xref: /openbmc/linux/include/net/tcp.h (revision 61f4d204)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 #include <linux/net_mm.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 
57 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS		48
60 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61 
62 /*
63  * Never offer a window over 32767 without using window scaling. Some
64  * poor stacks do signed 16bit maths!
65  */
66 #define MAX_TCP_WINDOW		32767U
67 
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS		88U
70 
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS		1024
73 
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL	600
76 
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD	8
79 
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82 
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS	16U
85 
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE		14U
88 
89 /* urg_data states */
90 #define TCP_URG_VALID	0x0100
91 #define TCP_URG_NOTYET	0x0200
92 #define TCP_URG_READ	0x0400
93 
94 #define TCP_RETR1	3	/*
95 				 * This is how many retries it does before it
96 				 * tries to figure out if the gateway is
97 				 * down. Minimal RFC value is 3; it corresponds
98 				 * to ~3sec-8min depending on RTO.
99 				 */
100 
101 #define TCP_RETR2	15	/*
102 				 * This should take at least
103 				 * 90 minutes to time out.
104 				 * RFC1122 says that the limit is 100 sec.
105 				 * 15 is ~13-30min depending on RTO.
106 				 */
107 
108 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109 				 * when active opening a connection.
110 				 * RFC1122 says the minimum retry MUST
111 				 * be at least 180secs.  Nevertheless
112 				 * this value is corresponding to
113 				 * 63secs of retransmission with the
114 				 * current initial RTO.
115 				 */
116 
117 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118 				 * when passive opening a connection.
119 				 * This is corresponding to 31secs of
120 				 * retransmission with the current
121 				 * initial RTO.
122 				 */
123 
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 				  * state, about 60 seconds	*/
126 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                  /* BSD style FIN_WAIT2 deadlock breaker.
128 				  * It used to be 3min, new value is 60sec,
129 				  * to combine FIN-WAIT-2 timeout with
130 				  * TIME-WAIT timer.
131 				  */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 #if HZ >= 100
136 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
137 #define TCP_ATO_MIN	((unsigned)(HZ/25))
138 #else
139 #define TCP_DELACK_MIN	4U
140 #define TCP_ATO_MIN	4U
141 #endif
142 #define TCP_RTO_MAX	((unsigned)(120*HZ))
143 #define TCP_RTO_MIN	((unsigned)(HZ/5))
144 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
145 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
146 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
147 						 * used as a fallback RTO for the
148 						 * initial data transmission if no
149 						 * valid RTT sample has been acquired,
150 						 * most likely due to retrans in 3WHS.
151 						 */
152 
153 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
154 					                 * for local resources.
155 					                 */
156 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
157 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
158 #define TCP_KEEPALIVE_INTVL	(75*HZ)
159 
160 #define MAX_TCP_KEEPIDLE	32767
161 #define MAX_TCP_KEEPINTVL	32767
162 #define MAX_TCP_KEEPCNT		127
163 #define MAX_TCP_SYNCNT		127
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
189 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
190 #define TCPOPT_EXP		254	/* Experimental */
191 /* Magic number to be after the option value for sharing TCP
192  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193  */
194 #define TCPOPT_FASTOPEN_MAGIC	0xF989
195 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
196 
197 /*
198  *     TCP option lengths
199  */
200 
201 #define TCPOLEN_MSS            4
202 #define TCPOLEN_WINDOW         3
203 #define TCPOLEN_SACK_PERM      2
204 #define TCPOLEN_TIMESTAMP      10
205 #define TCPOLEN_MD5SIG         18
206 #define TCPOLEN_FASTOPEN_BASE  2
207 #define TCPOLEN_EXP_FASTOPEN_BASE  4
208 #define TCPOLEN_EXP_SMC_BASE   6
209 
210 /* But this is what stacks really send out. */
211 #define TCPOLEN_TSTAMP_ALIGNED		12
212 #define TCPOLEN_WSCALE_ALIGNED		4
213 #define TCPOLEN_SACKPERM_ALIGNED	4
214 #define TCPOLEN_SACK_BASE		2
215 #define TCPOLEN_SACK_BASE_ALIGNED	4
216 #define TCPOLEN_SACK_PERBLOCK		8
217 #define TCPOLEN_MD5SIG_ALIGNED		20
218 #define TCPOLEN_MSS_ALIGNED		4
219 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
220 
221 /* Flags in tp->nonagle */
222 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
223 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
224 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
225 
226 /* TCP thin-stream limits */
227 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
228 
229 /* TCP initial congestion window as per rfc6928 */
230 #define TCP_INIT_CWND		10
231 
232 /* Bit Flags for sysctl_tcp_fastopen */
233 #define	TFO_CLIENT_ENABLE	1
234 #define	TFO_SERVER_ENABLE	2
235 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
236 
237 /* Accept SYN data w/o any cookie option */
238 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
239 
240 /* Force enable TFO on all listeners, i.e., not requiring the
241  * TCP_FASTOPEN socket option.
242  */
243 #define	TFO_SERVER_WO_SOCKOPT1	0x400
244 
245 
246 /* sysctl variables for tcp */
247 extern int sysctl_tcp_max_orphans;
248 extern long sysctl_tcp_mem[3];
249 
250 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
251 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
252 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
253 
254 extern atomic_long_t tcp_memory_allocated;
255 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
256 
257 extern struct percpu_counter tcp_sockets_allocated;
258 extern unsigned long tcp_memory_pressure;
259 
260 /* optimized version of sk_under_memory_pressure() for TCP sockets */
261 static inline bool tcp_under_memory_pressure(const struct sock *sk)
262 {
263 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
264 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
265 		return true;
266 
267 	return READ_ONCE(tcp_memory_pressure);
268 }
269 /*
270  * The next routines deal with comparing 32 bit unsigned ints
271  * and worry about wraparound (automatic with unsigned arithmetic).
272  */
273 
274 static inline bool before(__u32 seq1, __u32 seq2)
275 {
276         return (__s32)(seq1-seq2) < 0;
277 }
278 #define after(seq2, seq1) 	before(seq1, seq2)
279 
280 /* is s2<=s1<=s3 ? */
281 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
282 {
283 	return seq3 - seq2 >= seq1 - seq2;
284 }
285 
286 static inline bool tcp_out_of_memory(struct sock *sk)
287 {
288 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
289 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
290 		return true;
291 	return false;
292 }
293 
294 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
295 {
296 	sk_wmem_queued_add(sk, -skb->truesize);
297 	if (!skb_zcopy_pure(skb))
298 		sk_mem_uncharge(sk, skb->truesize);
299 	else
300 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
301 	__kfree_skb(skb);
302 }
303 
304 void sk_forced_mem_schedule(struct sock *sk, int size);
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
329 			 size_t size, struct ubuf_info *uarg);
330 void tcp_splice_eof(struct socket *sock);
331 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
332 int tcp_wmem_schedule(struct sock *sk, int copy);
333 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
334 	      int size_goal);
335 void tcp_release_cb(struct sock *sk);
336 void tcp_wfree(struct sk_buff *skb);
337 void tcp_write_timer_handler(struct sock *sk);
338 void tcp_delack_timer_handler(struct sock *sk);
339 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
340 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_space_adjust(struct sock *sk);
343 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344 void tcp_twsk_destructor(struct sock *sk);
345 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
346 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 			struct pipe_inode_info *pipe, size_t len,
348 			unsigned int flags);
349 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
350 				     bool force_schedule);
351 
352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 					 const unsigned int pkts)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		if (pkts >= icsk->icsk_ack.quick) {
359 			icsk->icsk_ack.quick = 0;
360 			/* Leaving quickack mode we deflate ATO. */
361 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
362 		} else
363 			icsk->icsk_ack.quick -= pkts;
364 	}
365 }
366 
367 #define	TCP_ECN_OK		1
368 #define	TCP_ECN_QUEUE_CWR	2
369 #define	TCP_ECN_DEMAND_CWR	4
370 #define	TCP_ECN_SEEN		8
371 
372 enum tcp_tw_status {
373 	TCP_TW_SUCCESS = 0,
374 	TCP_TW_RST = 1,
375 	TCP_TW_ACK = 2,
376 	TCP_TW_SYN = 3
377 };
378 
379 
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 					      struct sk_buff *skb,
382 					      const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 			   struct request_sock *req, bool fastopen,
385 			   bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 		      struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void __tcp_close(struct sock *sk, long timeout);
396 void tcp_close(struct sock *sk, long timeout);
397 void tcp_init_sock(struct sock *sk);
398 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
399 __poll_t tcp_poll(struct file *file, struct socket *sock,
400 		      struct poll_table_struct *wait);
401 int do_tcp_getsockopt(struct sock *sk, int level,
402 		      int optname, sockptr_t optval, sockptr_t optlen);
403 int tcp_getsockopt(struct sock *sk, int level, int optname,
404 		   char __user *optval, int __user *optlen);
405 bool tcp_bpf_bypass_getsockopt(int level, int optname);
406 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
407 		      sockptr_t optval, unsigned int optlen);
408 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
409 		   unsigned int optlen);
410 void tcp_set_keepalive(struct sock *sk, int val);
411 void tcp_syn_ack_timeout(const struct request_sock *req);
412 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
413 		int flags, int *addr_len);
414 int tcp_set_rcvlowat(struct sock *sk, int val);
415 int tcp_set_window_clamp(struct sock *sk, int val);
416 void tcp_update_recv_tstamps(struct sk_buff *skb,
417 			     struct scm_timestamping_internal *tss);
418 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
419 			struct scm_timestamping_internal *tss);
420 void tcp_data_ready(struct sock *sk);
421 #ifdef CONFIG_MMU
422 int tcp_mmap(struct file *file, struct socket *sock,
423 	     struct vm_area_struct *vma);
424 #endif
425 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
426 		       struct tcp_options_received *opt_rx,
427 		       int estab, struct tcp_fastopen_cookie *foc);
428 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
429 
430 /*
431  *	BPF SKB-less helpers
432  */
433 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
434 			 struct tcphdr *th, u32 *cookie);
435 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
438 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
439 			  const struct tcp_request_sock_ops *af_ops,
440 			  struct sock *sk, struct tcphdr *th);
441 /*
442  *	TCP v4 functions exported for the inet6 API
443  */
444 
445 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
446 void tcp_v4_mtu_reduced(struct sock *sk);
447 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
448 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
449 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
450 struct sock *tcp_create_openreq_child(const struct sock *sk,
451 				      struct request_sock *req,
452 				      struct sk_buff *skb);
453 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
454 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
455 				  struct request_sock *req,
456 				  struct dst_entry *dst,
457 				  struct request_sock *req_unhash,
458 				  bool *own_req);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 enum tcp_synack_type {
463 	TCP_SYNACK_NORMAL,
464 	TCP_SYNACK_FASTOPEN,
465 	TCP_SYNACK_COOKIE,
466 };
467 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
468 				struct request_sock *req,
469 				struct tcp_fastopen_cookie *foc,
470 				enum tcp_synack_type synack_type,
471 				struct sk_buff *syn_skb);
472 int tcp_disconnect(struct sock *sk, int flags);
473 
474 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477 
478 /* From syncookies.c */
479 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 				 struct request_sock *req,
481 				 struct dst_entry *dst, u32 tsoff);
482 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 		      u32 cookie);
484 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
486 					    const struct tcp_request_sock_ops *af_ops,
487 					    struct sock *sk, struct sk_buff *skb);
488 #ifdef CONFIG_SYN_COOKIES
489 
490 /* Syncookies use a monotonic timer which increments every 60 seconds.
491  * This counter is used both as a hash input and partially encoded into
492  * the cookie value.  A cookie is only validated further if the delta
493  * between the current counter value and the encoded one is less than this,
494  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
495  * the counter advances immediately after a cookie is generated).
496  */
497 #define MAX_SYNCOOKIE_AGE	2
498 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
499 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
500 
501 /* syncookies: remember time of last synqueue overflow
502  * But do not dirty this field too often (once per second is enough)
503  * It is racy as we do not hold a lock, but race is very minor.
504  */
505 static inline void tcp_synq_overflow(const struct sock *sk)
506 {
507 	unsigned int last_overflow;
508 	unsigned int now = jiffies;
509 
510 	if (sk->sk_reuseport) {
511 		struct sock_reuseport *reuse;
512 
513 		reuse = rcu_dereference(sk->sk_reuseport_cb);
514 		if (likely(reuse)) {
515 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
516 			if (!time_between32(now, last_overflow,
517 					    last_overflow + HZ))
518 				WRITE_ONCE(reuse->synq_overflow_ts, now);
519 			return;
520 		}
521 	}
522 
523 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
524 	if (!time_between32(now, last_overflow, last_overflow + HZ))
525 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
526 }
527 
528 /* syncookies: no recent synqueue overflow on this listening socket? */
529 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
530 {
531 	unsigned int last_overflow;
532 	unsigned int now = jiffies;
533 
534 	if (sk->sk_reuseport) {
535 		struct sock_reuseport *reuse;
536 
537 		reuse = rcu_dereference(sk->sk_reuseport_cb);
538 		if (likely(reuse)) {
539 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 			return !time_between32(now, last_overflow - HZ,
541 					       last_overflow +
542 					       TCP_SYNCOOKIE_VALID);
543 		}
544 	}
545 
546 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
547 
548 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
549 	 * then we're under synflood. However, we have to use
550 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
551 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
552 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
553 	 * which could lead to rejecting a valid syncookie.
554 	 */
555 	return !time_between32(now, last_overflow - HZ,
556 			       last_overflow + TCP_SYNCOOKIE_VALID);
557 }
558 
559 static inline u32 tcp_cookie_time(void)
560 {
561 	u64 val = get_jiffies_64();
562 
563 	do_div(val, TCP_SYNCOOKIE_PERIOD);
564 	return val;
565 }
566 
567 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
568 			      u16 *mssp);
569 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
570 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
571 bool cookie_timestamp_decode(const struct net *net,
572 			     struct tcp_options_received *opt);
573 bool cookie_ecn_ok(const struct tcp_options_received *opt,
574 		   const struct net *net, const struct dst_entry *dst);
575 
576 /* From net/ipv6/syncookies.c */
577 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
578 		      u32 cookie);
579 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
580 
581 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
582 			      const struct tcphdr *th, u16 *mssp);
583 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
584 #endif
585 /* tcp_output.c */
586 
587 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
588 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
589 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
590 			       int nonagle);
591 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
592 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 void tcp_retransmit_timer(struct sock *sk);
594 void tcp_xmit_retransmit_queue(struct sock *);
595 void tcp_simple_retransmit(struct sock *);
596 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
597 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
598 enum tcp_queue {
599 	TCP_FRAG_IN_WRITE_QUEUE,
600 	TCP_FRAG_IN_RTX_QUEUE,
601 };
602 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
603 		 struct sk_buff *skb, u32 len,
604 		 unsigned int mss_now, gfp_t gfp);
605 
606 void tcp_send_probe0(struct sock *);
607 int tcp_write_wakeup(struct sock *, int mib);
608 void tcp_send_fin(struct sock *sk);
609 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
610 int tcp_send_synack(struct sock *);
611 void tcp_push_one(struct sock *, unsigned int mss_now);
612 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
613 void tcp_send_ack(struct sock *sk);
614 void tcp_send_delayed_ack(struct sock *sk);
615 void tcp_send_loss_probe(struct sock *sk);
616 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
617 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
618 			     const struct sk_buff *next_skb);
619 
620 /* tcp_input.c */
621 void tcp_rearm_rto(struct sock *sk);
622 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
623 void tcp_reset(struct sock *sk, struct sk_buff *skb);
624 void tcp_fin(struct sock *sk);
625 void tcp_check_space(struct sock *sk);
626 void tcp_sack_compress_send_ack(struct sock *sk);
627 
628 /* tcp_timer.c */
629 void tcp_init_xmit_timers(struct sock *);
630 static inline void tcp_clear_xmit_timers(struct sock *sk)
631 {
632 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
633 		__sock_put(sk);
634 
635 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
636 		__sock_put(sk);
637 
638 	inet_csk_clear_xmit_timers(sk);
639 }
640 
641 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
642 unsigned int tcp_current_mss(struct sock *sk);
643 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
644 
645 /* Bound MSS / TSO packet size with the half of the window */
646 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
647 {
648 	int cutoff;
649 
650 	/* When peer uses tiny windows, there is no use in packetizing
651 	 * to sub-MSS pieces for the sake of SWS or making sure there
652 	 * are enough packets in the pipe for fast recovery.
653 	 *
654 	 * On the other hand, for extremely large MSS devices, handling
655 	 * smaller than MSS windows in this way does make sense.
656 	 */
657 	if (tp->max_window > TCP_MSS_DEFAULT)
658 		cutoff = (tp->max_window >> 1);
659 	else
660 		cutoff = tp->max_window;
661 
662 	if (cutoff && pktsize > cutoff)
663 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
664 	else
665 		return pktsize;
666 }
667 
668 /* tcp.c */
669 void tcp_get_info(struct sock *, struct tcp_info *);
670 
671 /* Read 'sendfile()'-style from a TCP socket */
672 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
673 		  sk_read_actor_t recv_actor);
674 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
675 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
676 void tcp_read_done(struct sock *sk, size_t len);
677 
678 void tcp_initialize_rcv_mss(struct sock *sk);
679 
680 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
681 int tcp_mss_to_mtu(struct sock *sk, int mss);
682 void tcp_mtup_init(struct sock *sk);
683 
684 static inline void tcp_bound_rto(const struct sock *sk)
685 {
686 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
687 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
688 }
689 
690 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
691 {
692 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
693 }
694 
695 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
696 {
697 	/* mptcp hooks are only on the slow path */
698 	if (sk_is_mptcp((struct sock *)tp))
699 		return;
700 
701 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
702 			       ntohl(TCP_FLAG_ACK) |
703 			       snd_wnd);
704 }
705 
706 static inline void tcp_fast_path_on(struct tcp_sock *tp)
707 {
708 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
709 }
710 
711 static inline void tcp_fast_path_check(struct sock *sk)
712 {
713 	struct tcp_sock *tp = tcp_sk(sk);
714 
715 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
716 	    tp->rcv_wnd &&
717 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
718 	    !tp->urg_data)
719 		tcp_fast_path_on(tp);
720 }
721 
722 /* Compute the actual rto_min value */
723 static inline u32 tcp_rto_min(struct sock *sk)
724 {
725 	const struct dst_entry *dst = __sk_dst_get(sk);
726 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
727 
728 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
729 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
730 	return rto_min;
731 }
732 
733 static inline u32 tcp_rto_min_us(struct sock *sk)
734 {
735 	return jiffies_to_usecs(tcp_rto_min(sk));
736 }
737 
738 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
739 {
740 	return dst_metric_locked(dst, RTAX_CC_ALGO);
741 }
742 
743 /* Minimum RTT in usec. ~0 means not available. */
744 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
745 {
746 	return minmax_get(&tp->rtt_min);
747 }
748 
749 /* Compute the actual receive window we are currently advertising.
750  * Rcv_nxt can be after the window if our peer push more data
751  * than the offered window.
752  */
753 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
754 {
755 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
756 
757 	if (win < 0)
758 		win = 0;
759 	return (u32) win;
760 }
761 
762 /* Choose a new window, without checks for shrinking, and without
763  * scaling applied to the result.  The caller does these things
764  * if necessary.  This is a "raw" window selection.
765  */
766 u32 __tcp_select_window(struct sock *sk);
767 
768 void tcp_send_window_probe(struct sock *sk);
769 
770 /* TCP uses 32bit jiffies to save some space.
771  * Note that this is different from tcp_time_stamp, which
772  * historically has been the same until linux-4.13.
773  */
774 #define tcp_jiffies32 ((u32)jiffies)
775 
776 /*
777  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
778  * It is no longer tied to jiffies, but to 1 ms clock.
779  * Note: double check if you want to use tcp_jiffies32 instead of this.
780  */
781 #define TCP_TS_HZ	1000
782 
783 static inline u64 tcp_clock_ns(void)
784 {
785 	return ktime_get_ns();
786 }
787 
788 static inline u64 tcp_clock_us(void)
789 {
790 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
791 }
792 
793 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
794 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
795 {
796 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
797 }
798 
799 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
800 static inline u32 tcp_ns_to_ts(u64 ns)
801 {
802 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
803 }
804 
805 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
806 static inline u32 tcp_time_stamp_raw(void)
807 {
808 	return tcp_ns_to_ts(tcp_clock_ns());
809 }
810 
811 void tcp_mstamp_refresh(struct tcp_sock *tp);
812 
813 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
814 {
815 	return max_t(s64, t1 - t0, 0);
816 }
817 
818 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
819 {
820 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
821 }
822 
823 /* provide the departure time in us unit */
824 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
825 {
826 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
827 }
828 
829 
830 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
831 
832 #define TCPHDR_FIN 0x01
833 #define TCPHDR_SYN 0x02
834 #define TCPHDR_RST 0x04
835 #define TCPHDR_PSH 0x08
836 #define TCPHDR_ACK 0x10
837 #define TCPHDR_URG 0x20
838 #define TCPHDR_ECE 0x40
839 #define TCPHDR_CWR 0x80
840 
841 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
842 
843 /* This is what the send packet queuing engine uses to pass
844  * TCP per-packet control information to the transmission code.
845  * We also store the host-order sequence numbers in here too.
846  * This is 44 bytes if IPV6 is enabled.
847  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
848  */
849 struct tcp_skb_cb {
850 	__u32		seq;		/* Starting sequence number	*/
851 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
852 	union {
853 		/* Note : tcp_tw_isn is used in input path only
854 		 *	  (isn chosen by tcp_timewait_state_process())
855 		 *
856 		 * 	  tcp_gso_segs/size are used in write queue only,
857 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
858 		 */
859 		__u32		tcp_tw_isn;
860 		struct {
861 			u16	tcp_gso_segs;
862 			u16	tcp_gso_size;
863 		};
864 	};
865 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
866 
867 	__u8		sacked;		/* State flags for SACK.	*/
868 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
869 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
870 #define TCPCB_LOST		0x04	/* SKB is lost			*/
871 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
872 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
873 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
874 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
875 				TCPCB_REPAIRED)
876 
877 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
878 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
879 			eor:1,		/* Is skb MSG_EOR marked? */
880 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
881 			unused:5;
882 	__u32		ack_seq;	/* Sequence number ACK'd	*/
883 	union {
884 		struct {
885 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
886 			/* There is space for up to 24 bytes */
887 			__u32 is_app_limited:1, /* cwnd not fully used? */
888 			      delivered_ce:20,
889 			      unused:11;
890 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
891 			__u32 delivered;
892 			/* start of send pipeline phase */
893 			u64 first_tx_mstamp;
894 			/* when we reached the "delivered" count */
895 			u64 delivered_mstamp;
896 		} tx;   /* only used for outgoing skbs */
897 		union {
898 			struct inet_skb_parm	h4;
899 #if IS_ENABLED(CONFIG_IPV6)
900 			struct inet6_skb_parm	h6;
901 #endif
902 		} header;	/* For incoming skbs */
903 	};
904 };
905 
906 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
907 
908 extern const struct inet_connection_sock_af_ops ipv4_specific;
909 
910 #if IS_ENABLED(CONFIG_IPV6)
911 /* This is the variant of inet6_iif() that must be used by TCP,
912  * as TCP moves IP6CB into a different location in skb->cb[]
913  */
914 static inline int tcp_v6_iif(const struct sk_buff *skb)
915 {
916 	return TCP_SKB_CB(skb)->header.h6.iif;
917 }
918 
919 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
920 {
921 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
922 
923 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
924 }
925 
926 /* TCP_SKB_CB reference means this can not be used from early demux */
927 static inline int tcp_v6_sdif(const struct sk_buff *skb)
928 {
929 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
930 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
931 		return TCP_SKB_CB(skb)->header.h6.iif;
932 #endif
933 	return 0;
934 }
935 
936 extern const struct inet_connection_sock_af_ops ipv6_specific;
937 
938 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
939 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
940 void tcp_v6_early_demux(struct sk_buff *skb);
941 
942 #endif
943 
944 /* TCP_SKB_CB reference means this can not be used from early demux */
945 static inline int tcp_v4_sdif(struct sk_buff *skb)
946 {
947 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
948 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
949 		return TCP_SKB_CB(skb)->header.h4.iif;
950 #endif
951 	return 0;
952 }
953 
954 /* Due to TSO, an SKB can be composed of multiple actual
955  * packets.  To keep these tracked properly, we use this.
956  */
957 static inline int tcp_skb_pcount(const struct sk_buff *skb)
958 {
959 	return TCP_SKB_CB(skb)->tcp_gso_segs;
960 }
961 
962 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
963 {
964 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
965 }
966 
967 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
968 {
969 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
970 }
971 
972 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
973 static inline int tcp_skb_mss(const struct sk_buff *skb)
974 {
975 	return TCP_SKB_CB(skb)->tcp_gso_size;
976 }
977 
978 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
979 {
980 	return likely(!TCP_SKB_CB(skb)->eor);
981 }
982 
983 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
984 					const struct sk_buff *from)
985 {
986 	return likely(tcp_skb_can_collapse_to(to) &&
987 		      mptcp_skb_can_collapse(to, from) &&
988 		      skb_pure_zcopy_same(to, from));
989 }
990 
991 /* Events passed to congestion control interface */
992 enum tcp_ca_event {
993 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
994 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
995 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
996 	CA_EVENT_LOSS,		/* loss timeout */
997 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
998 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
999 };
1000 
1001 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1002 enum tcp_ca_ack_event_flags {
1003 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1004 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1005 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1006 };
1007 
1008 /*
1009  * Interface for adding new TCP congestion control handlers
1010  */
1011 #define TCP_CA_NAME_MAX	16
1012 #define TCP_CA_MAX	128
1013 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1014 
1015 #define TCP_CA_UNSPEC	0
1016 
1017 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1018 #define TCP_CONG_NON_RESTRICTED 0x1
1019 /* Requires ECN/ECT set on all packets */
1020 #define TCP_CONG_NEEDS_ECN	0x2
1021 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1022 
1023 union tcp_cc_info;
1024 
1025 struct ack_sample {
1026 	u32 pkts_acked;
1027 	s32 rtt_us;
1028 	u32 in_flight;
1029 };
1030 
1031 /* A rate sample measures the number of (original/retransmitted) data
1032  * packets delivered "delivered" over an interval of time "interval_us".
1033  * The tcp_rate.c code fills in the rate sample, and congestion
1034  * control modules that define a cong_control function to run at the end
1035  * of ACK processing can optionally chose to consult this sample when
1036  * setting cwnd and pacing rate.
1037  * A sample is invalid if "delivered" or "interval_us" is negative.
1038  */
1039 struct rate_sample {
1040 	u64  prior_mstamp; /* starting timestamp for interval */
1041 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1042 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1043 	s32  delivered;		/* number of packets delivered over interval */
1044 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1045 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1046 	u32 snd_interval_us;	/* snd interval for delivered packets */
1047 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1048 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1049 	int  losses;		/* number of packets marked lost upon ACK */
1050 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1051 	u32  prior_in_flight;	/* in flight before this ACK */
1052 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1053 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1054 	bool is_retrans;	/* is sample from retransmission? */
1055 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1056 };
1057 
1058 struct tcp_congestion_ops {
1059 /* fast path fields are put first to fill one cache line */
1060 
1061 	/* return slow start threshold (required) */
1062 	u32 (*ssthresh)(struct sock *sk);
1063 
1064 	/* do new cwnd calculation (required) */
1065 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1066 
1067 	/* call before changing ca_state (optional) */
1068 	void (*set_state)(struct sock *sk, u8 new_state);
1069 
1070 	/* call when cwnd event occurs (optional) */
1071 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1072 
1073 	/* call when ack arrives (optional) */
1074 	void (*in_ack_event)(struct sock *sk, u32 flags);
1075 
1076 	/* hook for packet ack accounting (optional) */
1077 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1078 
1079 	/* override sysctl_tcp_min_tso_segs */
1080 	u32 (*min_tso_segs)(struct sock *sk);
1081 
1082 	/* call when packets are delivered to update cwnd and pacing rate,
1083 	 * after all the ca_state processing. (optional)
1084 	 */
1085 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1086 
1087 
1088 	/* new value of cwnd after loss (required) */
1089 	u32  (*undo_cwnd)(struct sock *sk);
1090 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1091 	u32 (*sndbuf_expand)(struct sock *sk);
1092 
1093 /* control/slow paths put last */
1094 	/* get info for inet_diag (optional) */
1095 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1096 			   union tcp_cc_info *info);
1097 
1098 	char 			name[TCP_CA_NAME_MAX];
1099 	struct module		*owner;
1100 	struct list_head	list;
1101 	u32			key;
1102 	u32			flags;
1103 
1104 	/* initialize private data (optional) */
1105 	void (*init)(struct sock *sk);
1106 	/* cleanup private data  (optional) */
1107 	void (*release)(struct sock *sk);
1108 } ____cacheline_aligned_in_smp;
1109 
1110 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1111 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1112 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1113 				  struct tcp_congestion_ops *old_type);
1114 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1115 
1116 void tcp_assign_congestion_control(struct sock *sk);
1117 void tcp_init_congestion_control(struct sock *sk);
1118 void tcp_cleanup_congestion_control(struct sock *sk);
1119 int tcp_set_default_congestion_control(struct net *net, const char *name);
1120 void tcp_get_default_congestion_control(struct net *net, char *name);
1121 void tcp_get_available_congestion_control(char *buf, size_t len);
1122 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1123 int tcp_set_allowed_congestion_control(char *allowed);
1124 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1125 			       bool cap_net_admin);
1126 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1127 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1128 
1129 u32 tcp_reno_ssthresh(struct sock *sk);
1130 u32 tcp_reno_undo_cwnd(struct sock *sk);
1131 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1132 extern struct tcp_congestion_ops tcp_reno;
1133 
1134 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1135 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1136 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1137 #ifdef CONFIG_INET
1138 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1139 #else
1140 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1141 {
1142 	return NULL;
1143 }
1144 #endif
1145 
1146 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1147 {
1148 	const struct inet_connection_sock *icsk = inet_csk(sk);
1149 
1150 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1151 }
1152 
1153 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1154 {
1155 	const struct inet_connection_sock *icsk = inet_csk(sk);
1156 
1157 	if (icsk->icsk_ca_ops->cwnd_event)
1158 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1159 }
1160 
1161 /* From tcp_cong.c */
1162 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1163 
1164 /* From tcp_rate.c */
1165 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1166 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1167 			    struct rate_sample *rs);
1168 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1169 		  bool is_sack_reneg, struct rate_sample *rs);
1170 void tcp_rate_check_app_limited(struct sock *sk);
1171 
1172 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1173 {
1174 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1175 }
1176 
1177 /* These functions determine how the current flow behaves in respect of SACK
1178  * handling. SACK is negotiated with the peer, and therefore it can vary
1179  * between different flows.
1180  *
1181  * tcp_is_sack - SACK enabled
1182  * tcp_is_reno - No SACK
1183  */
1184 static inline int tcp_is_sack(const struct tcp_sock *tp)
1185 {
1186 	return likely(tp->rx_opt.sack_ok);
1187 }
1188 
1189 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1190 {
1191 	return !tcp_is_sack(tp);
1192 }
1193 
1194 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1195 {
1196 	return tp->sacked_out + tp->lost_out;
1197 }
1198 
1199 /* This determines how many packets are "in the network" to the best
1200  * of our knowledge.  In many cases it is conservative, but where
1201  * detailed information is available from the receiver (via SACK
1202  * blocks etc.) we can make more aggressive calculations.
1203  *
1204  * Use this for decisions involving congestion control, use just
1205  * tp->packets_out to determine if the send queue is empty or not.
1206  *
1207  * Read this equation as:
1208  *
1209  *	"Packets sent once on transmission queue" MINUS
1210  *	"Packets left network, but not honestly ACKed yet" PLUS
1211  *	"Packets fast retransmitted"
1212  */
1213 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1214 {
1215 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1216 }
1217 
1218 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1219 
1220 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1221 {
1222 	return tp->snd_cwnd;
1223 }
1224 
1225 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1226 {
1227 	WARN_ON_ONCE((int)val <= 0);
1228 	tp->snd_cwnd = val;
1229 }
1230 
1231 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1232 {
1233 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1234 }
1235 
1236 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1237 {
1238 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1239 }
1240 
1241 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1242 {
1243 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1244 	       (1 << inet_csk(sk)->icsk_ca_state);
1245 }
1246 
1247 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1248  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1249  * ssthresh.
1250  */
1251 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1252 {
1253 	const struct tcp_sock *tp = tcp_sk(sk);
1254 
1255 	if (tcp_in_cwnd_reduction(sk))
1256 		return tp->snd_ssthresh;
1257 	else
1258 		return max(tp->snd_ssthresh,
1259 			   ((tcp_snd_cwnd(tp) >> 1) +
1260 			    (tcp_snd_cwnd(tp) >> 2)));
1261 }
1262 
1263 /* Use define here intentionally to get WARN_ON location shown at the caller */
1264 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1265 
1266 void tcp_enter_cwr(struct sock *sk);
1267 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1268 
1269 /* The maximum number of MSS of available cwnd for which TSO defers
1270  * sending if not using sysctl_tcp_tso_win_divisor.
1271  */
1272 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1273 {
1274 	return 3;
1275 }
1276 
1277 /* Returns end sequence number of the receiver's advertised window */
1278 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1279 {
1280 	return tp->snd_una + tp->snd_wnd;
1281 }
1282 
1283 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1284  * flexible approach. The RFC suggests cwnd should not be raised unless
1285  * it was fully used previously. And that's exactly what we do in
1286  * congestion avoidance mode. But in slow start we allow cwnd to grow
1287  * as long as the application has used half the cwnd.
1288  * Example :
1289  *    cwnd is 10 (IW10), but application sends 9 frames.
1290  *    We allow cwnd to reach 18 when all frames are ACKed.
1291  * This check is safe because it's as aggressive as slow start which already
1292  * risks 100% overshoot. The advantage is that we discourage application to
1293  * either send more filler packets or data to artificially blow up the cwnd
1294  * usage, and allow application-limited process to probe bw more aggressively.
1295  */
1296 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1297 {
1298 	const struct tcp_sock *tp = tcp_sk(sk);
1299 
1300 	if (tp->is_cwnd_limited)
1301 		return true;
1302 
1303 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1304 	if (tcp_in_slow_start(tp))
1305 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1306 
1307 	return false;
1308 }
1309 
1310 /* BBR congestion control needs pacing.
1311  * Same remark for SO_MAX_PACING_RATE.
1312  * sch_fq packet scheduler is efficiently handling pacing,
1313  * but is not always installed/used.
1314  * Return true if TCP stack should pace packets itself.
1315  */
1316 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1317 {
1318 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1319 }
1320 
1321 /* Estimates in how many jiffies next packet for this flow can be sent.
1322  * Scheduling a retransmit timer too early would be silly.
1323  */
1324 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1325 {
1326 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1327 
1328 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1329 }
1330 
1331 static inline void tcp_reset_xmit_timer(struct sock *sk,
1332 					const int what,
1333 					unsigned long when,
1334 					const unsigned long max_when)
1335 {
1336 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1337 				  max_when);
1338 }
1339 
1340 /* Something is really bad, we could not queue an additional packet,
1341  * because qdisc is full or receiver sent a 0 window, or we are paced.
1342  * We do not want to add fuel to the fire, or abort too early,
1343  * so make sure the timer we arm now is at least 200ms in the future,
1344  * regardless of current icsk_rto value (as it could be ~2ms)
1345  */
1346 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1347 {
1348 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1349 }
1350 
1351 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1352 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1353 					    unsigned long max_when)
1354 {
1355 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1356 			   inet_csk(sk)->icsk_backoff);
1357 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1358 
1359 	return (unsigned long)min_t(u64, when, max_when);
1360 }
1361 
1362 static inline void tcp_check_probe_timer(struct sock *sk)
1363 {
1364 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1365 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1366 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1367 }
1368 
1369 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1370 {
1371 	tp->snd_wl1 = seq;
1372 }
1373 
1374 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1375 {
1376 	tp->snd_wl1 = seq;
1377 }
1378 
1379 /*
1380  * Calculate(/check) TCP checksum
1381  */
1382 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1383 				   __be32 daddr, __wsum base)
1384 {
1385 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1386 }
1387 
1388 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1389 {
1390 	return !skb_csum_unnecessary(skb) &&
1391 		__skb_checksum_complete(skb);
1392 }
1393 
1394 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1395 		     enum skb_drop_reason *reason);
1396 
1397 
1398 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1399 void tcp_set_state(struct sock *sk, int state);
1400 void tcp_done(struct sock *sk);
1401 int tcp_abort(struct sock *sk, int err);
1402 
1403 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1404 {
1405 	rx_opt->dsack = 0;
1406 	rx_opt->num_sacks = 0;
1407 }
1408 
1409 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1410 
1411 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1412 {
1413 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	s32 delta;
1416 
1417 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1418 	    tp->packets_out || ca_ops->cong_control)
1419 		return;
1420 	delta = tcp_jiffies32 - tp->lsndtime;
1421 	if (delta > inet_csk(sk)->icsk_rto)
1422 		tcp_cwnd_restart(sk, delta);
1423 }
1424 
1425 /* Determine a window scaling and initial window to offer. */
1426 void tcp_select_initial_window(const struct sock *sk, int __space,
1427 			       __u32 mss, __u32 *rcv_wnd,
1428 			       __u32 *window_clamp, int wscale_ok,
1429 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1430 
1431 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1432 {
1433 	s64 scaled_space = (s64)space * scaling_ratio;
1434 
1435 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1436 }
1437 
1438 static inline int tcp_win_from_space(const struct sock *sk, int space)
1439 {
1440 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1441 }
1442 
1443 /* inverse of __tcp_win_from_space() */
1444 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1445 {
1446 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1447 
1448 	do_div(val, scaling_ratio);
1449 	return val;
1450 }
1451 
1452 static inline int tcp_space_from_win(const struct sock *sk, int win)
1453 {
1454 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1455 }
1456 
1457 static inline void tcp_scaling_ratio_init(struct sock *sk)
1458 {
1459 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1460 	 * This may be adjusted later in tcp_measure_rcv_mss().
1461 	 */
1462 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1463 				    SKB_TRUESIZE(4096);
1464 }
1465 
1466 /* Note: caller must be prepared to deal with negative returns */
1467 static inline int tcp_space(const struct sock *sk)
1468 {
1469 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1470 				  READ_ONCE(sk->sk_backlog.len) -
1471 				  atomic_read(&sk->sk_rmem_alloc));
1472 }
1473 
1474 static inline int tcp_full_space(const struct sock *sk)
1475 {
1476 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1477 }
1478 
1479 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1480 {
1481 	int unused_mem = sk_unused_reserved_mem(sk);
1482 	struct tcp_sock *tp = tcp_sk(sk);
1483 
1484 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1485 	if (unused_mem)
1486 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1487 					 tcp_win_from_space(sk, unused_mem));
1488 }
1489 
1490 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1491 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1492 
1493 
1494 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1495  * If 87.5 % (7/8) of the space has been consumed, we want to override
1496  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1497  * len/truesize ratio.
1498  */
1499 static inline bool tcp_rmem_pressure(const struct sock *sk)
1500 {
1501 	int rcvbuf, threshold;
1502 
1503 	if (tcp_under_memory_pressure(sk))
1504 		return true;
1505 
1506 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1507 	threshold = rcvbuf - (rcvbuf >> 3);
1508 
1509 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1510 }
1511 
1512 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1513 {
1514 	const struct tcp_sock *tp = tcp_sk(sk);
1515 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1516 
1517 	if (avail <= 0)
1518 		return false;
1519 
1520 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1521 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1522 }
1523 
1524 extern void tcp_openreq_init_rwin(struct request_sock *req,
1525 				  const struct sock *sk_listener,
1526 				  const struct dst_entry *dst);
1527 
1528 void tcp_enter_memory_pressure(struct sock *sk);
1529 void tcp_leave_memory_pressure(struct sock *sk);
1530 
1531 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1532 {
1533 	struct net *net = sock_net((struct sock *)tp);
1534 	int val;
1535 
1536 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1537 	 * and do_tcp_setsockopt().
1538 	 */
1539 	val = READ_ONCE(tp->keepalive_intvl);
1540 
1541 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1542 }
1543 
1544 static inline int keepalive_time_when(const struct tcp_sock *tp)
1545 {
1546 	struct net *net = sock_net((struct sock *)tp);
1547 	int val;
1548 
1549 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1550 	val = READ_ONCE(tp->keepalive_time);
1551 
1552 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1553 }
1554 
1555 static inline int keepalive_probes(const struct tcp_sock *tp)
1556 {
1557 	struct net *net = sock_net((struct sock *)tp);
1558 	int val;
1559 
1560 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1561 	 * and do_tcp_setsockopt().
1562 	 */
1563 	val = READ_ONCE(tp->keepalive_probes);
1564 
1565 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1566 }
1567 
1568 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1569 {
1570 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1571 
1572 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1573 			  tcp_jiffies32 - tp->rcv_tstamp);
1574 }
1575 
1576 static inline int tcp_fin_time(const struct sock *sk)
1577 {
1578 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1579 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1580 	const int rto = inet_csk(sk)->icsk_rto;
1581 
1582 	if (fin_timeout < (rto << 2) - (rto >> 1))
1583 		fin_timeout = (rto << 2) - (rto >> 1);
1584 
1585 	return fin_timeout;
1586 }
1587 
1588 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1589 				  int paws_win)
1590 {
1591 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1592 		return true;
1593 	if (unlikely(!time_before32(ktime_get_seconds(),
1594 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1595 		return true;
1596 	/*
1597 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1598 	 * then following tcp messages have valid values. Ignore 0 value,
1599 	 * or else 'negative' tsval might forbid us to accept their packets.
1600 	 */
1601 	if (!rx_opt->ts_recent)
1602 		return true;
1603 	return false;
1604 }
1605 
1606 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1607 				   int rst)
1608 {
1609 	if (tcp_paws_check(rx_opt, 0))
1610 		return false;
1611 
1612 	/* RST segments are not recommended to carry timestamp,
1613 	   and, if they do, it is recommended to ignore PAWS because
1614 	   "their cleanup function should take precedence over timestamps."
1615 	   Certainly, it is mistake. It is necessary to understand the reasons
1616 	   of this constraint to relax it: if peer reboots, clock may go
1617 	   out-of-sync and half-open connections will not be reset.
1618 	   Actually, the problem would be not existing if all
1619 	   the implementations followed draft about maintaining clock
1620 	   via reboots. Linux-2.2 DOES NOT!
1621 
1622 	   However, we can relax time bounds for RST segments to MSL.
1623 	 */
1624 	if (rst && !time_before32(ktime_get_seconds(),
1625 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1626 		return false;
1627 	return true;
1628 }
1629 
1630 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1631 			  int mib_idx, u32 *last_oow_ack_time);
1632 
1633 static inline void tcp_mib_init(struct net *net)
1634 {
1635 	/* See RFC 2012 */
1636 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1637 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1638 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1639 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1640 }
1641 
1642 /* from STCP */
1643 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1644 {
1645 	tp->lost_skb_hint = NULL;
1646 }
1647 
1648 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1649 {
1650 	tcp_clear_retrans_hints_partial(tp);
1651 	tp->retransmit_skb_hint = NULL;
1652 }
1653 
1654 union tcp_md5_addr {
1655 	struct in_addr  a4;
1656 #if IS_ENABLED(CONFIG_IPV6)
1657 	struct in6_addr	a6;
1658 #endif
1659 };
1660 
1661 /* - key database */
1662 struct tcp_md5sig_key {
1663 	struct hlist_node	node;
1664 	u8			keylen;
1665 	u8			family; /* AF_INET or AF_INET6 */
1666 	u8			prefixlen;
1667 	u8			flags;
1668 	union tcp_md5_addr	addr;
1669 	int			l3index; /* set if key added with L3 scope */
1670 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1671 	struct rcu_head		rcu;
1672 };
1673 
1674 /* - sock block */
1675 struct tcp_md5sig_info {
1676 	struct hlist_head	head;
1677 	struct rcu_head		rcu;
1678 };
1679 
1680 /* - pseudo header */
1681 struct tcp4_pseudohdr {
1682 	__be32		saddr;
1683 	__be32		daddr;
1684 	__u8		pad;
1685 	__u8		protocol;
1686 	__be16		len;
1687 };
1688 
1689 struct tcp6_pseudohdr {
1690 	struct in6_addr	saddr;
1691 	struct in6_addr daddr;
1692 	__be32		len;
1693 	__be32		protocol;	/* including padding */
1694 };
1695 
1696 union tcp_md5sum_block {
1697 	struct tcp4_pseudohdr ip4;
1698 #if IS_ENABLED(CONFIG_IPV6)
1699 	struct tcp6_pseudohdr ip6;
1700 #endif
1701 };
1702 
1703 /* - pool: digest algorithm, hash description and scratch buffer */
1704 struct tcp_md5sig_pool {
1705 	struct ahash_request	*md5_req;
1706 	void			*scratch;
1707 };
1708 
1709 /* - functions */
1710 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1711 			const struct sock *sk, const struct sk_buff *skb);
1712 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1713 		   int family, u8 prefixlen, int l3index, u8 flags,
1714 		   const u8 *newkey, u8 newkeylen);
1715 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1716 		     int family, u8 prefixlen, int l3index,
1717 		     struct tcp_md5sig_key *key);
1718 
1719 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1720 		   int family, u8 prefixlen, int l3index, u8 flags);
1721 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1722 					 const struct sock *addr_sk);
1723 
1724 #ifdef CONFIG_TCP_MD5SIG
1725 #include <linux/jump_label.h>
1726 extern struct static_key_false_deferred tcp_md5_needed;
1727 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1728 					   const union tcp_md5_addr *addr,
1729 					   int family);
1730 static inline struct tcp_md5sig_key *
1731 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1732 		  const union tcp_md5_addr *addr, int family)
1733 {
1734 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1735 		return NULL;
1736 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1737 }
1738 
1739 enum skb_drop_reason
1740 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1741 		     const void *saddr, const void *daddr,
1742 		     int family, int dif, int sdif);
1743 
1744 
1745 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1746 #else
1747 static inline struct tcp_md5sig_key *
1748 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1749 		  const union tcp_md5_addr *addr, int family)
1750 {
1751 	return NULL;
1752 }
1753 
1754 static inline enum skb_drop_reason
1755 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1756 		     const void *saddr, const void *daddr,
1757 		     int family, int dif, int sdif)
1758 {
1759 	return SKB_NOT_DROPPED_YET;
1760 }
1761 #define tcp_twsk_md5_key(twsk)	NULL
1762 #endif
1763 
1764 bool tcp_alloc_md5sig_pool(void);
1765 
1766 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1767 static inline void tcp_put_md5sig_pool(void)
1768 {
1769 	local_bh_enable();
1770 }
1771 
1772 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1773 			  unsigned int header_len);
1774 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1775 		     const struct tcp_md5sig_key *key);
1776 
1777 /* From tcp_fastopen.c */
1778 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1779 			    struct tcp_fastopen_cookie *cookie);
1780 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1781 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1782 			    u16 try_exp);
1783 struct tcp_fastopen_request {
1784 	/* Fast Open cookie. Size 0 means a cookie request */
1785 	struct tcp_fastopen_cookie	cookie;
1786 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1787 	size_t				size;
1788 	int				copied;	/* queued in tcp_connect() */
1789 	struct ubuf_info		*uarg;
1790 };
1791 void tcp_free_fastopen_req(struct tcp_sock *tp);
1792 void tcp_fastopen_destroy_cipher(struct sock *sk);
1793 void tcp_fastopen_ctx_destroy(struct net *net);
1794 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1795 			      void *primary_key, void *backup_key);
1796 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1797 			    u64 *key);
1798 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1799 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1800 			      struct request_sock *req,
1801 			      struct tcp_fastopen_cookie *foc,
1802 			      const struct dst_entry *dst);
1803 void tcp_fastopen_init_key_once(struct net *net);
1804 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1805 			     struct tcp_fastopen_cookie *cookie);
1806 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1807 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1808 #define TCP_FASTOPEN_KEY_MAX 2
1809 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1810 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1811 
1812 /* Fastopen key context */
1813 struct tcp_fastopen_context {
1814 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1815 	int		num;
1816 	struct rcu_head	rcu;
1817 };
1818 
1819 void tcp_fastopen_active_disable(struct sock *sk);
1820 bool tcp_fastopen_active_should_disable(struct sock *sk);
1821 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1822 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1823 
1824 /* Caller needs to wrap with rcu_read_(un)lock() */
1825 static inline
1826 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1827 {
1828 	struct tcp_fastopen_context *ctx;
1829 
1830 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1831 	if (!ctx)
1832 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1833 	return ctx;
1834 }
1835 
1836 static inline
1837 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1838 			       const struct tcp_fastopen_cookie *orig)
1839 {
1840 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1841 	    orig->len == foc->len &&
1842 	    !memcmp(orig->val, foc->val, foc->len))
1843 		return true;
1844 	return false;
1845 }
1846 
1847 static inline
1848 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1849 {
1850 	return ctx->num;
1851 }
1852 
1853 /* Latencies incurred by various limits for a sender. They are
1854  * chronograph-like stats that are mutually exclusive.
1855  */
1856 enum tcp_chrono {
1857 	TCP_CHRONO_UNSPEC,
1858 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1859 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1860 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1861 	__TCP_CHRONO_MAX,
1862 };
1863 
1864 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1865 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1866 
1867 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1868  * the same memory storage than skb->destructor/_skb_refdst
1869  */
1870 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1871 {
1872 	skb->destructor = NULL;
1873 	skb->_skb_refdst = 0UL;
1874 }
1875 
1876 #define tcp_skb_tsorted_save(skb) {		\
1877 	unsigned long _save = skb->_skb_refdst;	\
1878 	skb->_skb_refdst = 0UL;
1879 
1880 #define tcp_skb_tsorted_restore(skb)		\
1881 	skb->_skb_refdst = _save;		\
1882 }
1883 
1884 void tcp_write_queue_purge(struct sock *sk);
1885 
1886 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1887 {
1888 	return skb_rb_first(&sk->tcp_rtx_queue);
1889 }
1890 
1891 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1892 {
1893 	return skb_rb_last(&sk->tcp_rtx_queue);
1894 }
1895 
1896 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1897 {
1898 	return skb_peek_tail(&sk->sk_write_queue);
1899 }
1900 
1901 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1902 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1903 
1904 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1905 {
1906 	return skb_peek(&sk->sk_write_queue);
1907 }
1908 
1909 static inline bool tcp_skb_is_last(const struct sock *sk,
1910 				   const struct sk_buff *skb)
1911 {
1912 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1913 }
1914 
1915 /**
1916  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1917  * @sk: socket
1918  *
1919  * Since the write queue can have a temporary empty skb in it,
1920  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1921  */
1922 static inline bool tcp_write_queue_empty(const struct sock *sk)
1923 {
1924 	const struct tcp_sock *tp = tcp_sk(sk);
1925 
1926 	return tp->write_seq == tp->snd_nxt;
1927 }
1928 
1929 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1930 {
1931 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1932 }
1933 
1934 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1935 {
1936 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1937 }
1938 
1939 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1940 {
1941 	__skb_queue_tail(&sk->sk_write_queue, skb);
1942 
1943 	/* Queue it, remembering where we must start sending. */
1944 	if (sk->sk_write_queue.next == skb)
1945 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1946 }
1947 
1948 /* Insert new before skb on the write queue of sk.  */
1949 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1950 						  struct sk_buff *skb,
1951 						  struct sock *sk)
1952 {
1953 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1954 }
1955 
1956 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1957 {
1958 	tcp_skb_tsorted_anchor_cleanup(skb);
1959 	__skb_unlink(skb, &sk->sk_write_queue);
1960 }
1961 
1962 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1963 
1964 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1965 {
1966 	tcp_skb_tsorted_anchor_cleanup(skb);
1967 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1968 }
1969 
1970 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1971 {
1972 	list_del(&skb->tcp_tsorted_anchor);
1973 	tcp_rtx_queue_unlink(skb, sk);
1974 	tcp_wmem_free_skb(sk, skb);
1975 }
1976 
1977 static inline void tcp_push_pending_frames(struct sock *sk)
1978 {
1979 	if (tcp_send_head(sk)) {
1980 		struct tcp_sock *tp = tcp_sk(sk);
1981 
1982 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1983 	}
1984 }
1985 
1986 /* Start sequence of the skb just after the highest skb with SACKed
1987  * bit, valid only if sacked_out > 0 or when the caller has ensured
1988  * validity by itself.
1989  */
1990 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1991 {
1992 	if (!tp->sacked_out)
1993 		return tp->snd_una;
1994 
1995 	if (tp->highest_sack == NULL)
1996 		return tp->snd_nxt;
1997 
1998 	return TCP_SKB_CB(tp->highest_sack)->seq;
1999 }
2000 
2001 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2002 {
2003 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2004 }
2005 
2006 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2007 {
2008 	return tcp_sk(sk)->highest_sack;
2009 }
2010 
2011 static inline void tcp_highest_sack_reset(struct sock *sk)
2012 {
2013 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2014 }
2015 
2016 /* Called when old skb is about to be deleted and replaced by new skb */
2017 static inline void tcp_highest_sack_replace(struct sock *sk,
2018 					    struct sk_buff *old,
2019 					    struct sk_buff *new)
2020 {
2021 	if (old == tcp_highest_sack(sk))
2022 		tcp_sk(sk)->highest_sack = new;
2023 }
2024 
2025 /* This helper checks if socket has IP_TRANSPARENT set */
2026 static inline bool inet_sk_transparent(const struct sock *sk)
2027 {
2028 	switch (sk->sk_state) {
2029 	case TCP_TIME_WAIT:
2030 		return inet_twsk(sk)->tw_transparent;
2031 	case TCP_NEW_SYN_RECV:
2032 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2033 	}
2034 	return inet_sk(sk)->transparent;
2035 }
2036 
2037 /* Determines whether this is a thin stream (which may suffer from
2038  * increased latency). Used to trigger latency-reducing mechanisms.
2039  */
2040 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2041 {
2042 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2043 }
2044 
2045 /* /proc */
2046 enum tcp_seq_states {
2047 	TCP_SEQ_STATE_LISTENING,
2048 	TCP_SEQ_STATE_ESTABLISHED,
2049 };
2050 
2051 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2052 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2053 void tcp_seq_stop(struct seq_file *seq, void *v);
2054 
2055 struct tcp_seq_afinfo {
2056 	sa_family_t			family;
2057 };
2058 
2059 struct tcp_iter_state {
2060 	struct seq_net_private	p;
2061 	enum tcp_seq_states	state;
2062 	struct sock		*syn_wait_sk;
2063 	int			bucket, offset, sbucket, num;
2064 	loff_t			last_pos;
2065 };
2066 
2067 extern struct request_sock_ops tcp_request_sock_ops;
2068 extern struct request_sock_ops tcp6_request_sock_ops;
2069 
2070 void tcp_v4_destroy_sock(struct sock *sk);
2071 
2072 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2073 				netdev_features_t features);
2074 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2075 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2076 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2077 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2078 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2079 void tcp_gro_complete(struct sk_buff *skb);
2080 
2081 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2082 
2083 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2084 {
2085 	struct net *net = sock_net((struct sock *)tp);
2086 	u32 val;
2087 
2088 	val = READ_ONCE(tp->notsent_lowat);
2089 
2090 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2091 }
2092 
2093 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2094 
2095 #ifdef CONFIG_PROC_FS
2096 int tcp4_proc_init(void);
2097 void tcp4_proc_exit(void);
2098 #endif
2099 
2100 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2101 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2102 		     const struct tcp_request_sock_ops *af_ops,
2103 		     struct sock *sk, struct sk_buff *skb);
2104 
2105 /* TCP af-specific functions */
2106 struct tcp_sock_af_ops {
2107 #ifdef CONFIG_TCP_MD5SIG
2108 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2109 						const struct sock *addr_sk);
2110 	int		(*calc_md5_hash)(char *location,
2111 					 const struct tcp_md5sig_key *md5,
2112 					 const struct sock *sk,
2113 					 const struct sk_buff *skb);
2114 	int		(*md5_parse)(struct sock *sk,
2115 				     int optname,
2116 				     sockptr_t optval,
2117 				     int optlen);
2118 #endif
2119 };
2120 
2121 struct tcp_request_sock_ops {
2122 	u16 mss_clamp;
2123 #ifdef CONFIG_TCP_MD5SIG
2124 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2125 						 const struct sock *addr_sk);
2126 	int		(*calc_md5_hash) (char *location,
2127 					  const struct tcp_md5sig_key *md5,
2128 					  const struct sock *sk,
2129 					  const struct sk_buff *skb);
2130 #endif
2131 #ifdef CONFIG_SYN_COOKIES
2132 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2133 				 __u16 *mss);
2134 #endif
2135 	struct dst_entry *(*route_req)(const struct sock *sk,
2136 				       struct sk_buff *skb,
2137 				       struct flowi *fl,
2138 				       struct request_sock *req);
2139 	u32 (*init_seq)(const struct sk_buff *skb);
2140 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2141 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2142 			   struct flowi *fl, struct request_sock *req,
2143 			   struct tcp_fastopen_cookie *foc,
2144 			   enum tcp_synack_type synack_type,
2145 			   struct sk_buff *syn_skb);
2146 };
2147 
2148 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2149 #if IS_ENABLED(CONFIG_IPV6)
2150 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2151 #endif
2152 
2153 #ifdef CONFIG_SYN_COOKIES
2154 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2155 					 const struct sock *sk, struct sk_buff *skb,
2156 					 __u16 *mss)
2157 {
2158 	tcp_synq_overflow(sk);
2159 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2160 	return ops->cookie_init_seq(skb, mss);
2161 }
2162 #else
2163 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2164 					 const struct sock *sk, struct sk_buff *skb,
2165 					 __u16 *mss)
2166 {
2167 	return 0;
2168 }
2169 #endif
2170 
2171 int tcpv4_offload_init(void);
2172 
2173 void tcp_v4_init(void);
2174 void tcp_init(void);
2175 
2176 /* tcp_recovery.c */
2177 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2178 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2179 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2180 				u32 reo_wnd);
2181 extern bool tcp_rack_mark_lost(struct sock *sk);
2182 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2183 			     u64 xmit_time);
2184 extern void tcp_rack_reo_timeout(struct sock *sk);
2185 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2186 
2187 /* tcp_plb.c */
2188 
2189 /*
2190  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2191  * expects cong_ratio which represents fraction of traffic that experienced
2192  * congestion over a single RTT. In order to avoid floating point operations,
2193  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2194  */
2195 #define TCP_PLB_SCALE 8
2196 
2197 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2198 struct tcp_plb_state {
2199 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2200 		unused:3;
2201 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2202 };
2203 
2204 static inline void tcp_plb_init(const struct sock *sk,
2205 				struct tcp_plb_state *plb)
2206 {
2207 	plb->consec_cong_rounds = 0;
2208 	plb->pause_until = 0;
2209 }
2210 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2211 			  const int cong_ratio);
2212 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2213 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2214 
2215 /* At how many usecs into the future should the RTO fire? */
2216 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2217 {
2218 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2219 	u32 rto = inet_csk(sk)->icsk_rto;
2220 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2221 
2222 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2223 }
2224 
2225 /*
2226  * Save and compile IPv4 options, return a pointer to it
2227  */
2228 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2229 							 struct sk_buff *skb)
2230 {
2231 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2232 	struct ip_options_rcu *dopt = NULL;
2233 
2234 	if (opt->optlen) {
2235 		int opt_size = sizeof(*dopt) + opt->optlen;
2236 
2237 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2238 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2239 			kfree(dopt);
2240 			dopt = NULL;
2241 		}
2242 	}
2243 	return dopt;
2244 }
2245 
2246 /* locally generated TCP pure ACKs have skb->truesize == 2
2247  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2248  * This is much faster than dissecting the packet to find out.
2249  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2250  */
2251 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2252 {
2253 	return skb->truesize == 2;
2254 }
2255 
2256 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2257 {
2258 	skb->truesize = 2;
2259 }
2260 
2261 static inline int tcp_inq(struct sock *sk)
2262 {
2263 	struct tcp_sock *tp = tcp_sk(sk);
2264 	int answ;
2265 
2266 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2267 		answ = 0;
2268 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2269 		   !tp->urg_data ||
2270 		   before(tp->urg_seq, tp->copied_seq) ||
2271 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2272 
2273 		answ = tp->rcv_nxt - tp->copied_seq;
2274 
2275 		/* Subtract 1, if FIN was received */
2276 		if (answ && sock_flag(sk, SOCK_DONE))
2277 			answ--;
2278 	} else {
2279 		answ = tp->urg_seq - tp->copied_seq;
2280 	}
2281 
2282 	return answ;
2283 }
2284 
2285 int tcp_peek_len(struct socket *sock);
2286 
2287 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2288 {
2289 	u16 segs_in;
2290 
2291 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2292 
2293 	/* We update these fields while other threads might
2294 	 * read them from tcp_get_info()
2295 	 */
2296 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2297 	if (skb->len > tcp_hdrlen(skb))
2298 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2299 }
2300 
2301 /*
2302  * TCP listen path runs lockless.
2303  * We forced "struct sock" to be const qualified to make sure
2304  * we don't modify one of its field by mistake.
2305  * Here, we increment sk_drops which is an atomic_t, so we can safely
2306  * make sock writable again.
2307  */
2308 static inline void tcp_listendrop(const struct sock *sk)
2309 {
2310 	atomic_inc(&((struct sock *)sk)->sk_drops);
2311 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2312 }
2313 
2314 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2315 
2316 /*
2317  * Interface for adding Upper Level Protocols over TCP
2318  */
2319 
2320 #define TCP_ULP_NAME_MAX	16
2321 #define TCP_ULP_MAX		128
2322 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2323 
2324 struct tcp_ulp_ops {
2325 	struct list_head	list;
2326 
2327 	/* initialize ulp */
2328 	int (*init)(struct sock *sk);
2329 	/* update ulp */
2330 	void (*update)(struct sock *sk, struct proto *p,
2331 		       void (*write_space)(struct sock *sk));
2332 	/* cleanup ulp */
2333 	void (*release)(struct sock *sk);
2334 	/* diagnostic */
2335 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2336 	size_t (*get_info_size)(const struct sock *sk);
2337 	/* clone ulp */
2338 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2339 		      const gfp_t priority);
2340 
2341 	char		name[TCP_ULP_NAME_MAX];
2342 	struct module	*owner;
2343 };
2344 int tcp_register_ulp(struct tcp_ulp_ops *type);
2345 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2346 int tcp_set_ulp(struct sock *sk, const char *name);
2347 void tcp_get_available_ulp(char *buf, size_t len);
2348 void tcp_cleanup_ulp(struct sock *sk);
2349 void tcp_update_ulp(struct sock *sk, struct proto *p,
2350 		    void (*write_space)(struct sock *sk));
2351 
2352 #define MODULE_ALIAS_TCP_ULP(name)				\
2353 	__MODULE_INFO(alias, alias_userspace, name);		\
2354 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2355 
2356 #ifdef CONFIG_NET_SOCK_MSG
2357 struct sk_msg;
2358 struct sk_psock;
2359 
2360 #ifdef CONFIG_BPF_SYSCALL
2361 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2362 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2363 #endif /* CONFIG_BPF_SYSCALL */
2364 
2365 #ifdef CONFIG_INET
2366 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2367 #else
2368 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2369 {
2370 }
2371 #endif
2372 
2373 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2374 			  struct sk_msg *msg, u32 bytes, int flags);
2375 #endif /* CONFIG_NET_SOCK_MSG */
2376 
2377 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2378 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2379 {
2380 }
2381 #endif
2382 
2383 #ifdef CONFIG_CGROUP_BPF
2384 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2385 				      struct sk_buff *skb,
2386 				      unsigned int end_offset)
2387 {
2388 	skops->skb = skb;
2389 	skops->skb_data_end = skb->data + end_offset;
2390 }
2391 #else
2392 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2393 				      struct sk_buff *skb,
2394 				      unsigned int end_offset)
2395 {
2396 }
2397 #endif
2398 
2399 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2400  * is < 0, then the BPF op failed (for example if the loaded BPF
2401  * program does not support the chosen operation or there is no BPF
2402  * program loaded).
2403  */
2404 #ifdef CONFIG_BPF
2405 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2406 {
2407 	struct bpf_sock_ops_kern sock_ops;
2408 	int ret;
2409 
2410 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2411 	if (sk_fullsock(sk)) {
2412 		sock_ops.is_fullsock = 1;
2413 		sock_owned_by_me(sk);
2414 	}
2415 
2416 	sock_ops.sk = sk;
2417 	sock_ops.op = op;
2418 	if (nargs > 0)
2419 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2420 
2421 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2422 	if (ret == 0)
2423 		ret = sock_ops.reply;
2424 	else
2425 		ret = -1;
2426 	return ret;
2427 }
2428 
2429 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2430 {
2431 	u32 args[2] = {arg1, arg2};
2432 
2433 	return tcp_call_bpf(sk, op, 2, args);
2434 }
2435 
2436 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2437 				    u32 arg3)
2438 {
2439 	u32 args[3] = {arg1, arg2, arg3};
2440 
2441 	return tcp_call_bpf(sk, op, 3, args);
2442 }
2443 
2444 #else
2445 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2446 {
2447 	return -EPERM;
2448 }
2449 
2450 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2451 {
2452 	return -EPERM;
2453 }
2454 
2455 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2456 				    u32 arg3)
2457 {
2458 	return -EPERM;
2459 }
2460 
2461 #endif
2462 
2463 static inline u32 tcp_timeout_init(struct sock *sk)
2464 {
2465 	int timeout;
2466 
2467 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2468 
2469 	if (timeout <= 0)
2470 		timeout = TCP_TIMEOUT_INIT;
2471 	return min_t(int, timeout, TCP_RTO_MAX);
2472 }
2473 
2474 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2475 {
2476 	int rwnd;
2477 
2478 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2479 
2480 	if (rwnd < 0)
2481 		rwnd = 0;
2482 	return rwnd;
2483 }
2484 
2485 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2486 {
2487 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2488 }
2489 
2490 static inline void tcp_bpf_rtt(struct sock *sk)
2491 {
2492 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2493 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2494 }
2495 
2496 #if IS_ENABLED(CONFIG_SMC)
2497 extern struct static_key_false tcp_have_smc;
2498 #endif
2499 
2500 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2501 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2502 			     void (*cad)(struct sock *sk, u32 ack_seq));
2503 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2504 void clean_acked_data_flush(void);
2505 #endif
2506 
2507 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2508 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2509 				    const struct tcp_sock *tp)
2510 {
2511 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2512 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2513 }
2514 
2515 /* Compute Earliest Departure Time for some control packets
2516  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2517  */
2518 static inline u64 tcp_transmit_time(const struct sock *sk)
2519 {
2520 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2521 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2522 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2523 
2524 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2525 	}
2526 	return 0;
2527 }
2528 
2529 #endif	/* _TCP_H */
2530