xref: /openbmc/linux/include/net/tcp.h (revision 5a170e9e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 int tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen,
380 			   bool *lost_race);
381 int tcp_child_process(struct sock *parent, struct sock *child,
382 		      struct sk_buff *skb);
383 void tcp_enter_loss(struct sock *sk);
384 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385 void tcp_clear_retrans(struct tcp_sock *tp);
386 void tcp_update_metrics(struct sock *sk);
387 void tcp_init_metrics(struct sock *sk);
388 void tcp_metrics_init(void);
389 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 __poll_t tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 int tcp_set_rcvlowat(struct sock *sk, int val);
408 void tcp_data_ready(struct sock *sk);
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412 		       struct tcp_options_received *opt_rx,
413 		       int estab, struct tcp_fastopen_cookie *foc);
414 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415 
416 /*
417  *	TCP v4 functions exported for the inet6 API
418  */
419 
420 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
421 void tcp_v4_mtu_reduced(struct sock *sk);
422 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
423 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
424 struct sock *tcp_create_openreq_child(const struct sock *sk,
425 				      struct request_sock *req,
426 				      struct sk_buff *skb);
427 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
428 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
429 				  struct request_sock *req,
430 				  struct dst_entry *dst,
431 				  struct request_sock *req_unhash,
432 				  bool *own_req);
433 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
434 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
435 int tcp_connect(struct sock *sk);
436 enum tcp_synack_type {
437 	TCP_SYNACK_NORMAL,
438 	TCP_SYNACK_FASTOPEN,
439 	TCP_SYNACK_COOKIE,
440 };
441 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
442 				struct request_sock *req,
443 				struct tcp_fastopen_cookie *foc,
444 				enum tcp_synack_type synack_type);
445 int tcp_disconnect(struct sock *sk, int flags);
446 
447 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
448 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
449 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
450 
451 /* From syncookies.c */
452 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
453 				 struct request_sock *req,
454 				 struct dst_entry *dst, u32 tsoff);
455 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
456 		      u32 cookie);
457 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
458 #ifdef CONFIG_SYN_COOKIES
459 
460 /* Syncookies use a monotonic timer which increments every 60 seconds.
461  * This counter is used both as a hash input and partially encoded into
462  * the cookie value.  A cookie is only validated further if the delta
463  * between the current counter value and the encoded one is less than this,
464  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
465  * the counter advances immediately after a cookie is generated).
466  */
467 #define MAX_SYNCOOKIE_AGE	2
468 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
469 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
470 
471 /* syncookies: remember time of last synqueue overflow
472  * But do not dirty this field too often (once per second is enough)
473  * It is racy as we do not hold a lock, but race is very minor.
474  */
475 static inline void tcp_synq_overflow(const struct sock *sk)
476 {
477 	unsigned int last_overflow;
478 	unsigned int now = jiffies;
479 
480 	if (sk->sk_reuseport) {
481 		struct sock_reuseport *reuse;
482 
483 		reuse = rcu_dereference(sk->sk_reuseport_cb);
484 		if (likely(reuse)) {
485 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
486 			if (time_after32(now, last_overflow + HZ))
487 				WRITE_ONCE(reuse->synq_overflow_ts, now);
488 			return;
489 		}
490 	}
491 
492 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
493 	if (time_after32(now, last_overflow + HZ))
494 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
495 }
496 
497 /* syncookies: no recent synqueue overflow on this listening socket? */
498 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			return time_after32(now, last_overflow +
510 					    TCP_SYNCOOKIE_VALID);
511 		}
512 	}
513 
514 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
515 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
516 }
517 
518 static inline u32 tcp_cookie_time(void)
519 {
520 	u64 val = get_jiffies_64();
521 
522 	do_div(val, TCP_SYNCOOKIE_PERIOD);
523 	return val;
524 }
525 
526 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
527 			      u16 *mssp);
528 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
529 u64 cookie_init_timestamp(struct request_sock *req);
530 bool cookie_timestamp_decode(const struct net *net,
531 			     struct tcp_options_received *opt);
532 bool cookie_ecn_ok(const struct tcp_options_received *opt,
533 		   const struct net *net, const struct dst_entry *dst);
534 
535 /* From net/ipv6/syncookies.c */
536 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
537 		      u32 cookie);
538 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
539 
540 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
541 			      const struct tcphdr *th, u16 *mssp);
542 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
543 #endif
544 /* tcp_output.c */
545 
546 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
547 			       int nonagle);
548 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 void tcp_retransmit_timer(struct sock *sk);
551 void tcp_xmit_retransmit_queue(struct sock *);
552 void tcp_simple_retransmit(struct sock *);
553 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
554 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
555 enum tcp_queue {
556 	TCP_FRAG_IN_WRITE_QUEUE,
557 	TCP_FRAG_IN_RTX_QUEUE,
558 };
559 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
560 		 struct sk_buff *skb, u32 len,
561 		 unsigned int mss_now, gfp_t gfp);
562 
563 void tcp_send_probe0(struct sock *);
564 void tcp_send_partial(struct sock *);
565 int tcp_write_wakeup(struct sock *, int mib);
566 void tcp_send_fin(struct sock *sk);
567 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
568 int tcp_send_synack(struct sock *);
569 void tcp_push_one(struct sock *, unsigned int mss_now);
570 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
571 void tcp_send_ack(struct sock *sk);
572 void tcp_send_delayed_ack(struct sock *sk);
573 void tcp_send_loss_probe(struct sock *sk);
574 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
575 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
576 			     const struct sk_buff *next_skb);
577 
578 /* tcp_input.c */
579 void tcp_rearm_rto(struct sock *sk);
580 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
581 void tcp_reset(struct sock *sk);
582 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
583 void tcp_fin(struct sock *sk);
584 
585 /* tcp_timer.c */
586 void tcp_init_xmit_timers(struct sock *);
587 static inline void tcp_clear_xmit_timers(struct sock *sk)
588 {
589 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
590 		__sock_put(sk);
591 
592 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
593 		__sock_put(sk);
594 
595 	inet_csk_clear_xmit_timers(sk);
596 }
597 
598 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599 unsigned int tcp_current_mss(struct sock *sk);
600 
601 /* Bound MSS / TSO packet size with the half of the window */
602 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603 {
604 	int cutoff;
605 
606 	/* When peer uses tiny windows, there is no use in packetizing
607 	 * to sub-MSS pieces for the sake of SWS or making sure there
608 	 * are enough packets in the pipe for fast recovery.
609 	 *
610 	 * On the other hand, for extremely large MSS devices, handling
611 	 * smaller than MSS windows in this way does make sense.
612 	 */
613 	if (tp->max_window > TCP_MSS_DEFAULT)
614 		cutoff = (tp->max_window >> 1);
615 	else
616 		cutoff = tp->max_window;
617 
618 	if (cutoff && pktsize > cutoff)
619 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 	else
621 		return pktsize;
622 }
623 
624 /* tcp.c */
625 void tcp_get_info(struct sock *, struct tcp_info *);
626 
627 /* Read 'sendfile()'-style from a TCP socket */
628 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 		  sk_read_actor_t recv_actor);
630 
631 void tcp_initialize_rcv_mss(struct sock *sk);
632 
633 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634 int tcp_mss_to_mtu(struct sock *sk, int mss);
635 void tcp_mtup_init(struct sock *sk);
636 void tcp_init_buffer_space(struct sock *sk);
637 
638 static inline void tcp_bound_rto(const struct sock *sk)
639 {
640 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642 }
643 
644 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645 {
646 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647 }
648 
649 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650 {
651 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 			       ntohl(TCP_FLAG_ACK) |
653 			       snd_wnd);
654 }
655 
656 static inline void tcp_fast_path_on(struct tcp_sock *tp)
657 {
658 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659 }
660 
661 static inline void tcp_fast_path_check(struct sock *sk)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 
665 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 	    tp->rcv_wnd &&
667 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 	    !tp->urg_data)
669 		tcp_fast_path_on(tp);
670 }
671 
672 /* Compute the actual rto_min value */
673 static inline u32 tcp_rto_min(struct sock *sk)
674 {
675 	const struct dst_entry *dst = __sk_dst_get(sk);
676 	u32 rto_min = TCP_RTO_MIN;
677 
678 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 	return rto_min;
681 }
682 
683 static inline u32 tcp_rto_min_us(struct sock *sk)
684 {
685 	return jiffies_to_usecs(tcp_rto_min(sk));
686 }
687 
688 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689 {
690 	return dst_metric_locked(dst, RTAX_CC_ALGO);
691 }
692 
693 /* Minimum RTT in usec. ~0 means not available. */
694 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695 {
696 	return minmax_get(&tp->rtt_min);
697 }
698 
699 /* Compute the actual receive window we are currently advertising.
700  * Rcv_nxt can be after the window if our peer push more data
701  * than the offered window.
702  */
703 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704 {
705 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706 
707 	if (win < 0)
708 		win = 0;
709 	return (u32) win;
710 }
711 
712 /* Choose a new window, without checks for shrinking, and without
713  * scaling applied to the result.  The caller does these things
714  * if necessary.  This is a "raw" window selection.
715  */
716 u32 __tcp_select_window(struct sock *sk);
717 
718 void tcp_send_window_probe(struct sock *sk);
719 
720 /* TCP uses 32bit jiffies to save some space.
721  * Note that this is different from tcp_time_stamp, which
722  * historically has been the same until linux-4.13.
723  */
724 #define tcp_jiffies32 ((u32)jiffies)
725 
726 /*
727  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728  * It is no longer tied to jiffies, but to 1 ms clock.
729  * Note: double check if you want to use tcp_jiffies32 instead of this.
730  */
731 #define TCP_TS_HZ	1000
732 
733 static inline u64 tcp_clock_ns(void)
734 {
735 	return ktime_get_ns();
736 }
737 
738 static inline u64 tcp_clock_us(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741 }
742 
743 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
744 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745 {
746 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
750 static inline u32 tcp_time_stamp_raw(void)
751 {
752 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753 }
754 
755 void tcp_mstamp_refresh(struct tcp_sock *tp);
756 
757 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
758 {
759 	return max_t(s64, t1 - t0, 0);
760 }
761 
762 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
763 {
764 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
765 }
766 
767 /* provide the departure time in us unit */
768 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
769 {
770 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
771 }
772 
773 
774 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
775 
776 #define TCPHDR_FIN 0x01
777 #define TCPHDR_SYN 0x02
778 #define TCPHDR_RST 0x04
779 #define TCPHDR_PSH 0x08
780 #define TCPHDR_ACK 0x10
781 #define TCPHDR_URG 0x20
782 #define TCPHDR_ECE 0x40
783 #define TCPHDR_CWR 0x80
784 
785 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
786 
787 /* This is what the send packet queuing engine uses to pass
788  * TCP per-packet control information to the transmission code.
789  * We also store the host-order sequence numbers in here too.
790  * This is 44 bytes if IPV6 is enabled.
791  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
792  */
793 struct tcp_skb_cb {
794 	__u32		seq;		/* Starting sequence number	*/
795 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
796 	union {
797 		/* Note : tcp_tw_isn is used in input path only
798 		 *	  (isn chosen by tcp_timewait_state_process())
799 		 *
800 		 * 	  tcp_gso_segs/size are used in write queue only,
801 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
802 		 */
803 		__u32		tcp_tw_isn;
804 		struct {
805 			u16	tcp_gso_segs;
806 			u16	tcp_gso_size;
807 		};
808 	};
809 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
810 
811 	__u8		sacked;		/* State flags for SACK.	*/
812 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
813 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
814 #define TCPCB_LOST		0x04	/* SKB is lost			*/
815 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
816 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
817 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
818 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
819 				TCPCB_REPAIRED)
820 
821 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
822 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
823 			eor:1,		/* Is skb MSG_EOR marked? */
824 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
825 			unused:5;
826 	__u32		ack_seq;	/* Sequence number ACK'd	*/
827 	union {
828 		struct {
829 			/* There is space for up to 24 bytes */
830 			__u32 in_flight:30,/* Bytes in flight at transmit */
831 			      is_app_limited:1, /* cwnd not fully used? */
832 			      unused:1;
833 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
834 			__u32 delivered;
835 			/* start of send pipeline phase */
836 			u64 first_tx_mstamp;
837 			/* when we reached the "delivered" count */
838 			u64 delivered_mstamp;
839 		} tx;   /* only used for outgoing skbs */
840 		union {
841 			struct inet_skb_parm	h4;
842 #if IS_ENABLED(CONFIG_IPV6)
843 			struct inet6_skb_parm	h6;
844 #endif
845 		} header;	/* For incoming skbs */
846 		struct {
847 			__u32 flags;
848 			struct sock *sk_redir;
849 			void *data_end;
850 		} bpf;
851 	};
852 };
853 
854 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
855 
856 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
857 {
858 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
859 }
860 
861 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
862 {
863 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
864 }
865 
866 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
867 {
868 	return TCP_SKB_CB(skb)->bpf.sk_redir;
869 }
870 
871 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
872 {
873 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
874 }
875 
876 #if IS_ENABLED(CONFIG_IPV6)
877 /* This is the variant of inet6_iif() that must be used by TCP,
878  * as TCP moves IP6CB into a different location in skb->cb[]
879  */
880 static inline int tcp_v6_iif(const struct sk_buff *skb)
881 {
882 	return TCP_SKB_CB(skb)->header.h6.iif;
883 }
884 
885 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
886 {
887 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
888 
889 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
890 }
891 
892 /* TCP_SKB_CB reference means this can not be used from early demux */
893 static inline int tcp_v6_sdif(const struct sk_buff *skb)
894 {
895 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
896 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
897 		return TCP_SKB_CB(skb)->header.h6.iif;
898 #endif
899 	return 0;
900 }
901 #endif
902 
903 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
904 {
905 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
906 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
907 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
908 		return true;
909 #endif
910 	return false;
911 }
912 
913 /* TCP_SKB_CB reference means this can not be used from early demux */
914 static inline int tcp_v4_sdif(struct sk_buff *skb)
915 {
916 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
917 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
918 		return TCP_SKB_CB(skb)->header.h4.iif;
919 #endif
920 	return 0;
921 }
922 
923 /* Due to TSO, an SKB can be composed of multiple actual
924  * packets.  To keep these tracked properly, we use this.
925  */
926 static inline int tcp_skb_pcount(const struct sk_buff *skb)
927 {
928 	return TCP_SKB_CB(skb)->tcp_gso_segs;
929 }
930 
931 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
932 {
933 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
934 }
935 
936 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
937 {
938 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
939 }
940 
941 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
942 static inline int tcp_skb_mss(const struct sk_buff *skb)
943 {
944 	return TCP_SKB_CB(skb)->tcp_gso_size;
945 }
946 
947 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
948 {
949 	return likely(!TCP_SKB_CB(skb)->eor);
950 }
951 
952 /* Events passed to congestion control interface */
953 enum tcp_ca_event {
954 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
955 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
956 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
957 	CA_EVENT_LOSS,		/* loss timeout */
958 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
959 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
960 };
961 
962 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
963 enum tcp_ca_ack_event_flags {
964 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
965 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
966 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
967 };
968 
969 /*
970  * Interface for adding new TCP congestion control handlers
971  */
972 #define TCP_CA_NAME_MAX	16
973 #define TCP_CA_MAX	128
974 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
975 
976 #define TCP_CA_UNSPEC	0
977 
978 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
979 #define TCP_CONG_NON_RESTRICTED 0x1
980 /* Requires ECN/ECT set on all packets */
981 #define TCP_CONG_NEEDS_ECN	0x2
982 
983 union tcp_cc_info;
984 
985 struct ack_sample {
986 	u32 pkts_acked;
987 	s32 rtt_us;
988 	u32 in_flight;
989 };
990 
991 /* A rate sample measures the number of (original/retransmitted) data
992  * packets delivered "delivered" over an interval of time "interval_us".
993  * The tcp_rate.c code fills in the rate sample, and congestion
994  * control modules that define a cong_control function to run at the end
995  * of ACK processing can optionally chose to consult this sample when
996  * setting cwnd and pacing rate.
997  * A sample is invalid if "delivered" or "interval_us" is negative.
998  */
999 struct rate_sample {
1000 	u64  prior_mstamp; /* starting timestamp for interval */
1001 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1002 	s32  delivered;		/* number of packets delivered over interval */
1003 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1004 	u32 snd_interval_us;	/* snd interval for delivered packets */
1005 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1006 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1007 	int  losses;		/* number of packets marked lost upon ACK */
1008 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1009 	u32  prior_in_flight;	/* in flight before this ACK */
1010 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1011 	bool is_retrans;	/* is sample from retransmission? */
1012 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1013 };
1014 
1015 struct tcp_congestion_ops {
1016 	struct list_head	list;
1017 	u32 key;
1018 	u32 flags;
1019 
1020 	/* initialize private data (optional) */
1021 	void (*init)(struct sock *sk);
1022 	/* cleanup private data  (optional) */
1023 	void (*release)(struct sock *sk);
1024 
1025 	/* return slow start threshold (required) */
1026 	u32 (*ssthresh)(struct sock *sk);
1027 	/* do new cwnd calculation (required) */
1028 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1029 	/* call before changing ca_state (optional) */
1030 	void (*set_state)(struct sock *sk, u8 new_state);
1031 	/* call when cwnd event occurs (optional) */
1032 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1033 	/* call when ack arrives (optional) */
1034 	void (*in_ack_event)(struct sock *sk, u32 flags);
1035 	/* new value of cwnd after loss (required) */
1036 	u32  (*undo_cwnd)(struct sock *sk);
1037 	/* hook for packet ack accounting (optional) */
1038 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1039 	/* override sysctl_tcp_min_tso_segs */
1040 	u32 (*min_tso_segs)(struct sock *sk);
1041 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1042 	u32 (*sndbuf_expand)(struct sock *sk);
1043 	/* call when packets are delivered to update cwnd and pacing rate,
1044 	 * after all the ca_state processing. (optional)
1045 	 */
1046 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1047 	/* get info for inet_diag (optional) */
1048 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1049 			   union tcp_cc_info *info);
1050 
1051 	char 		name[TCP_CA_NAME_MAX];
1052 	struct module 	*owner;
1053 };
1054 
1055 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1056 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1057 
1058 void tcp_assign_congestion_control(struct sock *sk);
1059 void tcp_init_congestion_control(struct sock *sk);
1060 void tcp_cleanup_congestion_control(struct sock *sk);
1061 int tcp_set_default_congestion_control(struct net *net, const char *name);
1062 void tcp_get_default_congestion_control(struct net *net, char *name);
1063 void tcp_get_available_congestion_control(char *buf, size_t len);
1064 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1065 int tcp_set_allowed_congestion_control(char *allowed);
1066 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1067 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1068 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1069 
1070 u32 tcp_reno_ssthresh(struct sock *sk);
1071 u32 tcp_reno_undo_cwnd(struct sock *sk);
1072 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1073 extern struct tcp_congestion_ops tcp_reno;
1074 
1075 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1076 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1077 #ifdef CONFIG_INET
1078 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1079 #else
1080 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1081 {
1082 	return NULL;
1083 }
1084 #endif
1085 
1086 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1087 {
1088 	const struct inet_connection_sock *icsk = inet_csk(sk);
1089 
1090 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1091 }
1092 
1093 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1094 {
1095 	struct inet_connection_sock *icsk = inet_csk(sk);
1096 
1097 	if (icsk->icsk_ca_ops->set_state)
1098 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1099 	icsk->icsk_ca_state = ca_state;
1100 }
1101 
1102 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1103 {
1104 	const struct inet_connection_sock *icsk = inet_csk(sk);
1105 
1106 	if (icsk->icsk_ca_ops->cwnd_event)
1107 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1108 }
1109 
1110 /* From tcp_rate.c */
1111 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1112 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1113 			    struct rate_sample *rs);
1114 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1115 		  bool is_sack_reneg, struct rate_sample *rs);
1116 void tcp_rate_check_app_limited(struct sock *sk);
1117 
1118 /* These functions determine how the current flow behaves in respect of SACK
1119  * handling. SACK is negotiated with the peer, and therefore it can vary
1120  * between different flows.
1121  *
1122  * tcp_is_sack - SACK enabled
1123  * tcp_is_reno - No SACK
1124  */
1125 static inline int tcp_is_sack(const struct tcp_sock *tp)
1126 {
1127 	return likely(tp->rx_opt.sack_ok);
1128 }
1129 
1130 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1131 {
1132 	return !tcp_is_sack(tp);
1133 }
1134 
1135 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1136 {
1137 	return tp->sacked_out + tp->lost_out;
1138 }
1139 
1140 /* This determines how many packets are "in the network" to the best
1141  * of our knowledge.  In many cases it is conservative, but where
1142  * detailed information is available from the receiver (via SACK
1143  * blocks etc.) we can make more aggressive calculations.
1144  *
1145  * Use this for decisions involving congestion control, use just
1146  * tp->packets_out to determine if the send queue is empty or not.
1147  *
1148  * Read this equation as:
1149  *
1150  *	"Packets sent once on transmission queue" MINUS
1151  *	"Packets left network, but not honestly ACKed yet" PLUS
1152  *	"Packets fast retransmitted"
1153  */
1154 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1155 {
1156 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1157 }
1158 
1159 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1160 
1161 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1162 {
1163 	return tp->snd_cwnd < tp->snd_ssthresh;
1164 }
1165 
1166 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1167 {
1168 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1169 }
1170 
1171 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1172 {
1173 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1174 	       (1 << inet_csk(sk)->icsk_ca_state);
1175 }
1176 
1177 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1178  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1179  * ssthresh.
1180  */
1181 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1182 {
1183 	const struct tcp_sock *tp = tcp_sk(sk);
1184 
1185 	if (tcp_in_cwnd_reduction(sk))
1186 		return tp->snd_ssthresh;
1187 	else
1188 		return max(tp->snd_ssthresh,
1189 			   ((tp->snd_cwnd >> 1) +
1190 			    (tp->snd_cwnd >> 2)));
1191 }
1192 
1193 /* Use define here intentionally to get WARN_ON location shown at the caller */
1194 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1195 
1196 void tcp_enter_cwr(struct sock *sk);
1197 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1198 
1199 /* The maximum number of MSS of available cwnd for which TSO defers
1200  * sending if not using sysctl_tcp_tso_win_divisor.
1201  */
1202 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1203 {
1204 	return 3;
1205 }
1206 
1207 /* Returns end sequence number of the receiver's advertised window */
1208 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_una + tp->snd_wnd;
1211 }
1212 
1213 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1214  * flexible approach. The RFC suggests cwnd should not be raised unless
1215  * it was fully used previously. And that's exactly what we do in
1216  * congestion avoidance mode. But in slow start we allow cwnd to grow
1217  * as long as the application has used half the cwnd.
1218  * Example :
1219  *    cwnd is 10 (IW10), but application sends 9 frames.
1220  *    We allow cwnd to reach 18 when all frames are ACKed.
1221  * This check is safe because it's as aggressive as slow start which already
1222  * risks 100% overshoot. The advantage is that we discourage application to
1223  * either send more filler packets or data to artificially blow up the cwnd
1224  * usage, and allow application-limited process to probe bw more aggressively.
1225  */
1226 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1227 {
1228 	const struct tcp_sock *tp = tcp_sk(sk);
1229 
1230 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1231 	if (tcp_in_slow_start(tp))
1232 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1233 
1234 	return tp->is_cwnd_limited;
1235 }
1236 
1237 /* BBR congestion control needs pacing.
1238  * Same remark for SO_MAX_PACING_RATE.
1239  * sch_fq packet scheduler is efficiently handling pacing,
1240  * but is not always installed/used.
1241  * Return true if TCP stack should pace packets itself.
1242  */
1243 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1244 {
1245 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1246 }
1247 
1248 /* Return in jiffies the delay before one skb is sent.
1249  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1250  */
1251 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1252 					     const struct sk_buff *skb)
1253 {
1254 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1255 
1256 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1257 
1258 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1259 }
1260 
1261 static inline void tcp_reset_xmit_timer(struct sock *sk,
1262 					const int what,
1263 					unsigned long when,
1264 					const unsigned long max_when,
1265 					const struct sk_buff *skb)
1266 {
1267 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1268 				  max_when);
1269 }
1270 
1271 /* Something is really bad, we could not queue an additional packet,
1272  * because qdisc is full or receiver sent a 0 window, or we are paced.
1273  * We do not want to add fuel to the fire, or abort too early,
1274  * so make sure the timer we arm now is at least 200ms in the future,
1275  * regardless of current icsk_rto value (as it could be ~2ms)
1276  */
1277 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1278 {
1279 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1280 }
1281 
1282 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1283 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1284 					    unsigned long max_when)
1285 {
1286 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1287 
1288 	return (unsigned long)min_t(u64, when, max_when);
1289 }
1290 
1291 static inline void tcp_check_probe_timer(struct sock *sk)
1292 {
1293 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1294 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1295 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1296 				     NULL);
1297 }
1298 
1299 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1300 {
1301 	tp->snd_wl1 = seq;
1302 }
1303 
1304 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1305 {
1306 	tp->snd_wl1 = seq;
1307 }
1308 
1309 /*
1310  * Calculate(/check) TCP checksum
1311  */
1312 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1313 				   __be32 daddr, __wsum base)
1314 {
1315 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1316 }
1317 
1318 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1319 {
1320 	return !skb_csum_unnecessary(skb) &&
1321 		__skb_checksum_complete(skb);
1322 }
1323 
1324 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1325 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1326 void tcp_set_state(struct sock *sk, int state);
1327 void tcp_done(struct sock *sk);
1328 int tcp_abort(struct sock *sk, int err);
1329 
1330 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1331 {
1332 	rx_opt->dsack = 0;
1333 	rx_opt->num_sacks = 0;
1334 }
1335 
1336 u32 tcp_default_init_rwnd(u32 mss);
1337 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1338 
1339 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1340 {
1341 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1342 	struct tcp_sock *tp = tcp_sk(sk);
1343 	s32 delta;
1344 
1345 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1346 	    ca_ops->cong_control)
1347 		return;
1348 	delta = tcp_jiffies32 - tp->lsndtime;
1349 	if (delta > inet_csk(sk)->icsk_rto)
1350 		tcp_cwnd_restart(sk, delta);
1351 }
1352 
1353 /* Determine a window scaling and initial window to offer. */
1354 void tcp_select_initial_window(const struct sock *sk, int __space,
1355 			       __u32 mss, __u32 *rcv_wnd,
1356 			       __u32 *window_clamp, int wscale_ok,
1357 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1358 
1359 static inline int tcp_win_from_space(const struct sock *sk, int space)
1360 {
1361 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1362 
1363 	return tcp_adv_win_scale <= 0 ?
1364 		(space>>(-tcp_adv_win_scale)) :
1365 		space - (space>>tcp_adv_win_scale);
1366 }
1367 
1368 /* Note: caller must be prepared to deal with negative returns */
1369 static inline int tcp_space(const struct sock *sk)
1370 {
1371 	return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1372 				  atomic_read(&sk->sk_rmem_alloc));
1373 }
1374 
1375 static inline int tcp_full_space(const struct sock *sk)
1376 {
1377 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1378 }
1379 
1380 extern void tcp_openreq_init_rwin(struct request_sock *req,
1381 				  const struct sock *sk_listener,
1382 				  const struct dst_entry *dst);
1383 
1384 void tcp_enter_memory_pressure(struct sock *sk);
1385 void tcp_leave_memory_pressure(struct sock *sk);
1386 
1387 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1388 {
1389 	struct net *net = sock_net((struct sock *)tp);
1390 
1391 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1392 }
1393 
1394 static inline int keepalive_time_when(const struct tcp_sock *tp)
1395 {
1396 	struct net *net = sock_net((struct sock *)tp);
1397 
1398 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1399 }
1400 
1401 static inline int keepalive_probes(const struct tcp_sock *tp)
1402 {
1403 	struct net *net = sock_net((struct sock *)tp);
1404 
1405 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1406 }
1407 
1408 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1409 {
1410 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1411 
1412 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1413 			  tcp_jiffies32 - tp->rcv_tstamp);
1414 }
1415 
1416 static inline int tcp_fin_time(const struct sock *sk)
1417 {
1418 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1419 	const int rto = inet_csk(sk)->icsk_rto;
1420 
1421 	if (fin_timeout < (rto << 2) - (rto >> 1))
1422 		fin_timeout = (rto << 2) - (rto >> 1);
1423 
1424 	return fin_timeout;
1425 }
1426 
1427 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1428 				  int paws_win)
1429 {
1430 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1431 		return true;
1432 	if (unlikely(!time_before32(ktime_get_seconds(),
1433 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1434 		return true;
1435 	/*
1436 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1437 	 * then following tcp messages have valid values. Ignore 0 value,
1438 	 * or else 'negative' tsval might forbid us to accept their packets.
1439 	 */
1440 	if (!rx_opt->ts_recent)
1441 		return true;
1442 	return false;
1443 }
1444 
1445 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1446 				   int rst)
1447 {
1448 	if (tcp_paws_check(rx_opt, 0))
1449 		return false;
1450 
1451 	/* RST segments are not recommended to carry timestamp,
1452 	   and, if they do, it is recommended to ignore PAWS because
1453 	   "their cleanup function should take precedence over timestamps."
1454 	   Certainly, it is mistake. It is necessary to understand the reasons
1455 	   of this constraint to relax it: if peer reboots, clock may go
1456 	   out-of-sync and half-open connections will not be reset.
1457 	   Actually, the problem would be not existing if all
1458 	   the implementations followed draft about maintaining clock
1459 	   via reboots. Linux-2.2 DOES NOT!
1460 
1461 	   However, we can relax time bounds for RST segments to MSL.
1462 	 */
1463 	if (rst && !time_before32(ktime_get_seconds(),
1464 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1465 		return false;
1466 	return true;
1467 }
1468 
1469 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1470 			  int mib_idx, u32 *last_oow_ack_time);
1471 
1472 static inline void tcp_mib_init(struct net *net)
1473 {
1474 	/* See RFC 2012 */
1475 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1476 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1477 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1478 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1479 }
1480 
1481 /* from STCP */
1482 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1483 {
1484 	tp->lost_skb_hint = NULL;
1485 }
1486 
1487 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1488 {
1489 	tcp_clear_retrans_hints_partial(tp);
1490 	tp->retransmit_skb_hint = NULL;
1491 }
1492 
1493 union tcp_md5_addr {
1494 	struct in_addr  a4;
1495 #if IS_ENABLED(CONFIG_IPV6)
1496 	struct in6_addr	a6;
1497 #endif
1498 };
1499 
1500 /* - key database */
1501 struct tcp_md5sig_key {
1502 	struct hlist_node	node;
1503 	u8			keylen;
1504 	u8			family; /* AF_INET or AF_INET6 */
1505 	union tcp_md5_addr	addr;
1506 	u8			prefixlen;
1507 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1508 	struct rcu_head		rcu;
1509 };
1510 
1511 /* - sock block */
1512 struct tcp_md5sig_info {
1513 	struct hlist_head	head;
1514 	struct rcu_head		rcu;
1515 };
1516 
1517 /* - pseudo header */
1518 struct tcp4_pseudohdr {
1519 	__be32		saddr;
1520 	__be32		daddr;
1521 	__u8		pad;
1522 	__u8		protocol;
1523 	__be16		len;
1524 };
1525 
1526 struct tcp6_pseudohdr {
1527 	struct in6_addr	saddr;
1528 	struct in6_addr daddr;
1529 	__be32		len;
1530 	__be32		protocol;	/* including padding */
1531 };
1532 
1533 union tcp_md5sum_block {
1534 	struct tcp4_pseudohdr ip4;
1535 #if IS_ENABLED(CONFIG_IPV6)
1536 	struct tcp6_pseudohdr ip6;
1537 #endif
1538 };
1539 
1540 /* - pool: digest algorithm, hash description and scratch buffer */
1541 struct tcp_md5sig_pool {
1542 	struct ahash_request	*md5_req;
1543 	void			*scratch;
1544 };
1545 
1546 /* - functions */
1547 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1548 			const struct sock *sk, const struct sk_buff *skb);
1549 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1550 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1551 		   gfp_t gfp);
1552 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1553 		   int family, u8 prefixlen);
1554 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1555 					 const struct sock *addr_sk);
1556 
1557 #ifdef CONFIG_TCP_MD5SIG
1558 #include <linux/jump_label.h>
1559 extern struct static_key tcp_md5_needed;
1560 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1561 					   const union tcp_md5_addr *addr,
1562 					   int family);
1563 static inline struct tcp_md5sig_key *
1564 tcp_md5_do_lookup(const struct sock *sk,
1565 		  const union tcp_md5_addr *addr,
1566 		  int family)
1567 {
1568 	if (!static_key_false(&tcp_md5_needed))
1569 		return NULL;
1570 	return __tcp_md5_do_lookup(sk, addr, family);
1571 }
1572 
1573 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1574 #else
1575 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1576 					 const union tcp_md5_addr *addr,
1577 					 int family)
1578 {
1579 	return NULL;
1580 }
1581 #define tcp_twsk_md5_key(twsk)	NULL
1582 #endif
1583 
1584 bool tcp_alloc_md5sig_pool(void);
1585 
1586 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1587 static inline void tcp_put_md5sig_pool(void)
1588 {
1589 	local_bh_enable();
1590 }
1591 
1592 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1593 			  unsigned int header_len);
1594 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1595 		     const struct tcp_md5sig_key *key);
1596 
1597 /* From tcp_fastopen.c */
1598 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1599 			    struct tcp_fastopen_cookie *cookie);
1600 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1601 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1602 			    u16 try_exp);
1603 struct tcp_fastopen_request {
1604 	/* Fast Open cookie. Size 0 means a cookie request */
1605 	struct tcp_fastopen_cookie	cookie;
1606 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1607 	size_t				size;
1608 	int				copied;	/* queued in tcp_connect() */
1609 };
1610 void tcp_free_fastopen_req(struct tcp_sock *tp);
1611 void tcp_fastopen_destroy_cipher(struct sock *sk);
1612 void tcp_fastopen_ctx_destroy(struct net *net);
1613 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1614 			      void *key, unsigned int len);
1615 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1616 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1617 			      struct request_sock *req,
1618 			      struct tcp_fastopen_cookie *foc,
1619 			      const struct dst_entry *dst);
1620 void tcp_fastopen_init_key_once(struct net *net);
1621 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1622 			     struct tcp_fastopen_cookie *cookie);
1623 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1624 #define TCP_FASTOPEN_KEY_LENGTH 16
1625 
1626 /* Fastopen key context */
1627 struct tcp_fastopen_context {
1628 	struct crypto_cipher	*tfm;
1629 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1630 	struct rcu_head		rcu;
1631 };
1632 
1633 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1634 void tcp_fastopen_active_disable(struct sock *sk);
1635 bool tcp_fastopen_active_should_disable(struct sock *sk);
1636 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1637 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1638 
1639 /* Latencies incurred by various limits for a sender. They are
1640  * chronograph-like stats that are mutually exclusive.
1641  */
1642 enum tcp_chrono {
1643 	TCP_CHRONO_UNSPEC,
1644 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1645 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1646 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1647 	__TCP_CHRONO_MAX,
1648 };
1649 
1650 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1651 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1652 
1653 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1654  * the same memory storage than skb->destructor/_skb_refdst
1655  */
1656 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1657 {
1658 	skb->destructor = NULL;
1659 	skb->_skb_refdst = 0UL;
1660 }
1661 
1662 #define tcp_skb_tsorted_save(skb) {		\
1663 	unsigned long _save = skb->_skb_refdst;	\
1664 	skb->_skb_refdst = 0UL;
1665 
1666 #define tcp_skb_tsorted_restore(skb)		\
1667 	skb->_skb_refdst = _save;		\
1668 }
1669 
1670 void tcp_write_queue_purge(struct sock *sk);
1671 
1672 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1673 {
1674 	return skb_rb_first(&sk->tcp_rtx_queue);
1675 }
1676 
1677 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1678 {
1679 	return skb_peek(&sk->sk_write_queue);
1680 }
1681 
1682 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1683 {
1684 	return skb_peek_tail(&sk->sk_write_queue);
1685 }
1686 
1687 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1688 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1689 
1690 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1691 {
1692 	return skb_peek(&sk->sk_write_queue);
1693 }
1694 
1695 static inline bool tcp_skb_is_last(const struct sock *sk,
1696 				   const struct sk_buff *skb)
1697 {
1698 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1699 }
1700 
1701 static inline bool tcp_write_queue_empty(const struct sock *sk)
1702 {
1703 	return skb_queue_empty(&sk->sk_write_queue);
1704 }
1705 
1706 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1707 {
1708 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1709 }
1710 
1711 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1712 {
1713 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1714 }
1715 
1716 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1717 {
1718 	if (tcp_write_queue_empty(sk))
1719 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1720 }
1721 
1722 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1723 {
1724 	__skb_queue_tail(&sk->sk_write_queue, skb);
1725 }
1726 
1727 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1728 {
1729 	__tcp_add_write_queue_tail(sk, skb);
1730 
1731 	/* Queue it, remembering where we must start sending. */
1732 	if (sk->sk_write_queue.next == skb)
1733 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1734 }
1735 
1736 /* Insert new before skb on the write queue of sk.  */
1737 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1738 						  struct sk_buff *skb,
1739 						  struct sock *sk)
1740 {
1741 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1742 }
1743 
1744 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1745 {
1746 	tcp_skb_tsorted_anchor_cleanup(skb);
1747 	__skb_unlink(skb, &sk->sk_write_queue);
1748 }
1749 
1750 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1751 
1752 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1753 {
1754 	tcp_skb_tsorted_anchor_cleanup(skb);
1755 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1756 }
1757 
1758 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1759 {
1760 	list_del(&skb->tcp_tsorted_anchor);
1761 	tcp_rtx_queue_unlink(skb, sk);
1762 	sk_wmem_free_skb(sk, skb);
1763 }
1764 
1765 static inline void tcp_push_pending_frames(struct sock *sk)
1766 {
1767 	if (tcp_send_head(sk)) {
1768 		struct tcp_sock *tp = tcp_sk(sk);
1769 
1770 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1771 	}
1772 }
1773 
1774 /* Start sequence of the skb just after the highest skb with SACKed
1775  * bit, valid only if sacked_out > 0 or when the caller has ensured
1776  * validity by itself.
1777  */
1778 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1779 {
1780 	if (!tp->sacked_out)
1781 		return tp->snd_una;
1782 
1783 	if (tp->highest_sack == NULL)
1784 		return tp->snd_nxt;
1785 
1786 	return TCP_SKB_CB(tp->highest_sack)->seq;
1787 }
1788 
1789 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1790 {
1791 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1792 }
1793 
1794 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1795 {
1796 	return tcp_sk(sk)->highest_sack;
1797 }
1798 
1799 static inline void tcp_highest_sack_reset(struct sock *sk)
1800 {
1801 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1802 }
1803 
1804 /* Called when old skb is about to be deleted and replaced by new skb */
1805 static inline void tcp_highest_sack_replace(struct sock *sk,
1806 					    struct sk_buff *old,
1807 					    struct sk_buff *new)
1808 {
1809 	if (old == tcp_highest_sack(sk))
1810 		tcp_sk(sk)->highest_sack = new;
1811 }
1812 
1813 /* This helper checks if socket has IP_TRANSPARENT set */
1814 static inline bool inet_sk_transparent(const struct sock *sk)
1815 {
1816 	switch (sk->sk_state) {
1817 	case TCP_TIME_WAIT:
1818 		return inet_twsk(sk)->tw_transparent;
1819 	case TCP_NEW_SYN_RECV:
1820 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1821 	}
1822 	return inet_sk(sk)->transparent;
1823 }
1824 
1825 /* Determines whether this is a thin stream (which may suffer from
1826  * increased latency). Used to trigger latency-reducing mechanisms.
1827  */
1828 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1829 {
1830 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1831 }
1832 
1833 /* /proc */
1834 enum tcp_seq_states {
1835 	TCP_SEQ_STATE_LISTENING,
1836 	TCP_SEQ_STATE_ESTABLISHED,
1837 };
1838 
1839 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1840 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1841 void tcp_seq_stop(struct seq_file *seq, void *v);
1842 
1843 struct tcp_seq_afinfo {
1844 	sa_family_t			family;
1845 };
1846 
1847 struct tcp_iter_state {
1848 	struct seq_net_private	p;
1849 	enum tcp_seq_states	state;
1850 	struct sock		*syn_wait_sk;
1851 	int			bucket, offset, sbucket, num;
1852 	loff_t			last_pos;
1853 };
1854 
1855 extern struct request_sock_ops tcp_request_sock_ops;
1856 extern struct request_sock_ops tcp6_request_sock_ops;
1857 
1858 void tcp_v4_destroy_sock(struct sock *sk);
1859 
1860 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1861 				netdev_features_t features);
1862 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1863 int tcp_gro_complete(struct sk_buff *skb);
1864 
1865 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1866 
1867 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1868 {
1869 	struct net *net = sock_net((struct sock *)tp);
1870 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1871 }
1872 
1873 /* @wake is one when sk_stream_write_space() calls us.
1874  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1875  * This mimics the strategy used in sock_def_write_space().
1876  */
1877 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1878 {
1879 	const struct tcp_sock *tp = tcp_sk(sk);
1880 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1881 
1882 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1883 }
1884 
1885 #ifdef CONFIG_PROC_FS
1886 int tcp4_proc_init(void);
1887 void tcp4_proc_exit(void);
1888 #endif
1889 
1890 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1891 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1892 		     const struct tcp_request_sock_ops *af_ops,
1893 		     struct sock *sk, struct sk_buff *skb);
1894 
1895 /* TCP af-specific functions */
1896 struct tcp_sock_af_ops {
1897 #ifdef CONFIG_TCP_MD5SIG
1898 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1899 						const struct sock *addr_sk);
1900 	int		(*calc_md5_hash)(char *location,
1901 					 const struct tcp_md5sig_key *md5,
1902 					 const struct sock *sk,
1903 					 const struct sk_buff *skb);
1904 	int		(*md5_parse)(struct sock *sk,
1905 				     int optname,
1906 				     char __user *optval,
1907 				     int optlen);
1908 #endif
1909 };
1910 
1911 struct tcp_request_sock_ops {
1912 	u16 mss_clamp;
1913 #ifdef CONFIG_TCP_MD5SIG
1914 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1915 						 const struct sock *addr_sk);
1916 	int		(*calc_md5_hash) (char *location,
1917 					  const struct tcp_md5sig_key *md5,
1918 					  const struct sock *sk,
1919 					  const struct sk_buff *skb);
1920 #endif
1921 	void (*init_req)(struct request_sock *req,
1922 			 const struct sock *sk_listener,
1923 			 struct sk_buff *skb);
1924 #ifdef CONFIG_SYN_COOKIES
1925 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1926 				 __u16 *mss);
1927 #endif
1928 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1929 				       const struct request_sock *req);
1930 	u32 (*init_seq)(const struct sk_buff *skb);
1931 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1932 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1933 			   struct flowi *fl, struct request_sock *req,
1934 			   struct tcp_fastopen_cookie *foc,
1935 			   enum tcp_synack_type synack_type);
1936 };
1937 
1938 #ifdef CONFIG_SYN_COOKIES
1939 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1940 					 const struct sock *sk, struct sk_buff *skb,
1941 					 __u16 *mss)
1942 {
1943 	tcp_synq_overflow(sk);
1944 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1945 	return ops->cookie_init_seq(skb, mss);
1946 }
1947 #else
1948 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1949 					 const struct sock *sk, struct sk_buff *skb,
1950 					 __u16 *mss)
1951 {
1952 	return 0;
1953 }
1954 #endif
1955 
1956 int tcpv4_offload_init(void);
1957 
1958 void tcp_v4_init(void);
1959 void tcp_init(void);
1960 
1961 /* tcp_recovery.c */
1962 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1963 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1964 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1965 				u32 reo_wnd);
1966 extern void tcp_rack_mark_lost(struct sock *sk);
1967 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1968 			     u64 xmit_time);
1969 extern void tcp_rack_reo_timeout(struct sock *sk);
1970 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1971 
1972 /* At how many usecs into the future should the RTO fire? */
1973 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1974 {
1975 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1976 	u32 rto = inet_csk(sk)->icsk_rto;
1977 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1978 
1979 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1980 }
1981 
1982 /*
1983  * Save and compile IPv4 options, return a pointer to it
1984  */
1985 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1986 							 struct sk_buff *skb)
1987 {
1988 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1989 	struct ip_options_rcu *dopt = NULL;
1990 
1991 	if (opt->optlen) {
1992 		int opt_size = sizeof(*dopt) + opt->optlen;
1993 
1994 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1995 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1996 			kfree(dopt);
1997 			dopt = NULL;
1998 		}
1999 	}
2000 	return dopt;
2001 }
2002 
2003 /* locally generated TCP pure ACKs have skb->truesize == 2
2004  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2005  * This is much faster than dissecting the packet to find out.
2006  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2007  */
2008 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2009 {
2010 	return skb->truesize == 2;
2011 }
2012 
2013 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2014 {
2015 	skb->truesize = 2;
2016 }
2017 
2018 static inline int tcp_inq(struct sock *sk)
2019 {
2020 	struct tcp_sock *tp = tcp_sk(sk);
2021 	int answ;
2022 
2023 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2024 		answ = 0;
2025 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2026 		   !tp->urg_data ||
2027 		   before(tp->urg_seq, tp->copied_seq) ||
2028 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2029 
2030 		answ = tp->rcv_nxt - tp->copied_seq;
2031 
2032 		/* Subtract 1, if FIN was received */
2033 		if (answ && sock_flag(sk, SOCK_DONE))
2034 			answ--;
2035 	} else {
2036 		answ = tp->urg_seq - tp->copied_seq;
2037 	}
2038 
2039 	return answ;
2040 }
2041 
2042 int tcp_peek_len(struct socket *sock);
2043 
2044 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2045 {
2046 	u16 segs_in;
2047 
2048 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2049 	tp->segs_in += segs_in;
2050 	if (skb->len > tcp_hdrlen(skb))
2051 		tp->data_segs_in += segs_in;
2052 }
2053 
2054 /*
2055  * TCP listen path runs lockless.
2056  * We forced "struct sock" to be const qualified to make sure
2057  * we don't modify one of its field by mistake.
2058  * Here, we increment sk_drops which is an atomic_t, so we can safely
2059  * make sock writable again.
2060  */
2061 static inline void tcp_listendrop(const struct sock *sk)
2062 {
2063 	atomic_inc(&((struct sock *)sk)->sk_drops);
2064 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2065 }
2066 
2067 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2068 
2069 /*
2070  * Interface for adding Upper Level Protocols over TCP
2071  */
2072 
2073 #define TCP_ULP_NAME_MAX	16
2074 #define TCP_ULP_MAX		128
2075 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2076 
2077 struct tcp_ulp_ops {
2078 	struct list_head	list;
2079 
2080 	/* initialize ulp */
2081 	int (*init)(struct sock *sk);
2082 	/* cleanup ulp */
2083 	void (*release)(struct sock *sk);
2084 
2085 	char		name[TCP_ULP_NAME_MAX];
2086 	struct module	*owner;
2087 };
2088 int tcp_register_ulp(struct tcp_ulp_ops *type);
2089 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2090 int tcp_set_ulp(struct sock *sk, const char *name);
2091 void tcp_get_available_ulp(char *buf, size_t len);
2092 void tcp_cleanup_ulp(struct sock *sk);
2093 
2094 #define MODULE_ALIAS_TCP_ULP(name)				\
2095 	__MODULE_INFO(alias, alias_userspace, name);		\
2096 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2097 
2098 struct sk_msg;
2099 struct sk_psock;
2100 
2101 int tcp_bpf_init(struct sock *sk);
2102 void tcp_bpf_reinit(struct sock *sk);
2103 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2104 			  int flags);
2105 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2106 		    int nonblock, int flags, int *addr_len);
2107 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2108 		      struct msghdr *msg, int len, int flags);
2109 
2110 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2111  * is < 0, then the BPF op failed (for example if the loaded BPF
2112  * program does not support the chosen operation or there is no BPF
2113  * program loaded).
2114  */
2115 #ifdef CONFIG_BPF
2116 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2117 {
2118 	struct bpf_sock_ops_kern sock_ops;
2119 	int ret;
2120 
2121 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2122 	if (sk_fullsock(sk)) {
2123 		sock_ops.is_fullsock = 1;
2124 		sock_owned_by_me(sk);
2125 	}
2126 
2127 	sock_ops.sk = sk;
2128 	sock_ops.op = op;
2129 	if (nargs > 0)
2130 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2131 
2132 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2133 	if (ret == 0)
2134 		ret = sock_ops.reply;
2135 	else
2136 		ret = -1;
2137 	return ret;
2138 }
2139 
2140 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2141 {
2142 	u32 args[2] = {arg1, arg2};
2143 
2144 	return tcp_call_bpf(sk, op, 2, args);
2145 }
2146 
2147 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2148 				    u32 arg3)
2149 {
2150 	u32 args[3] = {arg1, arg2, arg3};
2151 
2152 	return tcp_call_bpf(sk, op, 3, args);
2153 }
2154 
2155 #else
2156 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2157 {
2158 	return -EPERM;
2159 }
2160 
2161 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2162 {
2163 	return -EPERM;
2164 }
2165 
2166 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2167 				    u32 arg3)
2168 {
2169 	return -EPERM;
2170 }
2171 
2172 #endif
2173 
2174 static inline u32 tcp_timeout_init(struct sock *sk)
2175 {
2176 	int timeout;
2177 
2178 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2179 
2180 	if (timeout <= 0)
2181 		timeout = TCP_TIMEOUT_INIT;
2182 	return timeout;
2183 }
2184 
2185 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2186 {
2187 	int rwnd;
2188 
2189 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2190 
2191 	if (rwnd < 0)
2192 		rwnd = 0;
2193 	return rwnd;
2194 }
2195 
2196 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2197 {
2198 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2199 }
2200 
2201 #if IS_ENABLED(CONFIG_SMC)
2202 extern struct static_key_false tcp_have_smc;
2203 #endif
2204 
2205 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2206 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2207 			     void (*cad)(struct sock *sk, u32 ack_seq));
2208 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2209 
2210 #endif
2211 
2212 #endif	/* _TCP_H */
2213