xref: /openbmc/linux/include/net/tcp.h (revision 5f32c314)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		512
69 
70 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
71 #define TCP_FASTRETRANS_THRESH 3
72 
73 /* Maximal reordering. */
74 #define TCP_MAX_REORDERING	127
75 
76 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
77 #define TCP_MAX_QUICKACKS	16U
78 
79 /* urg_data states */
80 #define TCP_URG_VALID	0x0100
81 #define TCP_URG_NOTYET	0x0200
82 #define TCP_URG_READ	0x0400
83 
84 #define TCP_RETR1	3	/*
85 				 * This is how many retries it does before it
86 				 * tries to figure out if the gateway is
87 				 * down. Minimal RFC value is 3; it corresponds
88 				 * to ~3sec-8min depending on RTO.
89 				 */
90 
91 #define TCP_RETR2	15	/*
92 				 * This should take at least
93 				 * 90 minutes to time out.
94 				 * RFC1122 says that the limit is 100 sec.
95 				 * 15 is ~13-30min depending on RTO.
96 				 */
97 
98 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
99 				 * when active opening a connection.
100 				 * RFC1122 says the minimum retry MUST
101 				 * be at least 180secs.  Nevertheless
102 				 * this value is corresponding to
103 				 * 63secs of retransmission with the
104 				 * current initial RTO.
105 				 */
106 
107 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
108 				 * when passive opening a connection.
109 				 * This is corresponding to 31secs of
110 				 * retransmission with the current
111 				 * initial RTO.
112 				 */
113 
114 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
115 				  * state, about 60 seconds	*/
116 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
117                                  /* BSD style FIN_WAIT2 deadlock breaker.
118 				  * It used to be 3min, new value is 60sec,
119 				  * to combine FIN-WAIT-2 timeout with
120 				  * TIME-WAIT timer.
121 				  */
122 
123 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
124 #if HZ >= 100
125 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
126 #define TCP_ATO_MIN	((unsigned)(HZ/25))
127 #else
128 #define TCP_DELACK_MIN	4U
129 #define TCP_ATO_MIN	4U
130 #endif
131 #define TCP_RTO_MAX	((unsigned)(120*HZ))
132 #define TCP_RTO_MIN	((unsigned)(HZ/5))
133 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
134 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
135 						 * used as a fallback RTO for the
136 						 * initial data transmission if no
137 						 * valid RTT sample has been acquired,
138 						 * most likely due to retrans in 3WHS.
139 						 */
140 
141 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
142 					                 * for local resources.
143 					                 */
144 
145 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
146 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
147 #define TCP_KEEPALIVE_INTVL	(75*HZ)
148 
149 #define MAX_TCP_KEEPIDLE	32767
150 #define MAX_TCP_KEEPINTVL	32767
151 #define MAX_TCP_KEEPCNT		127
152 #define MAX_TCP_SYNCNT		127
153 
154 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
155 
156 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
157 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
158 					 * after this time. It should be equal
159 					 * (or greater than) TCP_TIMEWAIT_LEN
160 					 * to provide reliability equal to one
161 					 * provided by timewait state.
162 					 */
163 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
164 					 * timestamps. It must be less than
165 					 * minimal timewait lifetime.
166 					 */
167 /*
168  *	TCP option
169  */
170 
171 #define TCPOPT_NOP		1	/* Padding */
172 #define TCPOPT_EOL		0	/* End of options */
173 #define TCPOPT_MSS		2	/* Segment size negotiating */
174 #define TCPOPT_WINDOW		3	/* Window scaling */
175 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
176 #define TCPOPT_SACK             5       /* SACK Block */
177 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
178 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
179 #define TCPOPT_EXP		254	/* Experimental */
180 /* Magic number to be after the option value for sharing TCP
181  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
182  */
183 #define TCPOPT_FASTOPEN_MAGIC	0xF989
184 
185 /*
186  *     TCP option lengths
187  */
188 
189 #define TCPOLEN_MSS            4
190 #define TCPOLEN_WINDOW         3
191 #define TCPOLEN_SACK_PERM      2
192 #define TCPOLEN_TIMESTAMP      10
193 #define TCPOLEN_MD5SIG         18
194 #define TCPOLEN_EXP_FASTOPEN_BASE  4
195 
196 /* But this is what stacks really send out. */
197 #define TCPOLEN_TSTAMP_ALIGNED		12
198 #define TCPOLEN_WSCALE_ALIGNED		4
199 #define TCPOLEN_SACKPERM_ALIGNED	4
200 #define TCPOLEN_SACK_BASE		2
201 #define TCPOLEN_SACK_BASE_ALIGNED	4
202 #define TCPOLEN_SACK_PERBLOCK		8
203 #define TCPOLEN_MD5SIG_ALIGNED		20
204 #define TCPOLEN_MSS_ALIGNED		4
205 
206 /* Flags in tp->nonagle */
207 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
208 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
209 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
210 
211 /* TCP thin-stream limits */
212 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
213 
214 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
215 #define TCP_INIT_CWND		10
216 
217 /* Bit Flags for sysctl_tcp_fastopen */
218 #define	TFO_CLIENT_ENABLE	1
219 #define	TFO_SERVER_ENABLE	2
220 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
221 
222 /* Process SYN data but skip cookie validation */
223 #define	TFO_SERVER_COOKIE_NOT_CHKED	0x100
224 /* Accept SYN data w/o any cookie option */
225 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
226 
227 /* Force enable TFO on all listeners, i.e., not requiring the
228  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
229  */
230 #define	TFO_SERVER_WO_SOCKOPT1	0x400
231 #define	TFO_SERVER_WO_SOCKOPT2	0x800
232 /* Always create TFO child sockets on a TFO listener even when
233  * cookie/data not present. (For testing purpose!)
234  */
235 #define	TFO_SERVER_ALWAYS	0x1000
236 
237 extern struct inet_timewait_death_row tcp_death_row;
238 
239 /* sysctl variables for tcp */
240 extern int sysctl_tcp_timestamps;
241 extern int sysctl_tcp_window_scaling;
242 extern int sysctl_tcp_sack;
243 extern int sysctl_tcp_fin_timeout;
244 extern int sysctl_tcp_keepalive_time;
245 extern int sysctl_tcp_keepalive_probes;
246 extern int sysctl_tcp_keepalive_intvl;
247 extern int sysctl_tcp_syn_retries;
248 extern int sysctl_tcp_synack_retries;
249 extern int sysctl_tcp_retries1;
250 extern int sysctl_tcp_retries2;
251 extern int sysctl_tcp_orphan_retries;
252 extern int sysctl_tcp_syncookies;
253 extern int sysctl_tcp_fastopen;
254 extern int sysctl_tcp_retrans_collapse;
255 extern int sysctl_tcp_stdurg;
256 extern int sysctl_tcp_rfc1337;
257 extern int sysctl_tcp_abort_on_overflow;
258 extern int sysctl_tcp_max_orphans;
259 extern int sysctl_tcp_fack;
260 extern int sysctl_tcp_reordering;
261 extern int sysctl_tcp_dsack;
262 extern long sysctl_tcp_mem[3];
263 extern int sysctl_tcp_wmem[3];
264 extern int sysctl_tcp_rmem[3];
265 extern int sysctl_tcp_app_win;
266 extern int sysctl_tcp_adv_win_scale;
267 extern int sysctl_tcp_tw_reuse;
268 extern int sysctl_tcp_frto;
269 extern int sysctl_tcp_low_latency;
270 extern int sysctl_tcp_dma_copybreak;
271 extern int sysctl_tcp_nometrics_save;
272 extern int sysctl_tcp_moderate_rcvbuf;
273 extern int sysctl_tcp_tso_win_divisor;
274 extern int sysctl_tcp_mtu_probing;
275 extern int sysctl_tcp_base_mss;
276 extern int sysctl_tcp_workaround_signed_windows;
277 extern int sysctl_tcp_slow_start_after_idle;
278 extern int sysctl_tcp_thin_linear_timeouts;
279 extern int sysctl_tcp_thin_dupack;
280 extern int sysctl_tcp_early_retrans;
281 extern int sysctl_tcp_limit_output_bytes;
282 extern int sysctl_tcp_challenge_ack_limit;
283 extern unsigned int sysctl_tcp_notsent_lowat;
284 extern int sysctl_tcp_min_tso_segs;
285 extern int sysctl_tcp_autocorking;
286 
287 extern atomic_long_t tcp_memory_allocated;
288 extern struct percpu_counter tcp_sockets_allocated;
289 extern int tcp_memory_pressure;
290 
291 /*
292  * The next routines deal with comparing 32 bit unsigned ints
293  * and worry about wraparound (automatic with unsigned arithmetic).
294  */
295 
296 static inline bool before(__u32 seq1, __u32 seq2)
297 {
298         return (__s32)(seq1-seq2) < 0;
299 }
300 #define after(seq2, seq1) 	before(seq1, seq2)
301 
302 /* is s2<=s1<=s3 ? */
303 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
304 {
305 	return seq3 - seq2 >= seq1 - seq2;
306 }
307 
308 static inline bool tcp_out_of_memory(struct sock *sk)
309 {
310 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
311 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
312 		return true;
313 	return false;
314 }
315 
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 	int orphans = percpu_counter_read_positive(ocp);
320 
321 	if (orphans << shift > sysctl_tcp_max_orphans) {
322 		orphans = percpu_counter_sum_positive(ocp);
323 		if (orphans << shift > sysctl_tcp_max_orphans)
324 			return true;
325 	}
326 	return false;
327 }
328 
329 bool tcp_check_oom(struct sock *sk, int shift);
330 
331 /* syncookies: remember time of last synqueue overflow */
332 static inline void tcp_synq_overflow(struct sock *sk)
333 {
334 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
335 }
336 
337 /* syncookies: no recent synqueue overflow on this listening socket? */
338 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
339 {
340 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
341 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
342 }
343 
344 extern struct proto tcp_prot;
345 
346 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
348 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
349 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
350 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
351 
352 void tcp_tasklet_init(void);
353 
354 void tcp_v4_err(struct sk_buff *skb, u32);
355 
356 void tcp_shutdown(struct sock *sk, int how);
357 
358 void tcp_v4_early_demux(struct sk_buff *skb);
359 int tcp_v4_rcv(struct sk_buff *skb);
360 
361 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
362 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
363 		size_t size);
364 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
365 		 int flags);
366 void tcp_release_cb(struct sock *sk);
367 void tcp_wfree(struct sk_buff *skb);
368 void tcp_write_timer_handler(struct sock *sk);
369 void tcp_delack_timer_handler(struct sock *sk);
370 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
371 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
372 			  const struct tcphdr *th, unsigned int len);
373 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
374 			 const struct tcphdr *th, unsigned int len);
375 void tcp_rcv_space_adjust(struct sock *sk);
376 void tcp_cleanup_rbuf(struct sock *sk, int copied);
377 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
378 void tcp_twsk_destructor(struct sock *sk);
379 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
380 			struct pipe_inode_info *pipe, size_t len,
381 			unsigned int flags);
382 
383 static inline void tcp_dec_quickack_mode(struct sock *sk,
384 					 const unsigned int pkts)
385 {
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	if (icsk->icsk_ack.quick) {
389 		if (pkts >= icsk->icsk_ack.quick) {
390 			icsk->icsk_ack.quick = 0;
391 			/* Leaving quickack mode we deflate ATO. */
392 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
393 		} else
394 			icsk->icsk_ack.quick -= pkts;
395 	}
396 }
397 
398 #define	TCP_ECN_OK		1
399 #define	TCP_ECN_QUEUE_CWR	2
400 #define	TCP_ECN_DEMAND_CWR	4
401 #define	TCP_ECN_SEEN		8
402 
403 enum tcp_tw_status {
404 	TCP_TW_SUCCESS = 0,
405 	TCP_TW_RST = 1,
406 	TCP_TW_ACK = 2,
407 	TCP_TW_SYN = 3
408 };
409 
410 
411 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
412 					      struct sk_buff *skb,
413 					      const struct tcphdr *th);
414 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
415 			   struct request_sock *req, struct request_sock **prev,
416 			   bool fastopen);
417 int tcp_child_process(struct sock *parent, struct sock *child,
418 		      struct sk_buff *skb);
419 void tcp_enter_loss(struct sock *sk, int how);
420 void tcp_clear_retrans(struct tcp_sock *tp);
421 void tcp_update_metrics(struct sock *sk);
422 void tcp_init_metrics(struct sock *sk);
423 void tcp_metrics_init(void);
424 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
425 			bool paws_check);
426 bool tcp_remember_stamp(struct sock *sk);
427 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
428 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
429 void tcp_disable_fack(struct tcp_sock *tp);
430 void tcp_close(struct sock *sk, long timeout);
431 void tcp_init_sock(struct sock *sk);
432 unsigned int tcp_poll(struct file *file, struct socket *sock,
433 		      struct poll_table_struct *wait);
434 int tcp_getsockopt(struct sock *sk, int level, int optname,
435 		   char __user *optval, int __user *optlen);
436 int tcp_setsockopt(struct sock *sk, int level, int optname,
437 		   char __user *optval, unsigned int optlen);
438 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
439 			  char __user *optval, int __user *optlen);
440 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
441 			  char __user *optval, unsigned int optlen);
442 void tcp_set_keepalive(struct sock *sk, int val);
443 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
444 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
445 		size_t len, int nonblock, int flags, int *addr_len);
446 void tcp_parse_options(const struct sk_buff *skb,
447 		       struct tcp_options_received *opt_rx,
448 		       int estab, struct tcp_fastopen_cookie *foc);
449 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
450 
451 /*
452  *	TCP v4 functions exported for the inet6 API
453  */
454 
455 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457 struct sock *tcp_create_openreq_child(struct sock *sk,
458 				      struct request_sock *req,
459 				      struct sk_buff *skb);
460 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
461 				  struct request_sock *req,
462 				  struct dst_entry *dst);
463 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465 int tcp_connect(struct sock *sk);
466 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
467 				struct request_sock *req,
468 				struct tcp_fastopen_cookie *foc);
469 int tcp_disconnect(struct sock *sk, int flags);
470 
471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
472 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
473 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
474 
475 /* From syncookies.c */
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 		      u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
479 			     struct ip_options *opt);
480 #ifdef CONFIG_SYN_COOKIES
481 #include <linux/ktime.h>
482 
483 /* Syncookies use a monotonic timer which increments every 64 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 128 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE 2
491 
492 static inline u32 tcp_cookie_time(void)
493 {
494 	struct timespec now;
495 	getnstimeofday(&now);
496 	return now.tv_sec >> 6; /* 64 seconds granularity */
497 }
498 
499 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
500 			      u16 *mssp);
501 __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mss);
502 #else
503 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
504 					    struct sk_buff *skb,
505 					    __u16 *mss)
506 {
507 	return 0;
508 }
509 #endif
510 
511 __u32 cookie_init_timestamp(struct request_sock *req);
512 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
513 			    bool *ecn_ok);
514 
515 /* From net/ipv6/syncookies.c */
516 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
517 		      u32 cookie);
518 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
519 #ifdef CONFIG_SYN_COOKIES
520 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
521 			      const struct tcphdr *th, u16 *mssp);
522 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
523 			      __u16 *mss);
524 #else
525 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
526 					    struct sk_buff *skb,
527 					    __u16 *mss)
528 {
529 	return 0;
530 }
531 #endif
532 /* tcp_output.c */
533 
534 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
535 			       int nonagle);
536 bool tcp_may_send_now(struct sock *sk);
537 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
538 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
539 void tcp_retransmit_timer(struct sock *sk);
540 void tcp_xmit_retransmit_queue(struct sock *);
541 void tcp_simple_retransmit(struct sock *);
542 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
543 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
544 
545 void tcp_send_probe0(struct sock *);
546 void tcp_send_partial(struct sock *);
547 int tcp_write_wakeup(struct sock *);
548 void tcp_send_fin(struct sock *sk);
549 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
550 int tcp_send_synack(struct sock *);
551 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
552 			  const char *proto);
553 void tcp_push_one(struct sock *, unsigned int mss_now);
554 void tcp_send_ack(struct sock *sk);
555 void tcp_send_delayed_ack(struct sock *sk);
556 void tcp_send_loss_probe(struct sock *sk);
557 bool tcp_schedule_loss_probe(struct sock *sk);
558 
559 /* tcp_input.c */
560 void tcp_cwnd_application_limited(struct sock *sk);
561 void tcp_resume_early_retransmit(struct sock *sk);
562 void tcp_rearm_rto(struct sock *sk);
563 void tcp_reset(struct sock *sk);
564 
565 /* tcp_timer.c */
566 void tcp_init_xmit_timers(struct sock *);
567 static inline void tcp_clear_xmit_timers(struct sock *sk)
568 {
569 	inet_csk_clear_xmit_timers(sk);
570 }
571 
572 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
573 unsigned int tcp_current_mss(struct sock *sk);
574 
575 /* Bound MSS / TSO packet size with the half of the window */
576 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
577 {
578 	int cutoff;
579 
580 	/* When peer uses tiny windows, there is no use in packetizing
581 	 * to sub-MSS pieces for the sake of SWS or making sure there
582 	 * are enough packets in the pipe for fast recovery.
583 	 *
584 	 * On the other hand, for extremely large MSS devices, handling
585 	 * smaller than MSS windows in this way does make sense.
586 	 */
587 	if (tp->max_window >= 512)
588 		cutoff = (tp->max_window >> 1);
589 	else
590 		cutoff = tp->max_window;
591 
592 	if (cutoff && pktsize > cutoff)
593 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
594 	else
595 		return pktsize;
596 }
597 
598 /* tcp.c */
599 void tcp_get_info(const struct sock *, struct tcp_info *);
600 
601 /* Read 'sendfile()'-style from a TCP socket */
602 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
603 				unsigned int, size_t);
604 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
605 		  sk_read_actor_t recv_actor);
606 
607 void tcp_initialize_rcv_mss(struct sock *sk);
608 
609 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
610 int tcp_mss_to_mtu(struct sock *sk, int mss);
611 void tcp_mtup_init(struct sock *sk);
612 void tcp_init_buffer_space(struct sock *sk);
613 
614 static inline void tcp_bound_rto(const struct sock *sk)
615 {
616 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
617 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
618 }
619 
620 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
621 {
622 	return (tp->srtt >> 3) + tp->rttvar;
623 }
624 
625 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
626 {
627 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
628 			       ntohl(TCP_FLAG_ACK) |
629 			       snd_wnd);
630 }
631 
632 static inline void tcp_fast_path_on(struct tcp_sock *tp)
633 {
634 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
635 }
636 
637 static inline void tcp_fast_path_check(struct sock *sk)
638 {
639 	struct tcp_sock *tp = tcp_sk(sk);
640 
641 	if (skb_queue_empty(&tp->out_of_order_queue) &&
642 	    tp->rcv_wnd &&
643 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
644 	    !tp->urg_data)
645 		tcp_fast_path_on(tp);
646 }
647 
648 /* Compute the actual rto_min value */
649 static inline u32 tcp_rto_min(struct sock *sk)
650 {
651 	const struct dst_entry *dst = __sk_dst_get(sk);
652 	u32 rto_min = TCP_RTO_MIN;
653 
654 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
655 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
656 	return rto_min;
657 }
658 
659 /* Compute the actual receive window we are currently advertising.
660  * Rcv_nxt can be after the window if our peer push more data
661  * than the offered window.
662  */
663 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
664 {
665 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
666 
667 	if (win < 0)
668 		win = 0;
669 	return (u32) win;
670 }
671 
672 /* Choose a new window, without checks for shrinking, and without
673  * scaling applied to the result.  The caller does these things
674  * if necessary.  This is a "raw" window selection.
675  */
676 u32 __tcp_select_window(struct sock *sk);
677 
678 void tcp_send_window_probe(struct sock *sk);
679 
680 /* TCP timestamps are only 32-bits, this causes a slight
681  * complication on 64-bit systems since we store a snapshot
682  * of jiffies in the buffer control blocks below.  We decided
683  * to use only the low 32-bits of jiffies and hide the ugly
684  * casts with the following macro.
685  */
686 #define tcp_time_stamp		((__u32)(jiffies))
687 
688 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
689 
690 #define TCPHDR_FIN 0x01
691 #define TCPHDR_SYN 0x02
692 #define TCPHDR_RST 0x04
693 #define TCPHDR_PSH 0x08
694 #define TCPHDR_ACK 0x10
695 #define TCPHDR_URG 0x20
696 #define TCPHDR_ECE 0x40
697 #define TCPHDR_CWR 0x80
698 
699 /* This is what the send packet queuing engine uses to pass
700  * TCP per-packet control information to the transmission code.
701  * We also store the host-order sequence numbers in here too.
702  * This is 44 bytes if IPV6 is enabled.
703  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
704  */
705 struct tcp_skb_cb {
706 	union {
707 		struct inet_skb_parm	h4;
708 #if IS_ENABLED(CONFIG_IPV6)
709 		struct inet6_skb_parm	h6;
710 #endif
711 	} header;	/* For incoming frames		*/
712 	__u32		seq;		/* Starting sequence number	*/
713 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
714 	__u32		when;		/* used to compute rtt's	*/
715 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
716 
717 	__u8		sacked;		/* State flags for SACK/FACK.	*/
718 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
719 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
720 #define TCPCB_LOST		0x04	/* SKB is lost			*/
721 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
722 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
723 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
724 
725 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
726 	/* 1 byte hole */
727 	__u32		ack_seq;	/* Sequence number ACK'd	*/
728 };
729 
730 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
731 
732 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
733  *
734  * If we receive a SYN packet with these bits set, it means a network is
735  * playing bad games with TOS bits. In order to avoid possible false congestion
736  * notifications, we disable TCP ECN negociation.
737  */
738 static inline void
739 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
740 		struct net *net)
741 {
742 	const struct tcphdr *th = tcp_hdr(skb);
743 
744 	if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
745 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
746 		inet_rsk(req)->ecn_ok = 1;
747 }
748 
749 /* Due to TSO, an SKB can be composed of multiple actual
750  * packets.  To keep these tracked properly, we use this.
751  */
752 static inline int tcp_skb_pcount(const struct sk_buff *skb)
753 {
754 	return skb_shinfo(skb)->gso_segs;
755 }
756 
757 /* This is valid iff tcp_skb_pcount() > 1. */
758 static inline int tcp_skb_mss(const struct sk_buff *skb)
759 {
760 	return skb_shinfo(skb)->gso_size;
761 }
762 
763 /* Events passed to congestion control interface */
764 enum tcp_ca_event {
765 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
766 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
767 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
768 	CA_EVENT_LOSS,		/* loss timeout */
769 	CA_EVENT_FAST_ACK,	/* in sequence ack */
770 	CA_EVENT_SLOW_ACK,	/* other ack */
771 };
772 
773 /*
774  * Interface for adding new TCP congestion control handlers
775  */
776 #define TCP_CA_NAME_MAX	16
777 #define TCP_CA_MAX	128
778 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
779 
780 #define TCP_CONG_NON_RESTRICTED 0x1
781 #define TCP_CONG_RTT_STAMP	0x2
782 
783 struct tcp_congestion_ops {
784 	struct list_head	list;
785 	unsigned long flags;
786 
787 	/* initialize private data (optional) */
788 	void (*init)(struct sock *sk);
789 	/* cleanup private data  (optional) */
790 	void (*release)(struct sock *sk);
791 
792 	/* return slow start threshold (required) */
793 	u32 (*ssthresh)(struct sock *sk);
794 	/* lower bound for congestion window (optional) */
795 	u32 (*min_cwnd)(const struct sock *sk);
796 	/* do new cwnd calculation (required) */
797 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked, u32 in_flight);
798 	/* call before changing ca_state (optional) */
799 	void (*set_state)(struct sock *sk, u8 new_state);
800 	/* call when cwnd event occurs (optional) */
801 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
802 	/* new value of cwnd after loss (optional) */
803 	u32  (*undo_cwnd)(struct sock *sk);
804 	/* hook for packet ack accounting (optional) */
805 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
806 	/* get info for inet_diag (optional) */
807 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
808 
809 	char 		name[TCP_CA_NAME_MAX];
810 	struct module 	*owner;
811 };
812 
813 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
814 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
815 
816 void tcp_init_congestion_control(struct sock *sk);
817 void tcp_cleanup_congestion_control(struct sock *sk);
818 int tcp_set_default_congestion_control(const char *name);
819 void tcp_get_default_congestion_control(char *name);
820 void tcp_get_available_congestion_control(char *buf, size_t len);
821 void tcp_get_allowed_congestion_control(char *buf, size_t len);
822 int tcp_set_allowed_congestion_control(char *allowed);
823 int tcp_set_congestion_control(struct sock *sk, const char *name);
824 int tcp_slow_start(struct tcp_sock *tp, u32 acked);
825 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
826 
827 extern struct tcp_congestion_ops tcp_init_congestion_ops;
828 u32 tcp_reno_ssthresh(struct sock *sk);
829 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight);
830 u32 tcp_reno_min_cwnd(const struct sock *sk);
831 extern struct tcp_congestion_ops tcp_reno;
832 
833 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
834 {
835 	struct inet_connection_sock *icsk = inet_csk(sk);
836 
837 	if (icsk->icsk_ca_ops->set_state)
838 		icsk->icsk_ca_ops->set_state(sk, ca_state);
839 	icsk->icsk_ca_state = ca_state;
840 }
841 
842 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
843 {
844 	const struct inet_connection_sock *icsk = inet_csk(sk);
845 
846 	if (icsk->icsk_ca_ops->cwnd_event)
847 		icsk->icsk_ca_ops->cwnd_event(sk, event);
848 }
849 
850 /* These functions determine how the current flow behaves in respect of SACK
851  * handling. SACK is negotiated with the peer, and therefore it can vary
852  * between different flows.
853  *
854  * tcp_is_sack - SACK enabled
855  * tcp_is_reno - No SACK
856  * tcp_is_fack - FACK enabled, implies SACK enabled
857  */
858 static inline int tcp_is_sack(const struct tcp_sock *tp)
859 {
860 	return tp->rx_opt.sack_ok;
861 }
862 
863 static inline bool tcp_is_reno(const struct tcp_sock *tp)
864 {
865 	return !tcp_is_sack(tp);
866 }
867 
868 static inline bool tcp_is_fack(const struct tcp_sock *tp)
869 {
870 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
871 }
872 
873 static inline void tcp_enable_fack(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
876 }
877 
878 /* TCP early-retransmit (ER) is similar to but more conservative than
879  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
880  */
881 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
882 {
883 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
884 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
885 		sysctl_tcp_reordering == 3;
886 }
887 
888 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
889 {
890 	tp->do_early_retrans = 0;
891 }
892 
893 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
894 {
895 	return tp->sacked_out + tp->lost_out;
896 }
897 
898 /* This determines how many packets are "in the network" to the best
899  * of our knowledge.  In many cases it is conservative, but where
900  * detailed information is available from the receiver (via SACK
901  * blocks etc.) we can make more aggressive calculations.
902  *
903  * Use this for decisions involving congestion control, use just
904  * tp->packets_out to determine if the send queue is empty or not.
905  *
906  * Read this equation as:
907  *
908  *	"Packets sent once on transmission queue" MINUS
909  *	"Packets left network, but not honestly ACKed yet" PLUS
910  *	"Packets fast retransmitted"
911  */
912 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
913 {
914 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
915 }
916 
917 #define TCP_INFINITE_SSTHRESH	0x7fffffff
918 
919 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
920 {
921 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
922 }
923 
924 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
925 {
926 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
927 	       (1 << inet_csk(sk)->icsk_ca_state);
928 }
929 
930 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
931  * The exception is cwnd reduction phase, when cwnd is decreasing towards
932  * ssthresh.
933  */
934 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
935 {
936 	const struct tcp_sock *tp = tcp_sk(sk);
937 
938 	if (tcp_in_cwnd_reduction(sk))
939 		return tp->snd_ssthresh;
940 	else
941 		return max(tp->snd_ssthresh,
942 			   ((tp->snd_cwnd >> 1) +
943 			    (tp->snd_cwnd >> 2)));
944 }
945 
946 /* Use define here intentionally to get WARN_ON location shown at the caller */
947 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
948 
949 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
950 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
951 
952 /* The maximum number of MSS of available cwnd for which TSO defers
953  * sending if not using sysctl_tcp_tso_win_divisor.
954  */
955 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
956 {
957 	return 3;
958 }
959 
960 /* Slow start with delack produces 3 packets of burst, so that
961  * it is safe "de facto".  This will be the default - same as
962  * the default reordering threshold - but if reordering increases,
963  * we must be able to allow cwnd to burst at least this much in order
964  * to not pull it back when holes are filled.
965  */
966 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
967 {
968 	return tp->reordering;
969 }
970 
971 /* Returns end sequence number of the receiver's advertised window */
972 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
973 {
974 	return tp->snd_una + tp->snd_wnd;
975 }
976 bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
977 
978 static inline void tcp_check_probe_timer(struct sock *sk)
979 {
980 	const struct tcp_sock *tp = tcp_sk(sk);
981 	const struct inet_connection_sock *icsk = inet_csk(sk);
982 
983 	if (!tp->packets_out && !icsk->icsk_pending)
984 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
985 					  icsk->icsk_rto, TCP_RTO_MAX);
986 }
987 
988 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
989 {
990 	tp->snd_wl1 = seq;
991 }
992 
993 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
994 {
995 	tp->snd_wl1 = seq;
996 }
997 
998 /*
999  * Calculate(/check) TCP checksum
1000  */
1001 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1002 				   __be32 daddr, __wsum base)
1003 {
1004 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1005 }
1006 
1007 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1008 {
1009 	return __skb_checksum_complete(skb);
1010 }
1011 
1012 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1013 {
1014 	return !skb_csum_unnecessary(skb) &&
1015 		__tcp_checksum_complete(skb);
1016 }
1017 
1018 /* Prequeue for VJ style copy to user, combined with checksumming. */
1019 
1020 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1021 {
1022 	tp->ucopy.task = NULL;
1023 	tp->ucopy.len = 0;
1024 	tp->ucopy.memory = 0;
1025 	skb_queue_head_init(&tp->ucopy.prequeue);
1026 #ifdef CONFIG_NET_DMA
1027 	tp->ucopy.dma_chan = NULL;
1028 	tp->ucopy.wakeup = 0;
1029 	tp->ucopy.pinned_list = NULL;
1030 	tp->ucopy.dma_cookie = 0;
1031 #endif
1032 }
1033 
1034 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1035 
1036 #undef STATE_TRACE
1037 
1038 #ifdef STATE_TRACE
1039 static const char *statename[]={
1040 	"Unused","Established","Syn Sent","Syn Recv",
1041 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1042 	"Close Wait","Last ACK","Listen","Closing"
1043 };
1044 #endif
1045 void tcp_set_state(struct sock *sk, int state);
1046 
1047 void tcp_done(struct sock *sk);
1048 
1049 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1050 {
1051 	rx_opt->dsack = 0;
1052 	rx_opt->num_sacks = 0;
1053 }
1054 
1055 u32 tcp_default_init_rwnd(u32 mss);
1056 
1057 /* Determine a window scaling and initial window to offer. */
1058 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1059 			       __u32 *window_clamp, int wscale_ok,
1060 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1061 
1062 static inline int tcp_win_from_space(int space)
1063 {
1064 	return sysctl_tcp_adv_win_scale<=0 ?
1065 		(space>>(-sysctl_tcp_adv_win_scale)) :
1066 		space - (space>>sysctl_tcp_adv_win_scale);
1067 }
1068 
1069 /* Note: caller must be prepared to deal with negative returns */
1070 static inline int tcp_space(const struct sock *sk)
1071 {
1072 	return tcp_win_from_space(sk->sk_rcvbuf -
1073 				  atomic_read(&sk->sk_rmem_alloc));
1074 }
1075 
1076 static inline int tcp_full_space(const struct sock *sk)
1077 {
1078 	return tcp_win_from_space(sk->sk_rcvbuf);
1079 }
1080 
1081 static inline void tcp_openreq_init(struct request_sock *req,
1082 				    struct tcp_options_received *rx_opt,
1083 				    struct sk_buff *skb)
1084 {
1085 	struct inet_request_sock *ireq = inet_rsk(req);
1086 
1087 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1088 	req->cookie_ts = 0;
1089 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1090 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1091 	tcp_rsk(req)->snt_synack = 0;
1092 	req->mss = rx_opt->mss_clamp;
1093 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1094 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1095 	ireq->sack_ok = rx_opt->sack_ok;
1096 	ireq->snd_wscale = rx_opt->snd_wscale;
1097 	ireq->wscale_ok = rx_opt->wscale_ok;
1098 	ireq->acked = 0;
1099 	ireq->ecn_ok = 0;
1100 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
1101 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1102 }
1103 
1104 void tcp_enter_memory_pressure(struct sock *sk);
1105 
1106 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1107 {
1108 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1109 }
1110 
1111 static inline int keepalive_time_when(const struct tcp_sock *tp)
1112 {
1113 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1114 }
1115 
1116 static inline int keepalive_probes(const struct tcp_sock *tp)
1117 {
1118 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1119 }
1120 
1121 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1122 {
1123 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1124 
1125 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1126 			  tcp_time_stamp - tp->rcv_tstamp);
1127 }
1128 
1129 static inline int tcp_fin_time(const struct sock *sk)
1130 {
1131 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1132 	const int rto = inet_csk(sk)->icsk_rto;
1133 
1134 	if (fin_timeout < (rto << 2) - (rto >> 1))
1135 		fin_timeout = (rto << 2) - (rto >> 1);
1136 
1137 	return fin_timeout;
1138 }
1139 
1140 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1141 				  int paws_win)
1142 {
1143 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1144 		return true;
1145 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1146 		return true;
1147 	/*
1148 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1149 	 * then following tcp messages have valid values. Ignore 0 value,
1150 	 * or else 'negative' tsval might forbid us to accept their packets.
1151 	 */
1152 	if (!rx_opt->ts_recent)
1153 		return true;
1154 	return false;
1155 }
1156 
1157 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1158 				   int rst)
1159 {
1160 	if (tcp_paws_check(rx_opt, 0))
1161 		return false;
1162 
1163 	/* RST segments are not recommended to carry timestamp,
1164 	   and, if they do, it is recommended to ignore PAWS because
1165 	   "their cleanup function should take precedence over timestamps."
1166 	   Certainly, it is mistake. It is necessary to understand the reasons
1167 	   of this constraint to relax it: if peer reboots, clock may go
1168 	   out-of-sync and half-open connections will not be reset.
1169 	   Actually, the problem would be not existing if all
1170 	   the implementations followed draft about maintaining clock
1171 	   via reboots. Linux-2.2 DOES NOT!
1172 
1173 	   However, we can relax time bounds for RST segments to MSL.
1174 	 */
1175 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1176 		return false;
1177 	return true;
1178 }
1179 
1180 static inline void tcp_mib_init(struct net *net)
1181 {
1182 	/* See RFC 2012 */
1183 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1184 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1185 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1186 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1187 }
1188 
1189 /* from STCP */
1190 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1191 {
1192 	tp->lost_skb_hint = NULL;
1193 }
1194 
1195 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1196 {
1197 	tcp_clear_retrans_hints_partial(tp);
1198 	tp->retransmit_skb_hint = NULL;
1199 }
1200 
1201 /* MD5 Signature */
1202 struct crypto_hash;
1203 
1204 union tcp_md5_addr {
1205 	struct in_addr  a4;
1206 #if IS_ENABLED(CONFIG_IPV6)
1207 	struct in6_addr	a6;
1208 #endif
1209 };
1210 
1211 /* - key database */
1212 struct tcp_md5sig_key {
1213 	struct hlist_node	node;
1214 	u8			keylen;
1215 	u8			family; /* AF_INET or AF_INET6 */
1216 	union tcp_md5_addr	addr;
1217 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1218 	struct rcu_head		rcu;
1219 };
1220 
1221 /* - sock block */
1222 struct tcp_md5sig_info {
1223 	struct hlist_head	head;
1224 	struct rcu_head		rcu;
1225 };
1226 
1227 /* - pseudo header */
1228 struct tcp4_pseudohdr {
1229 	__be32		saddr;
1230 	__be32		daddr;
1231 	__u8		pad;
1232 	__u8		protocol;
1233 	__be16		len;
1234 };
1235 
1236 struct tcp6_pseudohdr {
1237 	struct in6_addr	saddr;
1238 	struct in6_addr daddr;
1239 	__be32		len;
1240 	__be32		protocol;	/* including padding */
1241 };
1242 
1243 union tcp_md5sum_block {
1244 	struct tcp4_pseudohdr ip4;
1245 #if IS_ENABLED(CONFIG_IPV6)
1246 	struct tcp6_pseudohdr ip6;
1247 #endif
1248 };
1249 
1250 /* - pool: digest algorithm, hash description and scratch buffer */
1251 struct tcp_md5sig_pool {
1252 	struct hash_desc	md5_desc;
1253 	union tcp_md5sum_block	md5_blk;
1254 };
1255 
1256 /* - functions */
1257 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1258 			const struct sock *sk, const struct request_sock *req,
1259 			const struct sk_buff *skb);
1260 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1261 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1262 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1263 		   int family);
1264 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1265 					 struct sock *addr_sk);
1266 
1267 #ifdef CONFIG_TCP_MD5SIG
1268 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1269 					 const union tcp_md5_addr *addr,
1270 					 int family);
1271 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1272 #else
1273 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1274 					 const union tcp_md5_addr *addr,
1275 					 int family)
1276 {
1277 	return NULL;
1278 }
1279 #define tcp_twsk_md5_key(twsk)	NULL
1280 #endif
1281 
1282 bool tcp_alloc_md5sig_pool(void);
1283 
1284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1285 static inline void tcp_put_md5sig_pool(void)
1286 {
1287 	local_bh_enable();
1288 }
1289 
1290 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1291 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1292 			  unsigned int header_len);
1293 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1294 		     const struct tcp_md5sig_key *key);
1295 
1296 /* From tcp_fastopen.c */
1297 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1298 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1299 			    unsigned long *last_syn_loss);
1300 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1301 			    struct tcp_fastopen_cookie *cookie, bool syn_lost);
1302 struct tcp_fastopen_request {
1303 	/* Fast Open cookie. Size 0 means a cookie request */
1304 	struct tcp_fastopen_cookie	cookie;
1305 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1306 	u16				copied;	/* queued in tcp_connect() */
1307 };
1308 void tcp_free_fastopen_req(struct tcp_sock *tp);
1309 
1310 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1311 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1312 void tcp_fastopen_cookie_gen(__be32 src, __be32 dst,
1313 			     struct tcp_fastopen_cookie *foc);
1314 void tcp_fastopen_init_key_once(bool publish);
1315 #define TCP_FASTOPEN_KEY_LENGTH 16
1316 
1317 /* Fastopen key context */
1318 struct tcp_fastopen_context {
1319 	struct crypto_cipher	*tfm;
1320 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1321 	struct rcu_head		rcu;
1322 };
1323 
1324 /* write queue abstraction */
1325 static inline void tcp_write_queue_purge(struct sock *sk)
1326 {
1327 	struct sk_buff *skb;
1328 
1329 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1330 		sk_wmem_free_skb(sk, skb);
1331 	sk_mem_reclaim(sk);
1332 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1333 }
1334 
1335 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1336 {
1337 	return skb_peek(&sk->sk_write_queue);
1338 }
1339 
1340 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1341 {
1342 	return skb_peek_tail(&sk->sk_write_queue);
1343 }
1344 
1345 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1346 						   const struct sk_buff *skb)
1347 {
1348 	return skb_queue_next(&sk->sk_write_queue, skb);
1349 }
1350 
1351 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1352 						   const struct sk_buff *skb)
1353 {
1354 	return skb_queue_prev(&sk->sk_write_queue, skb);
1355 }
1356 
1357 #define tcp_for_write_queue(skb, sk)					\
1358 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1359 
1360 #define tcp_for_write_queue_from(skb, sk)				\
1361 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1362 
1363 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1364 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1365 
1366 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1367 {
1368 	return sk->sk_send_head;
1369 }
1370 
1371 static inline bool tcp_skb_is_last(const struct sock *sk,
1372 				   const struct sk_buff *skb)
1373 {
1374 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1375 }
1376 
1377 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1378 {
1379 	if (tcp_skb_is_last(sk, skb))
1380 		sk->sk_send_head = NULL;
1381 	else
1382 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1383 }
1384 
1385 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1386 {
1387 	if (sk->sk_send_head == skb_unlinked)
1388 		sk->sk_send_head = NULL;
1389 }
1390 
1391 static inline void tcp_init_send_head(struct sock *sk)
1392 {
1393 	sk->sk_send_head = NULL;
1394 }
1395 
1396 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1397 {
1398 	__skb_queue_tail(&sk->sk_write_queue, skb);
1399 }
1400 
1401 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1402 {
1403 	__tcp_add_write_queue_tail(sk, skb);
1404 
1405 	/* Queue it, remembering where we must start sending. */
1406 	if (sk->sk_send_head == NULL) {
1407 		sk->sk_send_head = skb;
1408 
1409 		if (tcp_sk(sk)->highest_sack == NULL)
1410 			tcp_sk(sk)->highest_sack = skb;
1411 	}
1412 }
1413 
1414 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1415 {
1416 	__skb_queue_head(&sk->sk_write_queue, skb);
1417 }
1418 
1419 /* Insert buff after skb on the write queue of sk.  */
1420 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1421 						struct sk_buff *buff,
1422 						struct sock *sk)
1423 {
1424 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1425 }
1426 
1427 /* Insert new before skb on the write queue of sk.  */
1428 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1429 						  struct sk_buff *skb,
1430 						  struct sock *sk)
1431 {
1432 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1433 
1434 	if (sk->sk_send_head == skb)
1435 		sk->sk_send_head = new;
1436 }
1437 
1438 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1439 {
1440 	__skb_unlink(skb, &sk->sk_write_queue);
1441 }
1442 
1443 static inline bool tcp_write_queue_empty(struct sock *sk)
1444 {
1445 	return skb_queue_empty(&sk->sk_write_queue);
1446 }
1447 
1448 static inline void tcp_push_pending_frames(struct sock *sk)
1449 {
1450 	if (tcp_send_head(sk)) {
1451 		struct tcp_sock *tp = tcp_sk(sk);
1452 
1453 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1454 	}
1455 }
1456 
1457 /* Start sequence of the skb just after the highest skb with SACKed
1458  * bit, valid only if sacked_out > 0 or when the caller has ensured
1459  * validity by itself.
1460  */
1461 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1462 {
1463 	if (!tp->sacked_out)
1464 		return tp->snd_una;
1465 
1466 	if (tp->highest_sack == NULL)
1467 		return tp->snd_nxt;
1468 
1469 	return TCP_SKB_CB(tp->highest_sack)->seq;
1470 }
1471 
1472 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1473 {
1474 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1475 						tcp_write_queue_next(sk, skb);
1476 }
1477 
1478 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1479 {
1480 	return tcp_sk(sk)->highest_sack;
1481 }
1482 
1483 static inline void tcp_highest_sack_reset(struct sock *sk)
1484 {
1485 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1486 }
1487 
1488 /* Called when old skb is about to be deleted (to be combined with new skb) */
1489 static inline void tcp_highest_sack_combine(struct sock *sk,
1490 					    struct sk_buff *old,
1491 					    struct sk_buff *new)
1492 {
1493 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1494 		tcp_sk(sk)->highest_sack = new;
1495 }
1496 
1497 /* Determines whether this is a thin stream (which may suffer from
1498  * increased latency). Used to trigger latency-reducing mechanisms.
1499  */
1500 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1501 {
1502 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1503 }
1504 
1505 /* /proc */
1506 enum tcp_seq_states {
1507 	TCP_SEQ_STATE_LISTENING,
1508 	TCP_SEQ_STATE_OPENREQ,
1509 	TCP_SEQ_STATE_ESTABLISHED,
1510 };
1511 
1512 int tcp_seq_open(struct inode *inode, struct file *file);
1513 
1514 struct tcp_seq_afinfo {
1515 	char				*name;
1516 	sa_family_t			family;
1517 	const struct file_operations	*seq_fops;
1518 	struct seq_operations		seq_ops;
1519 };
1520 
1521 struct tcp_iter_state {
1522 	struct seq_net_private	p;
1523 	sa_family_t		family;
1524 	enum tcp_seq_states	state;
1525 	struct sock		*syn_wait_sk;
1526 	int			bucket, offset, sbucket, num;
1527 	kuid_t			uid;
1528 	loff_t			last_pos;
1529 };
1530 
1531 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1532 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1533 
1534 extern struct request_sock_ops tcp_request_sock_ops;
1535 extern struct request_sock_ops tcp6_request_sock_ops;
1536 
1537 void tcp_v4_destroy_sock(struct sock *sk);
1538 
1539 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1540 				netdev_features_t features);
1541 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1542 int tcp_gro_complete(struct sk_buff *skb);
1543 
1544 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1545 
1546 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1547 {
1548 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1549 }
1550 
1551 static inline bool tcp_stream_memory_free(const struct sock *sk)
1552 {
1553 	const struct tcp_sock *tp = tcp_sk(sk);
1554 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1555 
1556 	return notsent_bytes < tcp_notsent_lowat(tp);
1557 }
1558 
1559 #ifdef CONFIG_PROC_FS
1560 int tcp4_proc_init(void);
1561 void tcp4_proc_exit(void);
1562 #endif
1563 
1564 /* TCP af-specific functions */
1565 struct tcp_sock_af_ops {
1566 #ifdef CONFIG_TCP_MD5SIG
1567 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1568 						struct sock *addr_sk);
1569 	int			(*calc_md5_hash) (char *location,
1570 						  struct tcp_md5sig_key *md5,
1571 						  const struct sock *sk,
1572 						  const struct request_sock *req,
1573 						  const struct sk_buff *skb);
1574 	int			(*md5_parse) (struct sock *sk,
1575 					      char __user *optval,
1576 					      int optlen);
1577 #endif
1578 };
1579 
1580 struct tcp_request_sock_ops {
1581 #ifdef CONFIG_TCP_MD5SIG
1582 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1583 						struct request_sock *req);
1584 	int			(*calc_md5_hash) (char *location,
1585 						  struct tcp_md5sig_key *md5,
1586 						  const struct sock *sk,
1587 						  const struct request_sock *req,
1588 						  const struct sk_buff *skb);
1589 #endif
1590 };
1591 
1592 int tcpv4_offload_init(void);
1593 
1594 void tcp_v4_init(void);
1595 void tcp_init(void);
1596 
1597 #endif	/* _TCP_H */
1598