xref: /openbmc/linux/include/net/tcp.h (revision 3a35093a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
407 		   unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 		int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 int tcp_set_window_clamp(struct sock *sk, int val);
414 void tcp_data_ready(struct sock *sk);
415 #ifdef CONFIG_MMU
416 int tcp_mmap(struct file *file, struct socket *sock,
417 	     struct vm_area_struct *vma);
418 #endif
419 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
420 		       struct tcp_options_received *opt_rx,
421 		       int estab, struct tcp_fastopen_cookie *foc);
422 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
423 
424 /*
425  *	BPF SKB-less helpers
426  */
427 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
428 			 struct tcphdr *th, u32 *cookie);
429 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
430 			 struct tcphdr *th, u32 *cookie);
431 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
432 			  const struct tcp_request_sock_ops *af_ops,
433 			  struct sock *sk, struct tcphdr *th);
434 /*
435  *	TCP v4 functions exported for the inet6 API
436  */
437 
438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
439 void tcp_v4_mtu_reduced(struct sock *sk);
440 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
441 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
443 struct sock *tcp_create_openreq_child(const struct sock *sk,
444 				      struct request_sock *req,
445 				      struct sk_buff *skb);
446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
448 				  struct request_sock *req,
449 				  struct dst_entry *dst,
450 				  struct request_sock *req_unhash,
451 				  bool *own_req);
452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
454 int tcp_connect(struct sock *sk);
455 enum tcp_synack_type {
456 	TCP_SYNACK_NORMAL,
457 	TCP_SYNACK_FASTOPEN,
458 	TCP_SYNACK_COOKIE,
459 };
460 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
461 				struct request_sock *req,
462 				struct tcp_fastopen_cookie *foc,
463 				enum tcp_synack_type synack_type,
464 				struct sk_buff *syn_skb);
465 int tcp_disconnect(struct sock *sk, int flags);
466 
467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
470 
471 /* From syncookies.c */
472 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
473 				 struct request_sock *req,
474 				 struct dst_entry *dst, u32 tsoff);
475 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
476 		      u32 cookie);
477 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
478 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
479 					    struct sock *sk, struct sk_buff *skb);
480 #ifdef CONFIG_SYN_COOKIES
481 
482 /* Syncookies use a monotonic timer which increments every 60 seconds.
483  * This counter is used both as a hash input and partially encoded into
484  * the cookie value.  A cookie is only validated further if the delta
485  * between the current counter value and the encoded one is less than this,
486  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
487  * the counter advances immediately after a cookie is generated).
488  */
489 #define MAX_SYNCOOKIE_AGE	2
490 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
491 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
492 
493 /* syncookies: remember time of last synqueue overflow
494  * But do not dirty this field too often (once per second is enough)
495  * It is racy as we do not hold a lock, but race is very minor.
496  */
497 static inline void tcp_synq_overflow(const struct sock *sk)
498 {
499 	unsigned int last_overflow;
500 	unsigned int now = jiffies;
501 
502 	if (sk->sk_reuseport) {
503 		struct sock_reuseport *reuse;
504 
505 		reuse = rcu_dereference(sk->sk_reuseport_cb);
506 		if (likely(reuse)) {
507 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
508 			if (!time_between32(now, last_overflow,
509 					    last_overflow + HZ))
510 				WRITE_ONCE(reuse->synq_overflow_ts, now);
511 			return;
512 		}
513 	}
514 
515 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
516 	if (!time_between32(now, last_overflow, last_overflow + HZ))
517 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
518 }
519 
520 /* syncookies: no recent synqueue overflow on this listening socket? */
521 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
522 {
523 	unsigned int last_overflow;
524 	unsigned int now = jiffies;
525 
526 	if (sk->sk_reuseport) {
527 		struct sock_reuseport *reuse;
528 
529 		reuse = rcu_dereference(sk->sk_reuseport_cb);
530 		if (likely(reuse)) {
531 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
532 			return !time_between32(now, last_overflow - HZ,
533 					       last_overflow +
534 					       TCP_SYNCOOKIE_VALID);
535 		}
536 	}
537 
538 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
539 
540 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
541 	 * then we're under synflood. However, we have to use
542 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
543 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
544 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
545 	 * which could lead to rejecting a valid syncookie.
546 	 */
547 	return !time_between32(now, last_overflow - HZ,
548 			       last_overflow + TCP_SYNCOOKIE_VALID);
549 }
550 
551 static inline u32 tcp_cookie_time(void)
552 {
553 	u64 val = get_jiffies_64();
554 
555 	do_div(val, TCP_SYNCOOKIE_PERIOD);
556 	return val;
557 }
558 
559 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
560 			      u16 *mssp);
561 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
562 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
563 bool cookie_timestamp_decode(const struct net *net,
564 			     struct tcp_options_received *opt);
565 bool cookie_ecn_ok(const struct tcp_options_received *opt,
566 		   const struct net *net, const struct dst_entry *dst);
567 
568 /* From net/ipv6/syncookies.c */
569 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
570 		      u32 cookie);
571 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
572 
573 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
574 			      const struct tcphdr *th, u16 *mssp);
575 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
576 #endif
577 /* tcp_output.c */
578 
579 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
580 			       int nonagle);
581 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
582 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 void tcp_retransmit_timer(struct sock *sk);
584 void tcp_xmit_retransmit_queue(struct sock *);
585 void tcp_simple_retransmit(struct sock *);
586 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
587 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
588 enum tcp_queue {
589 	TCP_FRAG_IN_WRITE_QUEUE,
590 	TCP_FRAG_IN_RTX_QUEUE,
591 };
592 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
593 		 struct sk_buff *skb, u32 len,
594 		 unsigned int mss_now, gfp_t gfp);
595 
596 void tcp_send_probe0(struct sock *);
597 void tcp_send_partial(struct sock *);
598 int tcp_write_wakeup(struct sock *, int mib);
599 void tcp_send_fin(struct sock *sk);
600 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
601 int tcp_send_synack(struct sock *);
602 void tcp_push_one(struct sock *, unsigned int mss_now);
603 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
604 void tcp_send_ack(struct sock *sk);
605 void tcp_send_delayed_ack(struct sock *sk);
606 void tcp_send_loss_probe(struct sock *sk);
607 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
608 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
609 			     const struct sk_buff *next_skb);
610 
611 /* tcp_input.c */
612 void tcp_rearm_rto(struct sock *sk);
613 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
614 void tcp_reset(struct sock *sk, struct sk_buff *skb);
615 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
616 void tcp_fin(struct sock *sk);
617 
618 /* tcp_timer.c */
619 void tcp_init_xmit_timers(struct sock *);
620 static inline void tcp_clear_xmit_timers(struct sock *sk)
621 {
622 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
623 		__sock_put(sk);
624 
625 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
626 		__sock_put(sk);
627 
628 	inet_csk_clear_xmit_timers(sk);
629 }
630 
631 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
632 unsigned int tcp_current_mss(struct sock *sk);
633 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
634 
635 /* Bound MSS / TSO packet size with the half of the window */
636 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
637 {
638 	int cutoff;
639 
640 	/* When peer uses tiny windows, there is no use in packetizing
641 	 * to sub-MSS pieces for the sake of SWS or making sure there
642 	 * are enough packets in the pipe for fast recovery.
643 	 *
644 	 * On the other hand, for extremely large MSS devices, handling
645 	 * smaller than MSS windows in this way does make sense.
646 	 */
647 	if (tp->max_window > TCP_MSS_DEFAULT)
648 		cutoff = (tp->max_window >> 1);
649 	else
650 		cutoff = tp->max_window;
651 
652 	if (cutoff && pktsize > cutoff)
653 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
654 	else
655 		return pktsize;
656 }
657 
658 /* tcp.c */
659 void tcp_get_info(struct sock *, struct tcp_info *);
660 
661 /* Read 'sendfile()'-style from a TCP socket */
662 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
663 		  sk_read_actor_t recv_actor);
664 
665 void tcp_initialize_rcv_mss(struct sock *sk);
666 
667 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
668 int tcp_mss_to_mtu(struct sock *sk, int mss);
669 void tcp_mtup_init(struct sock *sk);
670 
671 static inline void tcp_bound_rto(const struct sock *sk)
672 {
673 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
674 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
675 }
676 
677 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
678 {
679 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
680 }
681 
682 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
683 {
684 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
685 			       ntohl(TCP_FLAG_ACK) |
686 			       snd_wnd);
687 }
688 
689 static inline void tcp_fast_path_on(struct tcp_sock *tp)
690 {
691 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
692 }
693 
694 static inline void tcp_fast_path_check(struct sock *sk)
695 {
696 	struct tcp_sock *tp = tcp_sk(sk);
697 
698 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
699 	    tp->rcv_wnd &&
700 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
701 	    !tp->urg_data)
702 		tcp_fast_path_on(tp);
703 }
704 
705 /* Compute the actual rto_min value */
706 static inline u32 tcp_rto_min(struct sock *sk)
707 {
708 	const struct dst_entry *dst = __sk_dst_get(sk);
709 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
710 
711 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
712 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
713 	return rto_min;
714 }
715 
716 static inline u32 tcp_rto_min_us(struct sock *sk)
717 {
718 	return jiffies_to_usecs(tcp_rto_min(sk));
719 }
720 
721 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
722 {
723 	return dst_metric_locked(dst, RTAX_CC_ALGO);
724 }
725 
726 /* Minimum RTT in usec. ~0 means not available. */
727 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
728 {
729 	return minmax_get(&tp->rtt_min);
730 }
731 
732 /* Compute the actual receive window we are currently advertising.
733  * Rcv_nxt can be after the window if our peer push more data
734  * than the offered window.
735  */
736 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
737 {
738 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
739 
740 	if (win < 0)
741 		win = 0;
742 	return (u32) win;
743 }
744 
745 /* Choose a new window, without checks for shrinking, and without
746  * scaling applied to the result.  The caller does these things
747  * if necessary.  This is a "raw" window selection.
748  */
749 u32 __tcp_select_window(struct sock *sk);
750 
751 void tcp_send_window_probe(struct sock *sk);
752 
753 /* TCP uses 32bit jiffies to save some space.
754  * Note that this is different from tcp_time_stamp, which
755  * historically has been the same until linux-4.13.
756  */
757 #define tcp_jiffies32 ((u32)jiffies)
758 
759 /*
760  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
761  * It is no longer tied to jiffies, but to 1 ms clock.
762  * Note: double check if you want to use tcp_jiffies32 instead of this.
763  */
764 #define TCP_TS_HZ	1000
765 
766 static inline u64 tcp_clock_ns(void)
767 {
768 	return ktime_get_ns();
769 }
770 
771 static inline u64 tcp_clock_us(void)
772 {
773 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
774 }
775 
776 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
777 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
778 {
779 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
780 }
781 
782 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
783 static inline u32 tcp_ns_to_ts(u64 ns)
784 {
785 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
786 }
787 
788 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
789 static inline u32 tcp_time_stamp_raw(void)
790 {
791 	return tcp_ns_to_ts(tcp_clock_ns());
792 }
793 
794 void tcp_mstamp_refresh(struct tcp_sock *tp);
795 
796 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
797 {
798 	return max_t(s64, t1 - t0, 0);
799 }
800 
801 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
802 {
803 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
804 }
805 
806 /* provide the departure time in us unit */
807 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
808 {
809 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
810 }
811 
812 
813 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
814 
815 #define TCPHDR_FIN 0x01
816 #define TCPHDR_SYN 0x02
817 #define TCPHDR_RST 0x04
818 #define TCPHDR_PSH 0x08
819 #define TCPHDR_ACK 0x10
820 #define TCPHDR_URG 0x20
821 #define TCPHDR_ECE 0x40
822 #define TCPHDR_CWR 0x80
823 
824 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
825 
826 /* This is what the send packet queuing engine uses to pass
827  * TCP per-packet control information to the transmission code.
828  * We also store the host-order sequence numbers in here too.
829  * This is 44 bytes if IPV6 is enabled.
830  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
831  */
832 struct tcp_skb_cb {
833 	__u32		seq;		/* Starting sequence number	*/
834 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
835 	union {
836 		/* Note : tcp_tw_isn is used in input path only
837 		 *	  (isn chosen by tcp_timewait_state_process())
838 		 *
839 		 * 	  tcp_gso_segs/size are used in write queue only,
840 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
841 		 */
842 		__u32		tcp_tw_isn;
843 		struct {
844 			u16	tcp_gso_segs;
845 			u16	tcp_gso_size;
846 		};
847 	};
848 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
849 
850 	__u8		sacked;		/* State flags for SACK.	*/
851 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
852 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
853 #define TCPCB_LOST		0x04	/* SKB is lost			*/
854 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
855 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
856 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
857 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
858 				TCPCB_REPAIRED)
859 
860 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
861 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
862 			eor:1,		/* Is skb MSG_EOR marked? */
863 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
864 			unused:5;
865 	__u32		ack_seq;	/* Sequence number ACK'd	*/
866 	union {
867 		struct {
868 			/* There is space for up to 24 bytes */
869 			__u32 in_flight:30,/* Bytes in flight at transmit */
870 			      is_app_limited:1, /* cwnd not fully used? */
871 			      unused:1;
872 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
873 			__u32 delivered;
874 			/* start of send pipeline phase */
875 			u64 first_tx_mstamp;
876 			/* when we reached the "delivered" count */
877 			u64 delivered_mstamp;
878 		} tx;   /* only used for outgoing skbs */
879 		union {
880 			struct inet_skb_parm	h4;
881 #if IS_ENABLED(CONFIG_IPV6)
882 			struct inet6_skb_parm	h6;
883 #endif
884 		} header;	/* For incoming skbs */
885 		struct {
886 			__u32 flags;
887 			struct sock *sk_redir;
888 			void *data_end;
889 		} bpf;
890 	};
891 };
892 
893 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
894 
895 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
896 {
897 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
898 }
899 
900 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
901 {
902 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
903 }
904 
905 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
906 {
907 	return TCP_SKB_CB(skb)->bpf.sk_redir;
908 }
909 
910 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
911 {
912 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
913 }
914 
915 extern const struct inet_connection_sock_af_ops ipv4_specific;
916 
917 #if IS_ENABLED(CONFIG_IPV6)
918 /* This is the variant of inet6_iif() that must be used by TCP,
919  * as TCP moves IP6CB into a different location in skb->cb[]
920  */
921 static inline int tcp_v6_iif(const struct sk_buff *skb)
922 {
923 	return TCP_SKB_CB(skb)->header.h6.iif;
924 }
925 
926 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
927 {
928 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
929 
930 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
931 }
932 
933 /* TCP_SKB_CB reference means this can not be used from early demux */
934 static inline int tcp_v6_sdif(const struct sk_buff *skb)
935 {
936 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
937 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
938 		return TCP_SKB_CB(skb)->header.h6.iif;
939 #endif
940 	return 0;
941 }
942 
943 extern const struct inet_connection_sock_af_ops ipv6_specific;
944 
945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
946 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
947 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
948 
949 #endif
950 
951 /* TCP_SKB_CB reference means this can not be used from early demux */
952 static inline int tcp_v4_sdif(struct sk_buff *skb)
953 {
954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
955 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
956 		return TCP_SKB_CB(skb)->header.h4.iif;
957 #endif
958 	return 0;
959 }
960 
961 /* Due to TSO, an SKB can be composed of multiple actual
962  * packets.  To keep these tracked properly, we use this.
963  */
964 static inline int tcp_skb_pcount(const struct sk_buff *skb)
965 {
966 	return TCP_SKB_CB(skb)->tcp_gso_segs;
967 }
968 
969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
970 {
971 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
972 }
973 
974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
975 {
976 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
977 }
978 
979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
980 static inline int tcp_skb_mss(const struct sk_buff *skb)
981 {
982 	return TCP_SKB_CB(skb)->tcp_gso_size;
983 }
984 
985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
986 {
987 	return likely(!TCP_SKB_CB(skb)->eor);
988 }
989 
990 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
991 					const struct sk_buff *from)
992 {
993 	return likely(tcp_skb_can_collapse_to(to) &&
994 		      mptcp_skb_can_collapse(to, from));
995 }
996 
997 /* Events passed to congestion control interface */
998 enum tcp_ca_event {
999 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1000 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1001 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1002 	CA_EVENT_LOSS,		/* loss timeout */
1003 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1004 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1005 };
1006 
1007 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1008 enum tcp_ca_ack_event_flags {
1009 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1010 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1011 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1012 };
1013 
1014 /*
1015  * Interface for adding new TCP congestion control handlers
1016  */
1017 #define TCP_CA_NAME_MAX	16
1018 #define TCP_CA_MAX	128
1019 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1020 
1021 #define TCP_CA_UNSPEC	0
1022 
1023 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1024 #define TCP_CONG_NON_RESTRICTED 0x1
1025 /* Requires ECN/ECT set on all packets */
1026 #define TCP_CONG_NEEDS_ECN	0x2
1027 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1028 
1029 union tcp_cc_info;
1030 
1031 struct ack_sample {
1032 	u32 pkts_acked;
1033 	s32 rtt_us;
1034 	u32 in_flight;
1035 };
1036 
1037 /* A rate sample measures the number of (original/retransmitted) data
1038  * packets delivered "delivered" over an interval of time "interval_us".
1039  * The tcp_rate.c code fills in the rate sample, and congestion
1040  * control modules that define a cong_control function to run at the end
1041  * of ACK processing can optionally chose to consult this sample when
1042  * setting cwnd and pacing rate.
1043  * A sample is invalid if "delivered" or "interval_us" is negative.
1044  */
1045 struct rate_sample {
1046 	u64  prior_mstamp; /* starting timestamp for interval */
1047 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1048 	s32  delivered;		/* number of packets delivered over interval */
1049 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1050 	u32 snd_interval_us;	/* snd interval for delivered packets */
1051 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1052 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1053 	int  losses;		/* number of packets marked lost upon ACK */
1054 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1055 	u32  prior_in_flight;	/* in flight before this ACK */
1056 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1057 	bool is_retrans;	/* is sample from retransmission? */
1058 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1059 };
1060 
1061 struct tcp_congestion_ops {
1062 	struct list_head	list;
1063 	u32 key;
1064 	u32 flags;
1065 
1066 	/* initialize private data (optional) */
1067 	void (*init)(struct sock *sk);
1068 	/* cleanup private data  (optional) */
1069 	void (*release)(struct sock *sk);
1070 
1071 	/* return slow start threshold (required) */
1072 	u32 (*ssthresh)(struct sock *sk);
1073 	/* do new cwnd calculation (required) */
1074 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1075 	/* call before changing ca_state (optional) */
1076 	void (*set_state)(struct sock *sk, u8 new_state);
1077 	/* call when cwnd event occurs (optional) */
1078 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1079 	/* call when ack arrives (optional) */
1080 	void (*in_ack_event)(struct sock *sk, u32 flags);
1081 	/* new value of cwnd after loss (required) */
1082 	u32  (*undo_cwnd)(struct sock *sk);
1083 	/* hook for packet ack accounting (optional) */
1084 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1085 	/* override sysctl_tcp_min_tso_segs */
1086 	u32 (*min_tso_segs)(struct sock *sk);
1087 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1088 	u32 (*sndbuf_expand)(struct sock *sk);
1089 	/* call when packets are delivered to update cwnd and pacing rate,
1090 	 * after all the ca_state processing. (optional)
1091 	 */
1092 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1093 	/* get info for inet_diag (optional) */
1094 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1095 			   union tcp_cc_info *info);
1096 
1097 	char 		name[TCP_CA_NAME_MAX];
1098 	struct module 	*owner;
1099 };
1100 
1101 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1102 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1103 
1104 void tcp_assign_congestion_control(struct sock *sk);
1105 void tcp_init_congestion_control(struct sock *sk);
1106 void tcp_cleanup_congestion_control(struct sock *sk);
1107 int tcp_set_default_congestion_control(struct net *net, const char *name);
1108 void tcp_get_default_congestion_control(struct net *net, char *name);
1109 void tcp_get_available_congestion_control(char *buf, size_t len);
1110 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1111 int tcp_set_allowed_congestion_control(char *allowed);
1112 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1113 			       bool cap_net_admin);
1114 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1115 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1116 
1117 u32 tcp_reno_ssthresh(struct sock *sk);
1118 u32 tcp_reno_undo_cwnd(struct sock *sk);
1119 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1120 extern struct tcp_congestion_ops tcp_reno;
1121 
1122 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1123 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1124 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1125 #ifdef CONFIG_INET
1126 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1127 #else
1128 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1129 {
1130 	return NULL;
1131 }
1132 #endif
1133 
1134 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1135 {
1136 	const struct inet_connection_sock *icsk = inet_csk(sk);
1137 
1138 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1139 }
1140 
1141 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1142 {
1143 	struct inet_connection_sock *icsk = inet_csk(sk);
1144 
1145 	if (icsk->icsk_ca_ops->set_state)
1146 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1147 	icsk->icsk_ca_state = ca_state;
1148 }
1149 
1150 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1151 {
1152 	const struct inet_connection_sock *icsk = inet_csk(sk);
1153 
1154 	if (icsk->icsk_ca_ops->cwnd_event)
1155 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1156 }
1157 
1158 /* From tcp_rate.c */
1159 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1160 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1161 			    struct rate_sample *rs);
1162 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1163 		  bool is_sack_reneg, struct rate_sample *rs);
1164 void tcp_rate_check_app_limited(struct sock *sk);
1165 
1166 /* These functions determine how the current flow behaves in respect of SACK
1167  * handling. SACK is negotiated with the peer, and therefore it can vary
1168  * between different flows.
1169  *
1170  * tcp_is_sack - SACK enabled
1171  * tcp_is_reno - No SACK
1172  */
1173 static inline int tcp_is_sack(const struct tcp_sock *tp)
1174 {
1175 	return likely(tp->rx_opt.sack_ok);
1176 }
1177 
1178 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1179 {
1180 	return !tcp_is_sack(tp);
1181 }
1182 
1183 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1184 {
1185 	return tp->sacked_out + tp->lost_out;
1186 }
1187 
1188 /* This determines how many packets are "in the network" to the best
1189  * of our knowledge.  In many cases it is conservative, but where
1190  * detailed information is available from the receiver (via SACK
1191  * blocks etc.) we can make more aggressive calculations.
1192  *
1193  * Use this for decisions involving congestion control, use just
1194  * tp->packets_out to determine if the send queue is empty or not.
1195  *
1196  * Read this equation as:
1197  *
1198  *	"Packets sent once on transmission queue" MINUS
1199  *	"Packets left network, but not honestly ACKed yet" PLUS
1200  *	"Packets fast retransmitted"
1201  */
1202 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1203 {
1204 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1205 }
1206 
1207 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1208 
1209 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1210 {
1211 	return tp->snd_cwnd < tp->snd_ssthresh;
1212 }
1213 
1214 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1215 {
1216 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1217 }
1218 
1219 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1220 {
1221 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1222 	       (1 << inet_csk(sk)->icsk_ca_state);
1223 }
1224 
1225 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1226  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1227  * ssthresh.
1228  */
1229 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1230 {
1231 	const struct tcp_sock *tp = tcp_sk(sk);
1232 
1233 	if (tcp_in_cwnd_reduction(sk))
1234 		return tp->snd_ssthresh;
1235 	else
1236 		return max(tp->snd_ssthresh,
1237 			   ((tp->snd_cwnd >> 1) +
1238 			    (tp->snd_cwnd >> 2)));
1239 }
1240 
1241 /* Use define here intentionally to get WARN_ON location shown at the caller */
1242 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1243 
1244 void tcp_enter_cwr(struct sock *sk);
1245 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1246 
1247 /* The maximum number of MSS of available cwnd for which TSO defers
1248  * sending if not using sysctl_tcp_tso_win_divisor.
1249  */
1250 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1251 {
1252 	return 3;
1253 }
1254 
1255 /* Returns end sequence number of the receiver's advertised window */
1256 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1257 {
1258 	return tp->snd_una + tp->snd_wnd;
1259 }
1260 
1261 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1262  * flexible approach. The RFC suggests cwnd should not be raised unless
1263  * it was fully used previously. And that's exactly what we do in
1264  * congestion avoidance mode. But in slow start we allow cwnd to grow
1265  * as long as the application has used half the cwnd.
1266  * Example :
1267  *    cwnd is 10 (IW10), but application sends 9 frames.
1268  *    We allow cwnd to reach 18 when all frames are ACKed.
1269  * This check is safe because it's as aggressive as slow start which already
1270  * risks 100% overshoot. The advantage is that we discourage application to
1271  * either send more filler packets or data to artificially blow up the cwnd
1272  * usage, and allow application-limited process to probe bw more aggressively.
1273  */
1274 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1275 {
1276 	const struct tcp_sock *tp = tcp_sk(sk);
1277 
1278 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1279 	if (tcp_in_slow_start(tp))
1280 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1281 
1282 	return tp->is_cwnd_limited;
1283 }
1284 
1285 /* BBR congestion control needs pacing.
1286  * Same remark for SO_MAX_PACING_RATE.
1287  * sch_fq packet scheduler is efficiently handling pacing,
1288  * but is not always installed/used.
1289  * Return true if TCP stack should pace packets itself.
1290  */
1291 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1292 {
1293 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1294 }
1295 
1296 /* Estimates in how many jiffies next packet for this flow can be sent.
1297  * Scheduling a retransmit timer too early would be silly.
1298  */
1299 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1300 {
1301 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1302 
1303 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1304 }
1305 
1306 static inline void tcp_reset_xmit_timer(struct sock *sk,
1307 					const int what,
1308 					unsigned long when,
1309 					const unsigned long max_when)
1310 {
1311 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1312 				  max_when);
1313 }
1314 
1315 /* Something is really bad, we could not queue an additional packet,
1316  * because qdisc is full or receiver sent a 0 window, or we are paced.
1317  * We do not want to add fuel to the fire, or abort too early,
1318  * so make sure the timer we arm now is at least 200ms in the future,
1319  * regardless of current icsk_rto value (as it could be ~2ms)
1320  */
1321 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1322 {
1323 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1324 }
1325 
1326 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1327 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1328 					    unsigned long max_when)
1329 {
1330 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1331 			   inet_csk(sk)->icsk_backoff);
1332 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1333 
1334 	return (unsigned long)min_t(u64, when, max_when);
1335 }
1336 
1337 static inline void tcp_check_probe_timer(struct sock *sk)
1338 {
1339 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1340 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1341 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1342 }
1343 
1344 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1345 {
1346 	tp->snd_wl1 = seq;
1347 }
1348 
1349 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1350 {
1351 	tp->snd_wl1 = seq;
1352 }
1353 
1354 /*
1355  * Calculate(/check) TCP checksum
1356  */
1357 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1358 				   __be32 daddr, __wsum base)
1359 {
1360 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1361 }
1362 
1363 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1364 {
1365 	return !skb_csum_unnecessary(skb) &&
1366 		__skb_checksum_complete(skb);
1367 }
1368 
1369 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1370 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1371 void tcp_set_state(struct sock *sk, int state);
1372 void tcp_done(struct sock *sk);
1373 int tcp_abort(struct sock *sk, int err);
1374 
1375 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1376 {
1377 	rx_opt->dsack = 0;
1378 	rx_opt->num_sacks = 0;
1379 }
1380 
1381 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1382 
1383 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1384 {
1385 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 	s32 delta;
1388 
1389 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1390 	    ca_ops->cong_control)
1391 		return;
1392 	delta = tcp_jiffies32 - tp->lsndtime;
1393 	if (delta > inet_csk(sk)->icsk_rto)
1394 		tcp_cwnd_restart(sk, delta);
1395 }
1396 
1397 /* Determine a window scaling and initial window to offer. */
1398 void tcp_select_initial_window(const struct sock *sk, int __space,
1399 			       __u32 mss, __u32 *rcv_wnd,
1400 			       __u32 *window_clamp, int wscale_ok,
1401 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1402 
1403 static inline int tcp_win_from_space(const struct sock *sk, int space)
1404 {
1405 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1406 
1407 	return tcp_adv_win_scale <= 0 ?
1408 		(space>>(-tcp_adv_win_scale)) :
1409 		space - (space>>tcp_adv_win_scale);
1410 }
1411 
1412 /* Note: caller must be prepared to deal with negative returns */
1413 static inline int tcp_space(const struct sock *sk)
1414 {
1415 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1416 				  READ_ONCE(sk->sk_backlog.len) -
1417 				  atomic_read(&sk->sk_rmem_alloc));
1418 }
1419 
1420 static inline int tcp_full_space(const struct sock *sk)
1421 {
1422 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1423 }
1424 
1425 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1426 
1427 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1428  * If 87.5 % (7/8) of the space has been consumed, we want to override
1429  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1430  * len/truesize ratio.
1431  */
1432 static inline bool tcp_rmem_pressure(const struct sock *sk)
1433 {
1434 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1435 	int threshold = rcvbuf - (rcvbuf >> 3);
1436 
1437 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1438 }
1439 
1440 extern void tcp_openreq_init_rwin(struct request_sock *req,
1441 				  const struct sock *sk_listener,
1442 				  const struct dst_entry *dst);
1443 
1444 void tcp_enter_memory_pressure(struct sock *sk);
1445 void tcp_leave_memory_pressure(struct sock *sk);
1446 
1447 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1448 {
1449 	struct net *net = sock_net((struct sock *)tp);
1450 
1451 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1452 }
1453 
1454 static inline int keepalive_time_when(const struct tcp_sock *tp)
1455 {
1456 	struct net *net = sock_net((struct sock *)tp);
1457 
1458 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1459 }
1460 
1461 static inline int keepalive_probes(const struct tcp_sock *tp)
1462 {
1463 	struct net *net = sock_net((struct sock *)tp);
1464 
1465 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1466 }
1467 
1468 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1469 {
1470 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1471 
1472 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1473 			  tcp_jiffies32 - tp->rcv_tstamp);
1474 }
1475 
1476 static inline int tcp_fin_time(const struct sock *sk)
1477 {
1478 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1479 	const int rto = inet_csk(sk)->icsk_rto;
1480 
1481 	if (fin_timeout < (rto << 2) - (rto >> 1))
1482 		fin_timeout = (rto << 2) - (rto >> 1);
1483 
1484 	return fin_timeout;
1485 }
1486 
1487 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1488 				  int paws_win)
1489 {
1490 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1491 		return true;
1492 	if (unlikely(!time_before32(ktime_get_seconds(),
1493 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1494 		return true;
1495 	/*
1496 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1497 	 * then following tcp messages have valid values. Ignore 0 value,
1498 	 * or else 'negative' tsval might forbid us to accept their packets.
1499 	 */
1500 	if (!rx_opt->ts_recent)
1501 		return true;
1502 	return false;
1503 }
1504 
1505 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1506 				   int rst)
1507 {
1508 	if (tcp_paws_check(rx_opt, 0))
1509 		return false;
1510 
1511 	/* RST segments are not recommended to carry timestamp,
1512 	   and, if they do, it is recommended to ignore PAWS because
1513 	   "their cleanup function should take precedence over timestamps."
1514 	   Certainly, it is mistake. It is necessary to understand the reasons
1515 	   of this constraint to relax it: if peer reboots, clock may go
1516 	   out-of-sync and half-open connections will not be reset.
1517 	   Actually, the problem would be not existing if all
1518 	   the implementations followed draft about maintaining clock
1519 	   via reboots. Linux-2.2 DOES NOT!
1520 
1521 	   However, we can relax time bounds for RST segments to MSL.
1522 	 */
1523 	if (rst && !time_before32(ktime_get_seconds(),
1524 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1525 		return false;
1526 	return true;
1527 }
1528 
1529 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1530 			  int mib_idx, u32 *last_oow_ack_time);
1531 
1532 static inline void tcp_mib_init(struct net *net)
1533 {
1534 	/* See RFC 2012 */
1535 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1536 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1537 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1538 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1539 }
1540 
1541 /* from STCP */
1542 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1543 {
1544 	tp->lost_skb_hint = NULL;
1545 }
1546 
1547 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1548 {
1549 	tcp_clear_retrans_hints_partial(tp);
1550 	tp->retransmit_skb_hint = NULL;
1551 }
1552 
1553 union tcp_md5_addr {
1554 	struct in_addr  a4;
1555 #if IS_ENABLED(CONFIG_IPV6)
1556 	struct in6_addr	a6;
1557 #endif
1558 };
1559 
1560 /* - key database */
1561 struct tcp_md5sig_key {
1562 	struct hlist_node	node;
1563 	u8			keylen;
1564 	u8			family; /* AF_INET or AF_INET6 */
1565 	u8			prefixlen;
1566 	union tcp_md5_addr	addr;
1567 	int			l3index; /* set if key added with L3 scope */
1568 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1569 	struct rcu_head		rcu;
1570 };
1571 
1572 /* - sock block */
1573 struct tcp_md5sig_info {
1574 	struct hlist_head	head;
1575 	struct rcu_head		rcu;
1576 };
1577 
1578 /* - pseudo header */
1579 struct tcp4_pseudohdr {
1580 	__be32		saddr;
1581 	__be32		daddr;
1582 	__u8		pad;
1583 	__u8		protocol;
1584 	__be16		len;
1585 };
1586 
1587 struct tcp6_pseudohdr {
1588 	struct in6_addr	saddr;
1589 	struct in6_addr daddr;
1590 	__be32		len;
1591 	__be32		protocol;	/* including padding */
1592 };
1593 
1594 union tcp_md5sum_block {
1595 	struct tcp4_pseudohdr ip4;
1596 #if IS_ENABLED(CONFIG_IPV6)
1597 	struct tcp6_pseudohdr ip6;
1598 #endif
1599 };
1600 
1601 /* - pool: digest algorithm, hash description and scratch buffer */
1602 struct tcp_md5sig_pool {
1603 	struct ahash_request	*md5_req;
1604 	void			*scratch;
1605 };
1606 
1607 /* - functions */
1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1609 			const struct sock *sk, const struct sk_buff *skb);
1610 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1611 		   int family, u8 prefixlen, int l3index,
1612 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1613 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1614 		   int family, u8 prefixlen, int l3index);
1615 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1616 					 const struct sock *addr_sk);
1617 
1618 #ifdef CONFIG_TCP_MD5SIG
1619 #include <linux/jump_label.h>
1620 extern struct static_key_false tcp_md5_needed;
1621 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1622 					   const union tcp_md5_addr *addr,
1623 					   int family);
1624 static inline struct tcp_md5sig_key *
1625 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1626 		  const union tcp_md5_addr *addr, int family)
1627 {
1628 	if (!static_branch_unlikely(&tcp_md5_needed))
1629 		return NULL;
1630 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1631 }
1632 
1633 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1634 #else
1635 static inline struct tcp_md5sig_key *
1636 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1637 		  const union tcp_md5_addr *addr, int family)
1638 {
1639 	return NULL;
1640 }
1641 #define tcp_twsk_md5_key(twsk)	NULL
1642 #endif
1643 
1644 bool tcp_alloc_md5sig_pool(void);
1645 
1646 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1647 static inline void tcp_put_md5sig_pool(void)
1648 {
1649 	local_bh_enable();
1650 }
1651 
1652 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1653 			  unsigned int header_len);
1654 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1655 		     const struct tcp_md5sig_key *key);
1656 
1657 /* From tcp_fastopen.c */
1658 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1659 			    struct tcp_fastopen_cookie *cookie);
1660 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1661 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1662 			    u16 try_exp);
1663 struct tcp_fastopen_request {
1664 	/* Fast Open cookie. Size 0 means a cookie request */
1665 	struct tcp_fastopen_cookie	cookie;
1666 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1667 	size_t				size;
1668 	int				copied;	/* queued in tcp_connect() */
1669 	struct ubuf_info		*uarg;
1670 };
1671 void tcp_free_fastopen_req(struct tcp_sock *tp);
1672 void tcp_fastopen_destroy_cipher(struct sock *sk);
1673 void tcp_fastopen_ctx_destroy(struct net *net);
1674 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1675 			      void *primary_key, void *backup_key);
1676 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1677 			    u64 *key);
1678 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1679 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1680 			      struct request_sock *req,
1681 			      struct tcp_fastopen_cookie *foc,
1682 			      const struct dst_entry *dst);
1683 void tcp_fastopen_init_key_once(struct net *net);
1684 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1685 			     struct tcp_fastopen_cookie *cookie);
1686 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1687 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1688 #define TCP_FASTOPEN_KEY_MAX 2
1689 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1690 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1691 
1692 /* Fastopen key context */
1693 struct tcp_fastopen_context {
1694 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1695 	int		num;
1696 	struct rcu_head	rcu;
1697 };
1698 
1699 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1700 void tcp_fastopen_active_disable(struct sock *sk);
1701 bool tcp_fastopen_active_should_disable(struct sock *sk);
1702 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1703 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1704 
1705 /* Caller needs to wrap with rcu_read_(un)lock() */
1706 static inline
1707 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1708 {
1709 	struct tcp_fastopen_context *ctx;
1710 
1711 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1712 	if (!ctx)
1713 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1714 	return ctx;
1715 }
1716 
1717 static inline
1718 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1719 			       const struct tcp_fastopen_cookie *orig)
1720 {
1721 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1722 	    orig->len == foc->len &&
1723 	    !memcmp(orig->val, foc->val, foc->len))
1724 		return true;
1725 	return false;
1726 }
1727 
1728 static inline
1729 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1730 {
1731 	return ctx->num;
1732 }
1733 
1734 /* Latencies incurred by various limits for a sender. They are
1735  * chronograph-like stats that are mutually exclusive.
1736  */
1737 enum tcp_chrono {
1738 	TCP_CHRONO_UNSPEC,
1739 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1740 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1741 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1742 	__TCP_CHRONO_MAX,
1743 };
1744 
1745 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1746 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1747 
1748 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1749  * the same memory storage than skb->destructor/_skb_refdst
1750  */
1751 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1752 {
1753 	skb->destructor = NULL;
1754 	skb->_skb_refdst = 0UL;
1755 }
1756 
1757 #define tcp_skb_tsorted_save(skb) {		\
1758 	unsigned long _save = skb->_skb_refdst;	\
1759 	skb->_skb_refdst = 0UL;
1760 
1761 #define tcp_skb_tsorted_restore(skb)		\
1762 	skb->_skb_refdst = _save;		\
1763 }
1764 
1765 void tcp_write_queue_purge(struct sock *sk);
1766 
1767 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1768 {
1769 	return skb_rb_first(&sk->tcp_rtx_queue);
1770 }
1771 
1772 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1773 {
1774 	return skb_rb_last(&sk->tcp_rtx_queue);
1775 }
1776 
1777 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1778 {
1779 	return skb_peek(&sk->sk_write_queue);
1780 }
1781 
1782 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1783 {
1784 	return skb_peek_tail(&sk->sk_write_queue);
1785 }
1786 
1787 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1788 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1789 
1790 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1791 {
1792 	return skb_peek(&sk->sk_write_queue);
1793 }
1794 
1795 static inline bool tcp_skb_is_last(const struct sock *sk,
1796 				   const struct sk_buff *skb)
1797 {
1798 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1799 }
1800 
1801 /**
1802  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1803  * @sk: socket
1804  *
1805  * Since the write queue can have a temporary empty skb in it,
1806  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1807  */
1808 static inline bool tcp_write_queue_empty(const struct sock *sk)
1809 {
1810 	const struct tcp_sock *tp = tcp_sk(sk);
1811 
1812 	return tp->write_seq == tp->snd_nxt;
1813 }
1814 
1815 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1816 {
1817 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1818 }
1819 
1820 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1821 {
1822 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1823 }
1824 
1825 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1826 {
1827 	__skb_queue_tail(&sk->sk_write_queue, skb);
1828 
1829 	/* Queue it, remembering where we must start sending. */
1830 	if (sk->sk_write_queue.next == skb)
1831 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1832 }
1833 
1834 /* Insert new before skb on the write queue of sk.  */
1835 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1836 						  struct sk_buff *skb,
1837 						  struct sock *sk)
1838 {
1839 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1840 }
1841 
1842 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1843 {
1844 	tcp_skb_tsorted_anchor_cleanup(skb);
1845 	__skb_unlink(skb, &sk->sk_write_queue);
1846 }
1847 
1848 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1849 
1850 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1851 {
1852 	tcp_skb_tsorted_anchor_cleanup(skb);
1853 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1854 }
1855 
1856 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1857 {
1858 	list_del(&skb->tcp_tsorted_anchor);
1859 	tcp_rtx_queue_unlink(skb, sk);
1860 	sk_wmem_free_skb(sk, skb);
1861 }
1862 
1863 static inline void tcp_push_pending_frames(struct sock *sk)
1864 {
1865 	if (tcp_send_head(sk)) {
1866 		struct tcp_sock *tp = tcp_sk(sk);
1867 
1868 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1869 	}
1870 }
1871 
1872 /* Start sequence of the skb just after the highest skb with SACKed
1873  * bit, valid only if sacked_out > 0 or when the caller has ensured
1874  * validity by itself.
1875  */
1876 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1877 {
1878 	if (!tp->sacked_out)
1879 		return tp->snd_una;
1880 
1881 	if (tp->highest_sack == NULL)
1882 		return tp->snd_nxt;
1883 
1884 	return TCP_SKB_CB(tp->highest_sack)->seq;
1885 }
1886 
1887 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1888 {
1889 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1890 }
1891 
1892 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1893 {
1894 	return tcp_sk(sk)->highest_sack;
1895 }
1896 
1897 static inline void tcp_highest_sack_reset(struct sock *sk)
1898 {
1899 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1900 }
1901 
1902 /* Called when old skb is about to be deleted and replaced by new skb */
1903 static inline void tcp_highest_sack_replace(struct sock *sk,
1904 					    struct sk_buff *old,
1905 					    struct sk_buff *new)
1906 {
1907 	if (old == tcp_highest_sack(sk))
1908 		tcp_sk(sk)->highest_sack = new;
1909 }
1910 
1911 /* This helper checks if socket has IP_TRANSPARENT set */
1912 static inline bool inet_sk_transparent(const struct sock *sk)
1913 {
1914 	switch (sk->sk_state) {
1915 	case TCP_TIME_WAIT:
1916 		return inet_twsk(sk)->tw_transparent;
1917 	case TCP_NEW_SYN_RECV:
1918 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1919 	}
1920 	return inet_sk(sk)->transparent;
1921 }
1922 
1923 /* Determines whether this is a thin stream (which may suffer from
1924  * increased latency). Used to trigger latency-reducing mechanisms.
1925  */
1926 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1927 {
1928 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1929 }
1930 
1931 /* /proc */
1932 enum tcp_seq_states {
1933 	TCP_SEQ_STATE_LISTENING,
1934 	TCP_SEQ_STATE_ESTABLISHED,
1935 };
1936 
1937 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1938 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1939 void tcp_seq_stop(struct seq_file *seq, void *v);
1940 
1941 struct tcp_seq_afinfo {
1942 	sa_family_t			family;
1943 };
1944 
1945 struct tcp_iter_state {
1946 	struct seq_net_private	p;
1947 	enum tcp_seq_states	state;
1948 	struct sock		*syn_wait_sk;
1949 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1950 	int			bucket, offset, sbucket, num;
1951 	loff_t			last_pos;
1952 };
1953 
1954 extern struct request_sock_ops tcp_request_sock_ops;
1955 extern struct request_sock_ops tcp6_request_sock_ops;
1956 
1957 void tcp_v4_destroy_sock(struct sock *sk);
1958 
1959 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1960 				netdev_features_t features);
1961 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1962 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1963 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1964 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1965 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1966 int tcp_gro_complete(struct sk_buff *skb);
1967 
1968 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1969 
1970 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1971 {
1972 	struct net *net = sock_net((struct sock *)tp);
1973 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1974 }
1975 
1976 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1977 
1978 #ifdef CONFIG_PROC_FS
1979 int tcp4_proc_init(void);
1980 void tcp4_proc_exit(void);
1981 #endif
1982 
1983 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1984 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1985 		     const struct tcp_request_sock_ops *af_ops,
1986 		     struct sock *sk, struct sk_buff *skb);
1987 
1988 /* TCP af-specific functions */
1989 struct tcp_sock_af_ops {
1990 #ifdef CONFIG_TCP_MD5SIG
1991 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1992 						const struct sock *addr_sk);
1993 	int		(*calc_md5_hash)(char *location,
1994 					 const struct tcp_md5sig_key *md5,
1995 					 const struct sock *sk,
1996 					 const struct sk_buff *skb);
1997 	int		(*md5_parse)(struct sock *sk,
1998 				     int optname,
1999 				     sockptr_t optval,
2000 				     int optlen);
2001 #endif
2002 };
2003 
2004 struct tcp_request_sock_ops {
2005 	u16 mss_clamp;
2006 #ifdef CONFIG_TCP_MD5SIG
2007 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2008 						 const struct sock *addr_sk);
2009 	int		(*calc_md5_hash) (char *location,
2010 					  const struct tcp_md5sig_key *md5,
2011 					  const struct sock *sk,
2012 					  const struct sk_buff *skb);
2013 #endif
2014 #ifdef CONFIG_SYN_COOKIES
2015 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2016 				 __u16 *mss);
2017 #endif
2018 	struct dst_entry *(*route_req)(const struct sock *sk,
2019 				       struct sk_buff *skb,
2020 				       struct flowi *fl,
2021 				       struct request_sock *req);
2022 	u32 (*init_seq)(const struct sk_buff *skb);
2023 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2024 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2025 			   struct flowi *fl, struct request_sock *req,
2026 			   struct tcp_fastopen_cookie *foc,
2027 			   enum tcp_synack_type synack_type,
2028 			   struct sk_buff *syn_skb);
2029 };
2030 
2031 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2032 #if IS_ENABLED(CONFIG_IPV6)
2033 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2034 #endif
2035 
2036 #ifdef CONFIG_SYN_COOKIES
2037 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2038 					 const struct sock *sk, struct sk_buff *skb,
2039 					 __u16 *mss)
2040 {
2041 	tcp_synq_overflow(sk);
2042 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2043 	return ops->cookie_init_seq(skb, mss);
2044 }
2045 #else
2046 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2047 					 const struct sock *sk, struct sk_buff *skb,
2048 					 __u16 *mss)
2049 {
2050 	return 0;
2051 }
2052 #endif
2053 
2054 int tcpv4_offload_init(void);
2055 
2056 void tcp_v4_init(void);
2057 void tcp_init(void);
2058 
2059 /* tcp_recovery.c */
2060 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2061 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2062 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2063 				u32 reo_wnd);
2064 extern bool tcp_rack_mark_lost(struct sock *sk);
2065 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2066 			     u64 xmit_time);
2067 extern void tcp_rack_reo_timeout(struct sock *sk);
2068 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2069 
2070 /* At how many usecs into the future should the RTO fire? */
2071 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2072 {
2073 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2074 	u32 rto = inet_csk(sk)->icsk_rto;
2075 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2076 
2077 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2078 }
2079 
2080 /*
2081  * Save and compile IPv4 options, return a pointer to it
2082  */
2083 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2084 							 struct sk_buff *skb)
2085 {
2086 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2087 	struct ip_options_rcu *dopt = NULL;
2088 
2089 	if (opt->optlen) {
2090 		int opt_size = sizeof(*dopt) + opt->optlen;
2091 
2092 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2093 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2094 			kfree(dopt);
2095 			dopt = NULL;
2096 		}
2097 	}
2098 	return dopt;
2099 }
2100 
2101 /* locally generated TCP pure ACKs have skb->truesize == 2
2102  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2103  * This is much faster than dissecting the packet to find out.
2104  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2105  */
2106 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2107 {
2108 	return skb->truesize == 2;
2109 }
2110 
2111 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2112 {
2113 	skb->truesize = 2;
2114 }
2115 
2116 static inline int tcp_inq(struct sock *sk)
2117 {
2118 	struct tcp_sock *tp = tcp_sk(sk);
2119 	int answ;
2120 
2121 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2122 		answ = 0;
2123 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2124 		   !tp->urg_data ||
2125 		   before(tp->urg_seq, tp->copied_seq) ||
2126 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2127 
2128 		answ = tp->rcv_nxt - tp->copied_seq;
2129 
2130 		/* Subtract 1, if FIN was received */
2131 		if (answ && sock_flag(sk, SOCK_DONE))
2132 			answ--;
2133 	} else {
2134 		answ = tp->urg_seq - tp->copied_seq;
2135 	}
2136 
2137 	return answ;
2138 }
2139 
2140 int tcp_peek_len(struct socket *sock);
2141 
2142 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2143 {
2144 	u16 segs_in;
2145 
2146 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2147 	tp->segs_in += segs_in;
2148 	if (skb->len > tcp_hdrlen(skb))
2149 		tp->data_segs_in += segs_in;
2150 }
2151 
2152 /*
2153  * TCP listen path runs lockless.
2154  * We forced "struct sock" to be const qualified to make sure
2155  * we don't modify one of its field by mistake.
2156  * Here, we increment sk_drops which is an atomic_t, so we can safely
2157  * make sock writable again.
2158  */
2159 static inline void tcp_listendrop(const struct sock *sk)
2160 {
2161 	atomic_inc(&((struct sock *)sk)->sk_drops);
2162 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2163 }
2164 
2165 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2166 
2167 /*
2168  * Interface for adding Upper Level Protocols over TCP
2169  */
2170 
2171 #define TCP_ULP_NAME_MAX	16
2172 #define TCP_ULP_MAX		128
2173 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2174 
2175 struct tcp_ulp_ops {
2176 	struct list_head	list;
2177 
2178 	/* initialize ulp */
2179 	int (*init)(struct sock *sk);
2180 	/* update ulp */
2181 	void (*update)(struct sock *sk, struct proto *p,
2182 		       void (*write_space)(struct sock *sk));
2183 	/* cleanup ulp */
2184 	void (*release)(struct sock *sk);
2185 	/* diagnostic */
2186 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2187 	size_t (*get_info_size)(const struct sock *sk);
2188 	/* clone ulp */
2189 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2190 		      const gfp_t priority);
2191 
2192 	char		name[TCP_ULP_NAME_MAX];
2193 	struct module	*owner;
2194 };
2195 int tcp_register_ulp(struct tcp_ulp_ops *type);
2196 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2197 int tcp_set_ulp(struct sock *sk, const char *name);
2198 void tcp_get_available_ulp(char *buf, size_t len);
2199 void tcp_cleanup_ulp(struct sock *sk);
2200 void tcp_update_ulp(struct sock *sk, struct proto *p,
2201 		    void (*write_space)(struct sock *sk));
2202 
2203 #define MODULE_ALIAS_TCP_ULP(name)				\
2204 	__MODULE_INFO(alias, alias_userspace, name);		\
2205 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2206 
2207 struct sk_msg;
2208 struct sk_psock;
2209 
2210 #ifdef CONFIG_BPF_STREAM_PARSER
2211 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2212 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2213 #else
2214 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2215 {
2216 }
2217 #endif /* CONFIG_BPF_STREAM_PARSER */
2218 
2219 #ifdef CONFIG_NET_SOCK_MSG
2220 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2221 			  int flags);
2222 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2223 		      struct msghdr *msg, int len, int flags);
2224 #endif /* CONFIG_NET_SOCK_MSG */
2225 
2226 #ifdef CONFIG_CGROUP_BPF
2227 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2228 				      struct sk_buff *skb,
2229 				      unsigned int end_offset)
2230 {
2231 	skops->skb = skb;
2232 	skops->skb_data_end = skb->data + end_offset;
2233 }
2234 #else
2235 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2236 				      struct sk_buff *skb,
2237 				      unsigned int end_offset)
2238 {
2239 }
2240 #endif
2241 
2242 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2243  * is < 0, then the BPF op failed (for example if the loaded BPF
2244  * program does not support the chosen operation or there is no BPF
2245  * program loaded).
2246  */
2247 #ifdef CONFIG_BPF
2248 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2249 {
2250 	struct bpf_sock_ops_kern sock_ops;
2251 	int ret;
2252 
2253 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2254 	if (sk_fullsock(sk)) {
2255 		sock_ops.is_fullsock = 1;
2256 		sock_owned_by_me(sk);
2257 	}
2258 
2259 	sock_ops.sk = sk;
2260 	sock_ops.op = op;
2261 	if (nargs > 0)
2262 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2263 
2264 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2265 	if (ret == 0)
2266 		ret = sock_ops.reply;
2267 	else
2268 		ret = -1;
2269 	return ret;
2270 }
2271 
2272 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2273 {
2274 	u32 args[2] = {arg1, arg2};
2275 
2276 	return tcp_call_bpf(sk, op, 2, args);
2277 }
2278 
2279 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2280 				    u32 arg3)
2281 {
2282 	u32 args[3] = {arg1, arg2, arg3};
2283 
2284 	return tcp_call_bpf(sk, op, 3, args);
2285 }
2286 
2287 #else
2288 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2289 {
2290 	return -EPERM;
2291 }
2292 
2293 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2294 {
2295 	return -EPERM;
2296 }
2297 
2298 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2299 				    u32 arg3)
2300 {
2301 	return -EPERM;
2302 }
2303 
2304 #endif
2305 
2306 static inline u32 tcp_timeout_init(struct sock *sk)
2307 {
2308 	int timeout;
2309 
2310 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2311 
2312 	if (timeout <= 0)
2313 		timeout = TCP_TIMEOUT_INIT;
2314 	return timeout;
2315 }
2316 
2317 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2318 {
2319 	int rwnd;
2320 
2321 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2322 
2323 	if (rwnd < 0)
2324 		rwnd = 0;
2325 	return rwnd;
2326 }
2327 
2328 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2329 {
2330 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2331 }
2332 
2333 static inline void tcp_bpf_rtt(struct sock *sk)
2334 {
2335 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2336 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2337 }
2338 
2339 #if IS_ENABLED(CONFIG_SMC)
2340 extern struct static_key_false tcp_have_smc;
2341 #endif
2342 
2343 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2344 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2345 			     void (*cad)(struct sock *sk, u32 ack_seq));
2346 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2347 void clean_acked_data_flush(void);
2348 #endif
2349 
2350 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2351 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2352 				    const struct tcp_sock *tp)
2353 {
2354 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2355 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2356 }
2357 
2358 /* Compute Earliest Departure Time for some control packets
2359  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2360  */
2361 static inline u64 tcp_transmit_time(const struct sock *sk)
2362 {
2363 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2364 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2365 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2366 
2367 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2368 	}
2369 	return 0;
2370 }
2371 
2372 #endif	/* _TCP_H */
2373