xref: /openbmc/linux/include/net/tcp.h (revision 55b24334)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
255 
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	if (!skb_zcopy_pure(skb))
297 		sk_mem_uncharge(sk, skb->truesize);
298 	else
299 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 	__kfree_skb(skb);
301 }
302 
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
329 			 size_t size, struct ubuf_info *uarg);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349 			struct pipe_inode_info *pipe, size_t len,
350 			unsigned int flags);
351 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
352 				     bool force_schedule);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int do_tcp_getsockopt(struct sock *sk, int level,
405 		      int optname, sockptr_t optval, sockptr_t optlen);
406 int tcp_getsockopt(struct sock *sk, int level, int optname,
407 		   char __user *optval, int __user *optlen);
408 bool tcp_bpf_bypass_getsockopt(int level, int optname);
409 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
410 		      sockptr_t optval, unsigned int optlen);
411 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
412 		   unsigned int optlen);
413 void tcp_set_keepalive(struct sock *sk, int val);
414 void tcp_syn_ack_timeout(const struct request_sock *req);
415 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
416 		int flags, int *addr_len);
417 int tcp_set_rcvlowat(struct sock *sk, int val);
418 int tcp_set_window_clamp(struct sock *sk, int val);
419 void tcp_update_recv_tstamps(struct sk_buff *skb,
420 			     struct scm_timestamping_internal *tss);
421 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
422 			struct scm_timestamping_internal *tss);
423 void tcp_data_ready(struct sock *sk);
424 #ifdef CONFIG_MMU
425 int tcp_mmap(struct file *file, struct socket *sock,
426 	     struct vm_area_struct *vma);
427 #endif
428 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
429 		       struct tcp_options_received *opt_rx,
430 		       int estab, struct tcp_fastopen_cookie *foc);
431 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
432 
433 /*
434  *	BPF SKB-less helpers
435  */
436 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
437 			 struct tcphdr *th, u32 *cookie);
438 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
439 			 struct tcphdr *th, u32 *cookie);
440 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
441 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
442 			  const struct tcp_request_sock_ops *af_ops,
443 			  struct sock *sk, struct tcphdr *th);
444 /*
445  *	TCP v4 functions exported for the inet6 API
446  */
447 
448 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
449 void tcp_v4_mtu_reduced(struct sock *sk);
450 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
451 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
452 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
453 struct sock *tcp_create_openreq_child(const struct sock *sk,
454 				      struct request_sock *req,
455 				      struct sk_buff *skb);
456 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
457 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
458 				  struct request_sock *req,
459 				  struct dst_entry *dst,
460 				  struct request_sock *req_unhash,
461 				  bool *own_req);
462 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
463 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
464 int tcp_connect(struct sock *sk);
465 enum tcp_synack_type {
466 	TCP_SYNACK_NORMAL,
467 	TCP_SYNACK_FASTOPEN,
468 	TCP_SYNACK_COOKIE,
469 };
470 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
471 				struct request_sock *req,
472 				struct tcp_fastopen_cookie *foc,
473 				enum tcp_synack_type synack_type,
474 				struct sk_buff *syn_skb);
475 int tcp_disconnect(struct sock *sk, int flags);
476 
477 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
478 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
479 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
480 
481 /* From syncookies.c */
482 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
483 				 struct request_sock *req,
484 				 struct dst_entry *dst, u32 tsoff);
485 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
486 		      u32 cookie);
487 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
488 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
489 					    const struct tcp_request_sock_ops *af_ops,
490 					    struct sock *sk, struct sk_buff *skb);
491 #ifdef CONFIG_SYN_COOKIES
492 
493 /* Syncookies use a monotonic timer which increments every 60 seconds.
494  * This counter is used both as a hash input and partially encoded into
495  * the cookie value.  A cookie is only validated further if the delta
496  * between the current counter value and the encoded one is less than this,
497  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
498  * the counter advances immediately after a cookie is generated).
499  */
500 #define MAX_SYNCOOKIE_AGE	2
501 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
502 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
503 
504 /* syncookies: remember time of last synqueue overflow
505  * But do not dirty this field too often (once per second is enough)
506  * It is racy as we do not hold a lock, but race is very minor.
507  */
508 static inline void tcp_synq_overflow(const struct sock *sk)
509 {
510 	unsigned int last_overflow;
511 	unsigned int now = jiffies;
512 
513 	if (sk->sk_reuseport) {
514 		struct sock_reuseport *reuse;
515 
516 		reuse = rcu_dereference(sk->sk_reuseport_cb);
517 		if (likely(reuse)) {
518 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
519 			if (!time_between32(now, last_overflow,
520 					    last_overflow + HZ))
521 				WRITE_ONCE(reuse->synq_overflow_ts, now);
522 			return;
523 		}
524 	}
525 
526 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
527 	if (!time_between32(now, last_overflow, last_overflow + HZ))
528 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
529 }
530 
531 /* syncookies: no recent synqueue overflow on this listening socket? */
532 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
533 {
534 	unsigned int last_overflow;
535 	unsigned int now = jiffies;
536 
537 	if (sk->sk_reuseport) {
538 		struct sock_reuseport *reuse;
539 
540 		reuse = rcu_dereference(sk->sk_reuseport_cb);
541 		if (likely(reuse)) {
542 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
543 			return !time_between32(now, last_overflow - HZ,
544 					       last_overflow +
545 					       TCP_SYNCOOKIE_VALID);
546 		}
547 	}
548 
549 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
550 
551 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
552 	 * then we're under synflood. However, we have to use
553 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
554 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
555 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
556 	 * which could lead to rejecting a valid syncookie.
557 	 */
558 	return !time_between32(now, last_overflow - HZ,
559 			       last_overflow + TCP_SYNCOOKIE_VALID);
560 }
561 
562 static inline u32 tcp_cookie_time(void)
563 {
564 	u64 val = get_jiffies_64();
565 
566 	do_div(val, TCP_SYNCOOKIE_PERIOD);
567 	return val;
568 }
569 
570 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
571 			      u16 *mssp);
572 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
573 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
574 bool cookie_timestamp_decode(const struct net *net,
575 			     struct tcp_options_received *opt);
576 bool cookie_ecn_ok(const struct tcp_options_received *opt,
577 		   const struct net *net, const struct dst_entry *dst);
578 
579 /* From net/ipv6/syncookies.c */
580 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
581 		      u32 cookie);
582 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
583 
584 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
585 			      const struct tcphdr *th, u16 *mssp);
586 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
587 #endif
588 /* tcp_output.c */
589 
590 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
591 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
592 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
593 			       int nonagle);
594 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
595 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 void tcp_retransmit_timer(struct sock *sk);
597 void tcp_xmit_retransmit_queue(struct sock *);
598 void tcp_simple_retransmit(struct sock *);
599 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
600 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
601 enum tcp_queue {
602 	TCP_FRAG_IN_WRITE_QUEUE,
603 	TCP_FRAG_IN_RTX_QUEUE,
604 };
605 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
606 		 struct sk_buff *skb, u32 len,
607 		 unsigned int mss_now, gfp_t gfp);
608 
609 void tcp_send_probe0(struct sock *);
610 void tcp_send_partial(struct sock *);
611 int tcp_write_wakeup(struct sock *, int mib);
612 void tcp_send_fin(struct sock *sk);
613 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
614 int tcp_send_synack(struct sock *);
615 void tcp_push_one(struct sock *, unsigned int mss_now);
616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
617 void tcp_send_ack(struct sock *sk);
618 void tcp_send_delayed_ack(struct sock *sk);
619 void tcp_send_loss_probe(struct sock *sk);
620 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
621 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
622 			     const struct sk_buff *next_skb);
623 
624 /* tcp_input.c */
625 void tcp_rearm_rto(struct sock *sk);
626 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
627 void tcp_reset(struct sock *sk, struct sk_buff *skb);
628 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
629 void tcp_fin(struct sock *sk);
630 void tcp_check_space(struct sock *sk);
631 void tcp_sack_compress_send_ack(struct sock *sk);
632 
633 /* tcp_timer.c */
634 void tcp_init_xmit_timers(struct sock *);
635 static inline void tcp_clear_xmit_timers(struct sock *sk)
636 {
637 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
638 		__sock_put(sk);
639 
640 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
641 		__sock_put(sk);
642 
643 	inet_csk_clear_xmit_timers(sk);
644 }
645 
646 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
647 unsigned int tcp_current_mss(struct sock *sk);
648 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
649 
650 /* Bound MSS / TSO packet size with the half of the window */
651 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
652 {
653 	int cutoff;
654 
655 	/* When peer uses tiny windows, there is no use in packetizing
656 	 * to sub-MSS pieces for the sake of SWS or making sure there
657 	 * are enough packets in the pipe for fast recovery.
658 	 *
659 	 * On the other hand, for extremely large MSS devices, handling
660 	 * smaller than MSS windows in this way does make sense.
661 	 */
662 	if (tp->max_window > TCP_MSS_DEFAULT)
663 		cutoff = (tp->max_window >> 1);
664 	else
665 		cutoff = tp->max_window;
666 
667 	if (cutoff && pktsize > cutoff)
668 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
669 	else
670 		return pktsize;
671 }
672 
673 /* tcp.c */
674 void tcp_get_info(struct sock *, struct tcp_info *);
675 
676 /* Read 'sendfile()'-style from a TCP socket */
677 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
678 		  sk_read_actor_t recv_actor);
679 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
680 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
681 void tcp_read_done(struct sock *sk, size_t len);
682 
683 void tcp_initialize_rcv_mss(struct sock *sk);
684 
685 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
686 int tcp_mss_to_mtu(struct sock *sk, int mss);
687 void tcp_mtup_init(struct sock *sk);
688 
689 static inline void tcp_bound_rto(const struct sock *sk)
690 {
691 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
692 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
693 }
694 
695 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
696 {
697 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
698 }
699 
700 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
701 {
702 	/* mptcp hooks are only on the slow path */
703 	if (sk_is_mptcp((struct sock *)tp))
704 		return;
705 
706 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
707 			       ntohl(TCP_FLAG_ACK) |
708 			       snd_wnd);
709 }
710 
711 static inline void tcp_fast_path_on(struct tcp_sock *tp)
712 {
713 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
714 }
715 
716 static inline void tcp_fast_path_check(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 
720 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
721 	    tp->rcv_wnd &&
722 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
723 	    !tp->urg_data)
724 		tcp_fast_path_on(tp);
725 }
726 
727 /* Compute the actual rto_min value */
728 static inline u32 tcp_rto_min(struct sock *sk)
729 {
730 	const struct dst_entry *dst = __sk_dst_get(sk);
731 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
732 
733 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
734 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
735 	return rto_min;
736 }
737 
738 static inline u32 tcp_rto_min_us(struct sock *sk)
739 {
740 	return jiffies_to_usecs(tcp_rto_min(sk));
741 }
742 
743 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
744 {
745 	return dst_metric_locked(dst, RTAX_CC_ALGO);
746 }
747 
748 /* Minimum RTT in usec. ~0 means not available. */
749 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
750 {
751 	return minmax_get(&tp->rtt_min);
752 }
753 
754 /* Compute the actual receive window we are currently advertising.
755  * Rcv_nxt can be after the window if our peer push more data
756  * than the offered window.
757  */
758 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
759 {
760 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
761 
762 	if (win < 0)
763 		win = 0;
764 	return (u32) win;
765 }
766 
767 /* Choose a new window, without checks for shrinking, and without
768  * scaling applied to the result.  The caller does these things
769  * if necessary.  This is a "raw" window selection.
770  */
771 u32 __tcp_select_window(struct sock *sk);
772 
773 void tcp_send_window_probe(struct sock *sk);
774 
775 /* TCP uses 32bit jiffies to save some space.
776  * Note that this is different from tcp_time_stamp, which
777  * historically has been the same until linux-4.13.
778  */
779 #define tcp_jiffies32 ((u32)jiffies)
780 
781 /*
782  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
783  * It is no longer tied to jiffies, but to 1 ms clock.
784  * Note: double check if you want to use tcp_jiffies32 instead of this.
785  */
786 #define TCP_TS_HZ	1000
787 
788 static inline u64 tcp_clock_ns(void)
789 {
790 	return ktime_get_ns();
791 }
792 
793 static inline u64 tcp_clock_us(void)
794 {
795 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
796 }
797 
798 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
799 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
800 {
801 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
802 }
803 
804 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
805 static inline u32 tcp_ns_to_ts(u64 ns)
806 {
807 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
808 }
809 
810 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
811 static inline u32 tcp_time_stamp_raw(void)
812 {
813 	return tcp_ns_to_ts(tcp_clock_ns());
814 }
815 
816 void tcp_mstamp_refresh(struct tcp_sock *tp);
817 
818 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
819 {
820 	return max_t(s64, t1 - t0, 0);
821 }
822 
823 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
824 {
825 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
826 }
827 
828 /* provide the departure time in us unit */
829 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
830 {
831 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
832 }
833 
834 
835 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
836 
837 #define TCPHDR_FIN 0x01
838 #define TCPHDR_SYN 0x02
839 #define TCPHDR_RST 0x04
840 #define TCPHDR_PSH 0x08
841 #define TCPHDR_ACK 0x10
842 #define TCPHDR_URG 0x20
843 #define TCPHDR_ECE 0x40
844 #define TCPHDR_CWR 0x80
845 
846 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
847 
848 /* This is what the send packet queuing engine uses to pass
849  * TCP per-packet control information to the transmission code.
850  * We also store the host-order sequence numbers in here too.
851  * This is 44 bytes if IPV6 is enabled.
852  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
853  */
854 struct tcp_skb_cb {
855 	__u32		seq;		/* Starting sequence number	*/
856 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
857 	union {
858 		/* Note : tcp_tw_isn is used in input path only
859 		 *	  (isn chosen by tcp_timewait_state_process())
860 		 *
861 		 * 	  tcp_gso_segs/size are used in write queue only,
862 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
863 		 */
864 		__u32		tcp_tw_isn;
865 		struct {
866 			u16	tcp_gso_segs;
867 			u16	tcp_gso_size;
868 		};
869 	};
870 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
871 
872 	__u8		sacked;		/* State flags for SACK.	*/
873 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
874 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
875 #define TCPCB_LOST		0x04	/* SKB is lost			*/
876 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
877 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
878 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
879 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
880 				TCPCB_REPAIRED)
881 
882 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
883 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
884 			eor:1,		/* Is skb MSG_EOR marked? */
885 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
886 			unused:5;
887 	__u32		ack_seq;	/* Sequence number ACK'd	*/
888 	union {
889 		struct {
890 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
891 			/* There is space for up to 24 bytes */
892 			__u32 is_app_limited:1, /* cwnd not fully used? */
893 			      delivered_ce:20,
894 			      unused:11;
895 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
896 			__u32 delivered;
897 			/* start of send pipeline phase */
898 			u64 first_tx_mstamp;
899 			/* when we reached the "delivered" count */
900 			u64 delivered_mstamp;
901 		} tx;   /* only used for outgoing skbs */
902 		union {
903 			struct inet_skb_parm	h4;
904 #if IS_ENABLED(CONFIG_IPV6)
905 			struct inet6_skb_parm	h6;
906 #endif
907 		} header;	/* For incoming skbs */
908 	};
909 };
910 
911 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
912 
913 extern const struct inet_connection_sock_af_ops ipv4_specific;
914 
915 #if IS_ENABLED(CONFIG_IPV6)
916 /* This is the variant of inet6_iif() that must be used by TCP,
917  * as TCP moves IP6CB into a different location in skb->cb[]
918  */
919 static inline int tcp_v6_iif(const struct sk_buff *skb)
920 {
921 	return TCP_SKB_CB(skb)->header.h6.iif;
922 }
923 
924 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
925 {
926 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
927 
928 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
929 }
930 
931 /* TCP_SKB_CB reference means this can not be used from early demux */
932 static inline int tcp_v6_sdif(const struct sk_buff *skb)
933 {
934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
935 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
936 		return TCP_SKB_CB(skb)->header.h6.iif;
937 #endif
938 	return 0;
939 }
940 
941 extern const struct inet_connection_sock_af_ops ipv6_specific;
942 
943 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
944 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
945 void tcp_v6_early_demux(struct sk_buff *skb);
946 
947 #endif
948 
949 /* TCP_SKB_CB reference means this can not be used from early demux */
950 static inline int tcp_v4_sdif(struct sk_buff *skb)
951 {
952 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
953 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
954 		return TCP_SKB_CB(skb)->header.h4.iif;
955 #endif
956 	return 0;
957 }
958 
959 /* Due to TSO, an SKB can be composed of multiple actual
960  * packets.  To keep these tracked properly, we use this.
961  */
962 static inline int tcp_skb_pcount(const struct sk_buff *skb)
963 {
964 	return TCP_SKB_CB(skb)->tcp_gso_segs;
965 }
966 
967 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
968 {
969 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
970 }
971 
972 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
973 {
974 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
975 }
976 
977 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
978 static inline int tcp_skb_mss(const struct sk_buff *skb)
979 {
980 	return TCP_SKB_CB(skb)->tcp_gso_size;
981 }
982 
983 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
984 {
985 	return likely(!TCP_SKB_CB(skb)->eor);
986 }
987 
988 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
989 					const struct sk_buff *from)
990 {
991 	return likely(tcp_skb_can_collapse_to(to) &&
992 		      mptcp_skb_can_collapse(to, from) &&
993 		      skb_pure_zcopy_same(to, from));
994 }
995 
996 /* Events passed to congestion control interface */
997 enum tcp_ca_event {
998 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
999 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1000 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1001 	CA_EVENT_LOSS,		/* loss timeout */
1002 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1003 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1004 };
1005 
1006 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1007 enum tcp_ca_ack_event_flags {
1008 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1009 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1010 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1011 };
1012 
1013 /*
1014  * Interface for adding new TCP congestion control handlers
1015  */
1016 #define TCP_CA_NAME_MAX	16
1017 #define TCP_CA_MAX	128
1018 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1019 
1020 #define TCP_CA_UNSPEC	0
1021 
1022 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1023 #define TCP_CONG_NON_RESTRICTED 0x1
1024 /* Requires ECN/ECT set on all packets */
1025 #define TCP_CONG_NEEDS_ECN	0x2
1026 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1027 
1028 union tcp_cc_info;
1029 
1030 struct ack_sample {
1031 	u32 pkts_acked;
1032 	s32 rtt_us;
1033 	u32 in_flight;
1034 };
1035 
1036 /* A rate sample measures the number of (original/retransmitted) data
1037  * packets delivered "delivered" over an interval of time "interval_us".
1038  * The tcp_rate.c code fills in the rate sample, and congestion
1039  * control modules that define a cong_control function to run at the end
1040  * of ACK processing can optionally chose to consult this sample when
1041  * setting cwnd and pacing rate.
1042  * A sample is invalid if "delivered" or "interval_us" is negative.
1043  */
1044 struct rate_sample {
1045 	u64  prior_mstamp; /* starting timestamp for interval */
1046 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1047 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1048 	s32  delivered;		/* number of packets delivered over interval */
1049 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1058 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1059 	bool is_retrans;	/* is sample from retransmission? */
1060 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1061 };
1062 
1063 struct tcp_congestion_ops {
1064 /* fast path fields are put first to fill one cache line */
1065 
1066 	/* return slow start threshold (required) */
1067 	u32 (*ssthresh)(struct sock *sk);
1068 
1069 	/* do new cwnd calculation (required) */
1070 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1071 
1072 	/* call before changing ca_state (optional) */
1073 	void (*set_state)(struct sock *sk, u8 new_state);
1074 
1075 	/* call when cwnd event occurs (optional) */
1076 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1077 
1078 	/* call when ack arrives (optional) */
1079 	void (*in_ack_event)(struct sock *sk, u32 flags);
1080 
1081 	/* hook for packet ack accounting (optional) */
1082 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1083 
1084 	/* override sysctl_tcp_min_tso_segs */
1085 	u32 (*min_tso_segs)(struct sock *sk);
1086 
1087 	/* call when packets are delivered to update cwnd and pacing rate,
1088 	 * after all the ca_state processing. (optional)
1089 	 */
1090 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1091 
1092 
1093 	/* new value of cwnd after loss (required) */
1094 	u32  (*undo_cwnd)(struct sock *sk);
1095 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1096 	u32 (*sndbuf_expand)(struct sock *sk);
1097 
1098 /* control/slow paths put last */
1099 	/* get info for inet_diag (optional) */
1100 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1101 			   union tcp_cc_info *info);
1102 
1103 	char 			name[TCP_CA_NAME_MAX];
1104 	struct module		*owner;
1105 	struct list_head	list;
1106 	u32			key;
1107 	u32			flags;
1108 
1109 	/* initialize private data (optional) */
1110 	void (*init)(struct sock *sk);
1111 	/* cleanup private data  (optional) */
1112 	void (*release)(struct sock *sk);
1113 } ____cacheline_aligned_in_smp;
1114 
1115 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1116 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1117 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1118 				  struct tcp_congestion_ops *old_type);
1119 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1120 
1121 void tcp_assign_congestion_control(struct sock *sk);
1122 void tcp_init_congestion_control(struct sock *sk);
1123 void tcp_cleanup_congestion_control(struct sock *sk);
1124 int tcp_set_default_congestion_control(struct net *net, const char *name);
1125 void tcp_get_default_congestion_control(struct net *net, char *name);
1126 void tcp_get_available_congestion_control(char *buf, size_t len);
1127 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1128 int tcp_set_allowed_congestion_control(char *allowed);
1129 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1130 			       bool cap_net_admin);
1131 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1132 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1133 
1134 u32 tcp_reno_ssthresh(struct sock *sk);
1135 u32 tcp_reno_undo_cwnd(struct sock *sk);
1136 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1137 extern struct tcp_congestion_ops tcp_reno;
1138 
1139 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1140 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1141 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1142 #ifdef CONFIG_INET
1143 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1144 #else
1145 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1146 {
1147 	return NULL;
1148 }
1149 #endif
1150 
1151 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1156 }
1157 
1158 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1159 {
1160 	const struct inet_connection_sock *icsk = inet_csk(sk);
1161 
1162 	if (icsk->icsk_ca_ops->cwnd_event)
1163 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1164 }
1165 
1166 /* From tcp_cong.c */
1167 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1168 
1169 /* From tcp_rate.c */
1170 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1171 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1172 			    struct rate_sample *rs);
1173 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1174 		  bool is_sack_reneg, struct rate_sample *rs);
1175 void tcp_rate_check_app_limited(struct sock *sk);
1176 
1177 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1178 {
1179 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1180 }
1181 
1182 /* These functions determine how the current flow behaves in respect of SACK
1183  * handling. SACK is negotiated with the peer, and therefore it can vary
1184  * between different flows.
1185  *
1186  * tcp_is_sack - SACK enabled
1187  * tcp_is_reno - No SACK
1188  */
1189 static inline int tcp_is_sack(const struct tcp_sock *tp)
1190 {
1191 	return likely(tp->rx_opt.sack_ok);
1192 }
1193 
1194 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1195 {
1196 	return !tcp_is_sack(tp);
1197 }
1198 
1199 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1200 {
1201 	return tp->sacked_out + tp->lost_out;
1202 }
1203 
1204 /* This determines how many packets are "in the network" to the best
1205  * of our knowledge.  In many cases it is conservative, but where
1206  * detailed information is available from the receiver (via SACK
1207  * blocks etc.) we can make more aggressive calculations.
1208  *
1209  * Use this for decisions involving congestion control, use just
1210  * tp->packets_out to determine if the send queue is empty or not.
1211  *
1212  * Read this equation as:
1213  *
1214  *	"Packets sent once on transmission queue" MINUS
1215  *	"Packets left network, but not honestly ACKed yet" PLUS
1216  *	"Packets fast retransmitted"
1217  */
1218 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1219 {
1220 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1221 }
1222 
1223 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1224 
1225 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1226 {
1227 	return tp->snd_cwnd;
1228 }
1229 
1230 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1231 {
1232 	WARN_ON_ONCE((int)val <= 0);
1233 	tp->snd_cwnd = val;
1234 }
1235 
1236 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1237 {
1238 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1239 }
1240 
1241 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1242 {
1243 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1244 }
1245 
1246 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1247 {
1248 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1249 	       (1 << inet_csk(sk)->icsk_ca_state);
1250 }
1251 
1252 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1253  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1254  * ssthresh.
1255  */
1256 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1257 {
1258 	const struct tcp_sock *tp = tcp_sk(sk);
1259 
1260 	if (tcp_in_cwnd_reduction(sk))
1261 		return tp->snd_ssthresh;
1262 	else
1263 		return max(tp->snd_ssthresh,
1264 			   ((tcp_snd_cwnd(tp) >> 1) +
1265 			    (tcp_snd_cwnd(tp) >> 2)));
1266 }
1267 
1268 /* Use define here intentionally to get WARN_ON location shown at the caller */
1269 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1270 
1271 void tcp_enter_cwr(struct sock *sk);
1272 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1273 
1274 /* The maximum number of MSS of available cwnd for which TSO defers
1275  * sending if not using sysctl_tcp_tso_win_divisor.
1276  */
1277 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1278 {
1279 	return 3;
1280 }
1281 
1282 /* Returns end sequence number of the receiver's advertised window */
1283 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1284 {
1285 	return tp->snd_una + tp->snd_wnd;
1286 }
1287 
1288 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1289  * flexible approach. The RFC suggests cwnd should not be raised unless
1290  * it was fully used previously. And that's exactly what we do in
1291  * congestion avoidance mode. But in slow start we allow cwnd to grow
1292  * as long as the application has used half the cwnd.
1293  * Example :
1294  *    cwnd is 10 (IW10), but application sends 9 frames.
1295  *    We allow cwnd to reach 18 when all frames are ACKed.
1296  * This check is safe because it's as aggressive as slow start which already
1297  * risks 100% overshoot. The advantage is that we discourage application to
1298  * either send more filler packets or data to artificially blow up the cwnd
1299  * usage, and allow application-limited process to probe bw more aggressively.
1300  */
1301 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1302 {
1303 	const struct tcp_sock *tp = tcp_sk(sk);
1304 
1305 	if (tp->is_cwnd_limited)
1306 		return true;
1307 
1308 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1309 	if (tcp_in_slow_start(tp))
1310 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1311 
1312 	return false;
1313 }
1314 
1315 /* BBR congestion control needs pacing.
1316  * Same remark for SO_MAX_PACING_RATE.
1317  * sch_fq packet scheduler is efficiently handling pacing,
1318  * but is not always installed/used.
1319  * Return true if TCP stack should pace packets itself.
1320  */
1321 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1322 {
1323 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1324 }
1325 
1326 /* Estimates in how many jiffies next packet for this flow can be sent.
1327  * Scheduling a retransmit timer too early would be silly.
1328  */
1329 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1330 {
1331 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1332 
1333 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1334 }
1335 
1336 static inline void tcp_reset_xmit_timer(struct sock *sk,
1337 					const int what,
1338 					unsigned long when,
1339 					const unsigned long max_when)
1340 {
1341 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1342 				  max_when);
1343 }
1344 
1345 /* Something is really bad, we could not queue an additional packet,
1346  * because qdisc is full or receiver sent a 0 window, or we are paced.
1347  * We do not want to add fuel to the fire, or abort too early,
1348  * so make sure the timer we arm now is at least 200ms in the future,
1349  * regardless of current icsk_rto value (as it could be ~2ms)
1350  */
1351 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1352 {
1353 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1354 }
1355 
1356 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1357 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1358 					    unsigned long max_when)
1359 {
1360 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1361 			   inet_csk(sk)->icsk_backoff);
1362 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1363 
1364 	return (unsigned long)min_t(u64, when, max_when);
1365 }
1366 
1367 static inline void tcp_check_probe_timer(struct sock *sk)
1368 {
1369 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1370 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1371 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1372 }
1373 
1374 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1375 {
1376 	tp->snd_wl1 = seq;
1377 }
1378 
1379 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1380 {
1381 	tp->snd_wl1 = seq;
1382 }
1383 
1384 /*
1385  * Calculate(/check) TCP checksum
1386  */
1387 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1388 				   __be32 daddr, __wsum base)
1389 {
1390 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1391 }
1392 
1393 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1394 {
1395 	return !skb_csum_unnecessary(skb) &&
1396 		__skb_checksum_complete(skb);
1397 }
1398 
1399 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1400 		     enum skb_drop_reason *reason);
1401 
1402 
1403 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1404 void tcp_set_state(struct sock *sk, int state);
1405 void tcp_done(struct sock *sk);
1406 int tcp_abort(struct sock *sk, int err);
1407 
1408 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1409 {
1410 	rx_opt->dsack = 0;
1411 	rx_opt->num_sacks = 0;
1412 }
1413 
1414 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1415 
1416 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1417 {
1418 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1419 	struct tcp_sock *tp = tcp_sk(sk);
1420 	s32 delta;
1421 
1422 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1423 	    tp->packets_out || ca_ops->cong_control)
1424 		return;
1425 	delta = tcp_jiffies32 - tp->lsndtime;
1426 	if (delta > inet_csk(sk)->icsk_rto)
1427 		tcp_cwnd_restart(sk, delta);
1428 }
1429 
1430 /* Determine a window scaling and initial window to offer. */
1431 void tcp_select_initial_window(const struct sock *sk, int __space,
1432 			       __u32 mss, __u32 *rcv_wnd,
1433 			       __u32 *window_clamp, int wscale_ok,
1434 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1435 
1436 static inline int tcp_win_from_space(const struct sock *sk, int space)
1437 {
1438 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1439 
1440 	return tcp_adv_win_scale <= 0 ?
1441 		(space>>(-tcp_adv_win_scale)) :
1442 		space - (space>>tcp_adv_win_scale);
1443 }
1444 
1445 /* Note: caller must be prepared to deal with negative returns */
1446 static inline int tcp_space(const struct sock *sk)
1447 {
1448 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1449 				  READ_ONCE(sk->sk_backlog.len) -
1450 				  atomic_read(&sk->sk_rmem_alloc));
1451 }
1452 
1453 static inline int tcp_full_space(const struct sock *sk)
1454 {
1455 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1456 }
1457 
1458 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1459 {
1460 	int unused_mem = sk_unused_reserved_mem(sk);
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1464 	if (unused_mem)
1465 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1466 					 tcp_win_from_space(sk, unused_mem));
1467 }
1468 
1469 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1470 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1471 
1472 
1473 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1474  * If 87.5 % (7/8) of the space has been consumed, we want to override
1475  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1476  * len/truesize ratio.
1477  */
1478 static inline bool tcp_rmem_pressure(const struct sock *sk)
1479 {
1480 	int rcvbuf, threshold;
1481 
1482 	if (tcp_under_memory_pressure(sk))
1483 		return true;
1484 
1485 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1486 	threshold = rcvbuf - (rcvbuf >> 3);
1487 
1488 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1489 }
1490 
1491 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1492 {
1493 	const struct tcp_sock *tp = tcp_sk(sk);
1494 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1495 
1496 	if (avail <= 0)
1497 		return false;
1498 
1499 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1500 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1501 }
1502 
1503 extern void tcp_openreq_init_rwin(struct request_sock *req,
1504 				  const struct sock *sk_listener,
1505 				  const struct dst_entry *dst);
1506 
1507 void tcp_enter_memory_pressure(struct sock *sk);
1508 void tcp_leave_memory_pressure(struct sock *sk);
1509 
1510 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1511 {
1512 	struct net *net = sock_net((struct sock *)tp);
1513 
1514 	return tp->keepalive_intvl ? :
1515 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1516 }
1517 
1518 static inline int keepalive_time_when(const struct tcp_sock *tp)
1519 {
1520 	struct net *net = sock_net((struct sock *)tp);
1521 
1522 	return tp->keepalive_time ? :
1523 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1524 }
1525 
1526 static inline int keepalive_probes(const struct tcp_sock *tp)
1527 {
1528 	struct net *net = sock_net((struct sock *)tp);
1529 
1530 	return tp->keepalive_probes ? :
1531 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1532 }
1533 
1534 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1535 {
1536 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1537 
1538 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1539 			  tcp_jiffies32 - tp->rcv_tstamp);
1540 }
1541 
1542 static inline int tcp_fin_time(const struct sock *sk)
1543 {
1544 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1545 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1546 	const int rto = inet_csk(sk)->icsk_rto;
1547 
1548 	if (fin_timeout < (rto << 2) - (rto >> 1))
1549 		fin_timeout = (rto << 2) - (rto >> 1);
1550 
1551 	return fin_timeout;
1552 }
1553 
1554 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1555 				  int paws_win)
1556 {
1557 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1558 		return true;
1559 	if (unlikely(!time_before32(ktime_get_seconds(),
1560 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1561 		return true;
1562 	/*
1563 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1564 	 * then following tcp messages have valid values. Ignore 0 value,
1565 	 * or else 'negative' tsval might forbid us to accept their packets.
1566 	 */
1567 	if (!rx_opt->ts_recent)
1568 		return true;
1569 	return false;
1570 }
1571 
1572 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1573 				   int rst)
1574 {
1575 	if (tcp_paws_check(rx_opt, 0))
1576 		return false;
1577 
1578 	/* RST segments are not recommended to carry timestamp,
1579 	   and, if they do, it is recommended to ignore PAWS because
1580 	   "their cleanup function should take precedence over timestamps."
1581 	   Certainly, it is mistake. It is necessary to understand the reasons
1582 	   of this constraint to relax it: if peer reboots, clock may go
1583 	   out-of-sync and half-open connections will not be reset.
1584 	   Actually, the problem would be not existing if all
1585 	   the implementations followed draft about maintaining clock
1586 	   via reboots. Linux-2.2 DOES NOT!
1587 
1588 	   However, we can relax time bounds for RST segments to MSL.
1589 	 */
1590 	if (rst && !time_before32(ktime_get_seconds(),
1591 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1592 		return false;
1593 	return true;
1594 }
1595 
1596 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1597 			  int mib_idx, u32 *last_oow_ack_time);
1598 
1599 static inline void tcp_mib_init(struct net *net)
1600 {
1601 	/* See RFC 2012 */
1602 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1603 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1604 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1605 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1606 }
1607 
1608 /* from STCP */
1609 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1610 {
1611 	tp->lost_skb_hint = NULL;
1612 }
1613 
1614 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1615 {
1616 	tcp_clear_retrans_hints_partial(tp);
1617 	tp->retransmit_skb_hint = NULL;
1618 }
1619 
1620 union tcp_md5_addr {
1621 	struct in_addr  a4;
1622 #if IS_ENABLED(CONFIG_IPV6)
1623 	struct in6_addr	a6;
1624 #endif
1625 };
1626 
1627 /* - key database */
1628 struct tcp_md5sig_key {
1629 	struct hlist_node	node;
1630 	u8			keylen;
1631 	u8			family; /* AF_INET or AF_INET6 */
1632 	u8			prefixlen;
1633 	u8			flags;
1634 	union tcp_md5_addr	addr;
1635 	int			l3index; /* set if key added with L3 scope */
1636 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1637 	struct rcu_head		rcu;
1638 };
1639 
1640 /* - sock block */
1641 struct tcp_md5sig_info {
1642 	struct hlist_head	head;
1643 	struct rcu_head		rcu;
1644 };
1645 
1646 /* - pseudo header */
1647 struct tcp4_pseudohdr {
1648 	__be32		saddr;
1649 	__be32		daddr;
1650 	__u8		pad;
1651 	__u8		protocol;
1652 	__be16		len;
1653 };
1654 
1655 struct tcp6_pseudohdr {
1656 	struct in6_addr	saddr;
1657 	struct in6_addr daddr;
1658 	__be32		len;
1659 	__be32		protocol;	/* including padding */
1660 };
1661 
1662 union tcp_md5sum_block {
1663 	struct tcp4_pseudohdr ip4;
1664 #if IS_ENABLED(CONFIG_IPV6)
1665 	struct tcp6_pseudohdr ip6;
1666 #endif
1667 };
1668 
1669 /* - pool: digest algorithm, hash description and scratch buffer */
1670 struct tcp_md5sig_pool {
1671 	struct ahash_request	*md5_req;
1672 	void			*scratch;
1673 };
1674 
1675 /* - functions */
1676 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1677 			const struct sock *sk, const struct sk_buff *skb);
1678 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1679 		   int family, u8 prefixlen, int l3index, u8 flags,
1680 		   const u8 *newkey, u8 newkeylen);
1681 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1682 		     int family, u8 prefixlen, int l3index,
1683 		     struct tcp_md5sig_key *key);
1684 
1685 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1686 		   int family, u8 prefixlen, int l3index, u8 flags);
1687 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1688 					 const struct sock *addr_sk);
1689 
1690 #ifdef CONFIG_TCP_MD5SIG
1691 #include <linux/jump_label.h>
1692 extern struct static_key_false_deferred tcp_md5_needed;
1693 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1694 					   const union tcp_md5_addr *addr,
1695 					   int family);
1696 static inline struct tcp_md5sig_key *
1697 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1698 		  const union tcp_md5_addr *addr, int family)
1699 {
1700 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1701 		return NULL;
1702 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1703 }
1704 
1705 enum skb_drop_reason
1706 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1707 		     const void *saddr, const void *daddr,
1708 		     int family, int dif, int sdif);
1709 
1710 
1711 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1712 #else
1713 static inline struct tcp_md5sig_key *
1714 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1715 		  const union tcp_md5_addr *addr, int family)
1716 {
1717 	return NULL;
1718 }
1719 
1720 static inline enum skb_drop_reason
1721 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1722 		     const void *saddr, const void *daddr,
1723 		     int family, int dif, int sdif)
1724 {
1725 	return SKB_NOT_DROPPED_YET;
1726 }
1727 #define tcp_twsk_md5_key(twsk)	NULL
1728 #endif
1729 
1730 bool tcp_alloc_md5sig_pool(void);
1731 
1732 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1733 static inline void tcp_put_md5sig_pool(void)
1734 {
1735 	local_bh_enable();
1736 }
1737 
1738 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1739 			  unsigned int header_len);
1740 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1741 		     const struct tcp_md5sig_key *key);
1742 
1743 /* From tcp_fastopen.c */
1744 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1745 			    struct tcp_fastopen_cookie *cookie);
1746 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1747 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1748 			    u16 try_exp);
1749 struct tcp_fastopen_request {
1750 	/* Fast Open cookie. Size 0 means a cookie request */
1751 	struct tcp_fastopen_cookie	cookie;
1752 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1753 	size_t				size;
1754 	int				copied;	/* queued in tcp_connect() */
1755 	struct ubuf_info		*uarg;
1756 };
1757 void tcp_free_fastopen_req(struct tcp_sock *tp);
1758 void tcp_fastopen_destroy_cipher(struct sock *sk);
1759 void tcp_fastopen_ctx_destroy(struct net *net);
1760 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1761 			      void *primary_key, void *backup_key);
1762 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1763 			    u64 *key);
1764 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1765 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1766 			      struct request_sock *req,
1767 			      struct tcp_fastopen_cookie *foc,
1768 			      const struct dst_entry *dst);
1769 void tcp_fastopen_init_key_once(struct net *net);
1770 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1771 			     struct tcp_fastopen_cookie *cookie);
1772 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1773 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1774 #define TCP_FASTOPEN_KEY_MAX 2
1775 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1776 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1777 
1778 /* Fastopen key context */
1779 struct tcp_fastopen_context {
1780 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1781 	int		num;
1782 	struct rcu_head	rcu;
1783 };
1784 
1785 void tcp_fastopen_active_disable(struct sock *sk);
1786 bool tcp_fastopen_active_should_disable(struct sock *sk);
1787 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1788 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1789 
1790 /* Caller needs to wrap with rcu_read_(un)lock() */
1791 static inline
1792 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1793 {
1794 	struct tcp_fastopen_context *ctx;
1795 
1796 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1797 	if (!ctx)
1798 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1799 	return ctx;
1800 }
1801 
1802 static inline
1803 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1804 			       const struct tcp_fastopen_cookie *orig)
1805 {
1806 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1807 	    orig->len == foc->len &&
1808 	    !memcmp(orig->val, foc->val, foc->len))
1809 		return true;
1810 	return false;
1811 }
1812 
1813 static inline
1814 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1815 {
1816 	return ctx->num;
1817 }
1818 
1819 /* Latencies incurred by various limits for a sender. They are
1820  * chronograph-like stats that are mutually exclusive.
1821  */
1822 enum tcp_chrono {
1823 	TCP_CHRONO_UNSPEC,
1824 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1825 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1826 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1827 	__TCP_CHRONO_MAX,
1828 };
1829 
1830 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1831 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1832 
1833 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1834  * the same memory storage than skb->destructor/_skb_refdst
1835  */
1836 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1837 {
1838 	skb->destructor = NULL;
1839 	skb->_skb_refdst = 0UL;
1840 }
1841 
1842 #define tcp_skb_tsorted_save(skb) {		\
1843 	unsigned long _save = skb->_skb_refdst;	\
1844 	skb->_skb_refdst = 0UL;
1845 
1846 #define tcp_skb_tsorted_restore(skb)		\
1847 	skb->_skb_refdst = _save;		\
1848 }
1849 
1850 void tcp_write_queue_purge(struct sock *sk);
1851 
1852 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1853 {
1854 	return skb_rb_first(&sk->tcp_rtx_queue);
1855 }
1856 
1857 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1858 {
1859 	return skb_rb_last(&sk->tcp_rtx_queue);
1860 }
1861 
1862 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1863 {
1864 	return skb_peek_tail(&sk->sk_write_queue);
1865 }
1866 
1867 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1868 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1869 
1870 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1871 {
1872 	return skb_peek(&sk->sk_write_queue);
1873 }
1874 
1875 static inline bool tcp_skb_is_last(const struct sock *sk,
1876 				   const struct sk_buff *skb)
1877 {
1878 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1879 }
1880 
1881 /**
1882  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1883  * @sk: socket
1884  *
1885  * Since the write queue can have a temporary empty skb in it,
1886  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1887  */
1888 static inline bool tcp_write_queue_empty(const struct sock *sk)
1889 {
1890 	const struct tcp_sock *tp = tcp_sk(sk);
1891 
1892 	return tp->write_seq == tp->snd_nxt;
1893 }
1894 
1895 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1896 {
1897 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1898 }
1899 
1900 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1901 {
1902 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1903 }
1904 
1905 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1906 {
1907 	__skb_queue_tail(&sk->sk_write_queue, skb);
1908 
1909 	/* Queue it, remembering where we must start sending. */
1910 	if (sk->sk_write_queue.next == skb)
1911 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1912 }
1913 
1914 /* Insert new before skb on the write queue of sk.  */
1915 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1916 						  struct sk_buff *skb,
1917 						  struct sock *sk)
1918 {
1919 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1920 }
1921 
1922 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1923 {
1924 	tcp_skb_tsorted_anchor_cleanup(skb);
1925 	__skb_unlink(skb, &sk->sk_write_queue);
1926 }
1927 
1928 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1929 
1930 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1931 {
1932 	tcp_skb_tsorted_anchor_cleanup(skb);
1933 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1934 }
1935 
1936 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1937 {
1938 	list_del(&skb->tcp_tsorted_anchor);
1939 	tcp_rtx_queue_unlink(skb, sk);
1940 	tcp_wmem_free_skb(sk, skb);
1941 }
1942 
1943 static inline void tcp_push_pending_frames(struct sock *sk)
1944 {
1945 	if (tcp_send_head(sk)) {
1946 		struct tcp_sock *tp = tcp_sk(sk);
1947 
1948 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1949 	}
1950 }
1951 
1952 /* Start sequence of the skb just after the highest skb with SACKed
1953  * bit, valid only if sacked_out > 0 or when the caller has ensured
1954  * validity by itself.
1955  */
1956 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1957 {
1958 	if (!tp->sacked_out)
1959 		return tp->snd_una;
1960 
1961 	if (tp->highest_sack == NULL)
1962 		return tp->snd_nxt;
1963 
1964 	return TCP_SKB_CB(tp->highest_sack)->seq;
1965 }
1966 
1967 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1968 {
1969 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1970 }
1971 
1972 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1973 {
1974 	return tcp_sk(sk)->highest_sack;
1975 }
1976 
1977 static inline void tcp_highest_sack_reset(struct sock *sk)
1978 {
1979 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1980 }
1981 
1982 /* Called when old skb is about to be deleted and replaced by new skb */
1983 static inline void tcp_highest_sack_replace(struct sock *sk,
1984 					    struct sk_buff *old,
1985 					    struct sk_buff *new)
1986 {
1987 	if (old == tcp_highest_sack(sk))
1988 		tcp_sk(sk)->highest_sack = new;
1989 }
1990 
1991 /* This helper checks if socket has IP_TRANSPARENT set */
1992 static inline bool inet_sk_transparent(const struct sock *sk)
1993 {
1994 	switch (sk->sk_state) {
1995 	case TCP_TIME_WAIT:
1996 		return inet_twsk(sk)->tw_transparent;
1997 	case TCP_NEW_SYN_RECV:
1998 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1999 	}
2000 	return inet_sk(sk)->transparent;
2001 }
2002 
2003 /* Determines whether this is a thin stream (which may suffer from
2004  * increased latency). Used to trigger latency-reducing mechanisms.
2005  */
2006 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2007 {
2008 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2009 }
2010 
2011 /* /proc */
2012 enum tcp_seq_states {
2013 	TCP_SEQ_STATE_LISTENING,
2014 	TCP_SEQ_STATE_ESTABLISHED,
2015 };
2016 
2017 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2018 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2019 void tcp_seq_stop(struct seq_file *seq, void *v);
2020 
2021 struct tcp_seq_afinfo {
2022 	sa_family_t			family;
2023 };
2024 
2025 struct tcp_iter_state {
2026 	struct seq_net_private	p;
2027 	enum tcp_seq_states	state;
2028 	struct sock		*syn_wait_sk;
2029 	int			bucket, offset, sbucket, num;
2030 	loff_t			last_pos;
2031 };
2032 
2033 extern struct request_sock_ops tcp_request_sock_ops;
2034 extern struct request_sock_ops tcp6_request_sock_ops;
2035 
2036 void tcp_v4_destroy_sock(struct sock *sk);
2037 
2038 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2039 				netdev_features_t features);
2040 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2041 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2042 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2043 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2044 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2045 void tcp_gro_complete(struct sk_buff *skb);
2046 
2047 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2048 
2049 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2050 {
2051 	struct net *net = sock_net((struct sock *)tp);
2052 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2053 }
2054 
2055 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2056 
2057 #ifdef CONFIG_PROC_FS
2058 int tcp4_proc_init(void);
2059 void tcp4_proc_exit(void);
2060 #endif
2061 
2062 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2063 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2064 		     const struct tcp_request_sock_ops *af_ops,
2065 		     struct sock *sk, struct sk_buff *skb);
2066 
2067 /* TCP af-specific functions */
2068 struct tcp_sock_af_ops {
2069 #ifdef CONFIG_TCP_MD5SIG
2070 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2071 						const struct sock *addr_sk);
2072 	int		(*calc_md5_hash)(char *location,
2073 					 const struct tcp_md5sig_key *md5,
2074 					 const struct sock *sk,
2075 					 const struct sk_buff *skb);
2076 	int		(*md5_parse)(struct sock *sk,
2077 				     int optname,
2078 				     sockptr_t optval,
2079 				     int optlen);
2080 #endif
2081 };
2082 
2083 struct tcp_request_sock_ops {
2084 	u16 mss_clamp;
2085 #ifdef CONFIG_TCP_MD5SIG
2086 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2087 						 const struct sock *addr_sk);
2088 	int		(*calc_md5_hash) (char *location,
2089 					  const struct tcp_md5sig_key *md5,
2090 					  const struct sock *sk,
2091 					  const struct sk_buff *skb);
2092 #endif
2093 #ifdef CONFIG_SYN_COOKIES
2094 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2095 				 __u16 *mss);
2096 #endif
2097 	struct dst_entry *(*route_req)(const struct sock *sk,
2098 				       struct sk_buff *skb,
2099 				       struct flowi *fl,
2100 				       struct request_sock *req);
2101 	u32 (*init_seq)(const struct sk_buff *skb);
2102 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2103 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2104 			   struct flowi *fl, struct request_sock *req,
2105 			   struct tcp_fastopen_cookie *foc,
2106 			   enum tcp_synack_type synack_type,
2107 			   struct sk_buff *syn_skb);
2108 };
2109 
2110 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2111 #if IS_ENABLED(CONFIG_IPV6)
2112 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2113 #endif
2114 
2115 #ifdef CONFIG_SYN_COOKIES
2116 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2117 					 const struct sock *sk, struct sk_buff *skb,
2118 					 __u16 *mss)
2119 {
2120 	tcp_synq_overflow(sk);
2121 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2122 	return ops->cookie_init_seq(skb, mss);
2123 }
2124 #else
2125 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2126 					 const struct sock *sk, struct sk_buff *skb,
2127 					 __u16 *mss)
2128 {
2129 	return 0;
2130 }
2131 #endif
2132 
2133 int tcpv4_offload_init(void);
2134 
2135 void tcp_v4_init(void);
2136 void tcp_init(void);
2137 
2138 /* tcp_recovery.c */
2139 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2140 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2141 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2142 				u32 reo_wnd);
2143 extern bool tcp_rack_mark_lost(struct sock *sk);
2144 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2145 			     u64 xmit_time);
2146 extern void tcp_rack_reo_timeout(struct sock *sk);
2147 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2148 
2149 /* tcp_plb.c */
2150 
2151 /*
2152  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2153  * expects cong_ratio which represents fraction of traffic that experienced
2154  * congestion over a single RTT. In order to avoid floating point operations,
2155  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2156  */
2157 #define TCP_PLB_SCALE 8
2158 
2159 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2160 struct tcp_plb_state {
2161 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2162 		unused:3;
2163 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2164 };
2165 
2166 static inline void tcp_plb_init(const struct sock *sk,
2167 				struct tcp_plb_state *plb)
2168 {
2169 	plb->consec_cong_rounds = 0;
2170 	plb->pause_until = 0;
2171 }
2172 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2173 			  const int cong_ratio);
2174 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2175 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2176 
2177 /* At how many usecs into the future should the RTO fire? */
2178 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2179 {
2180 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2181 	u32 rto = inet_csk(sk)->icsk_rto;
2182 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2183 
2184 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2185 }
2186 
2187 /*
2188  * Save and compile IPv4 options, return a pointer to it
2189  */
2190 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2191 							 struct sk_buff *skb)
2192 {
2193 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2194 	struct ip_options_rcu *dopt = NULL;
2195 
2196 	if (opt->optlen) {
2197 		int opt_size = sizeof(*dopt) + opt->optlen;
2198 
2199 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2200 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2201 			kfree(dopt);
2202 			dopt = NULL;
2203 		}
2204 	}
2205 	return dopt;
2206 }
2207 
2208 /* locally generated TCP pure ACKs have skb->truesize == 2
2209  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2210  * This is much faster than dissecting the packet to find out.
2211  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2212  */
2213 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2214 {
2215 	return skb->truesize == 2;
2216 }
2217 
2218 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2219 {
2220 	skb->truesize = 2;
2221 }
2222 
2223 static inline int tcp_inq(struct sock *sk)
2224 {
2225 	struct tcp_sock *tp = tcp_sk(sk);
2226 	int answ;
2227 
2228 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2229 		answ = 0;
2230 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2231 		   !tp->urg_data ||
2232 		   before(tp->urg_seq, tp->copied_seq) ||
2233 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2234 
2235 		answ = tp->rcv_nxt - tp->copied_seq;
2236 
2237 		/* Subtract 1, if FIN was received */
2238 		if (answ && sock_flag(sk, SOCK_DONE))
2239 			answ--;
2240 	} else {
2241 		answ = tp->urg_seq - tp->copied_seq;
2242 	}
2243 
2244 	return answ;
2245 }
2246 
2247 int tcp_peek_len(struct socket *sock);
2248 
2249 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2250 {
2251 	u16 segs_in;
2252 
2253 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2254 
2255 	/* We update these fields while other threads might
2256 	 * read them from tcp_get_info()
2257 	 */
2258 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2259 	if (skb->len > tcp_hdrlen(skb))
2260 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2261 }
2262 
2263 /*
2264  * TCP listen path runs lockless.
2265  * We forced "struct sock" to be const qualified to make sure
2266  * we don't modify one of its field by mistake.
2267  * Here, we increment sk_drops which is an atomic_t, so we can safely
2268  * make sock writable again.
2269  */
2270 static inline void tcp_listendrop(const struct sock *sk)
2271 {
2272 	atomic_inc(&((struct sock *)sk)->sk_drops);
2273 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2274 }
2275 
2276 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2277 
2278 /*
2279  * Interface for adding Upper Level Protocols over TCP
2280  */
2281 
2282 #define TCP_ULP_NAME_MAX	16
2283 #define TCP_ULP_MAX		128
2284 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2285 
2286 struct tcp_ulp_ops {
2287 	struct list_head	list;
2288 
2289 	/* initialize ulp */
2290 	int (*init)(struct sock *sk);
2291 	/* update ulp */
2292 	void (*update)(struct sock *sk, struct proto *p,
2293 		       void (*write_space)(struct sock *sk));
2294 	/* cleanup ulp */
2295 	void (*release)(struct sock *sk);
2296 	/* diagnostic */
2297 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2298 	size_t (*get_info_size)(const struct sock *sk);
2299 	/* clone ulp */
2300 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2301 		      const gfp_t priority);
2302 
2303 	char		name[TCP_ULP_NAME_MAX];
2304 	struct module	*owner;
2305 };
2306 int tcp_register_ulp(struct tcp_ulp_ops *type);
2307 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2308 int tcp_set_ulp(struct sock *sk, const char *name);
2309 void tcp_get_available_ulp(char *buf, size_t len);
2310 void tcp_cleanup_ulp(struct sock *sk);
2311 void tcp_update_ulp(struct sock *sk, struct proto *p,
2312 		    void (*write_space)(struct sock *sk));
2313 
2314 #define MODULE_ALIAS_TCP_ULP(name)				\
2315 	__MODULE_INFO(alias, alias_userspace, name);		\
2316 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2317 
2318 #ifdef CONFIG_NET_SOCK_MSG
2319 struct sk_msg;
2320 struct sk_psock;
2321 
2322 #ifdef CONFIG_BPF_SYSCALL
2323 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2324 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2325 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2326 #endif /* CONFIG_BPF_SYSCALL */
2327 
2328 #ifdef CONFIG_INET
2329 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2330 #else
2331 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2332 {
2333 }
2334 #endif
2335 
2336 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2337 			  struct sk_msg *msg, u32 bytes, int flags);
2338 #endif /* CONFIG_NET_SOCK_MSG */
2339 
2340 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2341 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2342 {
2343 }
2344 #endif
2345 
2346 #ifdef CONFIG_CGROUP_BPF
2347 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2348 				      struct sk_buff *skb,
2349 				      unsigned int end_offset)
2350 {
2351 	skops->skb = skb;
2352 	skops->skb_data_end = skb->data + end_offset;
2353 }
2354 #else
2355 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2356 				      struct sk_buff *skb,
2357 				      unsigned int end_offset)
2358 {
2359 }
2360 #endif
2361 
2362 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2363  * is < 0, then the BPF op failed (for example if the loaded BPF
2364  * program does not support the chosen operation or there is no BPF
2365  * program loaded).
2366  */
2367 #ifdef CONFIG_BPF
2368 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2369 {
2370 	struct bpf_sock_ops_kern sock_ops;
2371 	int ret;
2372 
2373 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2374 	if (sk_fullsock(sk)) {
2375 		sock_ops.is_fullsock = 1;
2376 		sock_owned_by_me(sk);
2377 	}
2378 
2379 	sock_ops.sk = sk;
2380 	sock_ops.op = op;
2381 	if (nargs > 0)
2382 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2383 
2384 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2385 	if (ret == 0)
2386 		ret = sock_ops.reply;
2387 	else
2388 		ret = -1;
2389 	return ret;
2390 }
2391 
2392 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2393 {
2394 	u32 args[2] = {arg1, arg2};
2395 
2396 	return tcp_call_bpf(sk, op, 2, args);
2397 }
2398 
2399 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2400 				    u32 arg3)
2401 {
2402 	u32 args[3] = {arg1, arg2, arg3};
2403 
2404 	return tcp_call_bpf(sk, op, 3, args);
2405 }
2406 
2407 #else
2408 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2409 {
2410 	return -EPERM;
2411 }
2412 
2413 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2414 {
2415 	return -EPERM;
2416 }
2417 
2418 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2419 				    u32 arg3)
2420 {
2421 	return -EPERM;
2422 }
2423 
2424 #endif
2425 
2426 static inline u32 tcp_timeout_init(struct sock *sk)
2427 {
2428 	int timeout;
2429 
2430 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2431 
2432 	if (timeout <= 0)
2433 		timeout = TCP_TIMEOUT_INIT;
2434 	return min_t(int, timeout, TCP_RTO_MAX);
2435 }
2436 
2437 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2438 {
2439 	int rwnd;
2440 
2441 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2442 
2443 	if (rwnd < 0)
2444 		rwnd = 0;
2445 	return rwnd;
2446 }
2447 
2448 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2449 {
2450 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2451 }
2452 
2453 static inline void tcp_bpf_rtt(struct sock *sk)
2454 {
2455 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2456 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2457 }
2458 
2459 #if IS_ENABLED(CONFIG_SMC)
2460 extern struct static_key_false tcp_have_smc;
2461 #endif
2462 
2463 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2464 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2465 			     void (*cad)(struct sock *sk, u32 ack_seq));
2466 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2467 void clean_acked_data_flush(void);
2468 #endif
2469 
2470 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2471 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2472 				    const struct tcp_sock *tp)
2473 {
2474 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2475 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2476 }
2477 
2478 /* Compute Earliest Departure Time for some control packets
2479  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2480  */
2481 static inline u64 tcp_transmit_time(const struct sock *sk)
2482 {
2483 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2484 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2485 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2486 
2487 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2488 	}
2489 	return 0;
2490 }
2491 
2492 #endif	/* _TCP_H */
2493