xref: /openbmc/linux/include/net/tcp.h (revision 42c06a0e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
255 
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	if (!skb_zcopy_pure(skb))
297 		sk_mem_uncharge(sk, skb->truesize);
298 	else
299 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 	__kfree_skb(skb);
301 }
302 
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
329 			 size_t size, struct ubuf_info *uarg);
330 void tcp_splice_eof(struct socket *sock);
331 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
332 int tcp_wmem_schedule(struct sock *sk, int copy);
333 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
334 	      int size_goal);
335 void tcp_release_cb(struct sock *sk);
336 void tcp_wfree(struct sk_buff *skb);
337 void tcp_write_timer_handler(struct sock *sk);
338 void tcp_delack_timer_handler(struct sock *sk);
339 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
340 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_space_adjust(struct sock *sk);
343 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344 void tcp_twsk_destructor(struct sock *sk);
345 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
346 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 			struct pipe_inode_info *pipe, size_t len,
348 			unsigned int flags);
349 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
350 				     bool force_schedule);
351 
352 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
353 static inline void tcp_dec_quickack_mode(struct sock *sk,
354 					 const unsigned int pkts)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	if (icsk->icsk_ack.quick) {
359 		if (pkts >= icsk->icsk_ack.quick) {
360 			icsk->icsk_ack.quick = 0;
361 			/* Leaving quickack mode we deflate ATO. */
362 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
363 		} else
364 			icsk->icsk_ack.quick -= pkts;
365 	}
366 }
367 
368 #define	TCP_ECN_OK		1
369 #define	TCP_ECN_QUEUE_CWR	2
370 #define	TCP_ECN_DEMAND_CWR	4
371 #define	TCP_ECN_SEEN		8
372 
373 enum tcp_tw_status {
374 	TCP_TW_SUCCESS = 0,
375 	TCP_TW_RST = 1,
376 	TCP_TW_ACK = 2,
377 	TCP_TW_SYN = 3
378 };
379 
380 
381 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
382 					      struct sk_buff *skb,
383 					      const struct tcphdr *th);
384 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
385 			   struct request_sock *req, bool fastopen,
386 			   bool *lost_race);
387 int tcp_child_process(struct sock *parent, struct sock *child,
388 		      struct sk_buff *skb);
389 void tcp_enter_loss(struct sock *sk);
390 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
391 void tcp_clear_retrans(struct tcp_sock *tp);
392 void tcp_update_metrics(struct sock *sk);
393 void tcp_init_metrics(struct sock *sk);
394 void tcp_metrics_init(void);
395 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
396 void __tcp_close(struct sock *sk, long timeout);
397 void tcp_close(struct sock *sk, long timeout);
398 void tcp_init_sock(struct sock *sk);
399 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
400 __poll_t tcp_poll(struct file *file, struct socket *sock,
401 		      struct poll_table_struct *wait);
402 int do_tcp_getsockopt(struct sock *sk, int level,
403 		      int optname, sockptr_t optval, sockptr_t optlen);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
408 		      sockptr_t optval, unsigned int optlen);
409 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
410 		   unsigned int optlen);
411 void tcp_set_keepalive(struct sock *sk, int val);
412 void tcp_syn_ack_timeout(const struct request_sock *req);
413 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
414 		int flags, int *addr_len);
415 int tcp_set_rcvlowat(struct sock *sk, int val);
416 int tcp_set_window_clamp(struct sock *sk, int val);
417 void tcp_update_recv_tstamps(struct sk_buff *skb,
418 			     struct scm_timestamping_internal *tss);
419 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
420 			struct scm_timestamping_internal *tss);
421 void tcp_data_ready(struct sock *sk);
422 #ifdef CONFIG_MMU
423 int tcp_mmap(struct file *file, struct socket *sock,
424 	     struct vm_area_struct *vma);
425 #endif
426 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
427 		       struct tcp_options_received *opt_rx,
428 		       int estab, struct tcp_fastopen_cookie *foc);
429 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
430 
431 /*
432  *	BPF SKB-less helpers
433  */
434 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
435 			 struct tcphdr *th, u32 *cookie);
436 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
437 			 struct tcphdr *th, u32 *cookie);
438 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
439 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
440 			  const struct tcp_request_sock_ops *af_ops,
441 			  struct sock *sk, struct tcphdr *th);
442 /*
443  *	TCP v4 functions exported for the inet6 API
444  */
445 
446 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
447 void tcp_v4_mtu_reduced(struct sock *sk);
448 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
449 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
450 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451 struct sock *tcp_create_openreq_child(const struct sock *sk,
452 				      struct request_sock *req,
453 				      struct sk_buff *skb);
454 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
456 				  struct request_sock *req,
457 				  struct dst_entry *dst,
458 				  struct request_sock *req_unhash,
459 				  bool *own_req);
460 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
461 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
462 int tcp_connect(struct sock *sk);
463 enum tcp_synack_type {
464 	TCP_SYNACK_NORMAL,
465 	TCP_SYNACK_FASTOPEN,
466 	TCP_SYNACK_COOKIE,
467 };
468 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
469 				struct request_sock *req,
470 				struct tcp_fastopen_cookie *foc,
471 				enum tcp_synack_type synack_type,
472 				struct sk_buff *syn_skb);
473 int tcp_disconnect(struct sock *sk, int flags);
474 
475 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
476 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
477 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
478 
479 /* From syncookies.c */
480 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
481 				 struct request_sock *req,
482 				 struct dst_entry *dst, u32 tsoff);
483 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
484 		      u32 cookie);
485 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
486 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
487 					    const struct tcp_request_sock_ops *af_ops,
488 					    struct sock *sk, struct sk_buff *skb);
489 #ifdef CONFIG_SYN_COOKIES
490 
491 /* Syncookies use a monotonic timer which increments every 60 seconds.
492  * This counter is used both as a hash input and partially encoded into
493  * the cookie value.  A cookie is only validated further if the delta
494  * between the current counter value and the encoded one is less than this,
495  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
496  * the counter advances immediately after a cookie is generated).
497  */
498 #define MAX_SYNCOOKIE_AGE	2
499 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
500 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
501 
502 /* syncookies: remember time of last synqueue overflow
503  * But do not dirty this field too often (once per second is enough)
504  * It is racy as we do not hold a lock, but race is very minor.
505  */
506 static inline void tcp_synq_overflow(const struct sock *sk)
507 {
508 	unsigned int last_overflow;
509 	unsigned int now = jiffies;
510 
511 	if (sk->sk_reuseport) {
512 		struct sock_reuseport *reuse;
513 
514 		reuse = rcu_dereference(sk->sk_reuseport_cb);
515 		if (likely(reuse)) {
516 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
517 			if (!time_between32(now, last_overflow,
518 					    last_overflow + HZ))
519 				WRITE_ONCE(reuse->synq_overflow_ts, now);
520 			return;
521 		}
522 	}
523 
524 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
525 	if (!time_between32(now, last_overflow, last_overflow + HZ))
526 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
527 }
528 
529 /* syncookies: no recent synqueue overflow on this listening socket? */
530 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
531 {
532 	unsigned int last_overflow;
533 	unsigned int now = jiffies;
534 
535 	if (sk->sk_reuseport) {
536 		struct sock_reuseport *reuse;
537 
538 		reuse = rcu_dereference(sk->sk_reuseport_cb);
539 		if (likely(reuse)) {
540 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
541 			return !time_between32(now, last_overflow - HZ,
542 					       last_overflow +
543 					       TCP_SYNCOOKIE_VALID);
544 		}
545 	}
546 
547 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
548 
549 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
550 	 * then we're under synflood. However, we have to use
551 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
552 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
553 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
554 	 * which could lead to rejecting a valid syncookie.
555 	 */
556 	return !time_between32(now, last_overflow - HZ,
557 			       last_overflow + TCP_SYNCOOKIE_VALID);
558 }
559 
560 static inline u32 tcp_cookie_time(void)
561 {
562 	u64 val = get_jiffies_64();
563 
564 	do_div(val, TCP_SYNCOOKIE_PERIOD);
565 	return val;
566 }
567 
568 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
569 			      u16 *mssp);
570 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
572 bool cookie_timestamp_decode(const struct net *net,
573 			     struct tcp_options_received *opt);
574 bool cookie_ecn_ok(const struct tcp_options_received *opt,
575 		   const struct net *net, const struct dst_entry *dst);
576 
577 /* From net/ipv6/syncookies.c */
578 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
579 		      u32 cookie);
580 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
581 
582 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
583 			      const struct tcphdr *th, u16 *mssp);
584 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
585 #endif
586 /* tcp_output.c */
587 
588 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
589 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
590 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
591 			       int nonagle);
592 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
594 void tcp_retransmit_timer(struct sock *sk);
595 void tcp_xmit_retransmit_queue(struct sock *);
596 void tcp_simple_retransmit(struct sock *);
597 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
598 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
599 enum tcp_queue {
600 	TCP_FRAG_IN_WRITE_QUEUE,
601 	TCP_FRAG_IN_RTX_QUEUE,
602 };
603 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
604 		 struct sk_buff *skb, u32 len,
605 		 unsigned int mss_now, gfp_t gfp);
606 
607 void tcp_send_probe0(struct sock *);
608 void tcp_send_partial(struct sock *);
609 int tcp_write_wakeup(struct sock *, int mib);
610 void tcp_send_fin(struct sock *sk);
611 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
612 int tcp_send_synack(struct sock *);
613 void tcp_push_one(struct sock *, unsigned int mss_now);
614 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
615 void tcp_send_ack(struct sock *sk);
616 void tcp_send_delayed_ack(struct sock *sk);
617 void tcp_send_loss_probe(struct sock *sk);
618 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
619 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
620 			     const struct sk_buff *next_skb);
621 
622 /* tcp_input.c */
623 void tcp_rearm_rto(struct sock *sk);
624 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
625 void tcp_reset(struct sock *sk, struct sk_buff *skb);
626 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
627 void tcp_fin(struct sock *sk);
628 void tcp_check_space(struct sock *sk);
629 void tcp_sack_compress_send_ack(struct sock *sk);
630 
631 /* tcp_timer.c */
632 void tcp_init_xmit_timers(struct sock *);
633 static inline void tcp_clear_xmit_timers(struct sock *sk)
634 {
635 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
636 		__sock_put(sk);
637 
638 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
639 		__sock_put(sk);
640 
641 	inet_csk_clear_xmit_timers(sk);
642 }
643 
644 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
645 unsigned int tcp_current_mss(struct sock *sk);
646 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
647 
648 /* Bound MSS / TSO packet size with the half of the window */
649 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
650 {
651 	int cutoff;
652 
653 	/* When peer uses tiny windows, there is no use in packetizing
654 	 * to sub-MSS pieces for the sake of SWS or making sure there
655 	 * are enough packets in the pipe for fast recovery.
656 	 *
657 	 * On the other hand, for extremely large MSS devices, handling
658 	 * smaller than MSS windows in this way does make sense.
659 	 */
660 	if (tp->max_window > TCP_MSS_DEFAULT)
661 		cutoff = (tp->max_window >> 1);
662 	else
663 		cutoff = tp->max_window;
664 
665 	if (cutoff && pktsize > cutoff)
666 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
667 	else
668 		return pktsize;
669 }
670 
671 /* tcp.c */
672 void tcp_get_info(struct sock *, struct tcp_info *);
673 
674 /* Read 'sendfile()'-style from a TCP socket */
675 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
676 		  sk_read_actor_t recv_actor);
677 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
678 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
679 void tcp_read_done(struct sock *sk, size_t len);
680 
681 void tcp_initialize_rcv_mss(struct sock *sk);
682 
683 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
684 int tcp_mss_to_mtu(struct sock *sk, int mss);
685 void tcp_mtup_init(struct sock *sk);
686 
687 static inline void tcp_bound_rto(const struct sock *sk)
688 {
689 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
690 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
691 }
692 
693 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
694 {
695 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
696 }
697 
698 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
699 {
700 	/* mptcp hooks are only on the slow path */
701 	if (sk_is_mptcp((struct sock *)tp))
702 		return;
703 
704 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
705 			       ntohl(TCP_FLAG_ACK) |
706 			       snd_wnd);
707 }
708 
709 static inline void tcp_fast_path_on(struct tcp_sock *tp)
710 {
711 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
712 }
713 
714 static inline void tcp_fast_path_check(struct sock *sk)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 
718 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
719 	    tp->rcv_wnd &&
720 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
721 	    !tp->urg_data)
722 		tcp_fast_path_on(tp);
723 }
724 
725 /* Compute the actual rto_min value */
726 static inline u32 tcp_rto_min(struct sock *sk)
727 {
728 	const struct dst_entry *dst = __sk_dst_get(sk);
729 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
730 
731 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
732 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
733 	return rto_min;
734 }
735 
736 static inline u32 tcp_rto_min_us(struct sock *sk)
737 {
738 	return jiffies_to_usecs(tcp_rto_min(sk));
739 }
740 
741 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
742 {
743 	return dst_metric_locked(dst, RTAX_CC_ALGO);
744 }
745 
746 /* Minimum RTT in usec. ~0 means not available. */
747 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
748 {
749 	return minmax_get(&tp->rtt_min);
750 }
751 
752 /* Compute the actual receive window we are currently advertising.
753  * Rcv_nxt can be after the window if our peer push more data
754  * than the offered window.
755  */
756 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
757 {
758 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
759 
760 	if (win < 0)
761 		win = 0;
762 	return (u32) win;
763 }
764 
765 /* Choose a new window, without checks for shrinking, and without
766  * scaling applied to the result.  The caller does these things
767  * if necessary.  This is a "raw" window selection.
768  */
769 u32 __tcp_select_window(struct sock *sk);
770 
771 void tcp_send_window_probe(struct sock *sk);
772 
773 /* TCP uses 32bit jiffies to save some space.
774  * Note that this is different from tcp_time_stamp, which
775  * historically has been the same until linux-4.13.
776  */
777 #define tcp_jiffies32 ((u32)jiffies)
778 
779 /*
780  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
781  * It is no longer tied to jiffies, but to 1 ms clock.
782  * Note: double check if you want to use tcp_jiffies32 instead of this.
783  */
784 #define TCP_TS_HZ	1000
785 
786 static inline u64 tcp_clock_ns(void)
787 {
788 	return ktime_get_ns();
789 }
790 
791 static inline u64 tcp_clock_us(void)
792 {
793 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
794 }
795 
796 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
797 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
798 {
799 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
800 }
801 
802 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
803 static inline u32 tcp_ns_to_ts(u64 ns)
804 {
805 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
806 }
807 
808 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
809 static inline u32 tcp_time_stamp_raw(void)
810 {
811 	return tcp_ns_to_ts(tcp_clock_ns());
812 }
813 
814 void tcp_mstamp_refresh(struct tcp_sock *tp);
815 
816 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
817 {
818 	return max_t(s64, t1 - t0, 0);
819 }
820 
821 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
822 {
823 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
824 }
825 
826 /* provide the departure time in us unit */
827 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
828 {
829 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
830 }
831 
832 
833 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
834 
835 #define TCPHDR_FIN 0x01
836 #define TCPHDR_SYN 0x02
837 #define TCPHDR_RST 0x04
838 #define TCPHDR_PSH 0x08
839 #define TCPHDR_ACK 0x10
840 #define TCPHDR_URG 0x20
841 #define TCPHDR_ECE 0x40
842 #define TCPHDR_CWR 0x80
843 
844 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
845 
846 /* This is what the send packet queuing engine uses to pass
847  * TCP per-packet control information to the transmission code.
848  * We also store the host-order sequence numbers in here too.
849  * This is 44 bytes if IPV6 is enabled.
850  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
851  */
852 struct tcp_skb_cb {
853 	__u32		seq;		/* Starting sequence number	*/
854 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
855 	union {
856 		/* Note : tcp_tw_isn is used in input path only
857 		 *	  (isn chosen by tcp_timewait_state_process())
858 		 *
859 		 * 	  tcp_gso_segs/size are used in write queue only,
860 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
861 		 */
862 		__u32		tcp_tw_isn;
863 		struct {
864 			u16	tcp_gso_segs;
865 			u16	tcp_gso_size;
866 		};
867 	};
868 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
869 
870 	__u8		sacked;		/* State flags for SACK.	*/
871 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
872 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
873 #define TCPCB_LOST		0x04	/* SKB is lost			*/
874 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
875 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
876 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
877 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
878 				TCPCB_REPAIRED)
879 
880 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
881 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
882 			eor:1,		/* Is skb MSG_EOR marked? */
883 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
884 			unused:5;
885 	__u32		ack_seq;	/* Sequence number ACK'd	*/
886 	union {
887 		struct {
888 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
889 			/* There is space for up to 24 bytes */
890 			__u32 is_app_limited:1, /* cwnd not fully used? */
891 			      delivered_ce:20,
892 			      unused:11;
893 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
894 			__u32 delivered;
895 			/* start of send pipeline phase */
896 			u64 first_tx_mstamp;
897 			/* when we reached the "delivered" count */
898 			u64 delivered_mstamp;
899 		} tx;   /* only used for outgoing skbs */
900 		union {
901 			struct inet_skb_parm	h4;
902 #if IS_ENABLED(CONFIG_IPV6)
903 			struct inet6_skb_parm	h6;
904 #endif
905 		} header;	/* For incoming skbs */
906 	};
907 };
908 
909 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
910 
911 extern const struct inet_connection_sock_af_ops ipv4_specific;
912 
913 #if IS_ENABLED(CONFIG_IPV6)
914 /* This is the variant of inet6_iif() that must be used by TCP,
915  * as TCP moves IP6CB into a different location in skb->cb[]
916  */
917 static inline int tcp_v6_iif(const struct sk_buff *skb)
918 {
919 	return TCP_SKB_CB(skb)->header.h6.iif;
920 }
921 
922 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
923 {
924 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
925 
926 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
927 }
928 
929 /* TCP_SKB_CB reference means this can not be used from early demux */
930 static inline int tcp_v6_sdif(const struct sk_buff *skb)
931 {
932 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
933 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
934 		return TCP_SKB_CB(skb)->header.h6.iif;
935 #endif
936 	return 0;
937 }
938 
939 extern const struct inet_connection_sock_af_ops ipv6_specific;
940 
941 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
942 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
943 void tcp_v6_early_demux(struct sk_buff *skb);
944 
945 #endif
946 
947 /* TCP_SKB_CB reference means this can not be used from early demux */
948 static inline int tcp_v4_sdif(struct sk_buff *skb)
949 {
950 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
951 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
952 		return TCP_SKB_CB(skb)->header.h4.iif;
953 #endif
954 	return 0;
955 }
956 
957 /* Due to TSO, an SKB can be composed of multiple actual
958  * packets.  To keep these tracked properly, we use this.
959  */
960 static inline int tcp_skb_pcount(const struct sk_buff *skb)
961 {
962 	return TCP_SKB_CB(skb)->tcp_gso_segs;
963 }
964 
965 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
966 {
967 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
968 }
969 
970 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
971 {
972 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
973 }
974 
975 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
976 static inline int tcp_skb_mss(const struct sk_buff *skb)
977 {
978 	return TCP_SKB_CB(skb)->tcp_gso_size;
979 }
980 
981 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
982 {
983 	return likely(!TCP_SKB_CB(skb)->eor);
984 }
985 
986 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
987 					const struct sk_buff *from)
988 {
989 	return likely(tcp_skb_can_collapse_to(to) &&
990 		      mptcp_skb_can_collapse(to, from) &&
991 		      skb_pure_zcopy_same(to, from));
992 }
993 
994 /* Events passed to congestion control interface */
995 enum tcp_ca_event {
996 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
997 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
998 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
999 	CA_EVENT_LOSS,		/* loss timeout */
1000 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1001 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1002 };
1003 
1004 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1005 enum tcp_ca_ack_event_flags {
1006 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1007 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1008 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1009 };
1010 
1011 /*
1012  * Interface for adding new TCP congestion control handlers
1013  */
1014 #define TCP_CA_NAME_MAX	16
1015 #define TCP_CA_MAX	128
1016 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1017 
1018 #define TCP_CA_UNSPEC	0
1019 
1020 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1021 #define TCP_CONG_NON_RESTRICTED 0x1
1022 /* Requires ECN/ECT set on all packets */
1023 #define TCP_CONG_NEEDS_ECN	0x2
1024 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1025 
1026 union tcp_cc_info;
1027 
1028 struct ack_sample {
1029 	u32 pkts_acked;
1030 	s32 rtt_us;
1031 	u32 in_flight;
1032 };
1033 
1034 /* A rate sample measures the number of (original/retransmitted) data
1035  * packets delivered "delivered" over an interval of time "interval_us".
1036  * The tcp_rate.c code fills in the rate sample, and congestion
1037  * control modules that define a cong_control function to run at the end
1038  * of ACK processing can optionally chose to consult this sample when
1039  * setting cwnd and pacing rate.
1040  * A sample is invalid if "delivered" or "interval_us" is negative.
1041  */
1042 struct rate_sample {
1043 	u64  prior_mstamp; /* starting timestamp for interval */
1044 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1045 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1046 	s32  delivered;		/* number of packets delivered over interval */
1047 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1048 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1049 	u32 snd_interval_us;	/* snd interval for delivered packets */
1050 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1051 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1052 	int  losses;		/* number of packets marked lost upon ACK */
1053 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1054 	u32  prior_in_flight;	/* in flight before this ACK */
1055 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1056 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1057 	bool is_retrans;	/* is sample from retransmission? */
1058 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1059 };
1060 
1061 struct tcp_congestion_ops {
1062 /* fast path fields are put first to fill one cache line */
1063 
1064 	/* return slow start threshold (required) */
1065 	u32 (*ssthresh)(struct sock *sk);
1066 
1067 	/* do new cwnd calculation (required) */
1068 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1069 
1070 	/* call before changing ca_state (optional) */
1071 	void (*set_state)(struct sock *sk, u8 new_state);
1072 
1073 	/* call when cwnd event occurs (optional) */
1074 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1075 
1076 	/* call when ack arrives (optional) */
1077 	void (*in_ack_event)(struct sock *sk, u32 flags);
1078 
1079 	/* hook for packet ack accounting (optional) */
1080 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1081 
1082 	/* override sysctl_tcp_min_tso_segs */
1083 	u32 (*min_tso_segs)(struct sock *sk);
1084 
1085 	/* call when packets are delivered to update cwnd and pacing rate,
1086 	 * after all the ca_state processing. (optional)
1087 	 */
1088 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1089 
1090 
1091 	/* new value of cwnd after loss (required) */
1092 	u32  (*undo_cwnd)(struct sock *sk);
1093 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1094 	u32 (*sndbuf_expand)(struct sock *sk);
1095 
1096 /* control/slow paths put last */
1097 	/* get info for inet_diag (optional) */
1098 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1099 			   union tcp_cc_info *info);
1100 
1101 	char 			name[TCP_CA_NAME_MAX];
1102 	struct module		*owner;
1103 	struct list_head	list;
1104 	u32			key;
1105 	u32			flags;
1106 
1107 	/* initialize private data (optional) */
1108 	void (*init)(struct sock *sk);
1109 	/* cleanup private data  (optional) */
1110 	void (*release)(struct sock *sk);
1111 } ____cacheline_aligned_in_smp;
1112 
1113 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1114 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1115 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1116 				  struct tcp_congestion_ops *old_type);
1117 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1118 
1119 void tcp_assign_congestion_control(struct sock *sk);
1120 void tcp_init_congestion_control(struct sock *sk);
1121 void tcp_cleanup_congestion_control(struct sock *sk);
1122 int tcp_set_default_congestion_control(struct net *net, const char *name);
1123 void tcp_get_default_congestion_control(struct net *net, char *name);
1124 void tcp_get_available_congestion_control(char *buf, size_t len);
1125 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1126 int tcp_set_allowed_congestion_control(char *allowed);
1127 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1128 			       bool cap_net_admin);
1129 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1130 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1131 
1132 u32 tcp_reno_ssthresh(struct sock *sk);
1133 u32 tcp_reno_undo_cwnd(struct sock *sk);
1134 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1135 extern struct tcp_congestion_ops tcp_reno;
1136 
1137 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1138 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1139 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1140 #ifdef CONFIG_INET
1141 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1142 #else
1143 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1144 {
1145 	return NULL;
1146 }
1147 #endif
1148 
1149 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1150 {
1151 	const struct inet_connection_sock *icsk = inet_csk(sk);
1152 
1153 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1154 }
1155 
1156 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1157 {
1158 	const struct inet_connection_sock *icsk = inet_csk(sk);
1159 
1160 	if (icsk->icsk_ca_ops->cwnd_event)
1161 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1162 }
1163 
1164 /* From tcp_cong.c */
1165 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1166 
1167 /* From tcp_rate.c */
1168 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1169 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1170 			    struct rate_sample *rs);
1171 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1172 		  bool is_sack_reneg, struct rate_sample *rs);
1173 void tcp_rate_check_app_limited(struct sock *sk);
1174 
1175 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1176 {
1177 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1178 }
1179 
1180 /* These functions determine how the current flow behaves in respect of SACK
1181  * handling. SACK is negotiated with the peer, and therefore it can vary
1182  * between different flows.
1183  *
1184  * tcp_is_sack - SACK enabled
1185  * tcp_is_reno - No SACK
1186  */
1187 static inline int tcp_is_sack(const struct tcp_sock *tp)
1188 {
1189 	return likely(tp->rx_opt.sack_ok);
1190 }
1191 
1192 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1193 {
1194 	return !tcp_is_sack(tp);
1195 }
1196 
1197 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1198 {
1199 	return tp->sacked_out + tp->lost_out;
1200 }
1201 
1202 /* This determines how many packets are "in the network" to the best
1203  * of our knowledge.  In many cases it is conservative, but where
1204  * detailed information is available from the receiver (via SACK
1205  * blocks etc.) we can make more aggressive calculations.
1206  *
1207  * Use this for decisions involving congestion control, use just
1208  * tp->packets_out to determine if the send queue is empty or not.
1209  *
1210  * Read this equation as:
1211  *
1212  *	"Packets sent once on transmission queue" MINUS
1213  *	"Packets left network, but not honestly ACKed yet" PLUS
1214  *	"Packets fast retransmitted"
1215  */
1216 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1217 {
1218 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1219 }
1220 
1221 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1222 
1223 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1224 {
1225 	return tp->snd_cwnd;
1226 }
1227 
1228 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1229 {
1230 	WARN_ON_ONCE((int)val <= 0);
1231 	tp->snd_cwnd = val;
1232 }
1233 
1234 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1235 {
1236 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1237 }
1238 
1239 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1240 {
1241 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1242 }
1243 
1244 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1245 {
1246 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1247 	       (1 << inet_csk(sk)->icsk_ca_state);
1248 }
1249 
1250 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1251  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1252  * ssthresh.
1253  */
1254 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1255 {
1256 	const struct tcp_sock *tp = tcp_sk(sk);
1257 
1258 	if (tcp_in_cwnd_reduction(sk))
1259 		return tp->snd_ssthresh;
1260 	else
1261 		return max(tp->snd_ssthresh,
1262 			   ((tcp_snd_cwnd(tp) >> 1) +
1263 			    (tcp_snd_cwnd(tp) >> 2)));
1264 }
1265 
1266 /* Use define here intentionally to get WARN_ON location shown at the caller */
1267 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1268 
1269 void tcp_enter_cwr(struct sock *sk);
1270 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1271 
1272 /* The maximum number of MSS of available cwnd for which TSO defers
1273  * sending if not using sysctl_tcp_tso_win_divisor.
1274  */
1275 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1276 {
1277 	return 3;
1278 }
1279 
1280 /* Returns end sequence number of the receiver's advertised window */
1281 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1282 {
1283 	return tp->snd_una + tp->snd_wnd;
1284 }
1285 
1286 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1287  * flexible approach. The RFC suggests cwnd should not be raised unless
1288  * it was fully used previously. And that's exactly what we do in
1289  * congestion avoidance mode. But in slow start we allow cwnd to grow
1290  * as long as the application has used half the cwnd.
1291  * Example :
1292  *    cwnd is 10 (IW10), but application sends 9 frames.
1293  *    We allow cwnd to reach 18 when all frames are ACKed.
1294  * This check is safe because it's as aggressive as slow start which already
1295  * risks 100% overshoot. The advantage is that we discourage application to
1296  * either send more filler packets or data to artificially blow up the cwnd
1297  * usage, and allow application-limited process to probe bw more aggressively.
1298  */
1299 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1300 {
1301 	const struct tcp_sock *tp = tcp_sk(sk);
1302 
1303 	if (tp->is_cwnd_limited)
1304 		return true;
1305 
1306 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1307 	if (tcp_in_slow_start(tp))
1308 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1309 
1310 	return false;
1311 }
1312 
1313 /* BBR congestion control needs pacing.
1314  * Same remark for SO_MAX_PACING_RATE.
1315  * sch_fq packet scheduler is efficiently handling pacing,
1316  * but is not always installed/used.
1317  * Return true if TCP stack should pace packets itself.
1318  */
1319 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1320 {
1321 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1322 }
1323 
1324 /* Estimates in how many jiffies next packet for this flow can be sent.
1325  * Scheduling a retransmit timer too early would be silly.
1326  */
1327 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1328 {
1329 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1330 
1331 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1332 }
1333 
1334 static inline void tcp_reset_xmit_timer(struct sock *sk,
1335 					const int what,
1336 					unsigned long when,
1337 					const unsigned long max_when)
1338 {
1339 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1340 				  max_when);
1341 }
1342 
1343 /* Something is really bad, we could not queue an additional packet,
1344  * because qdisc is full or receiver sent a 0 window, or we are paced.
1345  * We do not want to add fuel to the fire, or abort too early,
1346  * so make sure the timer we arm now is at least 200ms in the future,
1347  * regardless of current icsk_rto value (as it could be ~2ms)
1348  */
1349 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1350 {
1351 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1352 }
1353 
1354 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1355 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1356 					    unsigned long max_when)
1357 {
1358 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1359 			   inet_csk(sk)->icsk_backoff);
1360 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1361 
1362 	return (unsigned long)min_t(u64, when, max_when);
1363 }
1364 
1365 static inline void tcp_check_probe_timer(struct sock *sk)
1366 {
1367 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1368 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1369 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1370 }
1371 
1372 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1373 {
1374 	tp->snd_wl1 = seq;
1375 }
1376 
1377 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1378 {
1379 	tp->snd_wl1 = seq;
1380 }
1381 
1382 /*
1383  * Calculate(/check) TCP checksum
1384  */
1385 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1386 				   __be32 daddr, __wsum base)
1387 {
1388 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1389 }
1390 
1391 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1392 {
1393 	return !skb_csum_unnecessary(skb) &&
1394 		__skb_checksum_complete(skb);
1395 }
1396 
1397 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1398 		     enum skb_drop_reason *reason);
1399 
1400 
1401 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1402 void tcp_set_state(struct sock *sk, int state);
1403 void tcp_done(struct sock *sk);
1404 int tcp_abort(struct sock *sk, int err);
1405 
1406 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1407 {
1408 	rx_opt->dsack = 0;
1409 	rx_opt->num_sacks = 0;
1410 }
1411 
1412 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1413 
1414 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1415 {
1416 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1417 	struct tcp_sock *tp = tcp_sk(sk);
1418 	s32 delta;
1419 
1420 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1421 	    tp->packets_out || ca_ops->cong_control)
1422 		return;
1423 	delta = tcp_jiffies32 - tp->lsndtime;
1424 	if (delta > inet_csk(sk)->icsk_rto)
1425 		tcp_cwnd_restart(sk, delta);
1426 }
1427 
1428 /* Determine a window scaling and initial window to offer. */
1429 void tcp_select_initial_window(const struct sock *sk, int __space,
1430 			       __u32 mss, __u32 *rcv_wnd,
1431 			       __u32 *window_clamp, int wscale_ok,
1432 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1433 
1434 static inline int tcp_win_from_space(const struct sock *sk, int space)
1435 {
1436 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1437 
1438 	return tcp_adv_win_scale <= 0 ?
1439 		(space>>(-tcp_adv_win_scale)) :
1440 		space - (space>>tcp_adv_win_scale);
1441 }
1442 
1443 /* Note: caller must be prepared to deal with negative returns */
1444 static inline int tcp_space(const struct sock *sk)
1445 {
1446 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1447 				  READ_ONCE(sk->sk_backlog.len) -
1448 				  atomic_read(&sk->sk_rmem_alloc));
1449 }
1450 
1451 static inline int tcp_full_space(const struct sock *sk)
1452 {
1453 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1454 }
1455 
1456 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1457 {
1458 	int unused_mem = sk_unused_reserved_mem(sk);
1459 	struct tcp_sock *tp = tcp_sk(sk);
1460 
1461 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1462 	if (unused_mem)
1463 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1464 					 tcp_win_from_space(sk, unused_mem));
1465 }
1466 
1467 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1468 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1469 
1470 
1471 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1472  * If 87.5 % (7/8) of the space has been consumed, we want to override
1473  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1474  * len/truesize ratio.
1475  */
1476 static inline bool tcp_rmem_pressure(const struct sock *sk)
1477 {
1478 	int rcvbuf, threshold;
1479 
1480 	if (tcp_under_memory_pressure(sk))
1481 		return true;
1482 
1483 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1484 	threshold = rcvbuf - (rcvbuf >> 3);
1485 
1486 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1487 }
1488 
1489 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1490 {
1491 	const struct tcp_sock *tp = tcp_sk(sk);
1492 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1493 
1494 	if (avail <= 0)
1495 		return false;
1496 
1497 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1498 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1499 }
1500 
1501 extern void tcp_openreq_init_rwin(struct request_sock *req,
1502 				  const struct sock *sk_listener,
1503 				  const struct dst_entry *dst);
1504 
1505 void tcp_enter_memory_pressure(struct sock *sk);
1506 void tcp_leave_memory_pressure(struct sock *sk);
1507 
1508 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1509 {
1510 	struct net *net = sock_net((struct sock *)tp);
1511 	int val;
1512 
1513 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1514 	 * and do_tcp_setsockopt().
1515 	 */
1516 	val = READ_ONCE(tp->keepalive_intvl);
1517 
1518 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1519 }
1520 
1521 static inline int keepalive_time_when(const struct tcp_sock *tp)
1522 {
1523 	struct net *net = sock_net((struct sock *)tp);
1524 	int val;
1525 
1526 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1527 	val = READ_ONCE(tp->keepalive_time);
1528 
1529 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1530 }
1531 
1532 static inline int keepalive_probes(const struct tcp_sock *tp)
1533 {
1534 	struct net *net = sock_net((struct sock *)tp);
1535 	int val;
1536 
1537 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1538 	 * and do_tcp_setsockopt().
1539 	 */
1540 	val = READ_ONCE(tp->keepalive_probes);
1541 
1542 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1543 }
1544 
1545 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1546 {
1547 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1548 
1549 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1550 			  tcp_jiffies32 - tp->rcv_tstamp);
1551 }
1552 
1553 static inline int tcp_fin_time(const struct sock *sk)
1554 {
1555 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1556 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1557 	const int rto = inet_csk(sk)->icsk_rto;
1558 
1559 	if (fin_timeout < (rto << 2) - (rto >> 1))
1560 		fin_timeout = (rto << 2) - (rto >> 1);
1561 
1562 	return fin_timeout;
1563 }
1564 
1565 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1566 				  int paws_win)
1567 {
1568 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1569 		return true;
1570 	if (unlikely(!time_before32(ktime_get_seconds(),
1571 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1572 		return true;
1573 	/*
1574 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1575 	 * then following tcp messages have valid values. Ignore 0 value,
1576 	 * or else 'negative' tsval might forbid us to accept their packets.
1577 	 */
1578 	if (!rx_opt->ts_recent)
1579 		return true;
1580 	return false;
1581 }
1582 
1583 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1584 				   int rst)
1585 {
1586 	if (tcp_paws_check(rx_opt, 0))
1587 		return false;
1588 
1589 	/* RST segments are not recommended to carry timestamp,
1590 	   and, if they do, it is recommended to ignore PAWS because
1591 	   "their cleanup function should take precedence over timestamps."
1592 	   Certainly, it is mistake. It is necessary to understand the reasons
1593 	   of this constraint to relax it: if peer reboots, clock may go
1594 	   out-of-sync and half-open connections will not be reset.
1595 	   Actually, the problem would be not existing if all
1596 	   the implementations followed draft about maintaining clock
1597 	   via reboots. Linux-2.2 DOES NOT!
1598 
1599 	   However, we can relax time bounds for RST segments to MSL.
1600 	 */
1601 	if (rst && !time_before32(ktime_get_seconds(),
1602 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1603 		return false;
1604 	return true;
1605 }
1606 
1607 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1608 			  int mib_idx, u32 *last_oow_ack_time);
1609 
1610 static inline void tcp_mib_init(struct net *net)
1611 {
1612 	/* See RFC 2012 */
1613 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1614 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1615 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1616 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1617 }
1618 
1619 /* from STCP */
1620 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1621 {
1622 	tp->lost_skb_hint = NULL;
1623 }
1624 
1625 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1626 {
1627 	tcp_clear_retrans_hints_partial(tp);
1628 	tp->retransmit_skb_hint = NULL;
1629 }
1630 
1631 union tcp_md5_addr {
1632 	struct in_addr  a4;
1633 #if IS_ENABLED(CONFIG_IPV6)
1634 	struct in6_addr	a6;
1635 #endif
1636 };
1637 
1638 /* - key database */
1639 struct tcp_md5sig_key {
1640 	struct hlist_node	node;
1641 	u8			keylen;
1642 	u8			family; /* AF_INET or AF_INET6 */
1643 	u8			prefixlen;
1644 	u8			flags;
1645 	union tcp_md5_addr	addr;
1646 	int			l3index; /* set if key added with L3 scope */
1647 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1648 	struct rcu_head		rcu;
1649 };
1650 
1651 /* - sock block */
1652 struct tcp_md5sig_info {
1653 	struct hlist_head	head;
1654 	struct rcu_head		rcu;
1655 };
1656 
1657 /* - pseudo header */
1658 struct tcp4_pseudohdr {
1659 	__be32		saddr;
1660 	__be32		daddr;
1661 	__u8		pad;
1662 	__u8		protocol;
1663 	__be16		len;
1664 };
1665 
1666 struct tcp6_pseudohdr {
1667 	struct in6_addr	saddr;
1668 	struct in6_addr daddr;
1669 	__be32		len;
1670 	__be32		protocol;	/* including padding */
1671 };
1672 
1673 union tcp_md5sum_block {
1674 	struct tcp4_pseudohdr ip4;
1675 #if IS_ENABLED(CONFIG_IPV6)
1676 	struct tcp6_pseudohdr ip6;
1677 #endif
1678 };
1679 
1680 /* - pool: digest algorithm, hash description and scratch buffer */
1681 struct tcp_md5sig_pool {
1682 	struct ahash_request	*md5_req;
1683 	void			*scratch;
1684 };
1685 
1686 /* - functions */
1687 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1688 			const struct sock *sk, const struct sk_buff *skb);
1689 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1690 		   int family, u8 prefixlen, int l3index, u8 flags,
1691 		   const u8 *newkey, u8 newkeylen);
1692 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1693 		     int family, u8 prefixlen, int l3index,
1694 		     struct tcp_md5sig_key *key);
1695 
1696 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1697 		   int family, u8 prefixlen, int l3index, u8 flags);
1698 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1699 					 const struct sock *addr_sk);
1700 
1701 #ifdef CONFIG_TCP_MD5SIG
1702 #include <linux/jump_label.h>
1703 extern struct static_key_false_deferred tcp_md5_needed;
1704 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1705 					   const union tcp_md5_addr *addr,
1706 					   int family);
1707 static inline struct tcp_md5sig_key *
1708 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1709 		  const union tcp_md5_addr *addr, int family)
1710 {
1711 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1712 		return NULL;
1713 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1714 }
1715 
1716 enum skb_drop_reason
1717 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1718 		     const void *saddr, const void *daddr,
1719 		     int family, int dif, int sdif);
1720 
1721 
1722 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1723 #else
1724 static inline struct tcp_md5sig_key *
1725 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1726 		  const union tcp_md5_addr *addr, int family)
1727 {
1728 	return NULL;
1729 }
1730 
1731 static inline enum skb_drop_reason
1732 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1733 		     const void *saddr, const void *daddr,
1734 		     int family, int dif, int sdif)
1735 {
1736 	return SKB_NOT_DROPPED_YET;
1737 }
1738 #define tcp_twsk_md5_key(twsk)	NULL
1739 #endif
1740 
1741 bool tcp_alloc_md5sig_pool(void);
1742 
1743 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1744 static inline void tcp_put_md5sig_pool(void)
1745 {
1746 	local_bh_enable();
1747 }
1748 
1749 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1750 			  unsigned int header_len);
1751 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1752 		     const struct tcp_md5sig_key *key);
1753 
1754 /* From tcp_fastopen.c */
1755 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1756 			    struct tcp_fastopen_cookie *cookie);
1757 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1758 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1759 			    u16 try_exp);
1760 struct tcp_fastopen_request {
1761 	/* Fast Open cookie. Size 0 means a cookie request */
1762 	struct tcp_fastopen_cookie	cookie;
1763 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1764 	size_t				size;
1765 	int				copied;	/* queued in tcp_connect() */
1766 	struct ubuf_info		*uarg;
1767 };
1768 void tcp_free_fastopen_req(struct tcp_sock *tp);
1769 void tcp_fastopen_destroy_cipher(struct sock *sk);
1770 void tcp_fastopen_ctx_destroy(struct net *net);
1771 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1772 			      void *primary_key, void *backup_key);
1773 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1774 			    u64 *key);
1775 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1776 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1777 			      struct request_sock *req,
1778 			      struct tcp_fastopen_cookie *foc,
1779 			      const struct dst_entry *dst);
1780 void tcp_fastopen_init_key_once(struct net *net);
1781 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1782 			     struct tcp_fastopen_cookie *cookie);
1783 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1784 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1785 #define TCP_FASTOPEN_KEY_MAX 2
1786 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1787 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1788 
1789 /* Fastopen key context */
1790 struct tcp_fastopen_context {
1791 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1792 	int		num;
1793 	struct rcu_head	rcu;
1794 };
1795 
1796 void tcp_fastopen_active_disable(struct sock *sk);
1797 bool tcp_fastopen_active_should_disable(struct sock *sk);
1798 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1799 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1800 
1801 /* Caller needs to wrap with rcu_read_(un)lock() */
1802 static inline
1803 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1804 {
1805 	struct tcp_fastopen_context *ctx;
1806 
1807 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1808 	if (!ctx)
1809 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1810 	return ctx;
1811 }
1812 
1813 static inline
1814 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1815 			       const struct tcp_fastopen_cookie *orig)
1816 {
1817 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1818 	    orig->len == foc->len &&
1819 	    !memcmp(orig->val, foc->val, foc->len))
1820 		return true;
1821 	return false;
1822 }
1823 
1824 static inline
1825 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1826 {
1827 	return ctx->num;
1828 }
1829 
1830 /* Latencies incurred by various limits for a sender. They are
1831  * chronograph-like stats that are mutually exclusive.
1832  */
1833 enum tcp_chrono {
1834 	TCP_CHRONO_UNSPEC,
1835 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1836 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1837 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1838 	__TCP_CHRONO_MAX,
1839 };
1840 
1841 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1842 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1843 
1844 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1845  * the same memory storage than skb->destructor/_skb_refdst
1846  */
1847 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1848 {
1849 	skb->destructor = NULL;
1850 	skb->_skb_refdst = 0UL;
1851 }
1852 
1853 #define tcp_skb_tsorted_save(skb) {		\
1854 	unsigned long _save = skb->_skb_refdst;	\
1855 	skb->_skb_refdst = 0UL;
1856 
1857 #define tcp_skb_tsorted_restore(skb)		\
1858 	skb->_skb_refdst = _save;		\
1859 }
1860 
1861 void tcp_write_queue_purge(struct sock *sk);
1862 
1863 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1864 {
1865 	return skb_rb_first(&sk->tcp_rtx_queue);
1866 }
1867 
1868 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1869 {
1870 	return skb_rb_last(&sk->tcp_rtx_queue);
1871 }
1872 
1873 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1874 {
1875 	return skb_peek_tail(&sk->sk_write_queue);
1876 }
1877 
1878 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1879 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1880 
1881 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1882 {
1883 	return skb_peek(&sk->sk_write_queue);
1884 }
1885 
1886 static inline bool tcp_skb_is_last(const struct sock *sk,
1887 				   const struct sk_buff *skb)
1888 {
1889 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1890 }
1891 
1892 /**
1893  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1894  * @sk: socket
1895  *
1896  * Since the write queue can have a temporary empty skb in it,
1897  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1898  */
1899 static inline bool tcp_write_queue_empty(const struct sock *sk)
1900 {
1901 	const struct tcp_sock *tp = tcp_sk(sk);
1902 
1903 	return tp->write_seq == tp->snd_nxt;
1904 }
1905 
1906 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1907 {
1908 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1909 }
1910 
1911 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1912 {
1913 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1914 }
1915 
1916 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1917 {
1918 	__skb_queue_tail(&sk->sk_write_queue, skb);
1919 
1920 	/* Queue it, remembering where we must start sending. */
1921 	if (sk->sk_write_queue.next == skb)
1922 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1923 }
1924 
1925 /* Insert new before skb on the write queue of sk.  */
1926 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1927 						  struct sk_buff *skb,
1928 						  struct sock *sk)
1929 {
1930 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1931 }
1932 
1933 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1934 {
1935 	tcp_skb_tsorted_anchor_cleanup(skb);
1936 	__skb_unlink(skb, &sk->sk_write_queue);
1937 }
1938 
1939 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1940 
1941 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1942 {
1943 	tcp_skb_tsorted_anchor_cleanup(skb);
1944 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1945 }
1946 
1947 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1948 {
1949 	list_del(&skb->tcp_tsorted_anchor);
1950 	tcp_rtx_queue_unlink(skb, sk);
1951 	tcp_wmem_free_skb(sk, skb);
1952 }
1953 
1954 static inline void tcp_push_pending_frames(struct sock *sk)
1955 {
1956 	if (tcp_send_head(sk)) {
1957 		struct tcp_sock *tp = tcp_sk(sk);
1958 
1959 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1960 	}
1961 }
1962 
1963 /* Start sequence of the skb just after the highest skb with SACKed
1964  * bit, valid only if sacked_out > 0 or when the caller has ensured
1965  * validity by itself.
1966  */
1967 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1968 {
1969 	if (!tp->sacked_out)
1970 		return tp->snd_una;
1971 
1972 	if (tp->highest_sack == NULL)
1973 		return tp->snd_nxt;
1974 
1975 	return TCP_SKB_CB(tp->highest_sack)->seq;
1976 }
1977 
1978 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1979 {
1980 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1981 }
1982 
1983 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1984 {
1985 	return tcp_sk(sk)->highest_sack;
1986 }
1987 
1988 static inline void tcp_highest_sack_reset(struct sock *sk)
1989 {
1990 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1991 }
1992 
1993 /* Called when old skb is about to be deleted and replaced by new skb */
1994 static inline void tcp_highest_sack_replace(struct sock *sk,
1995 					    struct sk_buff *old,
1996 					    struct sk_buff *new)
1997 {
1998 	if (old == tcp_highest_sack(sk))
1999 		tcp_sk(sk)->highest_sack = new;
2000 }
2001 
2002 /* This helper checks if socket has IP_TRANSPARENT set */
2003 static inline bool inet_sk_transparent(const struct sock *sk)
2004 {
2005 	switch (sk->sk_state) {
2006 	case TCP_TIME_WAIT:
2007 		return inet_twsk(sk)->tw_transparent;
2008 	case TCP_NEW_SYN_RECV:
2009 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2010 	}
2011 	return inet_sk(sk)->transparent;
2012 }
2013 
2014 /* Determines whether this is a thin stream (which may suffer from
2015  * increased latency). Used to trigger latency-reducing mechanisms.
2016  */
2017 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2018 {
2019 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2020 }
2021 
2022 /* /proc */
2023 enum tcp_seq_states {
2024 	TCP_SEQ_STATE_LISTENING,
2025 	TCP_SEQ_STATE_ESTABLISHED,
2026 };
2027 
2028 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2029 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2030 void tcp_seq_stop(struct seq_file *seq, void *v);
2031 
2032 struct tcp_seq_afinfo {
2033 	sa_family_t			family;
2034 };
2035 
2036 struct tcp_iter_state {
2037 	struct seq_net_private	p;
2038 	enum tcp_seq_states	state;
2039 	struct sock		*syn_wait_sk;
2040 	int			bucket, offset, sbucket, num;
2041 	loff_t			last_pos;
2042 };
2043 
2044 extern struct request_sock_ops tcp_request_sock_ops;
2045 extern struct request_sock_ops tcp6_request_sock_ops;
2046 
2047 void tcp_v4_destroy_sock(struct sock *sk);
2048 
2049 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2050 				netdev_features_t features);
2051 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2052 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2053 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2054 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2055 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2056 void tcp_gro_complete(struct sk_buff *skb);
2057 
2058 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2059 
2060 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2061 {
2062 	struct net *net = sock_net((struct sock *)tp);
2063 	u32 val;
2064 
2065 	val = READ_ONCE(tp->notsent_lowat);
2066 
2067 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2068 }
2069 
2070 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2071 
2072 #ifdef CONFIG_PROC_FS
2073 int tcp4_proc_init(void);
2074 void tcp4_proc_exit(void);
2075 #endif
2076 
2077 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2078 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2079 		     const struct tcp_request_sock_ops *af_ops,
2080 		     struct sock *sk, struct sk_buff *skb);
2081 
2082 /* TCP af-specific functions */
2083 struct tcp_sock_af_ops {
2084 #ifdef CONFIG_TCP_MD5SIG
2085 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2086 						const struct sock *addr_sk);
2087 	int		(*calc_md5_hash)(char *location,
2088 					 const struct tcp_md5sig_key *md5,
2089 					 const struct sock *sk,
2090 					 const struct sk_buff *skb);
2091 	int		(*md5_parse)(struct sock *sk,
2092 				     int optname,
2093 				     sockptr_t optval,
2094 				     int optlen);
2095 #endif
2096 };
2097 
2098 struct tcp_request_sock_ops {
2099 	u16 mss_clamp;
2100 #ifdef CONFIG_TCP_MD5SIG
2101 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2102 						 const struct sock *addr_sk);
2103 	int		(*calc_md5_hash) (char *location,
2104 					  const struct tcp_md5sig_key *md5,
2105 					  const struct sock *sk,
2106 					  const struct sk_buff *skb);
2107 #endif
2108 #ifdef CONFIG_SYN_COOKIES
2109 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2110 				 __u16 *mss);
2111 #endif
2112 	struct dst_entry *(*route_req)(const struct sock *sk,
2113 				       struct sk_buff *skb,
2114 				       struct flowi *fl,
2115 				       struct request_sock *req);
2116 	u32 (*init_seq)(const struct sk_buff *skb);
2117 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2118 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2119 			   struct flowi *fl, struct request_sock *req,
2120 			   struct tcp_fastopen_cookie *foc,
2121 			   enum tcp_synack_type synack_type,
2122 			   struct sk_buff *syn_skb);
2123 };
2124 
2125 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2126 #if IS_ENABLED(CONFIG_IPV6)
2127 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2128 #endif
2129 
2130 #ifdef CONFIG_SYN_COOKIES
2131 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2132 					 const struct sock *sk, struct sk_buff *skb,
2133 					 __u16 *mss)
2134 {
2135 	tcp_synq_overflow(sk);
2136 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2137 	return ops->cookie_init_seq(skb, mss);
2138 }
2139 #else
2140 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2141 					 const struct sock *sk, struct sk_buff *skb,
2142 					 __u16 *mss)
2143 {
2144 	return 0;
2145 }
2146 #endif
2147 
2148 int tcpv4_offload_init(void);
2149 
2150 void tcp_v4_init(void);
2151 void tcp_init(void);
2152 
2153 /* tcp_recovery.c */
2154 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2155 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2156 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2157 				u32 reo_wnd);
2158 extern bool tcp_rack_mark_lost(struct sock *sk);
2159 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2160 			     u64 xmit_time);
2161 extern void tcp_rack_reo_timeout(struct sock *sk);
2162 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2163 
2164 /* tcp_plb.c */
2165 
2166 /*
2167  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2168  * expects cong_ratio which represents fraction of traffic that experienced
2169  * congestion over a single RTT. In order to avoid floating point operations,
2170  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2171  */
2172 #define TCP_PLB_SCALE 8
2173 
2174 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2175 struct tcp_plb_state {
2176 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2177 		unused:3;
2178 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2179 };
2180 
2181 static inline void tcp_plb_init(const struct sock *sk,
2182 				struct tcp_plb_state *plb)
2183 {
2184 	plb->consec_cong_rounds = 0;
2185 	plb->pause_until = 0;
2186 }
2187 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2188 			  const int cong_ratio);
2189 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2190 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2191 
2192 /* At how many usecs into the future should the RTO fire? */
2193 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2194 {
2195 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2196 	u32 rto = inet_csk(sk)->icsk_rto;
2197 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2198 
2199 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2200 }
2201 
2202 /*
2203  * Save and compile IPv4 options, return a pointer to it
2204  */
2205 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2206 							 struct sk_buff *skb)
2207 {
2208 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2209 	struct ip_options_rcu *dopt = NULL;
2210 
2211 	if (opt->optlen) {
2212 		int opt_size = sizeof(*dopt) + opt->optlen;
2213 
2214 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2215 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2216 			kfree(dopt);
2217 			dopt = NULL;
2218 		}
2219 	}
2220 	return dopt;
2221 }
2222 
2223 /* locally generated TCP pure ACKs have skb->truesize == 2
2224  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2225  * This is much faster than dissecting the packet to find out.
2226  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2227  */
2228 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2229 {
2230 	return skb->truesize == 2;
2231 }
2232 
2233 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2234 {
2235 	skb->truesize = 2;
2236 }
2237 
2238 static inline int tcp_inq(struct sock *sk)
2239 {
2240 	struct tcp_sock *tp = tcp_sk(sk);
2241 	int answ;
2242 
2243 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2244 		answ = 0;
2245 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2246 		   !tp->urg_data ||
2247 		   before(tp->urg_seq, tp->copied_seq) ||
2248 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2249 
2250 		answ = tp->rcv_nxt - tp->copied_seq;
2251 
2252 		/* Subtract 1, if FIN was received */
2253 		if (answ && sock_flag(sk, SOCK_DONE))
2254 			answ--;
2255 	} else {
2256 		answ = tp->urg_seq - tp->copied_seq;
2257 	}
2258 
2259 	return answ;
2260 }
2261 
2262 int tcp_peek_len(struct socket *sock);
2263 
2264 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2265 {
2266 	u16 segs_in;
2267 
2268 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2269 
2270 	/* We update these fields while other threads might
2271 	 * read them from tcp_get_info()
2272 	 */
2273 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2274 	if (skb->len > tcp_hdrlen(skb))
2275 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2276 }
2277 
2278 /*
2279  * TCP listen path runs lockless.
2280  * We forced "struct sock" to be const qualified to make sure
2281  * we don't modify one of its field by mistake.
2282  * Here, we increment sk_drops which is an atomic_t, so we can safely
2283  * make sock writable again.
2284  */
2285 static inline void tcp_listendrop(const struct sock *sk)
2286 {
2287 	atomic_inc(&((struct sock *)sk)->sk_drops);
2288 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2289 }
2290 
2291 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2292 
2293 /*
2294  * Interface for adding Upper Level Protocols over TCP
2295  */
2296 
2297 #define TCP_ULP_NAME_MAX	16
2298 #define TCP_ULP_MAX		128
2299 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2300 
2301 struct tcp_ulp_ops {
2302 	struct list_head	list;
2303 
2304 	/* initialize ulp */
2305 	int (*init)(struct sock *sk);
2306 	/* update ulp */
2307 	void (*update)(struct sock *sk, struct proto *p,
2308 		       void (*write_space)(struct sock *sk));
2309 	/* cleanup ulp */
2310 	void (*release)(struct sock *sk);
2311 	/* diagnostic */
2312 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2313 	size_t (*get_info_size)(const struct sock *sk);
2314 	/* clone ulp */
2315 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2316 		      const gfp_t priority);
2317 
2318 	char		name[TCP_ULP_NAME_MAX];
2319 	struct module	*owner;
2320 };
2321 int tcp_register_ulp(struct tcp_ulp_ops *type);
2322 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2323 int tcp_set_ulp(struct sock *sk, const char *name);
2324 void tcp_get_available_ulp(char *buf, size_t len);
2325 void tcp_cleanup_ulp(struct sock *sk);
2326 void tcp_update_ulp(struct sock *sk, struct proto *p,
2327 		    void (*write_space)(struct sock *sk));
2328 
2329 #define MODULE_ALIAS_TCP_ULP(name)				\
2330 	__MODULE_INFO(alias, alias_userspace, name);		\
2331 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2332 
2333 #ifdef CONFIG_NET_SOCK_MSG
2334 struct sk_msg;
2335 struct sk_psock;
2336 
2337 #ifdef CONFIG_BPF_SYSCALL
2338 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2339 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2340 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2341 #endif /* CONFIG_BPF_SYSCALL */
2342 
2343 #ifdef CONFIG_INET
2344 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2345 #else
2346 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2347 {
2348 }
2349 #endif
2350 
2351 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2352 			  struct sk_msg *msg, u32 bytes, int flags);
2353 #endif /* CONFIG_NET_SOCK_MSG */
2354 
2355 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2356 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2357 {
2358 }
2359 #endif
2360 
2361 #ifdef CONFIG_CGROUP_BPF
2362 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2363 				      struct sk_buff *skb,
2364 				      unsigned int end_offset)
2365 {
2366 	skops->skb = skb;
2367 	skops->skb_data_end = skb->data + end_offset;
2368 }
2369 #else
2370 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2371 				      struct sk_buff *skb,
2372 				      unsigned int end_offset)
2373 {
2374 }
2375 #endif
2376 
2377 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2378  * is < 0, then the BPF op failed (for example if the loaded BPF
2379  * program does not support the chosen operation or there is no BPF
2380  * program loaded).
2381  */
2382 #ifdef CONFIG_BPF
2383 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2384 {
2385 	struct bpf_sock_ops_kern sock_ops;
2386 	int ret;
2387 
2388 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2389 	if (sk_fullsock(sk)) {
2390 		sock_ops.is_fullsock = 1;
2391 		sock_owned_by_me(sk);
2392 	}
2393 
2394 	sock_ops.sk = sk;
2395 	sock_ops.op = op;
2396 	if (nargs > 0)
2397 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2398 
2399 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2400 	if (ret == 0)
2401 		ret = sock_ops.reply;
2402 	else
2403 		ret = -1;
2404 	return ret;
2405 }
2406 
2407 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2408 {
2409 	u32 args[2] = {arg1, arg2};
2410 
2411 	return tcp_call_bpf(sk, op, 2, args);
2412 }
2413 
2414 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2415 				    u32 arg3)
2416 {
2417 	u32 args[3] = {arg1, arg2, arg3};
2418 
2419 	return tcp_call_bpf(sk, op, 3, args);
2420 }
2421 
2422 #else
2423 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2424 {
2425 	return -EPERM;
2426 }
2427 
2428 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2429 {
2430 	return -EPERM;
2431 }
2432 
2433 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2434 				    u32 arg3)
2435 {
2436 	return -EPERM;
2437 }
2438 
2439 #endif
2440 
2441 static inline u32 tcp_timeout_init(struct sock *sk)
2442 {
2443 	int timeout;
2444 
2445 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2446 
2447 	if (timeout <= 0)
2448 		timeout = TCP_TIMEOUT_INIT;
2449 	return min_t(int, timeout, TCP_RTO_MAX);
2450 }
2451 
2452 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2453 {
2454 	int rwnd;
2455 
2456 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2457 
2458 	if (rwnd < 0)
2459 		rwnd = 0;
2460 	return rwnd;
2461 }
2462 
2463 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2464 {
2465 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2466 }
2467 
2468 static inline void tcp_bpf_rtt(struct sock *sk)
2469 {
2470 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2471 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2472 }
2473 
2474 #if IS_ENABLED(CONFIG_SMC)
2475 extern struct static_key_false tcp_have_smc;
2476 #endif
2477 
2478 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2479 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2480 			     void (*cad)(struct sock *sk, u32 ack_seq));
2481 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2482 void clean_acked_data_flush(void);
2483 #endif
2484 
2485 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2486 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2487 				    const struct tcp_sock *tp)
2488 {
2489 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2490 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2491 }
2492 
2493 /* Compute Earliest Departure Time for some control packets
2494  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2495  */
2496 static inline u64 tcp_transmit_time(const struct sock *sk)
2497 {
2498 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2499 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2500 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2501 
2502 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2503 	}
2504 	return 0;
2505 }
2506 
2507 #endif	/* _TCP_H */
2508