xref: /openbmc/linux/include/net/tcp.h (revision 3932b9ca)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 #include <linux/ktime.h>
35 
36 #include <net/inet_connection_sock.h>
37 #include <net/inet_timewait_sock.h>
38 #include <net/inet_hashtables.h>
39 #include <net/checksum.h>
40 #include <net/request_sock.h>
41 #include <net/sock.h>
42 #include <net/snmp.h>
43 #include <net/ip.h>
44 #include <net/tcp_states.h>
45 #include <net/inet_ecn.h>
46 #include <net/dst.h>
47 
48 #include <linux/seq_file.h>
49 #include <linux/memcontrol.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		512
70 
71 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
72 #define TCP_FASTRETRANS_THRESH 3
73 
74 /* Maximal reordering. */
75 #define TCP_MAX_REORDERING	127
76 
77 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
78 #define TCP_MAX_QUICKACKS	16U
79 
80 /* urg_data states */
81 #define TCP_URG_VALID	0x0100
82 #define TCP_URG_NOTYET	0x0200
83 #define TCP_URG_READ	0x0400
84 
85 #define TCP_RETR1	3	/*
86 				 * This is how many retries it does before it
87 				 * tries to figure out if the gateway is
88 				 * down. Minimal RFC value is 3; it corresponds
89 				 * to ~3sec-8min depending on RTO.
90 				 */
91 
92 #define TCP_RETR2	15	/*
93 				 * This should take at least
94 				 * 90 minutes to time out.
95 				 * RFC1122 says that the limit is 100 sec.
96 				 * 15 is ~13-30min depending on RTO.
97 				 */
98 
99 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
100 				 * when active opening a connection.
101 				 * RFC1122 says the minimum retry MUST
102 				 * be at least 180secs.  Nevertheless
103 				 * this value is corresponding to
104 				 * 63secs of retransmission with the
105 				 * current initial RTO.
106 				 */
107 
108 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
109 				 * when passive opening a connection.
110 				 * This is corresponding to 31secs of
111 				 * retransmission with the current
112 				 * initial RTO.
113 				 */
114 
115 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
116 				  * state, about 60 seconds	*/
117 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
118                                  /* BSD style FIN_WAIT2 deadlock breaker.
119 				  * It used to be 3min, new value is 60sec,
120 				  * to combine FIN-WAIT-2 timeout with
121 				  * TIME-WAIT timer.
122 				  */
123 
124 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
125 #if HZ >= 100
126 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
127 #define TCP_ATO_MIN	((unsigned)(HZ/25))
128 #else
129 #define TCP_DELACK_MIN	4U
130 #define TCP_ATO_MIN	4U
131 #endif
132 #define TCP_RTO_MAX	((unsigned)(120*HZ))
133 #define TCP_RTO_MIN	((unsigned)(HZ/5))
134 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
135 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
136 						 * used as a fallback RTO for the
137 						 * initial data transmission if no
138 						 * valid RTT sample has been acquired,
139 						 * most likely due to retrans in 3WHS.
140 						 */
141 
142 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
143 					                 * for local resources.
144 					                 */
145 
146 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
147 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
148 #define TCP_KEEPALIVE_INTVL	(75*HZ)
149 
150 #define MAX_TCP_KEEPIDLE	32767
151 #define MAX_TCP_KEEPINTVL	32767
152 #define MAX_TCP_KEEPCNT		127
153 #define MAX_TCP_SYNCNT		127
154 
155 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
156 
157 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
158 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
159 					 * after this time. It should be equal
160 					 * (or greater than) TCP_TIMEWAIT_LEN
161 					 * to provide reliability equal to one
162 					 * provided by timewait state.
163 					 */
164 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
165 					 * timestamps. It must be less than
166 					 * minimal timewait lifetime.
167 					 */
168 /*
169  *	TCP option
170  */
171 
172 #define TCPOPT_NOP		1	/* Padding */
173 #define TCPOPT_EOL		0	/* End of options */
174 #define TCPOPT_MSS		2	/* Segment size negotiating */
175 #define TCPOPT_WINDOW		3	/* Window scaling */
176 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
177 #define TCPOPT_SACK             5       /* SACK Block */
178 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
179 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
180 #define TCPOPT_EXP		254	/* Experimental */
181 /* Magic number to be after the option value for sharing TCP
182  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
183  */
184 #define TCPOPT_FASTOPEN_MAGIC	0xF989
185 
186 /*
187  *     TCP option lengths
188  */
189 
190 #define TCPOLEN_MSS            4
191 #define TCPOLEN_WINDOW         3
192 #define TCPOLEN_SACK_PERM      2
193 #define TCPOLEN_TIMESTAMP      10
194 #define TCPOLEN_MD5SIG         18
195 #define TCPOLEN_EXP_FASTOPEN_BASE  4
196 
197 /* But this is what stacks really send out. */
198 #define TCPOLEN_TSTAMP_ALIGNED		12
199 #define TCPOLEN_WSCALE_ALIGNED		4
200 #define TCPOLEN_SACKPERM_ALIGNED	4
201 #define TCPOLEN_SACK_BASE		2
202 #define TCPOLEN_SACK_BASE_ALIGNED	4
203 #define TCPOLEN_SACK_PERBLOCK		8
204 #define TCPOLEN_MD5SIG_ALIGNED		20
205 #define TCPOLEN_MSS_ALIGNED		4
206 
207 /* Flags in tp->nonagle */
208 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
209 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
210 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
211 
212 /* TCP thin-stream limits */
213 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
214 
215 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
216 #define TCP_INIT_CWND		10
217 
218 /* Bit Flags for sysctl_tcp_fastopen */
219 #define	TFO_CLIENT_ENABLE	1
220 #define	TFO_SERVER_ENABLE	2
221 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
222 
223 /* Accept SYN data w/o any cookie option */
224 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
225 
226 /* Force enable TFO on all listeners, i.e., not requiring the
227  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
228  */
229 #define	TFO_SERVER_WO_SOCKOPT1	0x400
230 #define	TFO_SERVER_WO_SOCKOPT2	0x800
231 
232 extern struct inet_timewait_death_row tcp_death_row;
233 
234 /* sysctl variables for tcp */
235 extern int sysctl_tcp_timestamps;
236 extern int sysctl_tcp_window_scaling;
237 extern int sysctl_tcp_sack;
238 extern int sysctl_tcp_fin_timeout;
239 extern int sysctl_tcp_keepalive_time;
240 extern int sysctl_tcp_keepalive_probes;
241 extern int sysctl_tcp_keepalive_intvl;
242 extern int sysctl_tcp_syn_retries;
243 extern int sysctl_tcp_synack_retries;
244 extern int sysctl_tcp_retries1;
245 extern int sysctl_tcp_retries2;
246 extern int sysctl_tcp_orphan_retries;
247 extern int sysctl_tcp_syncookies;
248 extern int sysctl_tcp_fastopen;
249 extern int sysctl_tcp_retrans_collapse;
250 extern int sysctl_tcp_stdurg;
251 extern int sysctl_tcp_rfc1337;
252 extern int sysctl_tcp_abort_on_overflow;
253 extern int sysctl_tcp_max_orphans;
254 extern int sysctl_tcp_fack;
255 extern int sysctl_tcp_reordering;
256 extern int sysctl_tcp_dsack;
257 extern long sysctl_tcp_mem[3];
258 extern int sysctl_tcp_wmem[3];
259 extern int sysctl_tcp_rmem[3];
260 extern int sysctl_tcp_app_win;
261 extern int sysctl_tcp_adv_win_scale;
262 extern int sysctl_tcp_tw_reuse;
263 extern int sysctl_tcp_frto;
264 extern int sysctl_tcp_low_latency;
265 extern int sysctl_tcp_dma_copybreak;
266 extern int sysctl_tcp_nometrics_save;
267 extern int sysctl_tcp_moderate_rcvbuf;
268 extern int sysctl_tcp_tso_win_divisor;
269 extern int sysctl_tcp_mtu_probing;
270 extern int sysctl_tcp_base_mss;
271 extern int sysctl_tcp_workaround_signed_windows;
272 extern int sysctl_tcp_slow_start_after_idle;
273 extern int sysctl_tcp_thin_linear_timeouts;
274 extern int sysctl_tcp_thin_dupack;
275 extern int sysctl_tcp_early_retrans;
276 extern int sysctl_tcp_limit_output_bytes;
277 extern int sysctl_tcp_challenge_ack_limit;
278 extern unsigned int sysctl_tcp_notsent_lowat;
279 extern int sysctl_tcp_min_tso_segs;
280 extern int sysctl_tcp_autocorking;
281 
282 extern atomic_long_t tcp_memory_allocated;
283 extern struct percpu_counter tcp_sockets_allocated;
284 extern int tcp_memory_pressure;
285 
286 /*
287  * The next routines deal with comparing 32 bit unsigned ints
288  * and worry about wraparound (automatic with unsigned arithmetic).
289  */
290 
291 static inline bool before(__u32 seq1, __u32 seq2)
292 {
293         return (__s32)(seq1-seq2) < 0;
294 }
295 #define after(seq2, seq1) 	before(seq1, seq2)
296 
297 /* is s2<=s1<=s3 ? */
298 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
299 {
300 	return seq3 - seq2 >= seq1 - seq2;
301 }
302 
303 static inline bool tcp_out_of_memory(struct sock *sk)
304 {
305 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
306 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
307 		return true;
308 	return false;
309 }
310 
311 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
312 {
313 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
314 	int orphans = percpu_counter_read_positive(ocp);
315 
316 	if (orphans << shift > sysctl_tcp_max_orphans) {
317 		orphans = percpu_counter_sum_positive(ocp);
318 		if (orphans << shift > sysctl_tcp_max_orphans)
319 			return true;
320 	}
321 	return false;
322 }
323 
324 bool tcp_check_oom(struct sock *sk, int shift);
325 
326 /* syncookies: remember time of last synqueue overflow */
327 static inline void tcp_synq_overflow(struct sock *sk)
328 {
329 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
330 }
331 
332 /* syncookies: no recent synqueue overflow on this listening socket? */
333 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
334 {
335 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
336 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
337 }
338 
339 extern struct proto tcp_prot;
340 
341 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
343 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
344 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
345 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
346 
347 void tcp_tasklet_init(void);
348 
349 void tcp_v4_err(struct sk_buff *skb, u32);
350 
351 void tcp_shutdown(struct sock *sk, int how);
352 
353 void tcp_v4_early_demux(struct sk_buff *skb);
354 int tcp_v4_rcv(struct sk_buff *skb);
355 
356 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
357 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
358 		size_t size);
359 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
360 		 int flags);
361 void tcp_release_cb(struct sock *sk);
362 void tcp_wfree(struct sk_buff *skb);
363 void tcp_write_timer_handler(struct sock *sk);
364 void tcp_delack_timer_handler(struct sock *sk);
365 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
366 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
367 			  const struct tcphdr *th, unsigned int len);
368 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
369 			 const struct tcphdr *th, unsigned int len);
370 void tcp_rcv_space_adjust(struct sock *sk);
371 void tcp_cleanup_rbuf(struct sock *sk, int copied);
372 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
373 void tcp_twsk_destructor(struct sock *sk);
374 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
375 			struct pipe_inode_info *pipe, size_t len,
376 			unsigned int flags);
377 
378 static inline void tcp_dec_quickack_mode(struct sock *sk,
379 					 const unsigned int pkts)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 
383 	if (icsk->icsk_ack.quick) {
384 		if (pkts >= icsk->icsk_ack.quick) {
385 			icsk->icsk_ack.quick = 0;
386 			/* Leaving quickack mode we deflate ATO. */
387 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
388 		} else
389 			icsk->icsk_ack.quick -= pkts;
390 	}
391 }
392 
393 #define	TCP_ECN_OK		1
394 #define	TCP_ECN_QUEUE_CWR	2
395 #define	TCP_ECN_DEMAND_CWR	4
396 #define	TCP_ECN_SEEN		8
397 
398 enum tcp_tw_status {
399 	TCP_TW_SUCCESS = 0,
400 	TCP_TW_RST = 1,
401 	TCP_TW_ACK = 2,
402 	TCP_TW_SYN = 3
403 };
404 
405 
406 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
407 					      struct sk_buff *skb,
408 					      const struct tcphdr *th);
409 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
410 			   struct request_sock *req, struct request_sock **prev,
411 			   bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 		      struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_clear_retrans(struct tcp_sock *tp);
416 void tcp_update_metrics(struct sock *sk);
417 void tcp_init_metrics(struct sock *sk);
418 void tcp_metrics_init(void);
419 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
420 			bool paws_check, bool timestamps);
421 bool tcp_remember_stamp(struct sock *sk);
422 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
423 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
424 void tcp_disable_fack(struct tcp_sock *tp);
425 void tcp_close(struct sock *sk, long timeout);
426 void tcp_init_sock(struct sock *sk);
427 unsigned int tcp_poll(struct file *file, struct socket *sock,
428 		      struct poll_table_struct *wait);
429 int tcp_getsockopt(struct sock *sk, int level, int optname,
430 		   char __user *optval, int __user *optlen);
431 int tcp_setsockopt(struct sock *sk, int level, int optname,
432 		   char __user *optval, unsigned int optlen);
433 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
434 			  char __user *optval, int __user *optlen);
435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
436 			  char __user *optval, unsigned int optlen);
437 void tcp_set_keepalive(struct sock *sk, int val);
438 void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
439 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
440 		size_t len, int nonblock, int flags, int *addr_len);
441 void tcp_parse_options(const struct sk_buff *skb,
442 		       struct tcp_options_received *opt_rx,
443 		       int estab, struct tcp_fastopen_cookie *foc);
444 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
445 
446 /*
447  *	TCP v4 functions exported for the inet6 API
448  */
449 
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
453 struct sock *tcp_create_openreq_child(struct sock *sk,
454 				      struct request_sock *req,
455 				      struct sk_buff *skb);
456 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
457 				  struct request_sock *req,
458 				  struct dst_entry *dst);
459 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
460 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
461 int tcp_connect(struct sock *sk);
462 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
463 				struct request_sock *req,
464 				struct tcp_fastopen_cookie *foc);
465 int tcp_disconnect(struct sock *sk, int flags);
466 
467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
470 
471 /* From syncookies.c */
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 		      u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
475 			     struct ip_options *opt);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE 2
486 
487 static inline u32 tcp_cookie_time(void)
488 {
489 	u64 val = get_jiffies_64();
490 
491 	do_div(val, 60 * HZ);
492 	return val;
493 }
494 
495 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
496 			      u16 *mssp);
497 __u32 cookie_v4_init_sequence(struct sock *sk, const struct sk_buff *skb,
498 			      __u16 *mss);
499 #endif
500 
501 __u32 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_check_timestamp(struct tcp_options_received *opt, struct net *net,
503 			    bool *ecn_ok);
504 
505 /* From net/ipv6/syncookies.c */
506 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
507 		      u32 cookie);
508 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509 #ifdef CONFIG_SYN_COOKIES
510 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
511 			      const struct tcphdr *th, u16 *mssp);
512 __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
513 			      __u16 *mss);
514 #endif
515 /* tcp_output.c */
516 
517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518 			       int nonagle);
519 bool tcp_may_send_now(struct sock *sk);
520 int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
521 int tcp_retransmit_skb(struct sock *, struct sk_buff *);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
527 
528 void tcp_send_probe0(struct sock *);
529 void tcp_send_partial(struct sock *);
530 int tcp_write_wakeup(struct sock *);
531 void tcp_send_fin(struct sock *sk);
532 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
533 int tcp_send_synack(struct sock *);
534 bool tcp_syn_flood_action(struct sock *sk, const struct sk_buff *skb,
535 			  const char *proto);
536 void tcp_push_one(struct sock *, unsigned int mss_now);
537 void tcp_send_ack(struct sock *sk);
538 void tcp_send_delayed_ack(struct sock *sk);
539 void tcp_send_loss_probe(struct sock *sk);
540 bool tcp_schedule_loss_probe(struct sock *sk);
541 
542 /* tcp_input.c */
543 void tcp_resume_early_retransmit(struct sock *sk);
544 void tcp_rearm_rto(struct sock *sk);
545 void tcp_reset(struct sock *sk);
546 
547 /* tcp_timer.c */
548 void tcp_init_xmit_timers(struct sock *);
549 static inline void tcp_clear_xmit_timers(struct sock *sk)
550 {
551 	inet_csk_clear_xmit_timers(sk);
552 }
553 
554 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
555 unsigned int tcp_current_mss(struct sock *sk);
556 
557 /* Bound MSS / TSO packet size with the half of the window */
558 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
559 {
560 	int cutoff;
561 
562 	/* When peer uses tiny windows, there is no use in packetizing
563 	 * to sub-MSS pieces for the sake of SWS or making sure there
564 	 * are enough packets in the pipe for fast recovery.
565 	 *
566 	 * On the other hand, for extremely large MSS devices, handling
567 	 * smaller than MSS windows in this way does make sense.
568 	 */
569 	if (tp->max_window >= 512)
570 		cutoff = (tp->max_window >> 1);
571 	else
572 		cutoff = tp->max_window;
573 
574 	if (cutoff && pktsize > cutoff)
575 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
576 	else
577 		return pktsize;
578 }
579 
580 /* tcp.c */
581 void tcp_get_info(const struct sock *, struct tcp_info *);
582 
583 /* Read 'sendfile()'-style from a TCP socket */
584 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
585 				unsigned int, size_t);
586 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
587 		  sk_read_actor_t recv_actor);
588 
589 void tcp_initialize_rcv_mss(struct sock *sk);
590 
591 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
592 int tcp_mss_to_mtu(struct sock *sk, int mss);
593 void tcp_mtup_init(struct sock *sk);
594 void tcp_init_buffer_space(struct sock *sk);
595 
596 static inline void tcp_bound_rto(const struct sock *sk)
597 {
598 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
599 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
600 }
601 
602 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
603 {
604 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
605 }
606 
607 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
608 {
609 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
610 			       ntohl(TCP_FLAG_ACK) |
611 			       snd_wnd);
612 }
613 
614 static inline void tcp_fast_path_on(struct tcp_sock *tp)
615 {
616 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
617 }
618 
619 static inline void tcp_fast_path_check(struct sock *sk)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 
623 	if (skb_queue_empty(&tp->out_of_order_queue) &&
624 	    tp->rcv_wnd &&
625 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
626 	    !tp->urg_data)
627 		tcp_fast_path_on(tp);
628 }
629 
630 /* Compute the actual rto_min value */
631 static inline u32 tcp_rto_min(struct sock *sk)
632 {
633 	const struct dst_entry *dst = __sk_dst_get(sk);
634 	u32 rto_min = TCP_RTO_MIN;
635 
636 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
637 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
638 	return rto_min;
639 }
640 
641 static inline u32 tcp_rto_min_us(struct sock *sk)
642 {
643 	return jiffies_to_usecs(tcp_rto_min(sk));
644 }
645 
646 /* Compute the actual receive window we are currently advertising.
647  * Rcv_nxt can be after the window if our peer push more data
648  * than the offered window.
649  */
650 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
651 {
652 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
653 
654 	if (win < 0)
655 		win = 0;
656 	return (u32) win;
657 }
658 
659 /* Choose a new window, without checks for shrinking, and without
660  * scaling applied to the result.  The caller does these things
661  * if necessary.  This is a "raw" window selection.
662  */
663 u32 __tcp_select_window(struct sock *sk);
664 
665 void tcp_send_window_probe(struct sock *sk);
666 
667 /* TCP timestamps are only 32-bits, this causes a slight
668  * complication on 64-bit systems since we store a snapshot
669  * of jiffies in the buffer control blocks below.  We decided
670  * to use only the low 32-bits of jiffies and hide the ugly
671  * casts with the following macro.
672  */
673 #define tcp_time_stamp		((__u32)(jiffies))
674 
675 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
676 
677 #define TCPHDR_FIN 0x01
678 #define TCPHDR_SYN 0x02
679 #define TCPHDR_RST 0x04
680 #define TCPHDR_PSH 0x08
681 #define TCPHDR_ACK 0x10
682 #define TCPHDR_URG 0x20
683 #define TCPHDR_ECE 0x40
684 #define TCPHDR_CWR 0x80
685 
686 /* This is what the send packet queuing engine uses to pass
687  * TCP per-packet control information to the transmission code.
688  * We also store the host-order sequence numbers in here too.
689  * This is 44 bytes if IPV6 is enabled.
690  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
691  */
692 struct tcp_skb_cb {
693 	union {
694 		struct inet_skb_parm	h4;
695 #if IS_ENABLED(CONFIG_IPV6)
696 		struct inet6_skb_parm	h6;
697 #endif
698 	} header;	/* For incoming frames		*/
699 	__u32		seq;		/* Starting sequence number	*/
700 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
701 	__u32		when;		/* used to compute rtt's	*/
702 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
703 
704 	__u8		sacked;		/* State flags for SACK/FACK.	*/
705 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
706 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
707 #define TCPCB_LOST		0x04	/* SKB is lost			*/
708 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
709 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
710 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
711 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
712 				TCPCB_REPAIRED)
713 
714 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
715 	/* 1 byte hole */
716 	__u32		ack_seq;	/* Sequence number ACK'd	*/
717 };
718 
719 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
720 
721 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
722  *
723  * If we receive a SYN packet with these bits set, it means a network is
724  * playing bad games with TOS bits. In order to avoid possible false congestion
725  * notifications, we disable TCP ECN negociation.
726  */
727 static inline void
728 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
729 		struct net *net)
730 {
731 	const struct tcphdr *th = tcp_hdr(skb);
732 
733 	if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
734 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
735 		inet_rsk(req)->ecn_ok = 1;
736 }
737 
738 /* Due to TSO, an SKB can be composed of multiple actual
739  * packets.  To keep these tracked properly, we use this.
740  */
741 static inline int tcp_skb_pcount(const struct sk_buff *skb)
742 {
743 	return skb_shinfo(skb)->gso_segs;
744 }
745 
746 /* This is valid iff tcp_skb_pcount() > 1. */
747 static inline int tcp_skb_mss(const struct sk_buff *skb)
748 {
749 	return skb_shinfo(skb)->gso_size;
750 }
751 
752 /* Events passed to congestion control interface */
753 enum tcp_ca_event {
754 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
755 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
756 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
757 	CA_EVENT_LOSS,		/* loss timeout */
758 	CA_EVENT_FAST_ACK,	/* in sequence ack */
759 	CA_EVENT_SLOW_ACK,	/* other ack */
760 };
761 
762 /*
763  * Interface for adding new TCP congestion control handlers
764  */
765 #define TCP_CA_NAME_MAX	16
766 #define TCP_CA_MAX	128
767 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
768 
769 #define TCP_CONG_NON_RESTRICTED 0x1
770 
771 struct tcp_congestion_ops {
772 	struct list_head	list;
773 	unsigned long flags;
774 
775 	/* initialize private data (optional) */
776 	void (*init)(struct sock *sk);
777 	/* cleanup private data  (optional) */
778 	void (*release)(struct sock *sk);
779 
780 	/* return slow start threshold (required) */
781 	u32 (*ssthresh)(struct sock *sk);
782 	/* do new cwnd calculation (required) */
783 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
784 	/* call before changing ca_state (optional) */
785 	void (*set_state)(struct sock *sk, u8 new_state);
786 	/* call when cwnd event occurs (optional) */
787 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
788 	/* new value of cwnd after loss (optional) */
789 	u32  (*undo_cwnd)(struct sock *sk);
790 	/* hook for packet ack accounting (optional) */
791 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
792 	/* get info for inet_diag (optional) */
793 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
794 
795 	char 		name[TCP_CA_NAME_MAX];
796 	struct module 	*owner;
797 };
798 
799 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
800 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
801 
802 void tcp_init_congestion_control(struct sock *sk);
803 void tcp_cleanup_congestion_control(struct sock *sk);
804 int tcp_set_default_congestion_control(const char *name);
805 void tcp_get_default_congestion_control(char *name);
806 void tcp_get_available_congestion_control(char *buf, size_t len);
807 void tcp_get_allowed_congestion_control(char *buf, size_t len);
808 int tcp_set_allowed_congestion_control(char *allowed);
809 int tcp_set_congestion_control(struct sock *sk, const char *name);
810 int tcp_slow_start(struct tcp_sock *tp, u32 acked);
811 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
812 
813 extern struct tcp_congestion_ops tcp_init_congestion_ops;
814 u32 tcp_reno_ssthresh(struct sock *sk);
815 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
816 extern struct tcp_congestion_ops tcp_reno;
817 
818 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
819 {
820 	struct inet_connection_sock *icsk = inet_csk(sk);
821 
822 	if (icsk->icsk_ca_ops->set_state)
823 		icsk->icsk_ca_ops->set_state(sk, ca_state);
824 	icsk->icsk_ca_state = ca_state;
825 }
826 
827 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
828 {
829 	const struct inet_connection_sock *icsk = inet_csk(sk);
830 
831 	if (icsk->icsk_ca_ops->cwnd_event)
832 		icsk->icsk_ca_ops->cwnd_event(sk, event);
833 }
834 
835 /* These functions determine how the current flow behaves in respect of SACK
836  * handling. SACK is negotiated with the peer, and therefore it can vary
837  * between different flows.
838  *
839  * tcp_is_sack - SACK enabled
840  * tcp_is_reno - No SACK
841  * tcp_is_fack - FACK enabled, implies SACK enabled
842  */
843 static inline int tcp_is_sack(const struct tcp_sock *tp)
844 {
845 	return tp->rx_opt.sack_ok;
846 }
847 
848 static inline bool tcp_is_reno(const struct tcp_sock *tp)
849 {
850 	return !tcp_is_sack(tp);
851 }
852 
853 static inline bool tcp_is_fack(const struct tcp_sock *tp)
854 {
855 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
856 }
857 
858 static inline void tcp_enable_fack(struct tcp_sock *tp)
859 {
860 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
861 }
862 
863 /* TCP early-retransmit (ER) is similar to but more conservative than
864  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
865  */
866 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
867 {
868 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
869 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
870 		sysctl_tcp_reordering == 3;
871 }
872 
873 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
874 {
875 	tp->do_early_retrans = 0;
876 }
877 
878 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
879 {
880 	return tp->sacked_out + tp->lost_out;
881 }
882 
883 /* This determines how many packets are "in the network" to the best
884  * of our knowledge.  In many cases it is conservative, but where
885  * detailed information is available from the receiver (via SACK
886  * blocks etc.) we can make more aggressive calculations.
887  *
888  * Use this for decisions involving congestion control, use just
889  * tp->packets_out to determine if the send queue is empty or not.
890  *
891  * Read this equation as:
892  *
893  *	"Packets sent once on transmission queue" MINUS
894  *	"Packets left network, but not honestly ACKed yet" PLUS
895  *	"Packets fast retransmitted"
896  */
897 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
898 {
899 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
900 }
901 
902 #define TCP_INFINITE_SSTHRESH	0x7fffffff
903 
904 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
905 {
906 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
907 }
908 
909 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
910 {
911 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
912 	       (1 << inet_csk(sk)->icsk_ca_state);
913 }
914 
915 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
916  * The exception is cwnd reduction phase, when cwnd is decreasing towards
917  * ssthresh.
918  */
919 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
920 {
921 	const struct tcp_sock *tp = tcp_sk(sk);
922 
923 	if (tcp_in_cwnd_reduction(sk))
924 		return tp->snd_ssthresh;
925 	else
926 		return max(tp->snd_ssthresh,
927 			   ((tp->snd_cwnd >> 1) +
928 			    (tp->snd_cwnd >> 2)));
929 }
930 
931 /* Use define here intentionally to get WARN_ON location shown at the caller */
932 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
933 
934 void tcp_enter_cwr(struct sock *sk);
935 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
936 
937 /* The maximum number of MSS of available cwnd for which TSO defers
938  * sending if not using sysctl_tcp_tso_win_divisor.
939  */
940 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
941 {
942 	return 3;
943 }
944 
945 /* Slow start with delack produces 3 packets of burst, so that
946  * it is safe "de facto".  This will be the default - same as
947  * the default reordering threshold - but if reordering increases,
948  * we must be able to allow cwnd to burst at least this much in order
949  * to not pull it back when holes are filled.
950  */
951 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
952 {
953 	return tp->reordering;
954 }
955 
956 /* Returns end sequence number of the receiver's advertised window */
957 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
958 {
959 	return tp->snd_una + tp->snd_wnd;
960 }
961 
962 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
963  * flexible approach. The RFC suggests cwnd should not be raised unless
964  * it was fully used previously. And that's exactly what we do in
965  * congestion avoidance mode. But in slow start we allow cwnd to grow
966  * as long as the application has used half the cwnd.
967  * Example :
968  *    cwnd is 10 (IW10), but application sends 9 frames.
969  *    We allow cwnd to reach 18 when all frames are ACKed.
970  * This check is safe because it's as aggressive as slow start which already
971  * risks 100% overshoot. The advantage is that we discourage application to
972  * either send more filler packets or data to artificially blow up the cwnd
973  * usage, and allow application-limited process to probe bw more aggressively.
974  */
975 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
976 {
977 	const struct tcp_sock *tp = tcp_sk(sk);
978 
979 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
980 	if (tp->snd_cwnd <= tp->snd_ssthresh)
981 		return tp->snd_cwnd < 2 * tp->max_packets_out;
982 
983 	return tp->is_cwnd_limited;
984 }
985 
986 static inline void tcp_check_probe_timer(struct sock *sk)
987 {
988 	const struct tcp_sock *tp = tcp_sk(sk);
989 	const struct inet_connection_sock *icsk = inet_csk(sk);
990 
991 	if (!tp->packets_out && !icsk->icsk_pending)
992 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
993 					  icsk->icsk_rto, TCP_RTO_MAX);
994 }
995 
996 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
997 {
998 	tp->snd_wl1 = seq;
999 }
1000 
1001 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1002 {
1003 	tp->snd_wl1 = seq;
1004 }
1005 
1006 /*
1007  * Calculate(/check) TCP checksum
1008  */
1009 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1010 				   __be32 daddr, __wsum base)
1011 {
1012 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1013 }
1014 
1015 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1016 {
1017 	return __skb_checksum_complete(skb);
1018 }
1019 
1020 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1021 {
1022 	return !skb_csum_unnecessary(skb) &&
1023 		__tcp_checksum_complete(skb);
1024 }
1025 
1026 /* Prequeue for VJ style copy to user, combined with checksumming. */
1027 
1028 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1029 {
1030 	tp->ucopy.task = NULL;
1031 	tp->ucopy.len = 0;
1032 	tp->ucopy.memory = 0;
1033 	skb_queue_head_init(&tp->ucopy.prequeue);
1034 #ifdef CONFIG_NET_DMA
1035 	tp->ucopy.dma_chan = NULL;
1036 	tp->ucopy.wakeup = 0;
1037 	tp->ucopy.pinned_list = NULL;
1038 	tp->ucopy.dma_cookie = 0;
1039 #endif
1040 }
1041 
1042 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1043 
1044 #undef STATE_TRACE
1045 
1046 #ifdef STATE_TRACE
1047 static const char *statename[]={
1048 	"Unused","Established","Syn Sent","Syn Recv",
1049 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1050 	"Close Wait","Last ACK","Listen","Closing"
1051 };
1052 #endif
1053 void tcp_set_state(struct sock *sk, int state);
1054 
1055 void tcp_done(struct sock *sk);
1056 
1057 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1058 {
1059 	rx_opt->dsack = 0;
1060 	rx_opt->num_sacks = 0;
1061 }
1062 
1063 u32 tcp_default_init_rwnd(u32 mss);
1064 
1065 /* Determine a window scaling and initial window to offer. */
1066 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1067 			       __u32 *window_clamp, int wscale_ok,
1068 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1069 
1070 static inline int tcp_win_from_space(int space)
1071 {
1072 	return sysctl_tcp_adv_win_scale<=0 ?
1073 		(space>>(-sysctl_tcp_adv_win_scale)) :
1074 		space - (space>>sysctl_tcp_adv_win_scale);
1075 }
1076 
1077 /* Note: caller must be prepared to deal with negative returns */
1078 static inline int tcp_space(const struct sock *sk)
1079 {
1080 	return tcp_win_from_space(sk->sk_rcvbuf -
1081 				  atomic_read(&sk->sk_rmem_alloc));
1082 }
1083 
1084 static inline int tcp_full_space(const struct sock *sk)
1085 {
1086 	return tcp_win_from_space(sk->sk_rcvbuf);
1087 }
1088 
1089 static inline void tcp_openreq_init(struct request_sock *req,
1090 				    struct tcp_options_received *rx_opt,
1091 				    struct sk_buff *skb, struct sock *sk)
1092 {
1093 	struct inet_request_sock *ireq = inet_rsk(req);
1094 
1095 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1096 	req->cookie_ts = 0;
1097 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1098 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1099 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1100 	req->mss = rx_opt->mss_clamp;
1101 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1102 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1103 	ireq->sack_ok = rx_opt->sack_ok;
1104 	ireq->snd_wscale = rx_opt->snd_wscale;
1105 	ireq->wscale_ok = rx_opt->wscale_ok;
1106 	ireq->acked = 0;
1107 	ireq->ecn_ok = 0;
1108 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
1109 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
1110 	ireq->ir_mark = inet_request_mark(sk, skb);
1111 }
1112 
1113 extern void tcp_openreq_init_rwin(struct request_sock *req,
1114 				  struct sock *sk, struct dst_entry *dst);
1115 
1116 void tcp_enter_memory_pressure(struct sock *sk);
1117 
1118 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1119 {
1120 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1121 }
1122 
1123 static inline int keepalive_time_when(const struct tcp_sock *tp)
1124 {
1125 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1126 }
1127 
1128 static inline int keepalive_probes(const struct tcp_sock *tp)
1129 {
1130 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1131 }
1132 
1133 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1134 {
1135 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1136 
1137 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1138 			  tcp_time_stamp - tp->rcv_tstamp);
1139 }
1140 
1141 static inline int tcp_fin_time(const struct sock *sk)
1142 {
1143 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1144 	const int rto = inet_csk(sk)->icsk_rto;
1145 
1146 	if (fin_timeout < (rto << 2) - (rto >> 1))
1147 		fin_timeout = (rto << 2) - (rto >> 1);
1148 
1149 	return fin_timeout;
1150 }
1151 
1152 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1153 				  int paws_win)
1154 {
1155 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1156 		return true;
1157 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1158 		return true;
1159 	/*
1160 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1161 	 * then following tcp messages have valid values. Ignore 0 value,
1162 	 * or else 'negative' tsval might forbid us to accept their packets.
1163 	 */
1164 	if (!rx_opt->ts_recent)
1165 		return true;
1166 	return false;
1167 }
1168 
1169 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1170 				   int rst)
1171 {
1172 	if (tcp_paws_check(rx_opt, 0))
1173 		return false;
1174 
1175 	/* RST segments are not recommended to carry timestamp,
1176 	   and, if they do, it is recommended to ignore PAWS because
1177 	   "their cleanup function should take precedence over timestamps."
1178 	   Certainly, it is mistake. It is necessary to understand the reasons
1179 	   of this constraint to relax it: if peer reboots, clock may go
1180 	   out-of-sync and half-open connections will not be reset.
1181 	   Actually, the problem would be not existing if all
1182 	   the implementations followed draft about maintaining clock
1183 	   via reboots. Linux-2.2 DOES NOT!
1184 
1185 	   However, we can relax time bounds for RST segments to MSL.
1186 	 */
1187 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1188 		return false;
1189 	return true;
1190 }
1191 
1192 static inline void tcp_mib_init(struct net *net)
1193 {
1194 	/* See RFC 2012 */
1195 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1196 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1197 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1198 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1199 }
1200 
1201 /* from STCP */
1202 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1203 {
1204 	tp->lost_skb_hint = NULL;
1205 }
1206 
1207 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1208 {
1209 	tcp_clear_retrans_hints_partial(tp);
1210 	tp->retransmit_skb_hint = NULL;
1211 }
1212 
1213 /* MD5 Signature */
1214 struct crypto_hash;
1215 
1216 union tcp_md5_addr {
1217 	struct in_addr  a4;
1218 #if IS_ENABLED(CONFIG_IPV6)
1219 	struct in6_addr	a6;
1220 #endif
1221 };
1222 
1223 /* - key database */
1224 struct tcp_md5sig_key {
1225 	struct hlist_node	node;
1226 	u8			keylen;
1227 	u8			family; /* AF_INET or AF_INET6 */
1228 	union tcp_md5_addr	addr;
1229 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1230 	struct rcu_head		rcu;
1231 };
1232 
1233 /* - sock block */
1234 struct tcp_md5sig_info {
1235 	struct hlist_head	head;
1236 	struct rcu_head		rcu;
1237 };
1238 
1239 /* - pseudo header */
1240 struct tcp4_pseudohdr {
1241 	__be32		saddr;
1242 	__be32		daddr;
1243 	__u8		pad;
1244 	__u8		protocol;
1245 	__be16		len;
1246 };
1247 
1248 struct tcp6_pseudohdr {
1249 	struct in6_addr	saddr;
1250 	struct in6_addr daddr;
1251 	__be32		len;
1252 	__be32		protocol;	/* including padding */
1253 };
1254 
1255 union tcp_md5sum_block {
1256 	struct tcp4_pseudohdr ip4;
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 	struct tcp6_pseudohdr ip6;
1259 #endif
1260 };
1261 
1262 /* - pool: digest algorithm, hash description and scratch buffer */
1263 struct tcp_md5sig_pool {
1264 	struct hash_desc	md5_desc;
1265 	union tcp_md5sum_block	md5_blk;
1266 };
1267 
1268 /* - functions */
1269 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1270 			const struct sock *sk, const struct request_sock *req,
1271 			const struct sk_buff *skb);
1272 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1273 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1274 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1275 		   int family);
1276 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1277 					 struct sock *addr_sk);
1278 
1279 #ifdef CONFIG_TCP_MD5SIG
1280 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1281 					 const union tcp_md5_addr *addr,
1282 					 int family);
1283 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1284 #else
1285 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1286 					 const union tcp_md5_addr *addr,
1287 					 int family)
1288 {
1289 	return NULL;
1290 }
1291 #define tcp_twsk_md5_key(twsk)	NULL
1292 #endif
1293 
1294 bool tcp_alloc_md5sig_pool(void);
1295 
1296 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1297 static inline void tcp_put_md5sig_pool(void)
1298 {
1299 	local_bh_enable();
1300 }
1301 
1302 int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1303 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1304 			  unsigned int header_len);
1305 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1306 		     const struct tcp_md5sig_key *key);
1307 
1308 /* From tcp_fastopen.c */
1309 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1310 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1311 			    unsigned long *last_syn_loss);
1312 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1313 			    struct tcp_fastopen_cookie *cookie, bool syn_lost);
1314 struct tcp_fastopen_request {
1315 	/* Fast Open cookie. Size 0 means a cookie request */
1316 	struct tcp_fastopen_cookie	cookie;
1317 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1318 	size_t				size;
1319 	int				copied;	/* queued in tcp_connect() */
1320 };
1321 void tcp_free_fastopen_req(struct tcp_sock *tp);
1322 
1323 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1324 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1325 bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1326 		      struct request_sock *req,
1327 		      struct tcp_fastopen_cookie *foc,
1328 		      struct dst_entry *dst);
1329 void tcp_fastopen_init_key_once(bool publish);
1330 #define TCP_FASTOPEN_KEY_LENGTH 16
1331 
1332 /* Fastopen key context */
1333 struct tcp_fastopen_context {
1334 	struct crypto_cipher	*tfm;
1335 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1336 	struct rcu_head		rcu;
1337 };
1338 
1339 /* write queue abstraction */
1340 static inline void tcp_write_queue_purge(struct sock *sk)
1341 {
1342 	struct sk_buff *skb;
1343 
1344 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1345 		sk_wmem_free_skb(sk, skb);
1346 	sk_mem_reclaim(sk);
1347 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1348 }
1349 
1350 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1351 {
1352 	return skb_peek(&sk->sk_write_queue);
1353 }
1354 
1355 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1356 {
1357 	return skb_peek_tail(&sk->sk_write_queue);
1358 }
1359 
1360 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1361 						   const struct sk_buff *skb)
1362 {
1363 	return skb_queue_next(&sk->sk_write_queue, skb);
1364 }
1365 
1366 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1367 						   const struct sk_buff *skb)
1368 {
1369 	return skb_queue_prev(&sk->sk_write_queue, skb);
1370 }
1371 
1372 #define tcp_for_write_queue(skb, sk)					\
1373 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1374 
1375 #define tcp_for_write_queue_from(skb, sk)				\
1376 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1377 
1378 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1379 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1380 
1381 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1382 {
1383 	return sk->sk_send_head;
1384 }
1385 
1386 static inline bool tcp_skb_is_last(const struct sock *sk,
1387 				   const struct sk_buff *skb)
1388 {
1389 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1390 }
1391 
1392 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1393 {
1394 	if (tcp_skb_is_last(sk, skb))
1395 		sk->sk_send_head = NULL;
1396 	else
1397 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1398 }
1399 
1400 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1401 {
1402 	if (sk->sk_send_head == skb_unlinked)
1403 		sk->sk_send_head = NULL;
1404 }
1405 
1406 static inline void tcp_init_send_head(struct sock *sk)
1407 {
1408 	sk->sk_send_head = NULL;
1409 }
1410 
1411 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1412 {
1413 	__skb_queue_tail(&sk->sk_write_queue, skb);
1414 }
1415 
1416 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1417 {
1418 	__tcp_add_write_queue_tail(sk, skb);
1419 
1420 	/* Queue it, remembering where we must start sending. */
1421 	if (sk->sk_send_head == NULL) {
1422 		sk->sk_send_head = skb;
1423 
1424 		if (tcp_sk(sk)->highest_sack == NULL)
1425 			tcp_sk(sk)->highest_sack = skb;
1426 	}
1427 }
1428 
1429 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1430 {
1431 	__skb_queue_head(&sk->sk_write_queue, skb);
1432 }
1433 
1434 /* Insert buff after skb on the write queue of sk.  */
1435 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1436 						struct sk_buff *buff,
1437 						struct sock *sk)
1438 {
1439 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1440 }
1441 
1442 /* Insert new before skb on the write queue of sk.  */
1443 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1444 						  struct sk_buff *skb,
1445 						  struct sock *sk)
1446 {
1447 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1448 
1449 	if (sk->sk_send_head == skb)
1450 		sk->sk_send_head = new;
1451 }
1452 
1453 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1454 {
1455 	__skb_unlink(skb, &sk->sk_write_queue);
1456 }
1457 
1458 static inline bool tcp_write_queue_empty(struct sock *sk)
1459 {
1460 	return skb_queue_empty(&sk->sk_write_queue);
1461 }
1462 
1463 static inline void tcp_push_pending_frames(struct sock *sk)
1464 {
1465 	if (tcp_send_head(sk)) {
1466 		struct tcp_sock *tp = tcp_sk(sk);
1467 
1468 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1469 	}
1470 }
1471 
1472 /* Start sequence of the skb just after the highest skb with SACKed
1473  * bit, valid only if sacked_out > 0 or when the caller has ensured
1474  * validity by itself.
1475  */
1476 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1477 {
1478 	if (!tp->sacked_out)
1479 		return tp->snd_una;
1480 
1481 	if (tp->highest_sack == NULL)
1482 		return tp->snd_nxt;
1483 
1484 	return TCP_SKB_CB(tp->highest_sack)->seq;
1485 }
1486 
1487 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1488 {
1489 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1490 						tcp_write_queue_next(sk, skb);
1491 }
1492 
1493 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1494 {
1495 	return tcp_sk(sk)->highest_sack;
1496 }
1497 
1498 static inline void tcp_highest_sack_reset(struct sock *sk)
1499 {
1500 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1501 }
1502 
1503 /* Called when old skb is about to be deleted (to be combined with new skb) */
1504 static inline void tcp_highest_sack_combine(struct sock *sk,
1505 					    struct sk_buff *old,
1506 					    struct sk_buff *new)
1507 {
1508 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1509 		tcp_sk(sk)->highest_sack = new;
1510 }
1511 
1512 /* Determines whether this is a thin stream (which may suffer from
1513  * increased latency). Used to trigger latency-reducing mechanisms.
1514  */
1515 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1516 {
1517 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1518 }
1519 
1520 /* /proc */
1521 enum tcp_seq_states {
1522 	TCP_SEQ_STATE_LISTENING,
1523 	TCP_SEQ_STATE_OPENREQ,
1524 	TCP_SEQ_STATE_ESTABLISHED,
1525 };
1526 
1527 int tcp_seq_open(struct inode *inode, struct file *file);
1528 
1529 struct tcp_seq_afinfo {
1530 	char				*name;
1531 	sa_family_t			family;
1532 	const struct file_operations	*seq_fops;
1533 	struct seq_operations		seq_ops;
1534 };
1535 
1536 struct tcp_iter_state {
1537 	struct seq_net_private	p;
1538 	sa_family_t		family;
1539 	enum tcp_seq_states	state;
1540 	struct sock		*syn_wait_sk;
1541 	int			bucket, offset, sbucket, num;
1542 	kuid_t			uid;
1543 	loff_t			last_pos;
1544 };
1545 
1546 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1547 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1548 
1549 extern struct request_sock_ops tcp_request_sock_ops;
1550 extern struct request_sock_ops tcp6_request_sock_ops;
1551 
1552 void tcp_v4_destroy_sock(struct sock *sk);
1553 
1554 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1555 				netdev_features_t features);
1556 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1557 int tcp_gro_complete(struct sk_buff *skb);
1558 
1559 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1560 
1561 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1562 {
1563 	return tp->notsent_lowat ?: sysctl_tcp_notsent_lowat;
1564 }
1565 
1566 static inline bool tcp_stream_memory_free(const struct sock *sk)
1567 {
1568 	const struct tcp_sock *tp = tcp_sk(sk);
1569 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1570 
1571 	return notsent_bytes < tcp_notsent_lowat(tp);
1572 }
1573 
1574 #ifdef CONFIG_PROC_FS
1575 int tcp4_proc_init(void);
1576 void tcp4_proc_exit(void);
1577 #endif
1578 
1579 int tcp_rtx_synack(struct sock *sk, struct request_sock *req);
1580 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1581 		     const struct tcp_request_sock_ops *af_ops,
1582 		     struct sock *sk, struct sk_buff *skb);
1583 
1584 /* TCP af-specific functions */
1585 struct tcp_sock_af_ops {
1586 #ifdef CONFIG_TCP_MD5SIG
1587 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1588 						struct sock *addr_sk);
1589 	int			(*calc_md5_hash) (char *location,
1590 						  struct tcp_md5sig_key *md5,
1591 						  const struct sock *sk,
1592 						  const struct request_sock *req,
1593 						  const struct sk_buff *skb);
1594 	int			(*md5_parse) (struct sock *sk,
1595 					      char __user *optval,
1596 					      int optlen);
1597 #endif
1598 };
1599 
1600 struct tcp_request_sock_ops {
1601 	u16 mss_clamp;
1602 #ifdef CONFIG_TCP_MD5SIG
1603 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1604 						struct request_sock *req);
1605 	int			(*calc_md5_hash) (char *location,
1606 						  struct tcp_md5sig_key *md5,
1607 						  const struct sock *sk,
1608 						  const struct request_sock *req,
1609 						  const struct sk_buff *skb);
1610 #endif
1611 	void (*init_req)(struct request_sock *req, struct sock *sk,
1612 			 struct sk_buff *skb);
1613 #ifdef CONFIG_SYN_COOKIES
1614 	__u32 (*cookie_init_seq)(struct sock *sk, const struct sk_buff *skb,
1615 				 __u16 *mss);
1616 #endif
1617 	struct dst_entry *(*route_req)(struct sock *sk, struct flowi *fl,
1618 				       const struct request_sock *req,
1619 				       bool *strict);
1620 	__u32 (*init_seq)(const struct sk_buff *skb);
1621 	int (*send_synack)(struct sock *sk, struct dst_entry *dst,
1622 			   struct flowi *fl, struct request_sock *req,
1623 			   u16 queue_mapping, struct tcp_fastopen_cookie *foc);
1624 	void (*queue_hash_add)(struct sock *sk, struct request_sock *req,
1625 			       const unsigned long timeout);
1626 };
1627 
1628 #ifdef CONFIG_SYN_COOKIES
1629 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1630 					 struct sock *sk, struct sk_buff *skb,
1631 					 __u16 *mss)
1632 {
1633 	return ops->cookie_init_seq(sk, skb, mss);
1634 }
1635 #else
1636 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1637 					 struct sock *sk, struct sk_buff *skb,
1638 					 __u16 *mss)
1639 {
1640 	return 0;
1641 }
1642 #endif
1643 
1644 int tcpv4_offload_init(void);
1645 
1646 void tcp_v4_init(void);
1647 void tcp_init(void);
1648 
1649 #endif	/* _TCP_H */
1650