;
1433 	sa_family_t		family;
1434 	enum tcp_seq_states	state;
1435 	struct sock		*syn_wait_sk;
1436 	int			bucket, offset, sbucket, num, uid;
1437 	loff_t			last_pos;
1438 };
1439 
1440 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1441 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1442 
1443 extern struct request_sock_ops tcp_request_sock_ops;
1444 extern struct request_sock_ops tcp6_request_sock_ops;
1445 
1446 extern void tcp_v4_destroy_sock(struct sock *sk);
1447 
1448 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1449 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1450 				       netdev_features_t features);
1451 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1452 					struct sk_buff *skb);
1453 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1454 					 struct sk_buff *skb);
1455 extern int tcp_gro_complete(struct sk_buff *skb);
1456 extern int tcp4_gro_complete(struct sk_buff *skb);
1457 
1458 #ifdef CONFIG_PROC_FS
1459 extern int tcp4_proc_init(void);
1460 extern void tcp4_proc_exit(void);
1461 #endif
1462 
1463 /* TCP af-specific functions */
1464 struct tcp_sock_af_ops {
1465 #ifdef CONFIG_TCP_MD5SIG
1466 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1467 						struct sock *addr_sk);
1468 	int			(*calc_md5_hash) (char *location,
1469 						  struct tcp_md5sig_key *md5,
1470 						  const struct sock *sk,
1471 						  const struct request_sock *req,
1472 						  const struct sk_buff *skb);
1473 	int			(*md5_parse) (struct sock *sk,
1474 					      char __user *optval,
1475 					      int optlen);
1476 #endif
1477 };
1478 
1479 struct tcp_request_sock_ops {
1480 #ifdef CONFIG_TCP_MD5SIG
1481 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1482 						struct request_sock *req);
1483 	int			(*calc_md5_hash) (char *location,
1484 						  struct tcp_md5sig_key *md5,
1485 						  const struct sock *sk,
1486 						  const struct request_sock *req,
1487 						  const struct sk_buff *skb);
1488 #endif
1489 };
1490 
1491 /* Using SHA1 for now, define some constants.
1492  */
1493 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1494 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1495 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1496 
1497 extern int tcp_cookie_generator(u32 *bakery);
1498 
1499 /**
1500  *	struct tcp_cookie_values - each socket needs extra space for the
1501  *	cookies, together with (optional) space for any SYN data.
1502  *
1503  *	A tcp_sock contains a pointer to the current value, and this is
1504  *	cloned to the tcp_timewait_sock.
1505  *
1506  * @cookie_pair:	variable data from the option exchange.
1507  *
1508  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1509  *			indicates default (sysctl_tcp_cookie_size).
1510  *			After cookie sent, remembers size of cookie.
1511  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1512  *
1513  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1514  *			constant payload is specified (@s_data_constant),
1515  *			holds its length instead.
1516  *			Range 0 to TCP_MSS_DESIRED.
1517  *
1518  * @s_data_payload:	constant data that is to be included in the
1519  *			payload of SYN or SYNACK segments when the
1520  *			cookie option is present.
1521  */
1522 struct tcp_cookie_values {
1523 	struct kref	kref;
1524 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1525 	u8		cookie_pair_size;
1526 	u8		cookie_desired;
1527 	u16		s_data_desired:11,
1528 			s_data_constant:1,
1529 			s_data_in:1,
1530 			s_data_out:1,
1531 			s_data_unused:2;
1532 	u8		s_data_payload[0];
1533 };
1534 
1535 static inline void tcp_cookie_values_release(struct kref *kref)
1536 {
1537 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1538 }
1539 
1540 /* The length of constant payload data.  Note that s_data_desired is
1541  * overloaded, depending on s_data_constant: either the length of constant
1542  * data (returned here) or the limit on variable data.
1543  */
1544 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1545 {
1546 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1547 		? tp->cookie_values->s_data_desired
1548 		: 0;
1549 }
1550 
1551 /**
1552  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1553  *
1554  *	As tcp_request_sock has already been extended in other places, the
1555  *	only remaining method is to pass stack values along as function
1556  *	parameters.  These parameters are not needed after sending SYNACK.
1557  *
1558  * @cookie_bakery:	cryptographic secret and message workspace.
1559  *
1560  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1561  *			struct tcp_options_received (above).
1562  */
1563 struct tcp_extend_values {
1564 	struct request_values		rv;
1565 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1566 	u8				cookie_plus:6,
1567 					cookie_out_never:1,
1568 					cookie_in_always:1;
1569 };
1570 
1571 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1572 {
1573 	return (struct tcp_extend_values *)rvp;
1574 }
1575 
1576 extern void tcp_v4_init(void);
1577 extern void tcp_init(void);
1578 
1579 #endif	/* _TCP_H */
1580