xref: /openbmc/linux/include/net/tcp.h (revision 62e7ca52)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 #include <linux/ktime.h>
35 
36 #include <net/inet_connection_sock.h>
37 #include <net/inet_timewait_sock.h>
38 #include <net/inet_hashtables.h>
39 #include <net/checksum.h>
40 #include <net/request_sock.h>
41 #include <net/sock.h>
42 #include <net/snmp.h>
43 #include <net/ip.h>
44 #include <net/tcp_states.h>
45 #include <net/inet_ecn.h>
46 #include <net/dst.h>
47 
48 #include <linux/seq_file.h>
49 #include <linux/memcontrol.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		512
70 
71 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
72 #define TCP_FASTRETRANS_THRESH 3
73 
74 /* Maximal reordering. */
75 #define TCP_MAX_REORDERING	127
76 
77 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
78 #define TCP_MAX_QUICKACKS	16U
79 
80 /* urg_data states */
81 #define TCP_URG_VALID	0x0100
82 #define TCP_URG_NOTYET	0x0200
83 #define TCP_URG_READ	0x0400
84 
85 #define TCP_RETR1	3	/*
86 				 * This is how many retries it does before it
87 				 * tries to figure out if the gateway is
88 				 * down. Minimal RFC value is 3; it corresponds
89 				 * to ~3sec-8min depending on RTO.
90 				 */
91 
92 #define TCP_RETR2	15	/*
93 				 * This should take at least
94 				 * 90 minutes to time out.
95 				 * RFC1122 says that the limit is 100 sec.
96 				 * 15 is ~13-30min depending on RTO.
97 				 */
98 
99 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
100 				 * when active opening a connection.
101 				 * RFC1122 says the minimum retry MUST
102 				 * be at least 180secs.  Nevertheless
103 				 * this value is corresponding to
104 				 * 63secs of retransmission with the
105 				 * current initial RTO.
106 				 */
107 
108 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
109 				 * when passive opening a connection.
110 				 * This is corresponding to 31secs of
111 				 * retransmission with the current
112 				 * initial RTO.
113 				 */
114 
115 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
116 				  * state, about 60 seconds	*/
117 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
118                                  /* BSD style FIN_WAIT2 deadlock breaker.
119 				  * It used to be 3min, new value is 60sec,
120 				  * to combine FIN-WAIT-2 timeout with
121 				  * TIME-WAIT timer.
122 				  */
123 
124 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
125 #if HZ >= 100
126 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
127 #define TCP_ATO_MIN	((unsigned)(HZ/25))
128 #else
129 #define TCP_DELACK_MIN	4U
130 #define TCP_ATO_MIN	4U
131 #endif
132 #define TCP_RTO_MAX	((unsigned)(120*HZ))
133 #define TCP_RTO_MIN	((unsigned)(HZ/5))
134 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
135 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
136 						 * used as a fallback RTO for the
137 						 * initial data transmission if no
138 						 * valid RTT sample has been acquired,
139 						 * most likely due to retrans in 3WHS.
140 						 */
141 
142 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
143 					                 * for local resources.
144 					                 */
145 
146 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
147 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
148 #define TCP_KEEPALIVE_INTVL	(75*HZ)
149 
150 #define MAX_TCP_KEEPIDLE	32767
151 #define MAX_TCP_KEEPINTVL	32767
152 #define MAX_TCP_KEEPCNT		127
153 #define MAX_TCP_SYNCNT		127
154 
155 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
156 
157 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
158 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
159 					 * after this time. It should be equal
160 					 * (or greater than) TCP_TIMEWAIT_LEN
161 					 * to provide reliability equal to one
162 					 * provided by timewait state.
163 					 */
164 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
165 					 * timestamps. It must be less than
166 					 * minimal timewait lifetime.
167 					 */
168 /*
169  *	TCP option
170  */
171 
172 #define TCPOPT_NOP		1	/* Padding */
173 #define TCPOPT_EOL		0	/* End of options */
174 #define TCPOPT_MSS		2	/* Segment size negotiating */
175 #define TCPOPT_WINDOW		3	/* Window scaling */
176 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
177 #define TCPOPT_SACK             5       /* SACK Block */
178 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
179 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
180 #define TCPOPT_EXP		254	/* Experimental */
181 /* Magic number to be after the option value for sharing TCP
182  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
183  */
184 #define TCPOPT_FASTOPEN_MAGIC	0xF989
185 
186 /*
187  *     TCP option lengths
188  */
189 
190 #define TCPOLEN_MSS            4
191 #define TCPOLEN_WINDOW         3
192 #define TCPOLEN_SACK_PERM      2
193 #define TCPOLEN_TIMESTAMP      10
194 #define TCPOLEN_MD5SIG         18
195 #define TCPOLEN_EXP_FASTOPEN_BASE  4
196 
197 /* But this is what stacks really send out. */
198 #define TCPOLEN_TSTAMP_ALIGNED		12
199 #define TCPOLEN_WSCALE_ALIGNED		4
200 #define TCPOLEN_SACKPERM_ALIGNED	4
201 #define TCPOLEN_SACK_BASE		2
202 #define TCPOLEN_SACK_BASE_ALIGNED	4
203 #define TCPOLEN_SACK_PERBLOCK		8
204 #define TCPOLEN_MD5SIG_ALIGNED		20
205 #define TCPOLEN_MSS_ALIGNED		4
206 
207 /* Flags in tp->nonagle */
208 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
209 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
210 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
211 
212 /* TCP thin-stream limits */
213 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
214 
215 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
216 #define TCP_INIT_CWND		10
217 
218 /* Bit Flags for sysctl_tcp_fastopen */
219 #define	TFO_CLIENT_ENABLE	1
220 #define	TFO_SERVER_ENABLE	2
221 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
222 
223 /* Accept SYN data w/o any cookie option */
224 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
225 
226 /* Force enable TFO on all listeners, i.e., not requiring the
227  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
228  */
229 #define	TFO_SERVER_WO_SOCKOPT1	0x400
230 #define	TFO_SERVER_WO_SOCKOPT2	0x800
231 
232 extern struct inet_timewait_death_row tcp_death_row;
233 
234 /* sysctl variables for tcp */
235 extern int sysctl_tcp_timestamps;
236 extern int sysctl_tcp_window_scaling;
237 extern int sysctl_tcp_sack;
238 extern int sysctl_tcp_fin_timeout;
239 extern int sysctl_tcp_keepalive_time;
240 extern int sysctl_tcp_keepalive_probes;
241 extern int sysctl_tcp_keepalive_intvl;
242 extern int sysctl_tcp_syn_retries;
243 extern int sysctl_tcp_synack_retries;
244 extern int sysctl_tcp_retries1;
245 extern int sysctl_tcp_retries2;
246 extern int sysctl_tcp_orphan_retries;
247 extern int sysctl_tcp_syncookies;
248 extern int sysctl_tcp_fastopen;
249 extern int sysctl_tcp_retrans_collapse;
250 extern int sysctl_tcp_stdurg;
251 extern int sysctl_tcp_rfc1337;
252 extern int sysctl_tcp_abort_on_overflow;
253 extern int sysctl_tcp_max_orphans;
254 extern int sysctl_tcp_fack;
255 extern int sysctl_tcp_reordering;
256 extern int sysctl_tcp_dsack;
257 extern long sysctl_tcp_mem[3];
258 extern int sysctl_tcp_wmem[3];
259 extern int sysctl_tcp_rmem[3];
260 extern int sysctl_tcp_app_win;
261 extern int sysctl_tcp_adv_win_scale;
262 extern int sysctl_tcp_tw_reuse;
263 extern int sysctl_tcp_frto;
264 extern int sysctl_tcp_low_latency;
265 extern int sysctl_tcp_dma_copybreak;
266 extern int sysctl_tcp_nometrics_save;
267 extern int sysctl_tcp_moderate_rcvbuf;
268 extern int sysctl_tcp_tso_win_divisor;
269 extern int sysctl_tcp_mtu_probing;
270 extern int sysctl_tcp_base_mss;
271 extern int sysctl_tcp_workaround_signed_windows;
272 extern int sysctl_tcp_slow_start_after_idle;
273 extern int sysctl_tcp_thin_linear_timeouts;
274 extern int sysctl_tcp_thin_dupack;
275 extern int sysctl_tcp_early_retrans;
276 extern int sysctl_tcp_limit_output_bytes;
277 extern int sysctl_tcp_challenge_ack_limit;
278 extern unsigned int sysctl_tcp_notsent_lowat;
279 extern int sysctl_tcp_min_tso_segs;
280 extern int sysctl_tcp_autocorking;
281 
282 extern atomic_long_t tcp_memory_allocated;
283 extern struct percpu_counter tcp_sockets_allocated;
284 extern int tcp_memory_pressure;
285 
286 /*
287  * The next routines deal with comparing 32 bit unsigned ints
288  * and worry about wraparound (automatic with unsigned arithmetic).
289  */
290 
291 static inline bool before(__u32 seq1, __u32 seq2)
292 {
293         return (__s32)(seq1-seq2) < 0;
294 }
295 #define after(seq2, seq1) 	before(seq1, seq2)
296 
297 /* is s2<=s1<=s3 ? */
298 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
299 {
300 	return seq3 - seq2 >= seq1 - seq2;
301 }
302 
303 static inline bool tcp_out_of_memory(struct sock *sk)
304 {
305 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
306 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
307 		return true;
308 	return false;
309 }
310 
311 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
312 {
313 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
314 	int orphans = percpu_counter_read_positive(ocp);
315 
316 	if (orphans << shift > sysctl_tcp_max_orphans) {
317 		orphans = percpu_counter_sum_positive(ocp);
318 		if (orphans << shift > sysctl_tcp_max_orphans)
319 			return true;
320 	}
321 	return false;
322 }
323 
324 bool tcp_check_oom(struct sock *sk, int shift);
325 
326 /* syncookies: remember time of last synqueue overflow */
327 static inline void tcp_synq_overflow(struct sock *sk)
328 {
329 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
330 }
331 
332 /* syncookies: no recent synqueue overflow on this listening socket? */
333 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
334 {
335 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
336 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
337 }
338 
339 extern struct proto tcp_prot;
340 
341 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
343 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
344 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
345 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
346 
347 void tcp_tasklet_init(void);
348 
349 void tcp_v4_err(struct sk_buff *skb, u32);
350 
351 void tcp_shutdown(struct sock *sk, int how);
352 
353 void tcp_v4_early_demux(struct sk_buff *skb);
354 int tcp_v4_rcv(struct sk_buff *skb);
355 
356 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
357 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
358 		size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 		 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
367 			  const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
369 			 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_space_adjust(struct sock *sk);
371 void tcp_cleanup_rbuf(struct sock *sk, int copied);
372 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
373 void tcp_twsk_destructor(struct sock *sk);
374 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
375 			struct pipe_inode_info *pipe, size_t len,
376 			unsigned int flags);
377 
378 static inline void tcp_dec_quickack_mode(struct sock *sk,
379 					 const unsigned int pkts)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 
383 	if (icsk->icsk_ack.quick) {
384 		if (pkts >= icsk->icsk_ack.quick) {
385 			icsk->icsk_ack.quick = 0;
386 			/* Leaving quickack mode we deflate ATO. */
387 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
388 		} else
389 			icsk->icsk_ack.quick -= pkts;
390 	}
391 }
392 
393 #define	TCP_ECN_OK		1
394 #define	TCP_ECN_QUEUE_CWR	2
395 #define	TCP_ECN_DEMAND_CWR	4
396 #define	TCP_ECN_SEEN		8
397 
398 enum tcp_tw_status {
399 	TCP_TW_SUCCESS = 0,
400 	TCP_TW_RST = 1,
401 	TCP_TW_ACK = 2,
402 	TCP_TW_SYN = 3
403 };
404 
405 
406 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
407 					      struct sk_buff *skb,
408 					      const struct tcphdr *th);
409 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
410 			   struct request_sock *req, struct request_sock **prev,
411 			   bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 		      struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_clear_retrans(struct tcp_sock *tp);
416 void tcp_update_metrics(struct sock *sk);
417 void tcp_init_metrics(struct sock *sk);
418 void tcp_metrics_init(void);
419 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420 			bool paws_check);
421 bool tcp_remember_stamp(struct sock *sk);
422 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424 void tcp_disable_fack(struct tcp_sock *tp);
425 void tcp_close(struct sock *sk, long timeout);
426 void tcp_init_sock(struct sock *sk);
427 unsigned int tcp_poll(struct file *file, struct socket *sock,
428 		      struct poll_table_struct *wait);
429 int tcp_getsockopt(struct sock *sk, int level, int optname,
430 		   char __user *optval, int __user *optlen);
431 int tcp_setsockopt(struct sock *sk, int level, int optname,
432 		   char __user *optval, unsigned int optlen);
433 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434 			  char __user *optval, int __user *optlen);
435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436 			  char __user *optval, unsigned int optlen);
437 void tcp_set_keepalive(struct sock *sk, int val);
438 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
439 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
440 		size_t len, int nonblock, int flags, int *addr_len);
441 void tcp_parse_options(const struct sk_buff *skb,
442 		       struct tcp_options_received *opt_rx,
443 		       int estab, struct tcp_fastopen_cookie *foc);
444 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445 
446 /*
447  *	TCP v4 functions exported for the inet6 API
448  */
449 
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
452 struct sock *tcp_create_openreq_child(struct sock *sk,
453 				      struct request_sock *req,
454 				      struct sk_buff *skb);
455 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
456 				  struct request_sock *req,
457 				  struct dst_entry *dst);
458 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
459 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
460 int tcp_connect(struct sock *sk);
461 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc);
464 int tcp_disconnect(struct sock *sk, int flags);
465 
466 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
467 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
468 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
469 
470 /* From syncookies.c */
471 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
472 		      u32 cookie);
473 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
474 			     struct ip_options *opt);
475 #ifdef CONFIG_SYN_COOKIES
476 
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478  * This counter is used both as a hash input and partially encoded into
479  * the cookie value.  A cookie is only validated further if the delta
480  * between the current counter value and the encoded one is less than this,
481  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482  * the counter advances immediately after a cookie is generated).
483  */
484 #define MAX_SYNCOOKIE_AGE 2
485 
486 static inline u32 tcp_cookie_time(void)
487 {
488 	u64 val = get_jiffies_64();
489 
490 	do_div(val, 60 * HZ);
491 	return val;
492 }
493 
494 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
495 			      u16 *mssp);
496 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
497 			      __u16 *mss);
498 #endif
499 
500 __u32 cookie_init_timestamp(struct request_sock *req);
501 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
502 			    bool *ecn_ok);
503 
504 /* From net/ipv6/syncookies.c */
505 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
506 		      u32 cookie);
507 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
508 #ifdef CONFIG_SYN_COOKIES
509 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
510 			      const struct tcphdr *th, u16 *mssp);
511 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
512 			      __u16 *mss);
513 #endif
514 /* tcp_output.c */
515 
516 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
517 			       int nonagle);
518 bool tcp_may_send_now(struct sock *sk);
519 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
520 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
521 void tcp_retransmit_timer(struct sock *sk);
522 void tcp_xmit_retransmit_queue(struct sock *);
523 void tcp_simple_retransmit(struct sock *);
524 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
525 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
526 
527 void tcp_send_probe0(struct sock *);
528 void tcp_send_partial(struct sock *);
529 int tcp_write_wakeup(struct sock *);
530 void tcp_send_fin(struct sock *sk);
531 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
532 int tcp_send_synack(struct sock *);
533 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
534 			  const char *proto);
535 void tcp_push_one(struct sock *, unsigned int mss_now);
536 void tcp_send_ack(struct sock *sk);
537 void tcp_send_delayed_ack(struct sock *sk);
538 void tcp_send_loss_probe(struct sock *sk);
539 bool tcp_schedule_loss_probe(struct sock *sk);
540 
541 /* tcp_input.c */
542 void tcp_resume_early_retransmit(struct sock *sk);
543 void tcp_rearm_rto(struct sock *sk);
544 void tcp_reset(struct sock *sk);
545 
546 /* tcp_timer.c */
547 void tcp_init_xmit_timers(struct sock *);
548 static inline void tcp_clear_xmit_timers(struct sock *sk)
549 {
550 	inet_csk_clear_xmit_timers(sk);
551 }
552 
553 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
554 unsigned int tcp_current_mss(struct sock *sk);
555 
556 /* Bound MSS / TSO packet size with the half of the window */
557 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
558 {
559 	int cutoff;
560 
561 	/* When peer uses tiny windows, there is no use in packetizing
562 	 * to sub-MSS pieces for the sake of SWS or making sure there
563 	 * are enough packets in the pipe for fast recovery.
564 	 *
565 	 * On the other hand, for extremely large MSS devices, handling
566 	 * smaller than MSS windows in this way does make sense.
567 	 */
568 	if (tp->max_window >= 512)
569 		cutoff = (tp->max_window >> 1);
570 	else
571 		cutoff = tp->max_window;
572 
573 	if (cutoff && pktsize > cutoff)
574 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
575 	else
576 		return pktsize;
577 }
578 
579 /* tcp.c */
580 void tcp_get_info(const struct sock *, struct tcp_info *);
581 
582 /* Read 'sendfile()'-style from a TCP socket */
583 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
584 				unsigned int, size_t);
585 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
586 		  sk_read_actor_t recv_actor);
587 
588 void tcp_initialize_rcv_mss(struct sock *sk);
589 
590 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
591 int tcp_mss_to_mtu(struct sock *sk, int mss);
592 void tcp_mtup_init(struct sock *sk);
593 void tcp_init_buffer_space(struct sock *sk);
594 
595 static inline void tcp_bound_rto(const struct sock *sk)
596 {
597 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
598 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
599 }
600 
601 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
602 {
603 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
604 }
605 
606 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
607 {
608 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
609 			       ntohl(TCP_FLAG_ACK) |
610 			       snd_wnd);
611 }
612 
613 static inline void tcp_fast_path_on(struct tcp_sock *tp)
614 {
615 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
616 }
617 
618 static inline void tcp_fast_path_check(struct sock *sk)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 
622 	if (skb_queue_empty(&tp->out_of_order_queue) &&
623 	    tp->rcv_wnd &&
624 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
625 	    !tp->urg_data)
626 		tcp_fast_path_on(tp);
627 }
628 
629 /* Compute the actual rto_min value */
630 static inline u32 tcp_rto_min(struct sock *sk)
631 {
632 	const struct dst_entry *dst = __sk_dst_get(sk);
633 	u32 rto_min = TCP_RTO_MIN;
634 
635 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
636 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
637 	return rto_min;
638 }
639 
640 static inline u32 tcp_rto_min_us(struct sock *sk)
641 {
642 	return jiffies_to_usecs(tcp_rto_min(sk));
643 }
644 
645 /* Compute the actual receive window we are currently advertising.
646  * Rcv_nxt can be after the window if our peer push more data
647  * than the offered window.
648  */
649 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
650 {
651 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
652 
653 	if (win < 0)
654 		win = 0;
655 	return (u32) win;
656 }
657 
658 /* Choose a new window, without checks for shrinking, and without
659  * scaling applied to the result.  The caller does these things
660  * if necessary.  This is a "raw" window selection.
661  */
662 u32 __tcp_select_window(struct sock *sk);
663 
664 void tcp_send_window_probe(struct sock *sk);
665 
666 /* TCP timestamps are only 32-bits, this causes a slight
667  * complication on 64-bit systems since we store a snapshot
668  * of jiffies in the buffer control blocks below.  We decided
669  * to use only the low 32-bits of jiffies and hide the ugly
670  * casts with the following macro.
671  */
672 #define tcp_time_stamp		((__u32)(jiffies))
673 
674 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
675 
676 #define TCPHDR_FIN 0x01
677 #define TCPHDR_SYN 0x02
678 #define TCPHDR_RST 0x04
679 #define TCPHDR_PSH 0x08
680 #define TCPHDR_ACK 0x10
681 #define TCPHDR_URG 0x20
682 #define TCPHDR_ECE 0x40
683 #define TCPHDR_CWR 0x80
684 
685 /* This is what the send packet queuing engine uses to pass
686  * TCP per-packet control information to the transmission code.
687  * We also store the host-order sequence numbers in here too.
688  * This is 44 bytes if IPV6 is enabled.
689  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
690  */
691 struct tcp_skb_cb {
692 	union {
693 		struct inet_skb_parm	h4;
694 #if IS_ENABLED(CONFIG_IPV6)
695 		struct inet6_skb_parm	h6;
696 #endif
697 	} header;	/* For incoming frames		*/
698 	__u32		seq;		/* Starting sequence number	*/
699 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
700 	__u32		when;		/* used to compute rtt's	*/
701 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
702 
703 	__u8		sacked;		/* State flags for SACK/FACK.	*/
704 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
705 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
706 #define TCPCB_LOST		0x04	/* SKB is lost			*/
707 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
708 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
709 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
710 
711 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
712 	/* 1 byte hole */
713 	__u32		ack_seq;	/* Sequence number ACK'd	*/
714 };
715 
716 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
717 
718 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
719  *
720  * If we receive a SYN packet with these bits set, it means a network is
721  * playing bad games with TOS bits. In order to avoid possible false congestion
722  * notifications, we disable TCP ECN negociation.
723  */
724 static inline void
725 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
726 		struct net *net)
727 {
728 	const struct tcphdr *th = tcp_hdr(skb);
729 
730 	if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
731 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
732 		inet_rsk(req)->ecn_ok = 1;
733 }
734 
735 /* Due to TSO, an SKB can be composed of multiple actual
736  * packets.  To keep these tracked properly, we use this.
737  */
738 static inline int tcp_skb_pcount(const struct sk_buff *skb)
739 {
740 	return skb_shinfo(skb)->gso_segs;
741 }
742 
743 /* This is valid iff tcp_skb_pcount() > 1. */
744 static inline int tcp_skb_mss(const struct sk_buff *skb)
745 {
746 	return skb_shinfo(skb)->gso_size;
747 }
748 
749 /* Events passed to congestion control interface */
750 enum tcp_ca_event {
751 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
752 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
753 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
754 	CA_EVENT_LOSS,		/* loss timeout */
755 	CA_EVENT_FAST_ACK,	/* in sequence ack */
756 	CA_EVENT_SLOW_ACK,	/* other ack */
757 };
758 
759 /*
760  * Interface for adding new TCP congestion control handlers
761  */
762 #define TCP_CA_NAME_MAX	16
763 #define TCP_CA_MAX	128
764 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
765 
766 #define TCP_CONG_NON_RESTRICTED 0x1
767 
768 struct tcp_congestion_ops {
769 	struct list_head	list;
770 	unsigned long flags;
771 
772 	/* initialize private data (optional) */
773 	void (*init)(struct sock *sk);
774 	/* cleanup private data  (optional) */
775 	void (*release)(struct sock *sk);
776 
777 	/* return slow start threshold (required) */
778 	u32 (*ssthresh)(struct sock *sk);
779 	/* do new cwnd calculation (required) */
780 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
781 	/* call before changing ca_state (optional) */
782 	void (*set_state)(struct sock *sk, u8 new_state);
783 	/* call when cwnd event occurs (optional) */
784 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
785 	/* new value of cwnd after loss (optional) */
786 	u32  (*undo_cwnd)(struct sock *sk);
787 	/* hook for packet ack accounting (optional) */
788 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
789 	/* get info for inet_diag (optional) */
790 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
791 
792 	char 		name[TCP_CA_NAME_MAX];
793 	struct module 	*owner;
794 };
795 
796 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
797 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
798 
799 void tcp_init_congestion_control(struct sock *sk);
800 void tcp_cleanup_congestion_control(struct sock *sk);
801 int tcp_set_default_congestion_control(const char *name);
802 void tcp_get_default_congestion_control(char *name);
803 void tcp_get_available_congestion_control(char *buf, size_t len);
804 void tcp_get_allowed_congestion_control(char *buf, size_t len);
805 int tcp_set_allowed_congestion_control(char *allowed);
806 int tcp_set_congestion_control(struct sock *sk, const char *name);
807 int tcp_slow_start(struct tcp_sock *tp, u32 acked);
808 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
809 
810 extern struct tcp_congestion_ops tcp_init_congestion_ops;
811 u32 tcp_reno_ssthresh(struct sock *sk);
812 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
813 extern struct tcp_congestion_ops tcp_reno;
814 
815 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
816 {
817 	struct inet_connection_sock *icsk = inet_csk(sk);
818 
819 	if (icsk->icsk_ca_ops->set_state)
820 		icsk->icsk_ca_ops->set_state(sk, ca_state);
821 	icsk->icsk_ca_state = ca_state;
822 }
823 
824 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
825 {
826 	const struct inet_connection_sock *icsk = inet_csk(sk);
827 
828 	if (icsk->icsk_ca_ops->cwnd_event)
829 		icsk->icsk_ca_ops->cwnd_event(sk, event);
830 }
831 
832 /* These functions determine how the current flow behaves in respect of SACK
833  * handling. SACK is negotiated with the peer, and therefore it can vary
834  * between different flows.
835  *
836  * tcp_is_sack - SACK enabled
837  * tcp_is_reno - No SACK
838  * tcp_is_fack - FACK enabled, implies SACK enabled
839  */
840 static inline int tcp_is_sack(const struct tcp_sock *tp)
841 {
842 	return tp->rx_opt.sack_ok;
843 }
844 
845 static inline bool tcp_is_reno(const struct tcp_sock *tp)
846 {
847 	return !tcp_is_sack(tp);
848 }
849 
850 static inline bool tcp_is_fack(const struct tcp_sock *tp)
851 {
852 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
853 }
854 
855 static inline void tcp_enable_fack(struct tcp_sock *tp)
856 {
857 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
858 }
859 
860 /* TCP early-retransmit (ER) is similar to but more conservative than
861  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
862  */
863 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
864 {
865 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
866 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
867 		sysctl_tcp_reordering == 3;
868 }
869 
870 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
871 {
872 	tp->do_early_retrans = 0;
873 }
874 
875 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
876 {
877 	return tp->sacked_out + tp->lost_out;
878 }
879 
880 /* This determines how many packets are "in the network" to the best
881  * of our knowledge.  In many cases it is conservative, but where
882  * detailed information is available from the receiver (via SACK
883  * blocks etc.) we can make more aggressive calculations.
884  *
885  * Use this for decisions involving congestion control, use just
886  * tp->packets_out to determine if the send queue is empty or not.
887  *
888  * Read this equation as:
889  *
890  *	"Packets sent once on transmission queue" MINUS
891  *	"Packets left network, but not honestly ACKed yet" PLUS
892  *	"Packets fast retransmitted"
893  */
894 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
895 {
896 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
897 }
898 
899 #define TCP_INFINITE_SSTHRESH	0x7fffffff
900 
901 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
902 {
903 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
904 }
905 
906 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
907 {
908 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
909 	       (1 << inet_csk(sk)->icsk_ca_state);
910 }
911 
912 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
913  * The exception is cwnd reduction phase, when cwnd is decreasing towards
914  * ssthresh.
915  */
916 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
917 {
918 	const struct tcp_sock *tp = tcp_sk(sk);
919 
920 	if (tcp_in_cwnd_reduction(sk))
921 		return tp->snd_ssthresh;
922 	else
923 		return max(tp->snd_ssthresh,
924 			   ((tp->snd_cwnd >> 1) +
925 			    (tp->snd_cwnd >> 2)));
926 }
927 
928 /* Use define here intentionally to get WARN_ON location shown at the caller */
929 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
930 
931 void tcp_enter_cwr(struct sock *sk);
932 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
933 
934 /* The maximum number of MSS of available cwnd for which TSO defers
935  * sending if not using sysctl_tcp_tso_win_divisor.
936  */
937 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
938 {
939 	return 3;
940 }
941 
942 /* Slow start with delack produces 3 packets of burst, so that
943  * it is safe "de facto".  This will be the default - same as
944  * the default reordering threshold - but if reordering increases,
945  * we must be able to allow cwnd to burst at least this much in order
946  * to not pull it back when holes are filled.
947  */
948 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
949 {
950 	return tp->reordering;
951 }
952 
953 /* Returns end sequence number of the receiver's advertised window */
954 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
955 {
956 	return tp->snd_una + tp->snd_wnd;
957 }
958 
959 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
960  * flexible approach. The RFC suggests cwnd should not be raised unless
961  * it was fully used previously. And that's exactly what we do in
962  * congestion avoidance mode. But in slow start we allow cwnd to grow
963  * as long as the application has used half the cwnd.
964  * Example :
965  *    cwnd is 10 (IW10), but application sends 9 frames.
966  *    We allow cwnd to reach 18 when all frames are ACKed.
967  * This check is safe because it's as aggressive as slow start which already
968  * risks 100% overshoot. The advantage is that we discourage application to
969  * either send more filler packets or data to artificially blow up the cwnd
970  * usage, and allow application-limited process to probe bw more aggressively.
971  */
972 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
973 {
974 	const struct tcp_sock *tp = tcp_sk(sk);
975 
976 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
977 	if (tp->snd_cwnd <= tp->snd_ssthresh)
978 		return tp->snd_cwnd < 2 * tp->max_packets_out;
979 
980 	return tp->is_cwnd_limited;
981 }
982 
983 static inline void tcp_check_probe_timer(struct sock *sk)
984 {
985 	const struct tcp_sock *tp = tcp_sk(sk);
986 	const struct inet_connection_sock *icsk = inet_csk(sk);
987 
988 	if (!tp->packets_out && !icsk->icsk_pending)
989 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
990 					  icsk->icsk_rto, TCP_RTO_MAX);
991 }
992 
993 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
994 {
995 	tp->snd_wl1 = seq;
996 }
997 
998 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
999 {
1000 	tp->snd_wl1 = seq;
1001 }
1002 
1003 /*
1004  * Calculate(/check) TCP checksum
1005  */
1006 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1007 				   __be32 daddr, __wsum base)
1008 {
1009 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1010 }
1011 
1012 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1013 {
1014 	return __skb_checksum_complete(skb);
1015 }
1016 
1017 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1018 {
1019 	return !skb_csum_unnecessary(skb) &&
1020 		__tcp_checksum_complete(skb);
1021 }
1022 
1023 /* Prequeue for VJ style copy to user, combined with checksumming. */
1024 
1025 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1026 {
1027 	tp->ucopy.task = NULL;
1028 	tp->ucopy.len = 0;
1029 	tp->ucopy.memory = 0;
1030 	skb_queue_head_init(&tp->ucopy.prequeue);
1031 #ifdef CONFIG_NET_DMA
1032 	tp->ucopy.dma_chan = NULL;
1033 	tp->ucopy.wakeup = 0;
1034 	tp->ucopy.pinned_list = NULL;
1035 	tp->ucopy.dma_cookie = 0;
1036 #endif
1037 }
1038 
1039 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1040 
1041 #undef STATE_TRACE
1042 
1043 #ifdef STATE_TRACE
1044 static const char *statename[]={
1045 	"Unused","Established","Syn Sent","Syn Recv",
1046 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1047 	"Close Wait","Last ACK","Listen","Closing"
1048 };
1049 #endif
1050 void tcp_set_state(struct sock *sk, int state);
1051 
1052 void tcp_done(struct sock *sk);
1053 
1054 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1055 {
1056 	rx_opt->dsack = 0;
1057 	rx_opt->num_sacks = 0;
1058 }
1059 
1060 u32 tcp_default_init_rwnd(u32 mss);
1061 
1062 /* Determine a window scaling and initial window to offer. */
1063 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1064 			       __u32 *window_clamp, int wscale_ok,
1065 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1066 
1067 static inline int tcp_win_from_space(int space)
1068 {
1069 	return sysctl_tcp_adv_win_scale<=0 ?
1070 		(space>>(-sysctl_tcp_adv_win_scale)) :
1071 		space - (space>>sysctl_tcp_adv_win_scale);
1072 }
1073 
1074 /* Note: caller must be prepared to deal with negative returns */
1075 static inline int tcp_space(const struct sock *sk)
1076 {
1077 	return tcp_win_from_space(sk->sk_rcvbuf -
1078 				  atomic_read(&sk->sk_rmem_alloc));
1079 }
1080 
1081 static inline int tcp_full_space(const struct sock *sk)
1082 {
1083 	return tcp_win_from_space(sk->sk_rcvbuf);
1084 }
1085 
1086 static inline void tcp_openreq_init(struct request_sock *req,
1087 				    struct tcp_options_received *rx_opt,
1088 				    struct sk_buff *skb, struct sock *sk)
1089 {
1090 	struct inet_request_sock *ireq = inet_rsk(req);
1091 
1092 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1093 	req->cookie_ts = 0;
1094 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1095 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1096 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1097 	req->mss = rx_opt->mss_clamp;
1098 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1099 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1100 	ireq->sack_ok = rx_opt->sack_ok;
1101 	ireq->snd_wscale = rx_opt->snd_wscale;
1102 	ireq->wscale_ok = rx_opt->wscale_ok;
1103 	ireq->acked = 0;
1104 	ireq->ecn_ok = 0;
1105 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
1106 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1107 	ireq->ir_mark = inet_request_mark(sk, skb);
1108 }
1109 
1110 extern void tcp_openreq_init_rwin(struct request_sock *req,
1111 				  struct sock *sk, struct dst_entry *dst);
1112 
1113 void tcp_enter_memory_pressure(struct sock *sk);
1114 
1115 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1116 {
1117 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1118 }
1119 
1120 static inline int keepalive_time_when(const struct tcp_sock *tp)
1121 {
1122 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1123 }
1124 
1125 static inline int keepalive_probes(const struct tcp_sock *tp)
1126 {
1127 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1128 }
1129 
1130 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1131 {
1132 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1133 
1134 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1135 			  tcp_time_stamp - tp->rcv_tstamp);
1136 }
1137 
1138 static inline int tcp_fin_time(const struct sock *sk)
1139 {
1140 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1141 	const int rto = inet_csk(sk)->icsk_rto;
1142 
1143 	if (fin_timeout < (rto << 2) - (rto >> 1))
1144 		fin_timeout = (rto << 2) - (rto >> 1);
1145 
1146 	return fin_timeout;
1147 }
1148 
1149 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1150 				  int paws_win)
1151 {
1152 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1153 		return true;
1154 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1155 		return true;
1156 	/*
1157 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1158 	 * then following tcp messages have valid values. Ignore 0 value,
1159 	 * or else 'negative' tsval might forbid us to accept their packets.
1160 	 */
1161 	if (!rx_opt->ts_recent)
1162 		return true;
1163 	return false;
1164 }
1165 
1166 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1167 				   int rst)
1168 {
1169 	if (tcp_paws_check(rx_opt, 0))
1170 		return false;
1171 
1172 	/* RST segments are not recommended to carry timestamp,
1173 	   and, if they do, it is recommended to ignore PAWS because
1174 	   "their cleanup function should take precedence over timestamps."
1175 	   Certainly, it is mistake. It is necessary to understand the reasons
1176 	   of this constraint to relax it: if peer reboots, clock may go
1177 	   out-of-sync and half-open connections will not be reset.
1178 	   Actually, the problem would be not existing if all
1179 	   the implementations followed draft about maintaining clock
1180 	   via reboots. Linux-2.2 DOES NOT!
1181 
1182 	   However, we can relax time bounds for RST segments to MSL.
1183 	 */
1184 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1185 		return false;
1186 	return true;
1187 }
1188 
1189 static inline void tcp_mib_init(struct net *net)
1190 {
1191 	/* See RFC 2012 */
1192 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1193 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1194 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1195 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1196 }
1197 
1198 /* from STCP */
1199 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1200 {
1201 	tp->lost_skb_hint = NULL;
1202 }
1203 
1204 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1205 {
1206 	tcp_clear_retrans_hints_partial(tp);
1207 	tp->retransmit_skb_hint = NULL;
1208 }
1209 
1210 /* MD5 Signature */
1211 struct crypto_hash;
1212 
1213 union tcp_md5_addr {
1214 	struct in_addr  a4;
1215 #if IS_ENABLED(CONFIG_IPV6)
1216 	struct in6_addr	a6;
1217 #endif
1218 };
1219 
1220 /* - key database */
1221 struct tcp_md5sig_key {
1222 	struct hlist_node	node;
1223 	u8			keylen;
1224 	u8			family; /* AF_INET or AF_INET6 */
1225 	union tcp_md5_addr	addr;
1226 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1227 	struct rcu_head		rcu;
1228 };
1229 
1230 /* - sock block */
1231 struct tcp_md5sig_info {
1232 	struct hlist_head	head;
1233 	struct rcu_head		rcu;
1234 };
1235 
1236 /* - pseudo header */
1237 struct tcp4_pseudohdr {
1238 	__be32		saddr;
1239 	__be32		daddr;
1240 	__u8		pad;
1241 	__u8		protocol;
1242 	__be16		len;
1243 };
1244 
1245 struct tcp6_pseudohdr {
1246 	struct in6_addr	saddr;
1247 	struct in6_addr daddr;
1248 	__be32		len;
1249 	__be32		protocol;	/* including padding */
1250 };
1251 
1252 union tcp_md5sum_block {
1253 	struct tcp4_pseudohdr ip4;
1254 #if IS_ENABLED(CONFIG_IPV6)
1255 	struct tcp6_pseudohdr ip6;
1256 #endif
1257 };
1258 
1259 /* - pool: digest algorithm, hash description and scratch buffer */
1260 struct tcp_md5sig_pool {
1261 	struct hash_desc	md5_desc;
1262 	union tcp_md5sum_block	md5_blk;
1263 };
1264 
1265 /* - functions */
1266 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1267 			const struct sock *sk, const struct request_sock *req,
1268 			const struct sk_buff *skb);
1269 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1270 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1271 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1272 		   int family);
1273 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1274 					 struct sock *addr_sk);
1275 
1276 #ifdef CONFIG_TCP_MD5SIG
1277 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1278 					 const union tcp_md5_addr *addr,
1279 					 int family);
1280 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1281 #else
1282 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1283 					 const union tcp_md5_addr *addr,
1284 					 int family)
1285 {
1286 	return NULL;
1287 }
1288 #define tcp_twsk_md5_key(twsk)	NULL
1289 #endif
1290 
1291 bool tcp_alloc_md5sig_pool(void);
1292 
1293 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1294 static inline void tcp_put_md5sig_pool(void)
1295 {
1296 	local_bh_enable();
1297 }
1298 
1299 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1300 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1301 			  unsigned int header_len);
1302 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1303 		     const struct tcp_md5sig_key *key);
1304 
1305 /* From tcp_fastopen.c */
1306 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1307 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1308 			    unsigned long *last_syn_loss);
1309 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1310 			    struct tcp_fastopen_cookie *cookie, bool syn_lost);
1311 struct tcp_fastopen_request {
1312 	/* Fast Open cookie. Size 0 means a cookie request */
1313 	struct tcp_fastopen_cookie	cookie;
1314 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1315 	size_t				size;
1316 	int				copied;	/* queued in tcp_connect() */
1317 };
1318 void tcp_free_fastopen_req(struct tcp_sock *tp);
1319 
1320 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1321 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1322 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1323 		      struct request_sock *req,
1324 		      struct tcp_fastopen_cookie *foc,
1325 		      struct dst_entry *dst);
1326 void tcp_fastopen_init_key_once(bool publish);
1327 #define TCP_FASTOPEN_KEY_LENGTH 16
1328 
1329 /* Fastopen key context */
1330 struct tcp_fastopen_context {
1331 	struct crypto_cipher	*tfm;
1332 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1333 	struct rcu_head		rcu;
1334 };
1335 
1336 /* write queue abstraction */
1337 static inline void tcp_write_queue_purge(struct sock *sk)
1338 {
1339 	struct sk_buff *skb;
1340 
1341 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1342 		sk_wmem_free_skb(sk, skb);
1343 	sk_mem_reclaim(sk);
1344 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1345 }
1346 
1347 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1348 {
1349 	return skb_peek(&sk->sk_write_queue);
1350 }
1351 
1352 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1353 {
1354 	return skb_peek_tail(&sk->sk_write_queue);
1355 }
1356 
1357 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1358 						   const struct sk_buff *skb)
1359 {
1360 	return skb_queue_next(&sk->sk_write_queue, skb);
1361 }
1362 
1363 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1364 						   const struct sk_buff *skb)
1365 {
1366 	return skb_queue_prev(&sk->sk_write_queue, skb);
1367 }
1368 
1369 #define tcp_for_write_queue(skb, sk)					\
1370 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1371 
1372 #define tcp_for_write_queue_from(skb, sk)				\
1373 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1374 
1375 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1376 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1377 
1378 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1379 {
1380 	return sk->sk_send_head;
1381 }
1382 
1383 static inline bool tcp_skb_is_last(const struct sock *sk,
1384 				   const struct sk_buff *skb)
1385 {
1386 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1387 }
1388 
1389 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1390 {
1391 	if (tcp_skb_is_last(sk, skb))
1392 		sk->sk_send_head = NULL;
1393 	else
1394 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1395 }
1396 
1397 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1398 {
1399 	if (sk->sk_send_head == skb_unlinked)
1400 		sk->sk_send_head = NULL;
1401 }
1402 
1403 static inline void tcp_init_send_head(struct sock *sk)
1404 {
1405 	sk->sk_send_head = NULL;
1406 }
1407 
1408 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1409 {
1410 	__skb_queue_tail(&sk->sk_write_queue, skb);
1411 }
1412 
1413 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1414 {
1415 	__tcp_add_write_queue_tail(sk, skb);
1416 
1417 	/* Queue it, remembering where we must start sending. */
1418 	if (sk->sk_send_head == NULL) {
1419 		sk->sk_send_head = skb;
1420 
1421 		if (tcp_sk(sk)->highest_sack == NULL)
1422 			tcp_sk(sk)->highest_sack = skb;
1423 	}
1424 }
1425 
1426 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1427 {
1428 	__skb_queue_head(&sk->sk_write_queue, skb);
1429 }
1430 
1431 /* Insert buff after skb on the write queue of sk.  */
1432 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1433 						struct sk_buff *buff,
1434 						struct sock *sk)
1435 {
1436 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1437 }
1438 
1439 /* Insert new before skb on the write queue of sk.  */
1440 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1441 						  struct sk_buff *skb,
1442 						  struct sock *sk)
1443 {
1444 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1445 
1446 	if (sk->sk_send_head == skb)
1447 		sk->sk_send_head = new;
1448 }
1449 
1450 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1451 {
1452 	__skb_unlink(skb, &sk->sk_write_queue);
1453 }
1454 
1455 static inline bool tcp_write_queue_empty(struct sock *sk)
1456 {
1457 	return skb_queue_empty(&sk->sk_write_queue);
1458 }
1459 
1460 static inline void tcp_push_pending_frames(struct sock *sk)
1461 {
1462 	if (tcp_send_head(sk)) {
1463 		struct tcp_sock *tp = tcp_sk(sk);
1464 
1465 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1466 	}
1467 }
1468 
1469 /* Start sequence of the skb just after the highest skb with SACKed
1470  * bit, valid only if sacked_out > 0 or when the caller has ensured
1471  * validity by itself.
1472  */
1473 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1474 {
1475 	if (!tp->sacked_out)
1476 		return tp->snd_una;
1477 
1478 	if (tp->highest_sack == NULL)
1479 		return tp->snd_nxt;
1480 
1481 	return TCP_SKB_CB(tp->highest_sack)->seq;
1482 }
1483 
1484 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1485 {
1486 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1487 						tcp_write_queue_next(sk, skb);
1488 }
1489 
1490 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1491 {
1492 	return tcp_sk(sk)->highest_sack;
1493 }
1494 
1495 static inline void tcp_highest_sack_reset(struct sock *sk)
1496 {
1497 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1498 }
1499 
1500 /* Called when old skb is about to be deleted (to be combined with new skb) */
1501 static inline void tcp_highest_sack_combine(struct sock *sk,
1502 					    struct sk_buff *old,
1503 					    struct sk_buff *new)
1504 {
1505 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1506 		tcp_sk(sk)->highest_sack = new;
1507 }
1508 
1509 /* Determines whether this is a thin stream (which may suffer from
1510  * increased latency). Used to trigger latency-reducing mechanisms.
1511  */
1512 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1513 {
1514 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1515 }
1516 
1517 /* /proc */
1518 enum tcp_seq_states {
1519 	TCP_SEQ_STATE_LISTENING,
1520 	TCP_SEQ_STATE_OPENREQ,
1521 	TCP_SEQ_STATE_ESTABLISHED,
1522 };
1523 
1524 int tcp_seq_open(struct inode *inode, struct file *file);
1525 
1526 struct tcp_seq_afinfo {
1527 	char				*name;
1528 	sa_family_t			family;
1529 	const struct file_operations	*seq_fops;
1530 	struct seq_operations		seq_ops;
1531 };
1532 
1533 struct tcp_iter_state {
1534 	struct seq_net_private	p;
1535 	sa_family_t		family;
1536 	enum tcp_seq_states	state;
1537 	struct sock		*syn_wait_sk;
1538 	int			bucket, offset, sbucket, num;
1539 	kuid_t			uid;
1540 	loff_t			last_pos;
1541 };
1542 
1543 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1544 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1545 
1546 extern struct request_sock_ops tcp_request_sock_ops;
1547 extern struct request_sock_ops tcp6_request_sock_ops;
1548 
1549 void tcp_v4_destroy_sock(struct sock *sk);
1550 
1551 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1552 				netdev_features_t features);
1553 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1554 int tcp_gro_complete(struct sk_buff *skb);
1555 
1556 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1557 
1558 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1559 {
1560 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1561 }
1562 
1563 static inline bool tcp_stream_memory_free(const struct sock *sk)
1564 {
1565 	const struct tcp_sock *tp = tcp_sk(sk);
1566 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1567 
1568 	return notsent_bytes < tcp_notsent_lowat(tp);
1569 }
1570 
1571 #ifdef CONFIG_PROC_FS
1572 int tcp4_proc_init(void);
1573 void tcp4_proc_exit(void);
1574 #endif
1575 
1576 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1577 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1578 		     const struct tcp_request_sock_ops *af_ops,
1579 		     struct sock *sk, struct sk_buff *skb);
1580 
1581 /* TCP af-specific functions */
1582 struct tcp_sock_af_ops {
1583 #ifdef CONFIG_TCP_MD5SIG
1584 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1585 						struct sock *addr_sk);
1586 	int			(*calc_md5_hash) (char *location,
1587 						  struct tcp_md5sig_key *md5,
1588 						  const struct sock *sk,
1589 						  const struct request_sock *req,
1590 						  const struct sk_buff *skb);
1591 	int			(*md5_parse) (struct sock *sk,
1592 					      char __user *optval,
1593 					      int optlen);
1594 #endif
1595 };
1596 
1597 struct tcp_request_sock_ops {
1598 	u16 mss_clamp;
1599 #ifdef CONFIG_TCP_MD5SIG
1600 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1601 						struct request_sock *req);
1602 	int			(*calc_md5_hash) (char *location,
1603 						  struct tcp_md5sig_key *md5,
1604 						  const struct sock *sk,
1605 						  const struct request_sock *req,
1606 						  const struct sk_buff *skb);
1607 #endif
1608 	void (*init_req)(struct request_sock *req, struct sock *sk,
1609 			 struct sk_buff *skb);
1610 #ifdef CONFIG_SYN_COOKIES
1611 	__u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1612 				 __u16 *mss);
1613 #endif
1614 	struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1615 				       const struct request_sock *req,
1616 				       bool *strict);
1617 	__u32 (*init_seq)(const struct sk_buff *skb);
1618 	int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1619 			   struct flowi *fl, struct request_sock *req,
1620 			   u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1621 	void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1622 			       const unsigned long timeout);
1623 };
1624 
1625 #ifdef CONFIG_SYN_COOKIES
1626 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1627 					 struct sock *sk, struct sk_buff *skb,
1628 					 __u16 *mss)
1629 {
1630 	return ops->cookie_init_seq(sk, skb, mss);
1631 }
1632 #else
1633 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1634 					 struct sock *sk, struct sk_buff *skb,
1635 					 __u16 *mss)
1636 {
1637 	return 0;
1638 }
1639 #endif
1640 
1641 int tcpv4_offload_init(void);
1642 
1643 void tcp_v4_init(void);
1644 void tcp_init(void);
1645 
1646 #endif	/* _TCP_H */
1647