xref: /openbmc/linux/include/net/tcp.h (revision 40662333)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257 
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260 
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 		return true;
267 
268 	return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271  * The next routines deal with comparing 32 bit unsigned ints
272  * and worry about wraparound (automatic with unsigned arithmetic).
273  */
274 
275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277         return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) 	before(seq1, seq2)
280 
281 /* is s2<=s1<=s3 ? */
282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 	return seq3 - seq2 >= seq1 - seq2;
285 }
286 
287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 		return true;
292 	return false;
293 }
294 
295 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296 {
297 	sk_wmem_queued_add(sk, -skb->truesize);
298 	if (!skb_zcopy_pure(skb))
299 		sk_mem_uncharge(sk, skb->truesize);
300 	else
301 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 	__kfree_skb(skb);
303 }
304 
305 void sk_forced_mem_schedule(struct sock *sk, int size);
306 
307 bool tcp_check_oom(struct sock *sk, int shift);
308 
309 
310 extern struct proto tcp_prot;
311 
312 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316 
317 void tcp_tasklet_init(void);
318 
319 int tcp_v4_err(struct sk_buff *skb, u32);
320 
321 void tcp_shutdown(struct sock *sk, int how);
322 
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325 
326 void tcp_remove_empty_skb(struct sock *sk);
327 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
331 		 int flags);
332 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
333 			size_t size, int flags);
334 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
335 		 size_t size, int flags);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
350 			struct pipe_inode_info *pipe, size_t len,
351 			unsigned int flags);
352 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
353 				     bool force_schedule);
354 
355 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
356 static inline void tcp_dec_quickack_mode(struct sock *sk,
357 					 const unsigned int pkts)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int do_tcp_getsockopt(struct sock *sk, int level,
406 		      int optname, sockptr_t optval, sockptr_t optlen);
407 int tcp_getsockopt(struct sock *sk, int level, int optname,
408 		   char __user *optval, int __user *optlen);
409 bool tcp_bpf_bypass_getsockopt(int level, int optname);
410 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
411 		      sockptr_t optval, unsigned int optlen);
412 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
413 		   unsigned int optlen);
414 void tcp_set_keepalive(struct sock *sk, int val);
415 void tcp_syn_ack_timeout(const struct request_sock *req);
416 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
417 		int flags, int *addr_len);
418 int tcp_set_rcvlowat(struct sock *sk, int val);
419 int tcp_set_window_clamp(struct sock *sk, int val);
420 void tcp_update_recv_tstamps(struct sk_buff *skb,
421 			     struct scm_timestamping_internal *tss);
422 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
423 			struct scm_timestamping_internal *tss);
424 void tcp_data_ready(struct sock *sk);
425 #ifdef CONFIG_MMU
426 int tcp_mmap(struct file *file, struct socket *sock,
427 	     struct vm_area_struct *vma);
428 #endif
429 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	BPF SKB-less helpers
436  */
437 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
438 			 struct tcphdr *th, u32 *cookie);
439 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
440 			 struct tcphdr *th, u32 *cookie);
441 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
442 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
443 			  const struct tcp_request_sock_ops *af_ops,
444 			  struct sock *sk, struct tcphdr *th);
445 /*
446  *	TCP v4 functions exported for the inet6 API
447  */
448 
449 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
450 void tcp_v4_mtu_reduced(struct sock *sk);
451 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
452 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(const struct sock *sk,
455 				      struct request_sock *req,
456 				      struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459 				  struct request_sock *req,
460 				  struct dst_entry *dst,
461 				  struct request_sock *req_unhash,
462 				  bool *own_req);
463 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465 int tcp_connect(struct sock *sk);
466 enum tcp_synack_type {
467 	TCP_SYNACK_NORMAL,
468 	TCP_SYNACK_FASTOPEN,
469 	TCP_SYNACK_COOKIE,
470 };
471 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
472 				struct request_sock *req,
473 				struct tcp_fastopen_cookie *foc,
474 				enum tcp_synack_type synack_type,
475 				struct sk_buff *syn_skb);
476 int tcp_disconnect(struct sock *sk, int flags);
477 
478 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
479 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
480 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
481 
482 /* From syncookies.c */
483 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
484 				 struct request_sock *req,
485 				 struct dst_entry *dst, u32 tsoff);
486 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
487 		      u32 cookie);
488 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
489 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
490 					    const struct tcp_request_sock_ops *af_ops,
491 					    struct sock *sk, struct sk_buff *skb);
492 #ifdef CONFIG_SYN_COOKIES
493 
494 /* Syncookies use a monotonic timer which increments every 60 seconds.
495  * This counter is used both as a hash input and partially encoded into
496  * the cookie value.  A cookie is only validated further if the delta
497  * between the current counter value and the encoded one is less than this,
498  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
499  * the counter advances immediately after a cookie is generated).
500  */
501 #define MAX_SYNCOOKIE_AGE	2
502 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
503 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
504 
505 /* syncookies: remember time of last synqueue overflow
506  * But do not dirty this field too often (once per second is enough)
507  * It is racy as we do not hold a lock, but race is very minor.
508  */
509 static inline void tcp_synq_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			if (!time_between32(now, last_overflow,
521 					    last_overflow + HZ))
522 				WRITE_ONCE(reuse->synq_overflow_ts, now);
523 			return;
524 		}
525 	}
526 
527 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528 	if (!time_between32(now, last_overflow, last_overflow + HZ))
529 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
530 }
531 
532 /* syncookies: no recent synqueue overflow on this listening socket? */
533 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
534 {
535 	unsigned int last_overflow;
536 	unsigned int now = jiffies;
537 
538 	if (sk->sk_reuseport) {
539 		struct sock_reuseport *reuse;
540 
541 		reuse = rcu_dereference(sk->sk_reuseport_cb);
542 		if (likely(reuse)) {
543 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
544 			return !time_between32(now, last_overflow - HZ,
545 					       last_overflow +
546 					       TCP_SYNCOOKIE_VALID);
547 		}
548 	}
549 
550 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551 
552 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
553 	 * then we're under synflood. However, we have to use
554 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
555 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
556 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
557 	 * which could lead to rejecting a valid syncookie.
558 	 */
559 	return !time_between32(now, last_overflow - HZ,
560 			       last_overflow + TCP_SYNCOOKIE_VALID);
561 }
562 
563 static inline u32 tcp_cookie_time(void)
564 {
565 	u64 val = get_jiffies_64();
566 
567 	do_div(val, TCP_SYNCOOKIE_PERIOD);
568 	return val;
569 }
570 
571 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
572 			      u16 *mssp);
573 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
574 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
575 bool cookie_timestamp_decode(const struct net *net,
576 			     struct tcp_options_received *opt);
577 bool cookie_ecn_ok(const struct tcp_options_received *opt,
578 		   const struct net *net, const struct dst_entry *dst);
579 
580 /* From net/ipv6/syncookies.c */
581 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
582 		      u32 cookie);
583 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
584 
585 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
586 			      const struct tcphdr *th, u16 *mssp);
587 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
588 #endif
589 /* tcp_output.c */
590 
591 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
592 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
593 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
594 			       int nonagle);
595 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 void tcp_retransmit_timer(struct sock *sk);
598 void tcp_xmit_retransmit_queue(struct sock *);
599 void tcp_simple_retransmit(struct sock *);
600 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
601 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
602 enum tcp_queue {
603 	TCP_FRAG_IN_WRITE_QUEUE,
604 	TCP_FRAG_IN_RTX_QUEUE,
605 };
606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
607 		 struct sk_buff *skb, u32 len,
608 		 unsigned int mss_now, gfp_t gfp);
609 
610 void tcp_send_probe0(struct sock *);
611 void tcp_send_partial(struct sock *);
612 int tcp_write_wakeup(struct sock *, int mib);
613 void tcp_send_fin(struct sock *sk);
614 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
615 int tcp_send_synack(struct sock *);
616 void tcp_push_one(struct sock *, unsigned int mss_now);
617 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
618 void tcp_send_ack(struct sock *sk);
619 void tcp_send_delayed_ack(struct sock *sk);
620 void tcp_send_loss_probe(struct sock *sk);
621 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
622 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
623 			     const struct sk_buff *next_skb);
624 
625 /* tcp_input.c */
626 void tcp_rearm_rto(struct sock *sk);
627 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
628 void tcp_reset(struct sock *sk, struct sk_buff *skb);
629 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
630 void tcp_fin(struct sock *sk);
631 void tcp_check_space(struct sock *sk);
632 
633 /* tcp_timer.c */
634 void tcp_init_xmit_timers(struct sock *);
635 static inline void tcp_clear_xmit_timers(struct sock *sk)
636 {
637 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
638 		__sock_put(sk);
639 
640 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
641 		__sock_put(sk);
642 
643 	inet_csk_clear_xmit_timers(sk);
644 }
645 
646 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
647 unsigned int tcp_current_mss(struct sock *sk);
648 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
649 
650 /* Bound MSS / TSO packet size with the half of the window */
651 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
652 {
653 	int cutoff;
654 
655 	/* When peer uses tiny windows, there is no use in packetizing
656 	 * to sub-MSS pieces for the sake of SWS or making sure there
657 	 * are enough packets in the pipe for fast recovery.
658 	 *
659 	 * On the other hand, for extremely large MSS devices, handling
660 	 * smaller than MSS windows in this way does make sense.
661 	 */
662 	if (tp->max_window > TCP_MSS_DEFAULT)
663 		cutoff = (tp->max_window >> 1);
664 	else
665 		cutoff = tp->max_window;
666 
667 	if (cutoff && pktsize > cutoff)
668 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
669 	else
670 		return pktsize;
671 }
672 
673 /* tcp.c */
674 void tcp_get_info(struct sock *, struct tcp_info *);
675 
676 /* Read 'sendfile()'-style from a TCP socket */
677 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
678 		  sk_read_actor_t recv_actor);
679 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
680 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
681 void tcp_read_done(struct sock *sk, size_t len);
682 
683 void tcp_initialize_rcv_mss(struct sock *sk);
684 
685 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
686 int tcp_mss_to_mtu(struct sock *sk, int mss);
687 void tcp_mtup_init(struct sock *sk);
688 
689 static inline void tcp_bound_rto(const struct sock *sk)
690 {
691 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
692 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
693 }
694 
695 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
696 {
697 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
698 }
699 
700 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
701 {
702 	/* mptcp hooks are only on the slow path */
703 	if (sk_is_mptcp((struct sock *)tp))
704 		return;
705 
706 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
707 			       ntohl(TCP_FLAG_ACK) |
708 			       snd_wnd);
709 }
710 
711 static inline void tcp_fast_path_on(struct tcp_sock *tp)
712 {
713 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
714 }
715 
716 static inline void tcp_fast_path_check(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 
720 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
721 	    tp->rcv_wnd &&
722 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
723 	    !tp->urg_data)
724 		tcp_fast_path_on(tp);
725 }
726 
727 /* Compute the actual rto_min value */
728 static inline u32 tcp_rto_min(struct sock *sk)
729 {
730 	const struct dst_entry *dst = __sk_dst_get(sk);
731 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
732 
733 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
734 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
735 	return rto_min;
736 }
737 
738 static inline u32 tcp_rto_min_us(struct sock *sk)
739 {
740 	return jiffies_to_usecs(tcp_rto_min(sk));
741 }
742 
743 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
744 {
745 	return dst_metric_locked(dst, RTAX_CC_ALGO);
746 }
747 
748 /* Minimum RTT in usec. ~0 means not available. */
749 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
750 {
751 	return minmax_get(&tp->rtt_min);
752 }
753 
754 /* Compute the actual receive window we are currently advertising.
755  * Rcv_nxt can be after the window if our peer push more data
756  * than the offered window.
757  */
758 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
759 {
760 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
761 
762 	if (win < 0)
763 		win = 0;
764 	return (u32) win;
765 }
766 
767 /* Choose a new window, without checks for shrinking, and without
768  * scaling applied to the result.  The caller does these things
769  * if necessary.  This is a "raw" window selection.
770  */
771 u32 __tcp_select_window(struct sock *sk);
772 
773 void tcp_send_window_probe(struct sock *sk);
774 
775 /* TCP uses 32bit jiffies to save some space.
776  * Note that this is different from tcp_time_stamp, which
777  * historically has been the same until linux-4.13.
778  */
779 #define tcp_jiffies32 ((u32)jiffies)
780 
781 /*
782  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
783  * It is no longer tied to jiffies, but to 1 ms clock.
784  * Note: double check if you want to use tcp_jiffies32 instead of this.
785  */
786 #define TCP_TS_HZ	1000
787 
788 static inline u64 tcp_clock_ns(void)
789 {
790 	return ktime_get_ns();
791 }
792 
793 static inline u64 tcp_clock_us(void)
794 {
795 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
796 }
797 
798 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
799 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
800 {
801 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
802 }
803 
804 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
805 static inline u32 tcp_ns_to_ts(u64 ns)
806 {
807 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
808 }
809 
810 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
811 static inline u32 tcp_time_stamp_raw(void)
812 {
813 	return tcp_ns_to_ts(tcp_clock_ns());
814 }
815 
816 void tcp_mstamp_refresh(struct tcp_sock *tp);
817 
818 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
819 {
820 	return max_t(s64, t1 - t0, 0);
821 }
822 
823 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
824 {
825 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
826 }
827 
828 /* provide the departure time in us unit */
829 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
830 {
831 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
832 }
833 
834 
835 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
836 
837 #define TCPHDR_FIN 0x01
838 #define TCPHDR_SYN 0x02
839 #define TCPHDR_RST 0x04
840 #define TCPHDR_PSH 0x08
841 #define TCPHDR_ACK 0x10
842 #define TCPHDR_URG 0x20
843 #define TCPHDR_ECE 0x40
844 #define TCPHDR_CWR 0x80
845 
846 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
847 
848 /* This is what the send packet queuing engine uses to pass
849  * TCP per-packet control information to the transmission code.
850  * We also store the host-order sequence numbers in here too.
851  * This is 44 bytes if IPV6 is enabled.
852  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
853  */
854 struct tcp_skb_cb {
855 	__u32		seq;		/* Starting sequence number	*/
856 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
857 	union {
858 		/* Note : tcp_tw_isn is used in input path only
859 		 *	  (isn chosen by tcp_timewait_state_process())
860 		 *
861 		 * 	  tcp_gso_segs/size are used in write queue only,
862 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
863 		 */
864 		__u32		tcp_tw_isn;
865 		struct {
866 			u16	tcp_gso_segs;
867 			u16	tcp_gso_size;
868 		};
869 	};
870 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
871 
872 	__u8		sacked;		/* State flags for SACK.	*/
873 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
874 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
875 #define TCPCB_LOST		0x04	/* SKB is lost			*/
876 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
877 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
878 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
879 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
880 				TCPCB_REPAIRED)
881 
882 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
883 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
884 			eor:1,		/* Is skb MSG_EOR marked? */
885 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
886 			unused:5;
887 	__u32		ack_seq;	/* Sequence number ACK'd	*/
888 	union {
889 		struct {
890 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
891 			/* There is space for up to 24 bytes */
892 			__u32 is_app_limited:1, /* cwnd not fully used? */
893 			      delivered_ce:20,
894 			      unused:11;
895 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
896 			__u32 delivered;
897 			/* start of send pipeline phase */
898 			u64 first_tx_mstamp;
899 			/* when we reached the "delivered" count */
900 			u64 delivered_mstamp;
901 		} tx;   /* only used for outgoing skbs */
902 		union {
903 			struct inet_skb_parm	h4;
904 #if IS_ENABLED(CONFIG_IPV6)
905 			struct inet6_skb_parm	h6;
906 #endif
907 		} header;	/* For incoming skbs */
908 	};
909 };
910 
911 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
912 
913 extern const struct inet_connection_sock_af_ops ipv4_specific;
914 
915 #if IS_ENABLED(CONFIG_IPV6)
916 /* This is the variant of inet6_iif() that must be used by TCP,
917  * as TCP moves IP6CB into a different location in skb->cb[]
918  */
919 static inline int tcp_v6_iif(const struct sk_buff *skb)
920 {
921 	return TCP_SKB_CB(skb)->header.h6.iif;
922 }
923 
924 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
925 {
926 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
927 
928 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
929 }
930 
931 /* TCP_SKB_CB reference means this can not be used from early demux */
932 static inline int tcp_v6_sdif(const struct sk_buff *skb)
933 {
934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
935 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
936 		return TCP_SKB_CB(skb)->header.h6.iif;
937 #endif
938 	return 0;
939 }
940 
941 extern const struct inet_connection_sock_af_ops ipv6_specific;
942 
943 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
944 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
945 void tcp_v6_early_demux(struct sk_buff *skb);
946 
947 #endif
948 
949 /* TCP_SKB_CB reference means this can not be used from early demux */
950 static inline int tcp_v4_sdif(struct sk_buff *skb)
951 {
952 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
953 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
954 		return TCP_SKB_CB(skb)->header.h4.iif;
955 #endif
956 	return 0;
957 }
958 
959 /* Due to TSO, an SKB can be composed of multiple actual
960  * packets.  To keep these tracked properly, we use this.
961  */
962 static inline int tcp_skb_pcount(const struct sk_buff *skb)
963 {
964 	return TCP_SKB_CB(skb)->tcp_gso_segs;
965 }
966 
967 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
968 {
969 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
970 }
971 
972 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
973 {
974 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
975 }
976 
977 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
978 static inline int tcp_skb_mss(const struct sk_buff *skb)
979 {
980 	return TCP_SKB_CB(skb)->tcp_gso_size;
981 }
982 
983 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
984 {
985 	return likely(!TCP_SKB_CB(skb)->eor);
986 }
987 
988 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
989 					const struct sk_buff *from)
990 {
991 	return likely(tcp_skb_can_collapse_to(to) &&
992 		      mptcp_skb_can_collapse(to, from) &&
993 		      skb_pure_zcopy_same(to, from));
994 }
995 
996 /* Events passed to congestion control interface */
997 enum tcp_ca_event {
998 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
999 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1000 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1001 	CA_EVENT_LOSS,		/* loss timeout */
1002 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1003 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1004 };
1005 
1006 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1007 enum tcp_ca_ack_event_flags {
1008 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1009 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1010 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1011 };
1012 
1013 /*
1014  * Interface for adding new TCP congestion control handlers
1015  */
1016 #define TCP_CA_NAME_MAX	16
1017 #define TCP_CA_MAX	128
1018 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1019 
1020 #define TCP_CA_UNSPEC	0
1021 
1022 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1023 #define TCP_CONG_NON_RESTRICTED 0x1
1024 /* Requires ECN/ECT set on all packets */
1025 #define TCP_CONG_NEEDS_ECN	0x2
1026 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1027 
1028 union tcp_cc_info;
1029 
1030 struct ack_sample {
1031 	u32 pkts_acked;
1032 	s32 rtt_us;
1033 	u32 in_flight;
1034 };
1035 
1036 /* A rate sample measures the number of (original/retransmitted) data
1037  * packets delivered "delivered" over an interval of time "interval_us".
1038  * The tcp_rate.c code fills in the rate sample, and congestion
1039  * control modules that define a cong_control function to run at the end
1040  * of ACK processing can optionally chose to consult this sample when
1041  * setting cwnd and pacing rate.
1042  * A sample is invalid if "delivered" or "interval_us" is negative.
1043  */
1044 struct rate_sample {
1045 	u64  prior_mstamp; /* starting timestamp for interval */
1046 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1047 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1048 	s32  delivered;		/* number of packets delivered over interval */
1049 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1058 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1059 	bool is_retrans;	/* is sample from retransmission? */
1060 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1061 };
1062 
1063 struct tcp_congestion_ops {
1064 /* fast path fields are put first to fill one cache line */
1065 
1066 	/* return slow start threshold (required) */
1067 	u32 (*ssthresh)(struct sock *sk);
1068 
1069 	/* do new cwnd calculation (required) */
1070 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1071 
1072 	/* call before changing ca_state (optional) */
1073 	void (*set_state)(struct sock *sk, u8 new_state);
1074 
1075 	/* call when cwnd event occurs (optional) */
1076 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1077 
1078 	/* call when ack arrives (optional) */
1079 	void (*in_ack_event)(struct sock *sk, u32 flags);
1080 
1081 	/* hook for packet ack accounting (optional) */
1082 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1083 
1084 	/* override sysctl_tcp_min_tso_segs */
1085 	u32 (*min_tso_segs)(struct sock *sk);
1086 
1087 	/* call when packets are delivered to update cwnd and pacing rate,
1088 	 * after all the ca_state processing. (optional)
1089 	 */
1090 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1091 
1092 
1093 	/* new value of cwnd after loss (required) */
1094 	u32  (*undo_cwnd)(struct sock *sk);
1095 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1096 	u32 (*sndbuf_expand)(struct sock *sk);
1097 
1098 /* control/slow paths put last */
1099 	/* get info for inet_diag (optional) */
1100 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1101 			   union tcp_cc_info *info);
1102 
1103 	char 			name[TCP_CA_NAME_MAX];
1104 	struct module		*owner;
1105 	struct list_head	list;
1106 	u32			key;
1107 	u32			flags;
1108 
1109 	/* initialize private data (optional) */
1110 	void (*init)(struct sock *sk);
1111 	/* cleanup private data  (optional) */
1112 	void (*release)(struct sock *sk);
1113 } ____cacheline_aligned_in_smp;
1114 
1115 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1116 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1117 
1118 void tcp_assign_congestion_control(struct sock *sk);
1119 void tcp_init_congestion_control(struct sock *sk);
1120 void tcp_cleanup_congestion_control(struct sock *sk);
1121 int tcp_set_default_congestion_control(struct net *net, const char *name);
1122 void tcp_get_default_congestion_control(struct net *net, char *name);
1123 void tcp_get_available_congestion_control(char *buf, size_t len);
1124 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1125 int tcp_set_allowed_congestion_control(char *allowed);
1126 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1127 			       bool cap_net_admin);
1128 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1129 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1130 
1131 u32 tcp_reno_ssthresh(struct sock *sk);
1132 u32 tcp_reno_undo_cwnd(struct sock *sk);
1133 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1134 extern struct tcp_congestion_ops tcp_reno;
1135 
1136 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1137 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1138 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1139 #ifdef CONFIG_INET
1140 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1141 #else
1142 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1143 {
1144 	return NULL;
1145 }
1146 #endif
1147 
1148 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1149 {
1150 	const struct inet_connection_sock *icsk = inet_csk(sk);
1151 
1152 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1153 }
1154 
1155 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1156 {
1157 	const struct inet_connection_sock *icsk = inet_csk(sk);
1158 
1159 	if (icsk->icsk_ca_ops->cwnd_event)
1160 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1161 }
1162 
1163 /* From tcp_cong.c */
1164 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1165 
1166 /* From tcp_rate.c */
1167 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1168 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1169 			    struct rate_sample *rs);
1170 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1171 		  bool is_sack_reneg, struct rate_sample *rs);
1172 void tcp_rate_check_app_limited(struct sock *sk);
1173 
1174 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1175 {
1176 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1177 }
1178 
1179 /* These functions determine how the current flow behaves in respect of SACK
1180  * handling. SACK is negotiated with the peer, and therefore it can vary
1181  * between different flows.
1182  *
1183  * tcp_is_sack - SACK enabled
1184  * tcp_is_reno - No SACK
1185  */
1186 static inline int tcp_is_sack(const struct tcp_sock *tp)
1187 {
1188 	return likely(tp->rx_opt.sack_ok);
1189 }
1190 
1191 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1192 {
1193 	return !tcp_is_sack(tp);
1194 }
1195 
1196 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1197 {
1198 	return tp->sacked_out + tp->lost_out;
1199 }
1200 
1201 /* This determines how many packets are "in the network" to the best
1202  * of our knowledge.  In many cases it is conservative, but where
1203  * detailed information is available from the receiver (via SACK
1204  * blocks etc.) we can make more aggressive calculations.
1205  *
1206  * Use this for decisions involving congestion control, use just
1207  * tp->packets_out to determine if the send queue is empty or not.
1208  *
1209  * Read this equation as:
1210  *
1211  *	"Packets sent once on transmission queue" MINUS
1212  *	"Packets left network, but not honestly ACKed yet" PLUS
1213  *	"Packets fast retransmitted"
1214  */
1215 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1216 {
1217 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1218 }
1219 
1220 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1221 
1222 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1223 {
1224 	return tp->snd_cwnd;
1225 }
1226 
1227 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1228 {
1229 	WARN_ON_ONCE((int)val <= 0);
1230 	tp->snd_cwnd = val;
1231 }
1232 
1233 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1234 {
1235 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1236 }
1237 
1238 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1239 {
1240 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1241 }
1242 
1243 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1244 {
1245 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1246 	       (1 << inet_csk(sk)->icsk_ca_state);
1247 }
1248 
1249 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1250  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1251  * ssthresh.
1252  */
1253 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1254 {
1255 	const struct tcp_sock *tp = tcp_sk(sk);
1256 
1257 	if (tcp_in_cwnd_reduction(sk))
1258 		return tp->snd_ssthresh;
1259 	else
1260 		return max(tp->snd_ssthresh,
1261 			   ((tcp_snd_cwnd(tp) >> 1) +
1262 			    (tcp_snd_cwnd(tp) >> 2)));
1263 }
1264 
1265 /* Use define here intentionally to get WARN_ON location shown at the caller */
1266 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1267 
1268 void tcp_enter_cwr(struct sock *sk);
1269 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1270 
1271 /* The maximum number of MSS of available cwnd for which TSO defers
1272  * sending if not using sysctl_tcp_tso_win_divisor.
1273  */
1274 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1275 {
1276 	return 3;
1277 }
1278 
1279 /* Returns end sequence number of the receiver's advertised window */
1280 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1281 {
1282 	return tp->snd_una + tp->snd_wnd;
1283 }
1284 
1285 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1286  * flexible approach. The RFC suggests cwnd should not be raised unless
1287  * it was fully used previously. And that's exactly what we do in
1288  * congestion avoidance mode. But in slow start we allow cwnd to grow
1289  * as long as the application has used half the cwnd.
1290  * Example :
1291  *    cwnd is 10 (IW10), but application sends 9 frames.
1292  *    We allow cwnd to reach 18 when all frames are ACKed.
1293  * This check is safe because it's as aggressive as slow start which already
1294  * risks 100% overshoot. The advantage is that we discourage application to
1295  * either send more filler packets or data to artificially blow up the cwnd
1296  * usage, and allow application-limited process to probe bw more aggressively.
1297  */
1298 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1299 {
1300 	const struct tcp_sock *tp = tcp_sk(sk);
1301 
1302 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1303 	if (tcp_in_slow_start(tp))
1304 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1305 
1306 	return tp->is_cwnd_limited;
1307 }
1308 
1309 /* BBR congestion control needs pacing.
1310  * Same remark for SO_MAX_PACING_RATE.
1311  * sch_fq packet scheduler is efficiently handling pacing,
1312  * but is not always installed/used.
1313  * Return true if TCP stack should pace packets itself.
1314  */
1315 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1316 {
1317 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1318 }
1319 
1320 /* Estimates in how many jiffies next packet for this flow can be sent.
1321  * Scheduling a retransmit timer too early would be silly.
1322  */
1323 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1324 {
1325 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1326 
1327 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1328 }
1329 
1330 static inline void tcp_reset_xmit_timer(struct sock *sk,
1331 					const int what,
1332 					unsigned long when,
1333 					const unsigned long max_when)
1334 {
1335 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1336 				  max_when);
1337 }
1338 
1339 /* Something is really bad, we could not queue an additional packet,
1340  * because qdisc is full or receiver sent a 0 window, or we are paced.
1341  * We do not want to add fuel to the fire, or abort too early,
1342  * so make sure the timer we arm now is at least 200ms in the future,
1343  * regardless of current icsk_rto value (as it could be ~2ms)
1344  */
1345 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1346 {
1347 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1348 }
1349 
1350 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1351 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1352 					    unsigned long max_when)
1353 {
1354 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1355 			   inet_csk(sk)->icsk_backoff);
1356 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1357 
1358 	return (unsigned long)min_t(u64, when, max_when);
1359 }
1360 
1361 static inline void tcp_check_probe_timer(struct sock *sk)
1362 {
1363 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1364 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1365 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1366 }
1367 
1368 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1369 {
1370 	tp->snd_wl1 = seq;
1371 }
1372 
1373 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1374 {
1375 	tp->snd_wl1 = seq;
1376 }
1377 
1378 /*
1379  * Calculate(/check) TCP checksum
1380  */
1381 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1382 				   __be32 daddr, __wsum base)
1383 {
1384 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1385 }
1386 
1387 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1388 {
1389 	return !skb_csum_unnecessary(skb) &&
1390 		__skb_checksum_complete(skb);
1391 }
1392 
1393 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1394 		     enum skb_drop_reason *reason);
1395 
1396 
1397 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1398 void tcp_set_state(struct sock *sk, int state);
1399 void tcp_done(struct sock *sk);
1400 int tcp_abort(struct sock *sk, int err);
1401 
1402 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1403 {
1404 	rx_opt->dsack = 0;
1405 	rx_opt->num_sacks = 0;
1406 }
1407 
1408 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1409 
1410 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1411 {
1412 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1413 	struct tcp_sock *tp = tcp_sk(sk);
1414 	s32 delta;
1415 
1416 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1417 	    tp->packets_out || ca_ops->cong_control)
1418 		return;
1419 	delta = tcp_jiffies32 - tp->lsndtime;
1420 	if (delta > inet_csk(sk)->icsk_rto)
1421 		tcp_cwnd_restart(sk, delta);
1422 }
1423 
1424 /* Determine a window scaling and initial window to offer. */
1425 void tcp_select_initial_window(const struct sock *sk, int __space,
1426 			       __u32 mss, __u32 *rcv_wnd,
1427 			       __u32 *window_clamp, int wscale_ok,
1428 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1429 
1430 static inline int tcp_win_from_space(const struct sock *sk, int space)
1431 {
1432 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1433 
1434 	return tcp_adv_win_scale <= 0 ?
1435 		(space>>(-tcp_adv_win_scale)) :
1436 		space - (space>>tcp_adv_win_scale);
1437 }
1438 
1439 /* Note: caller must be prepared to deal with negative returns */
1440 static inline int tcp_space(const struct sock *sk)
1441 {
1442 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1443 				  READ_ONCE(sk->sk_backlog.len) -
1444 				  atomic_read(&sk->sk_rmem_alloc));
1445 }
1446 
1447 static inline int tcp_full_space(const struct sock *sk)
1448 {
1449 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1450 }
1451 
1452 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1453 {
1454 	int unused_mem = sk_unused_reserved_mem(sk);
1455 	struct tcp_sock *tp = tcp_sk(sk);
1456 
1457 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1458 	if (unused_mem)
1459 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1460 					 tcp_win_from_space(sk, unused_mem));
1461 }
1462 
1463 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1464 
1465 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1466  * If 87.5 % (7/8) of the space has been consumed, we want to override
1467  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1468  * len/truesize ratio.
1469  */
1470 static inline bool tcp_rmem_pressure(const struct sock *sk)
1471 {
1472 	int rcvbuf, threshold;
1473 
1474 	if (tcp_under_memory_pressure(sk))
1475 		return true;
1476 
1477 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1478 	threshold = rcvbuf - (rcvbuf >> 3);
1479 
1480 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1481 }
1482 
1483 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1484 {
1485 	const struct tcp_sock *tp = tcp_sk(sk);
1486 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1487 
1488 	if (avail <= 0)
1489 		return false;
1490 
1491 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1492 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1493 }
1494 
1495 extern void tcp_openreq_init_rwin(struct request_sock *req,
1496 				  const struct sock *sk_listener,
1497 				  const struct dst_entry *dst);
1498 
1499 void tcp_enter_memory_pressure(struct sock *sk);
1500 void tcp_leave_memory_pressure(struct sock *sk);
1501 
1502 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1503 {
1504 	struct net *net = sock_net((struct sock *)tp);
1505 
1506 	return tp->keepalive_intvl ? :
1507 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1508 }
1509 
1510 static inline int keepalive_time_when(const struct tcp_sock *tp)
1511 {
1512 	struct net *net = sock_net((struct sock *)tp);
1513 
1514 	return tp->keepalive_time ? :
1515 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1516 }
1517 
1518 static inline int keepalive_probes(const struct tcp_sock *tp)
1519 {
1520 	struct net *net = sock_net((struct sock *)tp);
1521 
1522 	return tp->keepalive_probes ? :
1523 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1524 }
1525 
1526 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1527 {
1528 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1529 
1530 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1531 			  tcp_jiffies32 - tp->rcv_tstamp);
1532 }
1533 
1534 static inline int tcp_fin_time(const struct sock *sk)
1535 {
1536 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1537 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1538 	const int rto = inet_csk(sk)->icsk_rto;
1539 
1540 	if (fin_timeout < (rto << 2) - (rto >> 1))
1541 		fin_timeout = (rto << 2) - (rto >> 1);
1542 
1543 	return fin_timeout;
1544 }
1545 
1546 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1547 				  int paws_win)
1548 {
1549 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1550 		return true;
1551 	if (unlikely(!time_before32(ktime_get_seconds(),
1552 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1553 		return true;
1554 	/*
1555 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1556 	 * then following tcp messages have valid values. Ignore 0 value,
1557 	 * or else 'negative' tsval might forbid us to accept their packets.
1558 	 */
1559 	if (!rx_opt->ts_recent)
1560 		return true;
1561 	return false;
1562 }
1563 
1564 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1565 				   int rst)
1566 {
1567 	if (tcp_paws_check(rx_opt, 0))
1568 		return false;
1569 
1570 	/* RST segments are not recommended to carry timestamp,
1571 	   and, if they do, it is recommended to ignore PAWS because
1572 	   "their cleanup function should take precedence over timestamps."
1573 	   Certainly, it is mistake. It is necessary to understand the reasons
1574 	   of this constraint to relax it: if peer reboots, clock may go
1575 	   out-of-sync and half-open connections will not be reset.
1576 	   Actually, the problem would be not existing if all
1577 	   the implementations followed draft about maintaining clock
1578 	   via reboots. Linux-2.2 DOES NOT!
1579 
1580 	   However, we can relax time bounds for RST segments to MSL.
1581 	 */
1582 	if (rst && !time_before32(ktime_get_seconds(),
1583 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1584 		return false;
1585 	return true;
1586 }
1587 
1588 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1589 			  int mib_idx, u32 *last_oow_ack_time);
1590 
1591 static inline void tcp_mib_init(struct net *net)
1592 {
1593 	/* See RFC 2012 */
1594 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1595 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1596 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1597 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1598 }
1599 
1600 /* from STCP */
1601 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1602 {
1603 	tp->lost_skb_hint = NULL;
1604 }
1605 
1606 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1607 {
1608 	tcp_clear_retrans_hints_partial(tp);
1609 	tp->retransmit_skb_hint = NULL;
1610 }
1611 
1612 union tcp_md5_addr {
1613 	struct in_addr  a4;
1614 #if IS_ENABLED(CONFIG_IPV6)
1615 	struct in6_addr	a6;
1616 #endif
1617 };
1618 
1619 /* - key database */
1620 struct tcp_md5sig_key {
1621 	struct hlist_node	node;
1622 	u8			keylen;
1623 	u8			family; /* AF_INET or AF_INET6 */
1624 	u8			prefixlen;
1625 	u8			flags;
1626 	union tcp_md5_addr	addr;
1627 	int			l3index; /* set if key added with L3 scope */
1628 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1629 	struct rcu_head		rcu;
1630 };
1631 
1632 /* - sock block */
1633 struct tcp_md5sig_info {
1634 	struct hlist_head	head;
1635 	struct rcu_head		rcu;
1636 };
1637 
1638 /* - pseudo header */
1639 struct tcp4_pseudohdr {
1640 	__be32		saddr;
1641 	__be32		daddr;
1642 	__u8		pad;
1643 	__u8		protocol;
1644 	__be16		len;
1645 };
1646 
1647 struct tcp6_pseudohdr {
1648 	struct in6_addr	saddr;
1649 	struct in6_addr daddr;
1650 	__be32		len;
1651 	__be32		protocol;	/* including padding */
1652 };
1653 
1654 union tcp_md5sum_block {
1655 	struct tcp4_pseudohdr ip4;
1656 #if IS_ENABLED(CONFIG_IPV6)
1657 	struct tcp6_pseudohdr ip6;
1658 #endif
1659 };
1660 
1661 /* - pool: digest algorithm, hash description and scratch buffer */
1662 struct tcp_md5sig_pool {
1663 	struct ahash_request	*md5_req;
1664 	void			*scratch;
1665 };
1666 
1667 /* - functions */
1668 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1669 			const struct sock *sk, const struct sk_buff *skb);
1670 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1671 		   int family, u8 prefixlen, int l3index, u8 flags,
1672 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1673 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1674 		   int family, u8 prefixlen, int l3index, u8 flags);
1675 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1676 					 const struct sock *addr_sk);
1677 
1678 #ifdef CONFIG_TCP_MD5SIG
1679 #include <linux/jump_label.h>
1680 extern struct static_key_false tcp_md5_needed;
1681 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1682 					   const union tcp_md5_addr *addr,
1683 					   int family);
1684 static inline struct tcp_md5sig_key *
1685 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1686 		  const union tcp_md5_addr *addr, int family)
1687 {
1688 	if (!static_branch_unlikely(&tcp_md5_needed))
1689 		return NULL;
1690 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1691 }
1692 
1693 enum skb_drop_reason
1694 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1695 		     const void *saddr, const void *daddr,
1696 		     int family, int dif, int sdif);
1697 
1698 
1699 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1700 #else
1701 static inline struct tcp_md5sig_key *
1702 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1703 		  const union tcp_md5_addr *addr, int family)
1704 {
1705 	return NULL;
1706 }
1707 
1708 static inline enum skb_drop_reason
1709 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1710 		     const void *saddr, const void *daddr,
1711 		     int family, int dif, int sdif)
1712 {
1713 	return SKB_NOT_DROPPED_YET;
1714 }
1715 #define tcp_twsk_md5_key(twsk)	NULL
1716 #endif
1717 
1718 bool tcp_alloc_md5sig_pool(void);
1719 
1720 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1721 static inline void tcp_put_md5sig_pool(void)
1722 {
1723 	local_bh_enable();
1724 }
1725 
1726 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1727 			  unsigned int header_len);
1728 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1729 		     const struct tcp_md5sig_key *key);
1730 
1731 /* From tcp_fastopen.c */
1732 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1733 			    struct tcp_fastopen_cookie *cookie);
1734 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1735 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1736 			    u16 try_exp);
1737 struct tcp_fastopen_request {
1738 	/* Fast Open cookie. Size 0 means a cookie request */
1739 	struct tcp_fastopen_cookie	cookie;
1740 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1741 	size_t				size;
1742 	int				copied;	/* queued in tcp_connect() */
1743 	struct ubuf_info		*uarg;
1744 };
1745 void tcp_free_fastopen_req(struct tcp_sock *tp);
1746 void tcp_fastopen_destroy_cipher(struct sock *sk);
1747 void tcp_fastopen_ctx_destroy(struct net *net);
1748 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1749 			      void *primary_key, void *backup_key);
1750 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1751 			    u64 *key);
1752 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1753 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1754 			      struct request_sock *req,
1755 			      struct tcp_fastopen_cookie *foc,
1756 			      const struct dst_entry *dst);
1757 void tcp_fastopen_init_key_once(struct net *net);
1758 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1759 			     struct tcp_fastopen_cookie *cookie);
1760 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1761 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1762 #define TCP_FASTOPEN_KEY_MAX 2
1763 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1764 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1765 
1766 /* Fastopen key context */
1767 struct tcp_fastopen_context {
1768 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1769 	int		num;
1770 	struct rcu_head	rcu;
1771 };
1772 
1773 void tcp_fastopen_active_disable(struct sock *sk);
1774 bool tcp_fastopen_active_should_disable(struct sock *sk);
1775 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1776 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1777 
1778 /* Caller needs to wrap with rcu_read_(un)lock() */
1779 static inline
1780 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1781 {
1782 	struct tcp_fastopen_context *ctx;
1783 
1784 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1785 	if (!ctx)
1786 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1787 	return ctx;
1788 }
1789 
1790 static inline
1791 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1792 			       const struct tcp_fastopen_cookie *orig)
1793 {
1794 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1795 	    orig->len == foc->len &&
1796 	    !memcmp(orig->val, foc->val, foc->len))
1797 		return true;
1798 	return false;
1799 }
1800 
1801 static inline
1802 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1803 {
1804 	return ctx->num;
1805 }
1806 
1807 /* Latencies incurred by various limits for a sender. They are
1808  * chronograph-like stats that are mutually exclusive.
1809  */
1810 enum tcp_chrono {
1811 	TCP_CHRONO_UNSPEC,
1812 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1813 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1814 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1815 	__TCP_CHRONO_MAX,
1816 };
1817 
1818 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1819 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1820 
1821 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1822  * the same memory storage than skb->destructor/_skb_refdst
1823  */
1824 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1825 {
1826 	skb->destructor = NULL;
1827 	skb->_skb_refdst = 0UL;
1828 }
1829 
1830 #define tcp_skb_tsorted_save(skb) {		\
1831 	unsigned long _save = skb->_skb_refdst;	\
1832 	skb->_skb_refdst = 0UL;
1833 
1834 #define tcp_skb_tsorted_restore(skb)		\
1835 	skb->_skb_refdst = _save;		\
1836 }
1837 
1838 void tcp_write_queue_purge(struct sock *sk);
1839 
1840 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1841 {
1842 	return skb_rb_first(&sk->tcp_rtx_queue);
1843 }
1844 
1845 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1846 {
1847 	return skb_rb_last(&sk->tcp_rtx_queue);
1848 }
1849 
1850 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1851 {
1852 	return skb_peek_tail(&sk->sk_write_queue);
1853 }
1854 
1855 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1856 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1857 
1858 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1859 {
1860 	return skb_peek(&sk->sk_write_queue);
1861 }
1862 
1863 static inline bool tcp_skb_is_last(const struct sock *sk,
1864 				   const struct sk_buff *skb)
1865 {
1866 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1867 }
1868 
1869 /**
1870  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1871  * @sk: socket
1872  *
1873  * Since the write queue can have a temporary empty skb in it,
1874  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1875  */
1876 static inline bool tcp_write_queue_empty(const struct sock *sk)
1877 {
1878 	const struct tcp_sock *tp = tcp_sk(sk);
1879 
1880 	return tp->write_seq == tp->snd_nxt;
1881 }
1882 
1883 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1884 {
1885 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1886 }
1887 
1888 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1889 {
1890 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1891 }
1892 
1893 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1894 {
1895 	__skb_queue_tail(&sk->sk_write_queue, skb);
1896 
1897 	/* Queue it, remembering where we must start sending. */
1898 	if (sk->sk_write_queue.next == skb)
1899 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1900 }
1901 
1902 /* Insert new before skb on the write queue of sk.  */
1903 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1904 						  struct sk_buff *skb,
1905 						  struct sock *sk)
1906 {
1907 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1908 }
1909 
1910 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1911 {
1912 	tcp_skb_tsorted_anchor_cleanup(skb);
1913 	__skb_unlink(skb, &sk->sk_write_queue);
1914 }
1915 
1916 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1917 
1918 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1919 {
1920 	tcp_skb_tsorted_anchor_cleanup(skb);
1921 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1922 }
1923 
1924 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1925 {
1926 	list_del(&skb->tcp_tsorted_anchor);
1927 	tcp_rtx_queue_unlink(skb, sk);
1928 	tcp_wmem_free_skb(sk, skb);
1929 }
1930 
1931 static inline void tcp_push_pending_frames(struct sock *sk)
1932 {
1933 	if (tcp_send_head(sk)) {
1934 		struct tcp_sock *tp = tcp_sk(sk);
1935 
1936 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1937 	}
1938 }
1939 
1940 /* Start sequence of the skb just after the highest skb with SACKed
1941  * bit, valid only if sacked_out > 0 or when the caller has ensured
1942  * validity by itself.
1943  */
1944 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1945 {
1946 	if (!tp->sacked_out)
1947 		return tp->snd_una;
1948 
1949 	if (tp->highest_sack == NULL)
1950 		return tp->snd_nxt;
1951 
1952 	return TCP_SKB_CB(tp->highest_sack)->seq;
1953 }
1954 
1955 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1956 {
1957 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1958 }
1959 
1960 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1961 {
1962 	return tcp_sk(sk)->highest_sack;
1963 }
1964 
1965 static inline void tcp_highest_sack_reset(struct sock *sk)
1966 {
1967 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1968 }
1969 
1970 /* Called when old skb is about to be deleted and replaced by new skb */
1971 static inline void tcp_highest_sack_replace(struct sock *sk,
1972 					    struct sk_buff *old,
1973 					    struct sk_buff *new)
1974 {
1975 	if (old == tcp_highest_sack(sk))
1976 		tcp_sk(sk)->highest_sack = new;
1977 }
1978 
1979 /* This helper checks if socket has IP_TRANSPARENT set */
1980 static inline bool inet_sk_transparent(const struct sock *sk)
1981 {
1982 	switch (sk->sk_state) {
1983 	case TCP_TIME_WAIT:
1984 		return inet_twsk(sk)->tw_transparent;
1985 	case TCP_NEW_SYN_RECV:
1986 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1987 	}
1988 	return inet_sk(sk)->transparent;
1989 }
1990 
1991 /* Determines whether this is a thin stream (which may suffer from
1992  * increased latency). Used to trigger latency-reducing mechanisms.
1993  */
1994 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1995 {
1996 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1997 }
1998 
1999 /* /proc */
2000 enum tcp_seq_states {
2001 	TCP_SEQ_STATE_LISTENING,
2002 	TCP_SEQ_STATE_ESTABLISHED,
2003 };
2004 
2005 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2006 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2007 void tcp_seq_stop(struct seq_file *seq, void *v);
2008 
2009 struct tcp_seq_afinfo {
2010 	sa_family_t			family;
2011 };
2012 
2013 struct tcp_iter_state {
2014 	struct seq_net_private	p;
2015 	enum tcp_seq_states	state;
2016 	struct sock		*syn_wait_sk;
2017 	int			bucket, offset, sbucket, num;
2018 	loff_t			last_pos;
2019 };
2020 
2021 extern struct request_sock_ops tcp_request_sock_ops;
2022 extern struct request_sock_ops tcp6_request_sock_ops;
2023 
2024 void tcp_v4_destroy_sock(struct sock *sk);
2025 
2026 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2027 				netdev_features_t features);
2028 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2029 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2030 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2031 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2032 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2033 int tcp_gro_complete(struct sk_buff *skb);
2034 
2035 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2036 
2037 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2038 {
2039 	struct net *net = sock_net((struct sock *)tp);
2040 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2041 }
2042 
2043 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2044 
2045 #ifdef CONFIG_PROC_FS
2046 int tcp4_proc_init(void);
2047 void tcp4_proc_exit(void);
2048 #endif
2049 
2050 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2051 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2052 		     const struct tcp_request_sock_ops *af_ops,
2053 		     struct sock *sk, struct sk_buff *skb);
2054 
2055 /* TCP af-specific functions */
2056 struct tcp_sock_af_ops {
2057 #ifdef CONFIG_TCP_MD5SIG
2058 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2059 						const struct sock *addr_sk);
2060 	int		(*calc_md5_hash)(char *location,
2061 					 const struct tcp_md5sig_key *md5,
2062 					 const struct sock *sk,
2063 					 const struct sk_buff *skb);
2064 	int		(*md5_parse)(struct sock *sk,
2065 				     int optname,
2066 				     sockptr_t optval,
2067 				     int optlen);
2068 #endif
2069 };
2070 
2071 struct tcp_request_sock_ops {
2072 	u16 mss_clamp;
2073 #ifdef CONFIG_TCP_MD5SIG
2074 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2075 						 const struct sock *addr_sk);
2076 	int		(*calc_md5_hash) (char *location,
2077 					  const struct tcp_md5sig_key *md5,
2078 					  const struct sock *sk,
2079 					  const struct sk_buff *skb);
2080 #endif
2081 #ifdef CONFIG_SYN_COOKIES
2082 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2083 				 __u16 *mss);
2084 #endif
2085 	struct dst_entry *(*route_req)(const struct sock *sk,
2086 				       struct sk_buff *skb,
2087 				       struct flowi *fl,
2088 				       struct request_sock *req);
2089 	u32 (*init_seq)(const struct sk_buff *skb);
2090 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2091 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2092 			   struct flowi *fl, struct request_sock *req,
2093 			   struct tcp_fastopen_cookie *foc,
2094 			   enum tcp_synack_type synack_type,
2095 			   struct sk_buff *syn_skb);
2096 };
2097 
2098 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2099 #if IS_ENABLED(CONFIG_IPV6)
2100 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2101 #endif
2102 
2103 #ifdef CONFIG_SYN_COOKIES
2104 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2105 					 const struct sock *sk, struct sk_buff *skb,
2106 					 __u16 *mss)
2107 {
2108 	tcp_synq_overflow(sk);
2109 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2110 	return ops->cookie_init_seq(skb, mss);
2111 }
2112 #else
2113 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2114 					 const struct sock *sk, struct sk_buff *skb,
2115 					 __u16 *mss)
2116 {
2117 	return 0;
2118 }
2119 #endif
2120 
2121 int tcpv4_offload_init(void);
2122 
2123 void tcp_v4_init(void);
2124 void tcp_init(void);
2125 
2126 /* tcp_recovery.c */
2127 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2128 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2129 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2130 				u32 reo_wnd);
2131 extern bool tcp_rack_mark_lost(struct sock *sk);
2132 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2133 			     u64 xmit_time);
2134 extern void tcp_rack_reo_timeout(struct sock *sk);
2135 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2136 
2137 /* At how many usecs into the future should the RTO fire? */
2138 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2139 {
2140 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2141 	u32 rto = inet_csk(sk)->icsk_rto;
2142 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2143 
2144 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2145 }
2146 
2147 /*
2148  * Save and compile IPv4 options, return a pointer to it
2149  */
2150 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2151 							 struct sk_buff *skb)
2152 {
2153 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2154 	struct ip_options_rcu *dopt = NULL;
2155 
2156 	if (opt->optlen) {
2157 		int opt_size = sizeof(*dopt) + opt->optlen;
2158 
2159 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2160 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2161 			kfree(dopt);
2162 			dopt = NULL;
2163 		}
2164 	}
2165 	return dopt;
2166 }
2167 
2168 /* locally generated TCP pure ACKs have skb->truesize == 2
2169  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2170  * This is much faster than dissecting the packet to find out.
2171  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2172  */
2173 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2174 {
2175 	return skb->truesize == 2;
2176 }
2177 
2178 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2179 {
2180 	skb->truesize = 2;
2181 }
2182 
2183 static inline int tcp_inq(struct sock *sk)
2184 {
2185 	struct tcp_sock *tp = tcp_sk(sk);
2186 	int answ;
2187 
2188 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2189 		answ = 0;
2190 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2191 		   !tp->urg_data ||
2192 		   before(tp->urg_seq, tp->copied_seq) ||
2193 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2194 
2195 		answ = tp->rcv_nxt - tp->copied_seq;
2196 
2197 		/* Subtract 1, if FIN was received */
2198 		if (answ && sock_flag(sk, SOCK_DONE))
2199 			answ--;
2200 	} else {
2201 		answ = tp->urg_seq - tp->copied_seq;
2202 	}
2203 
2204 	return answ;
2205 }
2206 
2207 int tcp_peek_len(struct socket *sock);
2208 
2209 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2210 {
2211 	u16 segs_in;
2212 
2213 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2214 
2215 	/* We update these fields while other threads might
2216 	 * read them from tcp_get_info()
2217 	 */
2218 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2219 	if (skb->len > tcp_hdrlen(skb))
2220 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2221 }
2222 
2223 /*
2224  * TCP listen path runs lockless.
2225  * We forced "struct sock" to be const qualified to make sure
2226  * we don't modify one of its field by mistake.
2227  * Here, we increment sk_drops which is an atomic_t, so we can safely
2228  * make sock writable again.
2229  */
2230 static inline void tcp_listendrop(const struct sock *sk)
2231 {
2232 	atomic_inc(&((struct sock *)sk)->sk_drops);
2233 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2234 }
2235 
2236 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2237 
2238 /*
2239  * Interface for adding Upper Level Protocols over TCP
2240  */
2241 
2242 #define TCP_ULP_NAME_MAX	16
2243 #define TCP_ULP_MAX		128
2244 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2245 
2246 struct tcp_ulp_ops {
2247 	struct list_head	list;
2248 
2249 	/* initialize ulp */
2250 	int (*init)(struct sock *sk);
2251 	/* update ulp */
2252 	void (*update)(struct sock *sk, struct proto *p,
2253 		       void (*write_space)(struct sock *sk));
2254 	/* cleanup ulp */
2255 	void (*release)(struct sock *sk);
2256 	/* diagnostic */
2257 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2258 	size_t (*get_info_size)(const struct sock *sk);
2259 	/* clone ulp */
2260 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2261 		      const gfp_t priority);
2262 
2263 	char		name[TCP_ULP_NAME_MAX];
2264 	struct module	*owner;
2265 };
2266 int tcp_register_ulp(struct tcp_ulp_ops *type);
2267 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2268 int tcp_set_ulp(struct sock *sk, const char *name);
2269 void tcp_get_available_ulp(char *buf, size_t len);
2270 void tcp_cleanup_ulp(struct sock *sk);
2271 void tcp_update_ulp(struct sock *sk, struct proto *p,
2272 		    void (*write_space)(struct sock *sk));
2273 
2274 #define MODULE_ALIAS_TCP_ULP(name)				\
2275 	__MODULE_INFO(alias, alias_userspace, name);		\
2276 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2277 
2278 #ifdef CONFIG_NET_SOCK_MSG
2279 struct sk_msg;
2280 struct sk_psock;
2281 
2282 #ifdef CONFIG_BPF_SYSCALL
2283 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2284 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2285 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2286 #endif /* CONFIG_BPF_SYSCALL */
2287 
2288 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2289 			  int flags);
2290 #endif /* CONFIG_NET_SOCK_MSG */
2291 
2292 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2293 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2294 {
2295 }
2296 #endif
2297 
2298 #ifdef CONFIG_CGROUP_BPF
2299 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2300 				      struct sk_buff *skb,
2301 				      unsigned int end_offset)
2302 {
2303 	skops->skb = skb;
2304 	skops->skb_data_end = skb->data + end_offset;
2305 }
2306 #else
2307 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2308 				      struct sk_buff *skb,
2309 				      unsigned int end_offset)
2310 {
2311 }
2312 #endif
2313 
2314 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2315  * is < 0, then the BPF op failed (for example if the loaded BPF
2316  * program does not support the chosen operation or there is no BPF
2317  * program loaded).
2318  */
2319 #ifdef CONFIG_BPF
2320 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2321 {
2322 	struct bpf_sock_ops_kern sock_ops;
2323 	int ret;
2324 
2325 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2326 	if (sk_fullsock(sk)) {
2327 		sock_ops.is_fullsock = 1;
2328 		sock_owned_by_me(sk);
2329 	}
2330 
2331 	sock_ops.sk = sk;
2332 	sock_ops.op = op;
2333 	if (nargs > 0)
2334 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2335 
2336 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2337 	if (ret == 0)
2338 		ret = sock_ops.reply;
2339 	else
2340 		ret = -1;
2341 	return ret;
2342 }
2343 
2344 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2345 {
2346 	u32 args[2] = {arg1, arg2};
2347 
2348 	return tcp_call_bpf(sk, op, 2, args);
2349 }
2350 
2351 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2352 				    u32 arg3)
2353 {
2354 	u32 args[3] = {arg1, arg2, arg3};
2355 
2356 	return tcp_call_bpf(sk, op, 3, args);
2357 }
2358 
2359 #else
2360 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2361 {
2362 	return -EPERM;
2363 }
2364 
2365 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2366 {
2367 	return -EPERM;
2368 }
2369 
2370 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2371 				    u32 arg3)
2372 {
2373 	return -EPERM;
2374 }
2375 
2376 #endif
2377 
2378 static inline u32 tcp_timeout_init(struct sock *sk)
2379 {
2380 	int timeout;
2381 
2382 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2383 
2384 	if (timeout <= 0)
2385 		timeout = TCP_TIMEOUT_INIT;
2386 	return min_t(int, timeout, TCP_RTO_MAX);
2387 }
2388 
2389 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2390 {
2391 	int rwnd;
2392 
2393 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2394 
2395 	if (rwnd < 0)
2396 		rwnd = 0;
2397 	return rwnd;
2398 }
2399 
2400 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2401 {
2402 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2403 }
2404 
2405 static inline void tcp_bpf_rtt(struct sock *sk)
2406 {
2407 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2408 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2409 }
2410 
2411 #if IS_ENABLED(CONFIG_SMC)
2412 extern struct static_key_false tcp_have_smc;
2413 #endif
2414 
2415 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2416 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2417 			     void (*cad)(struct sock *sk, u32 ack_seq));
2418 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2419 void clean_acked_data_flush(void);
2420 #endif
2421 
2422 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2423 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2424 				    const struct tcp_sock *tp)
2425 {
2426 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2427 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2428 }
2429 
2430 /* Compute Earliest Departure Time for some control packets
2431  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2432  */
2433 static inline u64 tcp_transmit_time(const struct sock *sk)
2434 {
2435 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2436 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2437 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2438 
2439 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2440 	}
2441 	return 0;
2442 }
2443 
2444 #endif	/* _TCP_H */
2445