xref: /openbmc/linux/include/net/tcp.h (revision 6197e5b7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 		   unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 		int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_data_ready(struct sock *sk);
416 #ifdef CONFIG_MMU
417 int tcp_mmap(struct file *file, struct socket *sock,
418 	     struct vm_area_struct *vma);
419 #endif
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 		       struct tcp_options_received *opt_rx,
422 		       int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424 
425 /*
426  *	BPF SKB-less helpers
427  */
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 			 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 			 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 			  const struct tcp_request_sock_ops *af_ops,
434 			  struct sock *sk, struct tcphdr *th);
435 /*
436  *	TCP v4 functions exported for the inet6 API
437  */
438 
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct dst_entry *dst,
451 				  struct request_sock *req_unhash,
452 				  bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 	TCP_SYNACK_NORMAL,
458 	TCP_SYNACK_FASTOPEN,
459 	TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc,
464 				enum tcp_synack_type synack_type,
465 				struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
467 
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
471 
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 				 struct request_sock *req,
475 				 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 		      u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 					    struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			if (!time_between32(now, last_overflow,
510 					    last_overflow + HZ))
511 				WRITE_ONCE(reuse->synq_overflow_ts, now);
512 			return;
513 		}
514 	}
515 
516 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 	if (!time_between32(now, last_overflow, last_overflow + HZ))
518 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
519 }
520 
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
523 {
524 	unsigned int last_overflow;
525 	unsigned int now = jiffies;
526 
527 	if (sk->sk_reuseport) {
528 		struct sock_reuseport *reuse;
529 
530 		reuse = rcu_dereference(sk->sk_reuseport_cb);
531 		if (likely(reuse)) {
532 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 			return !time_between32(now, last_overflow - HZ,
534 					       last_overflow +
535 					       TCP_SYNCOOKIE_VALID);
536 		}
537 	}
538 
539 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
540 
541 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 	 * then we're under synflood. However, we have to use
543 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 	 * which could lead to rejecting a valid syncookie.
547 	 */
548 	return !time_between32(now, last_overflow - HZ,
549 			       last_overflow + TCP_SYNCOOKIE_VALID);
550 }
551 
552 static inline u32 tcp_cookie_time(void)
553 {
554 	u64 val = get_jiffies_64();
555 
556 	do_div(val, TCP_SYNCOOKIE_PERIOD);
557 	return val;
558 }
559 
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
561 			      u16 *mssp);
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 			     struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 		   const struct net *net, const struct dst_entry *dst);
568 
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
571 		      u32 cookie);
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
573 
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 			      const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 #endif
578 /* tcp_output.c */
579 
580 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581 			       int nonagle);
582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584 void tcp_retransmit_timer(struct sock *sk);
585 void tcp_xmit_retransmit_queue(struct sock *);
586 void tcp_simple_retransmit(struct sock *);
587 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589 enum tcp_queue {
590 	TCP_FRAG_IN_WRITE_QUEUE,
591 	TCP_FRAG_IN_RTX_QUEUE,
592 };
593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594 		 struct sk_buff *skb, u32 len,
595 		 unsigned int mss_now, gfp_t gfp);
596 
597 void tcp_send_probe0(struct sock *);
598 void tcp_send_partial(struct sock *);
599 int tcp_write_wakeup(struct sock *, int mib);
600 void tcp_send_fin(struct sock *sk);
601 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602 int tcp_send_synack(struct sock *);
603 void tcp_push_one(struct sock *, unsigned int mss_now);
604 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605 void tcp_send_ack(struct sock *sk);
606 void tcp_send_delayed_ack(struct sock *sk);
607 void tcp_send_loss_probe(struct sock *sk);
608 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610 			     const struct sk_buff *next_skb);
611 
612 /* tcp_input.c */
613 void tcp_rearm_rto(struct sock *sk);
614 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615 void tcp_reset(struct sock *sk, struct sk_buff *skb);
616 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617 void tcp_fin(struct sock *sk);
618 
619 /* tcp_timer.c */
620 void tcp_init_xmit_timers(struct sock *);
621 static inline void tcp_clear_xmit_timers(struct sock *sk)
622 {
623 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
624 		__sock_put(sk);
625 
626 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
627 		__sock_put(sk);
628 
629 	inet_csk_clear_xmit_timers(sk);
630 }
631 
632 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
633 unsigned int tcp_current_mss(struct sock *sk);
634 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
635 
636 /* Bound MSS / TSO packet size with the half of the window */
637 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
638 {
639 	int cutoff;
640 
641 	/* When peer uses tiny windows, there is no use in packetizing
642 	 * to sub-MSS pieces for the sake of SWS or making sure there
643 	 * are enough packets in the pipe for fast recovery.
644 	 *
645 	 * On the other hand, for extremely large MSS devices, handling
646 	 * smaller than MSS windows in this way does make sense.
647 	 */
648 	if (tp->max_window > TCP_MSS_DEFAULT)
649 		cutoff = (tp->max_window >> 1);
650 	else
651 		cutoff = tp->max_window;
652 
653 	if (cutoff && pktsize > cutoff)
654 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
655 	else
656 		return pktsize;
657 }
658 
659 /* tcp.c */
660 void tcp_get_info(struct sock *, struct tcp_info *);
661 
662 /* Read 'sendfile()'-style from a TCP socket */
663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
664 		  sk_read_actor_t recv_actor);
665 
666 void tcp_initialize_rcv_mss(struct sock *sk);
667 
668 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
669 int tcp_mss_to_mtu(struct sock *sk, int mss);
670 void tcp_mtup_init(struct sock *sk);
671 
672 static inline void tcp_bound_rto(const struct sock *sk)
673 {
674 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
675 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
676 }
677 
678 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
679 {
680 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
681 }
682 
683 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
684 {
685 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
686 			       ntohl(TCP_FLAG_ACK) |
687 			       snd_wnd);
688 }
689 
690 static inline void tcp_fast_path_on(struct tcp_sock *tp)
691 {
692 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
693 }
694 
695 static inline void tcp_fast_path_check(struct sock *sk)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 
699 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
700 	    tp->rcv_wnd &&
701 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
702 	    !tp->urg_data)
703 		tcp_fast_path_on(tp);
704 }
705 
706 /* Compute the actual rto_min value */
707 static inline u32 tcp_rto_min(struct sock *sk)
708 {
709 	const struct dst_entry *dst = __sk_dst_get(sk);
710 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
711 
712 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
713 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
714 	return rto_min;
715 }
716 
717 static inline u32 tcp_rto_min_us(struct sock *sk)
718 {
719 	return jiffies_to_usecs(tcp_rto_min(sk));
720 }
721 
722 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
723 {
724 	return dst_metric_locked(dst, RTAX_CC_ALGO);
725 }
726 
727 /* Minimum RTT in usec. ~0 means not available. */
728 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
729 {
730 	return minmax_get(&tp->rtt_min);
731 }
732 
733 /* Compute the actual receive window we are currently advertising.
734  * Rcv_nxt can be after the window if our peer push more data
735  * than the offered window.
736  */
737 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
738 {
739 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740 
741 	if (win < 0)
742 		win = 0;
743 	return (u32) win;
744 }
745 
746 /* Choose a new window, without checks for shrinking, and without
747  * scaling applied to the result.  The caller does these things
748  * if necessary.  This is a "raw" window selection.
749  */
750 u32 __tcp_select_window(struct sock *sk);
751 
752 void tcp_send_window_probe(struct sock *sk);
753 
754 /* TCP uses 32bit jiffies to save some space.
755  * Note that this is different from tcp_time_stamp, which
756  * historically has been the same until linux-4.13.
757  */
758 #define tcp_jiffies32 ((u32)jiffies)
759 
760 /*
761  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
762  * It is no longer tied to jiffies, but to 1 ms clock.
763  * Note: double check if you want to use tcp_jiffies32 instead of this.
764  */
765 #define TCP_TS_HZ	1000
766 
767 static inline u64 tcp_clock_ns(void)
768 {
769 	return ktime_get_ns();
770 }
771 
772 static inline u64 tcp_clock_us(void)
773 {
774 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
775 }
776 
777 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
778 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
779 {
780 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
781 }
782 
783 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
784 static inline u32 tcp_ns_to_ts(u64 ns)
785 {
786 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788 
789 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
790 static inline u32 tcp_time_stamp_raw(void)
791 {
792 	return tcp_ns_to_ts(tcp_clock_ns());
793 }
794 
795 void tcp_mstamp_refresh(struct tcp_sock *tp);
796 
797 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
798 {
799 	return max_t(s64, t1 - t0, 0);
800 }
801 
802 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
803 {
804 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
805 }
806 
807 /* provide the departure time in us unit */
808 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
809 {
810 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
811 }
812 
813 
814 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
815 
816 #define TCPHDR_FIN 0x01
817 #define TCPHDR_SYN 0x02
818 #define TCPHDR_RST 0x04
819 #define TCPHDR_PSH 0x08
820 #define TCPHDR_ACK 0x10
821 #define TCPHDR_URG 0x20
822 #define TCPHDR_ECE 0x40
823 #define TCPHDR_CWR 0x80
824 
825 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
826 
827 /* This is what the send packet queuing engine uses to pass
828  * TCP per-packet control information to the transmission code.
829  * We also store the host-order sequence numbers in here too.
830  * This is 44 bytes if IPV6 is enabled.
831  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
832  */
833 struct tcp_skb_cb {
834 	__u32		seq;		/* Starting sequence number	*/
835 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
836 	union {
837 		/* Note : tcp_tw_isn is used in input path only
838 		 *	  (isn chosen by tcp_timewait_state_process())
839 		 *
840 		 * 	  tcp_gso_segs/size are used in write queue only,
841 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
842 		 */
843 		__u32		tcp_tw_isn;
844 		struct {
845 			u16	tcp_gso_segs;
846 			u16	tcp_gso_size;
847 		};
848 	};
849 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
850 
851 	__u8		sacked;		/* State flags for SACK.	*/
852 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
853 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
854 #define TCPCB_LOST		0x04	/* SKB is lost			*/
855 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
856 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
857 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
858 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
859 				TCPCB_REPAIRED)
860 
861 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
862 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
863 			eor:1,		/* Is skb MSG_EOR marked? */
864 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
865 			unused:5;
866 	__u32		ack_seq;	/* Sequence number ACK'd	*/
867 	union {
868 		struct {
869 			/* There is space for up to 24 bytes */
870 			__u32 in_flight:30,/* Bytes in flight at transmit */
871 			      is_app_limited:1, /* cwnd not fully used? */
872 			      unused:1;
873 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
874 			__u32 delivered;
875 			/* start of send pipeline phase */
876 			u64 first_tx_mstamp;
877 			/* when we reached the "delivered" count */
878 			u64 delivered_mstamp;
879 		} tx;   /* only used for outgoing skbs */
880 		union {
881 			struct inet_skb_parm	h4;
882 #if IS_ENABLED(CONFIG_IPV6)
883 			struct inet6_skb_parm	h6;
884 #endif
885 		} header;	/* For incoming skbs */
886 	};
887 };
888 
889 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
890 
891 extern const struct inet_connection_sock_af_ops ipv4_specific;
892 
893 #if IS_ENABLED(CONFIG_IPV6)
894 /* This is the variant of inet6_iif() that must be used by TCP,
895  * as TCP moves IP6CB into a different location in skb->cb[]
896  */
897 static inline int tcp_v6_iif(const struct sk_buff *skb)
898 {
899 	return TCP_SKB_CB(skb)->header.h6.iif;
900 }
901 
902 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
903 {
904 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
905 
906 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
907 }
908 
909 /* TCP_SKB_CB reference means this can not be used from early demux */
910 static inline int tcp_v6_sdif(const struct sk_buff *skb)
911 {
912 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
913 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
914 		return TCP_SKB_CB(skb)->header.h6.iif;
915 #endif
916 	return 0;
917 }
918 
919 extern const struct inet_connection_sock_af_ops ipv6_specific;
920 
921 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
922 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
923 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
924 
925 #endif
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v4_sdif(struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
932 		return TCP_SKB_CB(skb)->header.h4.iif;
933 #endif
934 	return 0;
935 }
936 
937 /* Due to TSO, an SKB can be composed of multiple actual
938  * packets.  To keep these tracked properly, we use this.
939  */
940 static inline int tcp_skb_pcount(const struct sk_buff *skb)
941 {
942 	return TCP_SKB_CB(skb)->tcp_gso_segs;
943 }
944 
945 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
946 {
947 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
948 }
949 
950 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
951 {
952 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
953 }
954 
955 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
956 static inline int tcp_skb_mss(const struct sk_buff *skb)
957 {
958 	return TCP_SKB_CB(skb)->tcp_gso_size;
959 }
960 
961 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
962 {
963 	return likely(!TCP_SKB_CB(skb)->eor);
964 }
965 
966 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
967 					const struct sk_buff *from)
968 {
969 	return likely(tcp_skb_can_collapse_to(to) &&
970 		      mptcp_skb_can_collapse(to, from));
971 }
972 
973 /* Events passed to congestion control interface */
974 enum tcp_ca_event {
975 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
976 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
977 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
978 	CA_EVENT_LOSS,		/* loss timeout */
979 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
980 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
981 };
982 
983 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
984 enum tcp_ca_ack_event_flags {
985 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
986 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
987 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
988 };
989 
990 /*
991  * Interface for adding new TCP congestion control handlers
992  */
993 #define TCP_CA_NAME_MAX	16
994 #define TCP_CA_MAX	128
995 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
996 
997 #define TCP_CA_UNSPEC	0
998 
999 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1000 #define TCP_CONG_NON_RESTRICTED 0x1
1001 /* Requires ECN/ECT set on all packets */
1002 #define TCP_CONG_NEEDS_ECN	0x2
1003 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1004 
1005 union tcp_cc_info;
1006 
1007 struct ack_sample {
1008 	u32 pkts_acked;
1009 	s32 rtt_us;
1010 	u32 in_flight;
1011 };
1012 
1013 /* A rate sample measures the number of (original/retransmitted) data
1014  * packets delivered "delivered" over an interval of time "interval_us".
1015  * The tcp_rate.c code fills in the rate sample, and congestion
1016  * control modules that define a cong_control function to run at the end
1017  * of ACK processing can optionally chose to consult this sample when
1018  * setting cwnd and pacing rate.
1019  * A sample is invalid if "delivered" or "interval_us" is negative.
1020  */
1021 struct rate_sample {
1022 	u64  prior_mstamp; /* starting timestamp for interval */
1023 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1024 	s32  delivered;		/* number of packets delivered over interval */
1025 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1026 	u32 snd_interval_us;	/* snd interval for delivered packets */
1027 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1028 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1029 	int  losses;		/* number of packets marked lost upon ACK */
1030 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1031 	u32  prior_in_flight;	/* in flight before this ACK */
1032 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1033 	bool is_retrans;	/* is sample from retransmission? */
1034 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1035 };
1036 
1037 struct tcp_congestion_ops {
1038 	struct list_head	list;
1039 	u32 key;
1040 	u32 flags;
1041 
1042 	/* initialize private data (optional) */
1043 	void (*init)(struct sock *sk);
1044 	/* cleanup private data  (optional) */
1045 	void (*release)(struct sock *sk);
1046 
1047 	/* return slow start threshold (required) */
1048 	u32 (*ssthresh)(struct sock *sk);
1049 	/* do new cwnd calculation (required) */
1050 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1051 	/* call before changing ca_state (optional) */
1052 	void (*set_state)(struct sock *sk, u8 new_state);
1053 	/* call when cwnd event occurs (optional) */
1054 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1055 	/* call when ack arrives (optional) */
1056 	void (*in_ack_event)(struct sock *sk, u32 flags);
1057 	/* new value of cwnd after loss (required) */
1058 	u32  (*undo_cwnd)(struct sock *sk);
1059 	/* hook for packet ack accounting (optional) */
1060 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1061 	/* override sysctl_tcp_min_tso_segs */
1062 	u32 (*min_tso_segs)(struct sock *sk);
1063 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1064 	u32 (*sndbuf_expand)(struct sock *sk);
1065 	/* call when packets are delivered to update cwnd and pacing rate,
1066 	 * after all the ca_state processing. (optional)
1067 	 */
1068 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1069 	/* get info for inet_diag (optional) */
1070 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1071 			   union tcp_cc_info *info);
1072 
1073 	char 		name[TCP_CA_NAME_MAX];
1074 	struct module 	*owner;
1075 };
1076 
1077 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1078 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1079 
1080 void tcp_assign_congestion_control(struct sock *sk);
1081 void tcp_init_congestion_control(struct sock *sk);
1082 void tcp_cleanup_congestion_control(struct sock *sk);
1083 int tcp_set_default_congestion_control(struct net *net, const char *name);
1084 void tcp_get_default_congestion_control(struct net *net, char *name);
1085 void tcp_get_available_congestion_control(char *buf, size_t len);
1086 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1087 int tcp_set_allowed_congestion_control(char *allowed);
1088 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1089 			       bool cap_net_admin);
1090 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1091 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1092 
1093 u32 tcp_reno_ssthresh(struct sock *sk);
1094 u32 tcp_reno_undo_cwnd(struct sock *sk);
1095 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1096 extern struct tcp_congestion_ops tcp_reno;
1097 
1098 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1099 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1100 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1101 #ifdef CONFIG_INET
1102 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1103 #else
1104 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1105 {
1106 	return NULL;
1107 }
1108 #endif
1109 
1110 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1111 {
1112 	const struct inet_connection_sock *icsk = inet_csk(sk);
1113 
1114 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1115 }
1116 
1117 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1118 {
1119 	struct inet_connection_sock *icsk = inet_csk(sk);
1120 
1121 	if (icsk->icsk_ca_ops->set_state)
1122 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1123 	icsk->icsk_ca_state = ca_state;
1124 }
1125 
1126 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1127 {
1128 	const struct inet_connection_sock *icsk = inet_csk(sk);
1129 
1130 	if (icsk->icsk_ca_ops->cwnd_event)
1131 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1132 }
1133 
1134 /* From tcp_rate.c */
1135 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1136 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1137 			    struct rate_sample *rs);
1138 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1139 		  bool is_sack_reneg, struct rate_sample *rs);
1140 void tcp_rate_check_app_limited(struct sock *sk);
1141 
1142 /* These functions determine how the current flow behaves in respect of SACK
1143  * handling. SACK is negotiated with the peer, and therefore it can vary
1144  * between different flows.
1145  *
1146  * tcp_is_sack - SACK enabled
1147  * tcp_is_reno - No SACK
1148  */
1149 static inline int tcp_is_sack(const struct tcp_sock *tp)
1150 {
1151 	return likely(tp->rx_opt.sack_ok);
1152 }
1153 
1154 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1155 {
1156 	return !tcp_is_sack(tp);
1157 }
1158 
1159 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1160 {
1161 	return tp->sacked_out + tp->lost_out;
1162 }
1163 
1164 /* This determines how many packets are "in the network" to the best
1165  * of our knowledge.  In many cases it is conservative, but where
1166  * detailed information is available from the receiver (via SACK
1167  * blocks etc.) we can make more aggressive calculations.
1168  *
1169  * Use this for decisions involving congestion control, use just
1170  * tp->packets_out to determine if the send queue is empty or not.
1171  *
1172  * Read this equation as:
1173  *
1174  *	"Packets sent once on transmission queue" MINUS
1175  *	"Packets left network, but not honestly ACKed yet" PLUS
1176  *	"Packets fast retransmitted"
1177  */
1178 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1179 {
1180 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1181 }
1182 
1183 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1184 
1185 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1186 {
1187 	return tp->snd_cwnd < tp->snd_ssthresh;
1188 }
1189 
1190 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1191 {
1192 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1193 }
1194 
1195 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1196 {
1197 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1198 	       (1 << inet_csk(sk)->icsk_ca_state);
1199 }
1200 
1201 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1202  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1203  * ssthresh.
1204  */
1205 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1206 {
1207 	const struct tcp_sock *tp = tcp_sk(sk);
1208 
1209 	if (tcp_in_cwnd_reduction(sk))
1210 		return tp->snd_ssthresh;
1211 	else
1212 		return max(tp->snd_ssthresh,
1213 			   ((tp->snd_cwnd >> 1) +
1214 			    (tp->snd_cwnd >> 2)));
1215 }
1216 
1217 /* Use define here intentionally to get WARN_ON location shown at the caller */
1218 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1219 
1220 void tcp_enter_cwr(struct sock *sk);
1221 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1222 
1223 /* The maximum number of MSS of available cwnd for which TSO defers
1224  * sending if not using sysctl_tcp_tso_win_divisor.
1225  */
1226 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1227 {
1228 	return 3;
1229 }
1230 
1231 /* Returns end sequence number of the receiver's advertised window */
1232 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1233 {
1234 	return tp->snd_una + tp->snd_wnd;
1235 }
1236 
1237 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1238  * flexible approach. The RFC suggests cwnd should not be raised unless
1239  * it was fully used previously. And that's exactly what we do in
1240  * congestion avoidance mode. But in slow start we allow cwnd to grow
1241  * as long as the application has used half the cwnd.
1242  * Example :
1243  *    cwnd is 10 (IW10), but application sends 9 frames.
1244  *    We allow cwnd to reach 18 when all frames are ACKed.
1245  * This check is safe because it's as aggressive as slow start which already
1246  * risks 100% overshoot. The advantage is that we discourage application to
1247  * either send more filler packets or data to artificially blow up the cwnd
1248  * usage, and allow application-limited process to probe bw more aggressively.
1249  */
1250 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1251 {
1252 	const struct tcp_sock *tp = tcp_sk(sk);
1253 
1254 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1255 	if (tcp_in_slow_start(tp))
1256 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1257 
1258 	return tp->is_cwnd_limited;
1259 }
1260 
1261 /* BBR congestion control needs pacing.
1262  * Same remark for SO_MAX_PACING_RATE.
1263  * sch_fq packet scheduler is efficiently handling pacing,
1264  * but is not always installed/used.
1265  * Return true if TCP stack should pace packets itself.
1266  */
1267 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1268 {
1269 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1270 }
1271 
1272 /* Estimates in how many jiffies next packet for this flow can be sent.
1273  * Scheduling a retransmit timer too early would be silly.
1274  */
1275 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1276 {
1277 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1278 
1279 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1280 }
1281 
1282 static inline void tcp_reset_xmit_timer(struct sock *sk,
1283 					const int what,
1284 					unsigned long when,
1285 					const unsigned long max_when)
1286 {
1287 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1288 				  max_when);
1289 }
1290 
1291 /* Something is really bad, we could not queue an additional packet,
1292  * because qdisc is full or receiver sent a 0 window, or we are paced.
1293  * We do not want to add fuel to the fire, or abort too early,
1294  * so make sure the timer we arm now is at least 200ms in the future,
1295  * regardless of current icsk_rto value (as it could be ~2ms)
1296  */
1297 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1298 {
1299 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1300 }
1301 
1302 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1303 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1304 					    unsigned long max_when)
1305 {
1306 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1307 			   inet_csk(sk)->icsk_backoff);
1308 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1309 
1310 	return (unsigned long)min_t(u64, when, max_when);
1311 }
1312 
1313 static inline void tcp_check_probe_timer(struct sock *sk)
1314 {
1315 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1316 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1317 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1318 }
1319 
1320 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1321 {
1322 	tp->snd_wl1 = seq;
1323 }
1324 
1325 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1326 {
1327 	tp->snd_wl1 = seq;
1328 }
1329 
1330 /*
1331  * Calculate(/check) TCP checksum
1332  */
1333 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1334 				   __be32 daddr, __wsum base)
1335 {
1336 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1337 }
1338 
1339 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1340 {
1341 	return !skb_csum_unnecessary(skb) &&
1342 		__skb_checksum_complete(skb);
1343 }
1344 
1345 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1346 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1347 void tcp_set_state(struct sock *sk, int state);
1348 void tcp_done(struct sock *sk);
1349 int tcp_abort(struct sock *sk, int err);
1350 
1351 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1352 {
1353 	rx_opt->dsack = 0;
1354 	rx_opt->num_sacks = 0;
1355 }
1356 
1357 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1358 
1359 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1360 {
1361 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1362 	struct tcp_sock *tp = tcp_sk(sk);
1363 	s32 delta;
1364 
1365 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1366 	    ca_ops->cong_control)
1367 		return;
1368 	delta = tcp_jiffies32 - tp->lsndtime;
1369 	if (delta > inet_csk(sk)->icsk_rto)
1370 		tcp_cwnd_restart(sk, delta);
1371 }
1372 
1373 /* Determine a window scaling and initial window to offer. */
1374 void tcp_select_initial_window(const struct sock *sk, int __space,
1375 			       __u32 mss, __u32 *rcv_wnd,
1376 			       __u32 *window_clamp, int wscale_ok,
1377 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1378 
1379 static inline int tcp_win_from_space(const struct sock *sk, int space)
1380 {
1381 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1382 
1383 	return tcp_adv_win_scale <= 0 ?
1384 		(space>>(-tcp_adv_win_scale)) :
1385 		space - (space>>tcp_adv_win_scale);
1386 }
1387 
1388 /* Note: caller must be prepared to deal with negative returns */
1389 static inline int tcp_space(const struct sock *sk)
1390 {
1391 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1392 				  READ_ONCE(sk->sk_backlog.len) -
1393 				  atomic_read(&sk->sk_rmem_alloc));
1394 }
1395 
1396 static inline int tcp_full_space(const struct sock *sk)
1397 {
1398 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1399 }
1400 
1401 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1402 
1403 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1404  * If 87.5 % (7/8) of the space has been consumed, we want to override
1405  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1406  * len/truesize ratio.
1407  */
1408 static inline bool tcp_rmem_pressure(const struct sock *sk)
1409 {
1410 	int rcvbuf, threshold;
1411 
1412 	if (tcp_under_memory_pressure(sk))
1413 		return true;
1414 
1415 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1416 	threshold = rcvbuf - (rcvbuf >> 3);
1417 
1418 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1419 }
1420 
1421 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1422 {
1423 	const struct tcp_sock *tp = tcp_sk(sk);
1424 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1425 
1426 	if (avail <= 0)
1427 		return false;
1428 
1429 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1430 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1431 }
1432 
1433 extern void tcp_openreq_init_rwin(struct request_sock *req,
1434 				  const struct sock *sk_listener,
1435 				  const struct dst_entry *dst);
1436 
1437 void tcp_enter_memory_pressure(struct sock *sk);
1438 void tcp_leave_memory_pressure(struct sock *sk);
1439 
1440 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1441 {
1442 	struct net *net = sock_net((struct sock *)tp);
1443 
1444 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1445 }
1446 
1447 static inline int keepalive_time_when(const struct tcp_sock *tp)
1448 {
1449 	struct net *net = sock_net((struct sock *)tp);
1450 
1451 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1452 }
1453 
1454 static inline int keepalive_probes(const struct tcp_sock *tp)
1455 {
1456 	struct net *net = sock_net((struct sock *)tp);
1457 
1458 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1459 }
1460 
1461 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1462 {
1463 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1464 
1465 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1466 			  tcp_jiffies32 - tp->rcv_tstamp);
1467 }
1468 
1469 static inline int tcp_fin_time(const struct sock *sk)
1470 {
1471 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1472 	const int rto = inet_csk(sk)->icsk_rto;
1473 
1474 	if (fin_timeout < (rto << 2) - (rto >> 1))
1475 		fin_timeout = (rto << 2) - (rto >> 1);
1476 
1477 	return fin_timeout;
1478 }
1479 
1480 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1481 				  int paws_win)
1482 {
1483 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1484 		return true;
1485 	if (unlikely(!time_before32(ktime_get_seconds(),
1486 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1487 		return true;
1488 	/*
1489 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1490 	 * then following tcp messages have valid values. Ignore 0 value,
1491 	 * or else 'negative' tsval might forbid us to accept their packets.
1492 	 */
1493 	if (!rx_opt->ts_recent)
1494 		return true;
1495 	return false;
1496 }
1497 
1498 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1499 				   int rst)
1500 {
1501 	if (tcp_paws_check(rx_opt, 0))
1502 		return false;
1503 
1504 	/* RST segments are not recommended to carry timestamp,
1505 	   and, if they do, it is recommended to ignore PAWS because
1506 	   "their cleanup function should take precedence over timestamps."
1507 	   Certainly, it is mistake. It is necessary to understand the reasons
1508 	   of this constraint to relax it: if peer reboots, clock may go
1509 	   out-of-sync and half-open connections will not be reset.
1510 	   Actually, the problem would be not existing if all
1511 	   the implementations followed draft about maintaining clock
1512 	   via reboots. Linux-2.2 DOES NOT!
1513 
1514 	   However, we can relax time bounds for RST segments to MSL.
1515 	 */
1516 	if (rst && !time_before32(ktime_get_seconds(),
1517 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1518 		return false;
1519 	return true;
1520 }
1521 
1522 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1523 			  int mib_idx, u32 *last_oow_ack_time);
1524 
1525 static inline void tcp_mib_init(struct net *net)
1526 {
1527 	/* See RFC 2012 */
1528 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1529 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1530 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1531 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1532 }
1533 
1534 /* from STCP */
1535 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1536 {
1537 	tp->lost_skb_hint = NULL;
1538 }
1539 
1540 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1541 {
1542 	tcp_clear_retrans_hints_partial(tp);
1543 	tp->retransmit_skb_hint = NULL;
1544 }
1545 
1546 union tcp_md5_addr {
1547 	struct in_addr  a4;
1548 #if IS_ENABLED(CONFIG_IPV6)
1549 	struct in6_addr	a6;
1550 #endif
1551 };
1552 
1553 /* - key database */
1554 struct tcp_md5sig_key {
1555 	struct hlist_node	node;
1556 	u8			keylen;
1557 	u8			family; /* AF_INET or AF_INET6 */
1558 	u8			prefixlen;
1559 	union tcp_md5_addr	addr;
1560 	int			l3index; /* set if key added with L3 scope */
1561 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1562 	struct rcu_head		rcu;
1563 };
1564 
1565 /* - sock block */
1566 struct tcp_md5sig_info {
1567 	struct hlist_head	head;
1568 	struct rcu_head		rcu;
1569 };
1570 
1571 /* - pseudo header */
1572 struct tcp4_pseudohdr {
1573 	__be32		saddr;
1574 	__be32		daddr;
1575 	__u8		pad;
1576 	__u8		protocol;
1577 	__be16		len;
1578 };
1579 
1580 struct tcp6_pseudohdr {
1581 	struct in6_addr	saddr;
1582 	struct in6_addr daddr;
1583 	__be32		len;
1584 	__be32		protocol;	/* including padding */
1585 };
1586 
1587 union tcp_md5sum_block {
1588 	struct tcp4_pseudohdr ip4;
1589 #if IS_ENABLED(CONFIG_IPV6)
1590 	struct tcp6_pseudohdr ip6;
1591 #endif
1592 };
1593 
1594 /* - pool: digest algorithm, hash description and scratch buffer */
1595 struct tcp_md5sig_pool {
1596 	struct ahash_request	*md5_req;
1597 	void			*scratch;
1598 };
1599 
1600 /* - functions */
1601 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1602 			const struct sock *sk, const struct sk_buff *skb);
1603 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1604 		   int family, u8 prefixlen, int l3index,
1605 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1606 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1607 		   int family, u8 prefixlen, int l3index);
1608 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1609 					 const struct sock *addr_sk);
1610 
1611 #ifdef CONFIG_TCP_MD5SIG
1612 #include <linux/jump_label.h>
1613 extern struct static_key_false tcp_md5_needed;
1614 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1615 					   const union tcp_md5_addr *addr,
1616 					   int family);
1617 static inline struct tcp_md5sig_key *
1618 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1619 		  const union tcp_md5_addr *addr, int family)
1620 {
1621 	if (!static_branch_unlikely(&tcp_md5_needed))
1622 		return NULL;
1623 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1624 }
1625 
1626 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1627 #else
1628 static inline struct tcp_md5sig_key *
1629 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1630 		  const union tcp_md5_addr *addr, int family)
1631 {
1632 	return NULL;
1633 }
1634 #define tcp_twsk_md5_key(twsk)	NULL
1635 #endif
1636 
1637 bool tcp_alloc_md5sig_pool(void);
1638 
1639 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1640 static inline void tcp_put_md5sig_pool(void)
1641 {
1642 	local_bh_enable();
1643 }
1644 
1645 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1646 			  unsigned int header_len);
1647 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1648 		     const struct tcp_md5sig_key *key);
1649 
1650 /* From tcp_fastopen.c */
1651 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1652 			    struct tcp_fastopen_cookie *cookie);
1653 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1654 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1655 			    u16 try_exp);
1656 struct tcp_fastopen_request {
1657 	/* Fast Open cookie. Size 0 means a cookie request */
1658 	struct tcp_fastopen_cookie	cookie;
1659 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1660 	size_t				size;
1661 	int				copied;	/* queued in tcp_connect() */
1662 	struct ubuf_info		*uarg;
1663 };
1664 void tcp_free_fastopen_req(struct tcp_sock *tp);
1665 void tcp_fastopen_destroy_cipher(struct sock *sk);
1666 void tcp_fastopen_ctx_destroy(struct net *net);
1667 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1668 			      void *primary_key, void *backup_key);
1669 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1670 			    u64 *key);
1671 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1672 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1673 			      struct request_sock *req,
1674 			      struct tcp_fastopen_cookie *foc,
1675 			      const struct dst_entry *dst);
1676 void tcp_fastopen_init_key_once(struct net *net);
1677 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1678 			     struct tcp_fastopen_cookie *cookie);
1679 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1680 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1681 #define TCP_FASTOPEN_KEY_MAX 2
1682 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1683 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1684 
1685 /* Fastopen key context */
1686 struct tcp_fastopen_context {
1687 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1688 	int		num;
1689 	struct rcu_head	rcu;
1690 };
1691 
1692 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1693 void tcp_fastopen_active_disable(struct sock *sk);
1694 bool tcp_fastopen_active_should_disable(struct sock *sk);
1695 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1696 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1697 
1698 /* Caller needs to wrap with rcu_read_(un)lock() */
1699 static inline
1700 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1701 {
1702 	struct tcp_fastopen_context *ctx;
1703 
1704 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1705 	if (!ctx)
1706 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1707 	return ctx;
1708 }
1709 
1710 static inline
1711 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1712 			       const struct tcp_fastopen_cookie *orig)
1713 {
1714 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1715 	    orig->len == foc->len &&
1716 	    !memcmp(orig->val, foc->val, foc->len))
1717 		return true;
1718 	return false;
1719 }
1720 
1721 static inline
1722 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1723 {
1724 	return ctx->num;
1725 }
1726 
1727 /* Latencies incurred by various limits for a sender. They are
1728  * chronograph-like stats that are mutually exclusive.
1729  */
1730 enum tcp_chrono {
1731 	TCP_CHRONO_UNSPEC,
1732 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1733 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1734 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1735 	__TCP_CHRONO_MAX,
1736 };
1737 
1738 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1739 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1740 
1741 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1742  * the same memory storage than skb->destructor/_skb_refdst
1743  */
1744 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1745 {
1746 	skb->destructor = NULL;
1747 	skb->_skb_refdst = 0UL;
1748 }
1749 
1750 #define tcp_skb_tsorted_save(skb) {		\
1751 	unsigned long _save = skb->_skb_refdst;	\
1752 	skb->_skb_refdst = 0UL;
1753 
1754 #define tcp_skb_tsorted_restore(skb)		\
1755 	skb->_skb_refdst = _save;		\
1756 }
1757 
1758 void tcp_write_queue_purge(struct sock *sk);
1759 
1760 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1761 {
1762 	return skb_rb_first(&sk->tcp_rtx_queue);
1763 }
1764 
1765 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1766 {
1767 	return skb_rb_last(&sk->tcp_rtx_queue);
1768 }
1769 
1770 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1771 {
1772 	return skb_peek(&sk->sk_write_queue);
1773 }
1774 
1775 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1776 {
1777 	return skb_peek_tail(&sk->sk_write_queue);
1778 }
1779 
1780 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1781 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1782 
1783 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1784 {
1785 	return skb_peek(&sk->sk_write_queue);
1786 }
1787 
1788 static inline bool tcp_skb_is_last(const struct sock *sk,
1789 				   const struct sk_buff *skb)
1790 {
1791 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1792 }
1793 
1794 /**
1795  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1796  * @sk: socket
1797  *
1798  * Since the write queue can have a temporary empty skb in it,
1799  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1800  */
1801 static inline bool tcp_write_queue_empty(const struct sock *sk)
1802 {
1803 	const struct tcp_sock *tp = tcp_sk(sk);
1804 
1805 	return tp->write_seq == tp->snd_nxt;
1806 }
1807 
1808 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1809 {
1810 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1811 }
1812 
1813 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1814 {
1815 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1816 }
1817 
1818 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1819 {
1820 	__skb_queue_tail(&sk->sk_write_queue, skb);
1821 
1822 	/* Queue it, remembering where we must start sending. */
1823 	if (sk->sk_write_queue.next == skb)
1824 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1825 }
1826 
1827 /* Insert new before skb on the write queue of sk.  */
1828 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1829 						  struct sk_buff *skb,
1830 						  struct sock *sk)
1831 {
1832 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1833 }
1834 
1835 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1836 {
1837 	tcp_skb_tsorted_anchor_cleanup(skb);
1838 	__skb_unlink(skb, &sk->sk_write_queue);
1839 }
1840 
1841 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1842 
1843 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1844 {
1845 	tcp_skb_tsorted_anchor_cleanup(skb);
1846 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1847 }
1848 
1849 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1850 {
1851 	list_del(&skb->tcp_tsorted_anchor);
1852 	tcp_rtx_queue_unlink(skb, sk);
1853 	sk_wmem_free_skb(sk, skb);
1854 }
1855 
1856 static inline void tcp_push_pending_frames(struct sock *sk)
1857 {
1858 	if (tcp_send_head(sk)) {
1859 		struct tcp_sock *tp = tcp_sk(sk);
1860 
1861 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1862 	}
1863 }
1864 
1865 /* Start sequence of the skb just after the highest skb with SACKed
1866  * bit, valid only if sacked_out > 0 or when the caller has ensured
1867  * validity by itself.
1868  */
1869 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1870 {
1871 	if (!tp->sacked_out)
1872 		return tp->snd_una;
1873 
1874 	if (tp->highest_sack == NULL)
1875 		return tp->snd_nxt;
1876 
1877 	return TCP_SKB_CB(tp->highest_sack)->seq;
1878 }
1879 
1880 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1881 {
1882 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1883 }
1884 
1885 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1886 {
1887 	return tcp_sk(sk)->highest_sack;
1888 }
1889 
1890 static inline void tcp_highest_sack_reset(struct sock *sk)
1891 {
1892 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1893 }
1894 
1895 /* Called when old skb is about to be deleted and replaced by new skb */
1896 static inline void tcp_highest_sack_replace(struct sock *sk,
1897 					    struct sk_buff *old,
1898 					    struct sk_buff *new)
1899 {
1900 	if (old == tcp_highest_sack(sk))
1901 		tcp_sk(sk)->highest_sack = new;
1902 }
1903 
1904 /* This helper checks if socket has IP_TRANSPARENT set */
1905 static inline bool inet_sk_transparent(const struct sock *sk)
1906 {
1907 	switch (sk->sk_state) {
1908 	case TCP_TIME_WAIT:
1909 		return inet_twsk(sk)->tw_transparent;
1910 	case TCP_NEW_SYN_RECV:
1911 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1912 	}
1913 	return inet_sk(sk)->transparent;
1914 }
1915 
1916 /* Determines whether this is a thin stream (which may suffer from
1917  * increased latency). Used to trigger latency-reducing mechanisms.
1918  */
1919 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1920 {
1921 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1922 }
1923 
1924 /* /proc */
1925 enum tcp_seq_states {
1926 	TCP_SEQ_STATE_LISTENING,
1927 	TCP_SEQ_STATE_ESTABLISHED,
1928 };
1929 
1930 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1931 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1932 void tcp_seq_stop(struct seq_file *seq, void *v);
1933 
1934 struct tcp_seq_afinfo {
1935 	sa_family_t			family;
1936 };
1937 
1938 struct tcp_iter_state {
1939 	struct seq_net_private	p;
1940 	enum tcp_seq_states	state;
1941 	struct sock		*syn_wait_sk;
1942 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1943 	int			bucket, offset, sbucket, num;
1944 	loff_t			last_pos;
1945 };
1946 
1947 extern struct request_sock_ops tcp_request_sock_ops;
1948 extern struct request_sock_ops tcp6_request_sock_ops;
1949 
1950 void tcp_v4_destroy_sock(struct sock *sk);
1951 
1952 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1953 				netdev_features_t features);
1954 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1955 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1956 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1957 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1958 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1959 int tcp_gro_complete(struct sk_buff *skb);
1960 
1961 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1962 
1963 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1964 {
1965 	struct net *net = sock_net((struct sock *)tp);
1966 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1967 }
1968 
1969 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1970 
1971 #ifdef CONFIG_PROC_FS
1972 int tcp4_proc_init(void);
1973 void tcp4_proc_exit(void);
1974 #endif
1975 
1976 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1977 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1978 		     const struct tcp_request_sock_ops *af_ops,
1979 		     struct sock *sk, struct sk_buff *skb);
1980 
1981 /* TCP af-specific functions */
1982 struct tcp_sock_af_ops {
1983 #ifdef CONFIG_TCP_MD5SIG
1984 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1985 						const struct sock *addr_sk);
1986 	int		(*calc_md5_hash)(char *location,
1987 					 const struct tcp_md5sig_key *md5,
1988 					 const struct sock *sk,
1989 					 const struct sk_buff *skb);
1990 	int		(*md5_parse)(struct sock *sk,
1991 				     int optname,
1992 				     sockptr_t optval,
1993 				     int optlen);
1994 #endif
1995 };
1996 
1997 struct tcp_request_sock_ops {
1998 	u16 mss_clamp;
1999 #ifdef CONFIG_TCP_MD5SIG
2000 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2001 						 const struct sock *addr_sk);
2002 	int		(*calc_md5_hash) (char *location,
2003 					  const struct tcp_md5sig_key *md5,
2004 					  const struct sock *sk,
2005 					  const struct sk_buff *skb);
2006 #endif
2007 #ifdef CONFIG_SYN_COOKIES
2008 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2009 				 __u16 *mss);
2010 #endif
2011 	struct dst_entry *(*route_req)(const struct sock *sk,
2012 				       struct sk_buff *skb,
2013 				       struct flowi *fl,
2014 				       struct request_sock *req);
2015 	u32 (*init_seq)(const struct sk_buff *skb);
2016 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2017 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2018 			   struct flowi *fl, struct request_sock *req,
2019 			   struct tcp_fastopen_cookie *foc,
2020 			   enum tcp_synack_type synack_type,
2021 			   struct sk_buff *syn_skb);
2022 };
2023 
2024 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2025 #if IS_ENABLED(CONFIG_IPV6)
2026 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2027 #endif
2028 
2029 #ifdef CONFIG_SYN_COOKIES
2030 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2031 					 const struct sock *sk, struct sk_buff *skb,
2032 					 __u16 *mss)
2033 {
2034 	tcp_synq_overflow(sk);
2035 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2036 	return ops->cookie_init_seq(skb, mss);
2037 }
2038 #else
2039 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2040 					 const struct sock *sk, struct sk_buff *skb,
2041 					 __u16 *mss)
2042 {
2043 	return 0;
2044 }
2045 #endif
2046 
2047 int tcpv4_offload_init(void);
2048 
2049 void tcp_v4_init(void);
2050 void tcp_init(void);
2051 
2052 /* tcp_recovery.c */
2053 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2054 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2055 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2056 				u32 reo_wnd);
2057 extern bool tcp_rack_mark_lost(struct sock *sk);
2058 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2059 			     u64 xmit_time);
2060 extern void tcp_rack_reo_timeout(struct sock *sk);
2061 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2062 
2063 /* At how many usecs into the future should the RTO fire? */
2064 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2065 {
2066 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2067 	u32 rto = inet_csk(sk)->icsk_rto;
2068 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2069 
2070 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2071 }
2072 
2073 /*
2074  * Save and compile IPv4 options, return a pointer to it
2075  */
2076 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2077 							 struct sk_buff *skb)
2078 {
2079 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2080 	struct ip_options_rcu *dopt = NULL;
2081 
2082 	if (opt->optlen) {
2083 		int opt_size = sizeof(*dopt) + opt->optlen;
2084 
2085 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2086 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2087 			kfree(dopt);
2088 			dopt = NULL;
2089 		}
2090 	}
2091 	return dopt;
2092 }
2093 
2094 /* locally generated TCP pure ACKs have skb->truesize == 2
2095  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2096  * This is much faster than dissecting the packet to find out.
2097  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2098  */
2099 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2100 {
2101 	return skb->truesize == 2;
2102 }
2103 
2104 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2105 {
2106 	skb->truesize = 2;
2107 }
2108 
2109 static inline int tcp_inq(struct sock *sk)
2110 {
2111 	struct tcp_sock *tp = tcp_sk(sk);
2112 	int answ;
2113 
2114 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2115 		answ = 0;
2116 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2117 		   !tp->urg_data ||
2118 		   before(tp->urg_seq, tp->copied_seq) ||
2119 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2120 
2121 		answ = tp->rcv_nxt - tp->copied_seq;
2122 
2123 		/* Subtract 1, if FIN was received */
2124 		if (answ && sock_flag(sk, SOCK_DONE))
2125 			answ--;
2126 	} else {
2127 		answ = tp->urg_seq - tp->copied_seq;
2128 	}
2129 
2130 	return answ;
2131 }
2132 
2133 int tcp_peek_len(struct socket *sock);
2134 
2135 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2136 {
2137 	u16 segs_in;
2138 
2139 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2140 	tp->segs_in += segs_in;
2141 	if (skb->len > tcp_hdrlen(skb))
2142 		tp->data_segs_in += segs_in;
2143 }
2144 
2145 /*
2146  * TCP listen path runs lockless.
2147  * We forced "struct sock" to be const qualified to make sure
2148  * we don't modify one of its field by mistake.
2149  * Here, we increment sk_drops which is an atomic_t, so we can safely
2150  * make sock writable again.
2151  */
2152 static inline void tcp_listendrop(const struct sock *sk)
2153 {
2154 	atomic_inc(&((struct sock *)sk)->sk_drops);
2155 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2156 }
2157 
2158 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2159 
2160 /*
2161  * Interface for adding Upper Level Protocols over TCP
2162  */
2163 
2164 #define TCP_ULP_NAME_MAX	16
2165 #define TCP_ULP_MAX		128
2166 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2167 
2168 struct tcp_ulp_ops {
2169 	struct list_head	list;
2170 
2171 	/* initialize ulp */
2172 	int (*init)(struct sock *sk);
2173 	/* update ulp */
2174 	void (*update)(struct sock *sk, struct proto *p,
2175 		       void (*write_space)(struct sock *sk));
2176 	/* cleanup ulp */
2177 	void (*release)(struct sock *sk);
2178 	/* diagnostic */
2179 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2180 	size_t (*get_info_size)(const struct sock *sk);
2181 	/* clone ulp */
2182 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2183 		      const gfp_t priority);
2184 
2185 	char		name[TCP_ULP_NAME_MAX];
2186 	struct module	*owner;
2187 };
2188 int tcp_register_ulp(struct tcp_ulp_ops *type);
2189 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2190 int tcp_set_ulp(struct sock *sk, const char *name);
2191 void tcp_get_available_ulp(char *buf, size_t len);
2192 void tcp_cleanup_ulp(struct sock *sk);
2193 void tcp_update_ulp(struct sock *sk, struct proto *p,
2194 		    void (*write_space)(struct sock *sk));
2195 
2196 #define MODULE_ALIAS_TCP_ULP(name)				\
2197 	__MODULE_INFO(alias, alias_userspace, name);		\
2198 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2199 
2200 #ifdef CONFIG_NET_SOCK_MSG
2201 struct sk_msg;
2202 struct sk_psock;
2203 
2204 #ifdef CONFIG_BPF_SYSCALL
2205 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2206 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2207 #endif /* CONFIG_BPF_SYSCALL */
2208 
2209 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2210 			  int flags);
2211 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2212 		      struct msghdr *msg, int len, int flags);
2213 #endif /* CONFIG_NET_SOCK_MSG */
2214 
2215 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2216 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2217 {
2218 }
2219 #endif
2220 
2221 #ifdef CONFIG_CGROUP_BPF
2222 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2223 				      struct sk_buff *skb,
2224 				      unsigned int end_offset)
2225 {
2226 	skops->skb = skb;
2227 	skops->skb_data_end = skb->data + end_offset;
2228 }
2229 #else
2230 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2231 				      struct sk_buff *skb,
2232 				      unsigned int end_offset)
2233 {
2234 }
2235 #endif
2236 
2237 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2238  * is < 0, then the BPF op failed (for example if the loaded BPF
2239  * program does not support the chosen operation or there is no BPF
2240  * program loaded).
2241  */
2242 #ifdef CONFIG_BPF
2243 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2244 {
2245 	struct bpf_sock_ops_kern sock_ops;
2246 	int ret;
2247 
2248 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2249 	if (sk_fullsock(sk)) {
2250 		sock_ops.is_fullsock = 1;
2251 		sock_owned_by_me(sk);
2252 	}
2253 
2254 	sock_ops.sk = sk;
2255 	sock_ops.op = op;
2256 	if (nargs > 0)
2257 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2258 
2259 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2260 	if (ret == 0)
2261 		ret = sock_ops.reply;
2262 	else
2263 		ret = -1;
2264 	return ret;
2265 }
2266 
2267 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2268 {
2269 	u32 args[2] = {arg1, arg2};
2270 
2271 	return tcp_call_bpf(sk, op, 2, args);
2272 }
2273 
2274 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2275 				    u32 arg3)
2276 {
2277 	u32 args[3] = {arg1, arg2, arg3};
2278 
2279 	return tcp_call_bpf(sk, op, 3, args);
2280 }
2281 
2282 #else
2283 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2284 {
2285 	return -EPERM;
2286 }
2287 
2288 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2289 {
2290 	return -EPERM;
2291 }
2292 
2293 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2294 				    u32 arg3)
2295 {
2296 	return -EPERM;
2297 }
2298 
2299 #endif
2300 
2301 static inline u32 tcp_timeout_init(struct sock *sk)
2302 {
2303 	int timeout;
2304 
2305 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2306 
2307 	if (timeout <= 0)
2308 		timeout = TCP_TIMEOUT_INIT;
2309 	return timeout;
2310 }
2311 
2312 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2313 {
2314 	int rwnd;
2315 
2316 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2317 
2318 	if (rwnd < 0)
2319 		rwnd = 0;
2320 	return rwnd;
2321 }
2322 
2323 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2324 {
2325 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2326 }
2327 
2328 static inline void tcp_bpf_rtt(struct sock *sk)
2329 {
2330 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2331 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2332 }
2333 
2334 #if IS_ENABLED(CONFIG_SMC)
2335 extern struct static_key_false tcp_have_smc;
2336 #endif
2337 
2338 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2339 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2340 			     void (*cad)(struct sock *sk, u32 ack_seq));
2341 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2342 void clean_acked_data_flush(void);
2343 #endif
2344 
2345 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2346 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2347 				    const struct tcp_sock *tp)
2348 {
2349 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2350 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2351 }
2352 
2353 /* Compute Earliest Departure Time for some control packets
2354  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2355  */
2356 static inline u64 tcp_transmit_time(const struct sock *sk)
2357 {
2358 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2359 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2360 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2361 
2362 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2363 	}
2364 	return 0;
2365 }
2366 
2367 #endif	/* _TCP_H */
2368