xref: /openbmc/linux/include/net/tcp.h (revision 37185b33)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND	10
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		512
72 
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75 
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING	127
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* urg_data states */
83 #define TCP_URG_VALID	0x0100
84 #define TCP_URG_NOTYET	0x0200
85 #define TCP_URG_READ	0x0400
86 
87 #define TCP_RETR1	3	/*
88 				 * This is how many retries it does before it
89 				 * tries to figure out if the gateway is
90 				 * down. Minimal RFC value is 3; it corresponds
91 				 * to ~3sec-8min depending on RTO.
92 				 */
93 
94 #define TCP_RETR2	15	/*
95 				 * This should take at least
96 				 * 90 minutes to time out.
97 				 * RFC1122 says that the limit is 100 sec.
98 				 * 15 is ~13-30min depending on RTO.
99 				 */
100 
101 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
102 				 * connection: ~180sec is RFC minimum	*/
103 
104 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
105 				 * connection: ~180sec is RFC minimum	*/
106 
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 				  * state, about 60 seconds	*/
109 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
110                                  /* BSD style FIN_WAIT2 deadlock breaker.
111 				  * It used to be 3min, new value is 60sec,
112 				  * to combine FIN-WAIT-2 timeout with
113 				  * TIME-WAIT timer.
114 				  */
115 
116 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN	((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN	4U
122 #define TCP_ATO_MIN	4U
123 #endif
124 #define TCP_RTO_MAX	((unsigned)(120*HZ))
125 #define TCP_RTO_MIN	((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
128 						 * used as a fallback RTO for the
129 						 * initial data transmission if no
130 						 * valid RTT sample has been acquired,
131 						 * most likely due to retrans in 3WHS.
132 						 */
133 
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 					                 * for local resources.
136 					                 */
137 
138 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
139 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
140 #define TCP_KEEPALIVE_INTVL	(75*HZ)
141 
142 #define MAX_TCP_KEEPIDLE	32767
143 #define MAX_TCP_KEEPINTVL	32767
144 #define MAX_TCP_KEEPCNT		127
145 #define MAX_TCP_SYNCNT		127
146 
147 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
148 
149 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
151 					 * after this time. It should be equal
152 					 * (or greater than) TCP_TIMEWAIT_LEN
153 					 * to provide reliability equal to one
154 					 * provided by timewait state.
155 					 */
156 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
157 					 * timestamps. It must be less than
158 					 * minimal timewait lifetime.
159 					 */
160 /*
161  *	TCP option
162  */
163 
164 #define TCPOPT_NOP		1	/* Padding */
165 #define TCPOPT_EOL		0	/* End of options */
166 #define TCPOPT_MSS		2	/* Segment size negotiating */
167 #define TCPOPT_WINDOW		3	/* Window scaling */
168 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
169 #define TCPOPT_SACK             5       /* SACK Block */
170 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
173 #define TCPOPT_EXP		254	/* Experimental */
174 /* Magic number to be after the option value for sharing TCP
175  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
176  */
177 #define TCPOPT_FASTOPEN_MAGIC	0xF989
178 
179 /*
180  *     TCP option lengths
181  */
182 
183 #define TCPOLEN_MSS            4
184 #define TCPOLEN_WINDOW         3
185 #define TCPOLEN_SACK_PERM      2
186 #define TCPOLEN_TIMESTAMP      10
187 #define TCPOLEN_MD5SIG         18
188 #define TCPOLEN_EXP_FASTOPEN_BASE  4
189 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
190 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
191 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
192 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
193 
194 /* But this is what stacks really send out. */
195 #define TCPOLEN_TSTAMP_ALIGNED		12
196 #define TCPOLEN_WSCALE_ALIGNED		4
197 #define TCPOLEN_SACKPERM_ALIGNED	4
198 #define TCPOLEN_SACK_BASE		2
199 #define TCPOLEN_SACK_BASE_ALIGNED	4
200 #define TCPOLEN_SACK_PERBLOCK		8
201 #define TCPOLEN_MD5SIG_ALIGNED		20
202 #define TCPOLEN_MSS_ALIGNED		4
203 
204 /* Flags in tp->nonagle */
205 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
206 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
207 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
208 
209 /* TCP thin-stream limits */
210 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
211 
212 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
213 #define TCP_INIT_CWND		10
214 
215 /* Bit Flags for sysctl_tcp_fastopen */
216 #define	TFO_CLIENT_ENABLE	1
217 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
218 
219 extern struct inet_timewait_death_row tcp_death_row;
220 
221 /* sysctl variables for tcp */
222 extern int sysctl_tcp_timestamps;
223 extern int sysctl_tcp_window_scaling;
224 extern int sysctl_tcp_sack;
225 extern int sysctl_tcp_fin_timeout;
226 extern int sysctl_tcp_keepalive_time;
227 extern int sysctl_tcp_keepalive_probes;
228 extern int sysctl_tcp_keepalive_intvl;
229 extern int sysctl_tcp_syn_retries;
230 extern int sysctl_tcp_synack_retries;
231 extern int sysctl_tcp_retries1;
232 extern int sysctl_tcp_retries2;
233 extern int sysctl_tcp_orphan_retries;
234 extern int sysctl_tcp_syncookies;
235 extern int sysctl_tcp_fastopen;
236 extern int sysctl_tcp_retrans_collapse;
237 extern int sysctl_tcp_stdurg;
238 extern int sysctl_tcp_rfc1337;
239 extern int sysctl_tcp_abort_on_overflow;
240 extern int sysctl_tcp_max_orphans;
241 extern int sysctl_tcp_fack;
242 extern int sysctl_tcp_reordering;
243 extern int sysctl_tcp_ecn;
244 extern int sysctl_tcp_dsack;
245 extern int sysctl_tcp_wmem[3];
246 extern int sysctl_tcp_rmem[3];
247 extern int sysctl_tcp_app_win;
248 extern int sysctl_tcp_adv_win_scale;
249 extern int sysctl_tcp_tw_reuse;
250 extern int sysctl_tcp_frto;
251 extern int sysctl_tcp_frto_response;
252 extern int sysctl_tcp_low_latency;
253 extern int sysctl_tcp_dma_copybreak;
254 extern int sysctl_tcp_nometrics_save;
255 extern int sysctl_tcp_moderate_rcvbuf;
256 extern int sysctl_tcp_tso_win_divisor;
257 extern int sysctl_tcp_abc;
258 extern int sysctl_tcp_mtu_probing;
259 extern int sysctl_tcp_base_mss;
260 extern int sysctl_tcp_workaround_signed_windows;
261 extern int sysctl_tcp_slow_start_after_idle;
262 extern int sysctl_tcp_max_ssthresh;
263 extern int sysctl_tcp_cookie_size;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 
270 extern atomic_long_t tcp_memory_allocated;
271 extern struct percpu_counter tcp_sockets_allocated;
272 extern int tcp_memory_pressure;
273 
274 /*
275  * The next routines deal with comparing 32 bit unsigned ints
276  * and worry about wraparound (automatic with unsigned arithmetic).
277  */
278 
279 static inline bool before(__u32 seq1, __u32 seq2)
280 {
281         return (__s32)(seq1-seq2) < 0;
282 }
283 #define after(seq2, seq1) 	before(seq1, seq2)
284 
285 /* is s2<=s1<=s3 ? */
286 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
287 {
288 	return seq3 - seq2 >= seq1 - seq2;
289 }
290 
291 static inline bool tcp_out_of_memory(struct sock *sk)
292 {
293 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
294 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
295 		return true;
296 	return false;
297 }
298 
299 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
300 {
301 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
302 	int orphans = percpu_counter_read_positive(ocp);
303 
304 	if (orphans << shift > sysctl_tcp_max_orphans) {
305 		orphans = percpu_counter_sum_positive(ocp);
306 		if (orphans << shift > sysctl_tcp_max_orphans)
307 			return true;
308 	}
309 	return false;
310 }
311 
312 extern bool tcp_check_oom(struct sock *sk, int shift);
313 
314 /* syncookies: remember time of last synqueue overflow */
315 static inline void tcp_synq_overflow(struct sock *sk)
316 {
317 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
318 }
319 
320 /* syncookies: no recent synqueue overflow on this listening socket? */
321 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
322 {
323 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
324 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
325 }
326 
327 extern struct proto tcp_prot;
328 
329 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
330 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
331 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
332 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
333 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
334 
335 extern void tcp_init_mem(struct net *net);
336 
337 extern void tcp_tasklet_init(void);
338 
339 extern void tcp_v4_err(struct sk_buff *skb, u32);
340 
341 extern void tcp_shutdown (struct sock *sk, int how);
342 
343 extern void tcp_v4_early_demux(struct sk_buff *skb);
344 extern int tcp_v4_rcv(struct sk_buff *skb);
345 
346 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk);
347 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
348 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
349 		       size_t size);
350 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
351 			size_t size, int flags);
352 extern void tcp_release_cb(struct sock *sk);
353 extern void tcp_write_timer_handler(struct sock *sk);
354 extern void tcp_delack_timer_handler(struct sock *sk);
355 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
356 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
357 				 const struct tcphdr *th, unsigned int len);
358 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 			       const struct tcphdr *th, unsigned int len);
360 extern void tcp_rcv_space_adjust(struct sock *sk);
361 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
362 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
363 extern void tcp_twsk_destructor(struct sock *sk);
364 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
365 			       struct pipe_inode_info *pipe, size_t len,
366 			       unsigned int flags);
367 
368 static inline void tcp_dec_quickack_mode(struct sock *sk,
369 					 const unsigned int pkts)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		if (pkts >= icsk->icsk_ack.quick) {
375 			icsk->icsk_ack.quick = 0;
376 			/* Leaving quickack mode we deflate ATO. */
377 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
378 		} else
379 			icsk->icsk_ack.quick -= pkts;
380 	}
381 }
382 
383 #define	TCP_ECN_OK		1
384 #define	TCP_ECN_QUEUE_CWR	2
385 #define	TCP_ECN_DEMAND_CWR	4
386 #define	TCP_ECN_SEEN		8
387 
388 enum tcp_tw_status {
389 	TCP_TW_SUCCESS = 0,
390 	TCP_TW_RST = 1,
391 	TCP_TW_ACK = 2,
392 	TCP_TW_SYN = 3
393 };
394 
395 
396 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
397 						     struct sk_buff *skb,
398 						     const struct tcphdr *th);
399 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
400 				   struct request_sock *req,
401 				   struct request_sock **prev);
402 extern int tcp_child_process(struct sock *parent, struct sock *child,
403 			     struct sk_buff *skb);
404 extern bool tcp_use_frto(struct sock *sk);
405 extern void tcp_enter_frto(struct sock *sk);
406 extern void tcp_enter_loss(struct sock *sk, int how);
407 extern void tcp_clear_retrans(struct tcp_sock *tp);
408 extern void tcp_update_metrics(struct sock *sk);
409 extern void tcp_init_metrics(struct sock *sk);
410 extern void tcp_metrics_init(void);
411 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
412 extern bool tcp_remember_stamp(struct sock *sk);
413 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
414 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
415 				   struct tcp_fastopen_cookie *cookie,
416 				   int *syn_loss, unsigned long *last_syn_loss);
417 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
418 				   struct tcp_fastopen_cookie *cookie,
419 				   bool syn_lost);
420 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
421 extern void tcp_disable_fack(struct tcp_sock *tp);
422 extern void tcp_close(struct sock *sk, long timeout);
423 extern void tcp_init_sock(struct sock *sk);
424 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
425 			     struct poll_table_struct *wait);
426 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
427 			  char __user *optval, int __user *optlen);
428 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
429 			  char __user *optval, unsigned int optlen);
430 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 				 char __user *optval, int __user *optlen);
432 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 				 char __user *optval, unsigned int optlen);
434 extern void tcp_set_keepalive(struct sock *sk, int val);
435 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
436 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
437 		       size_t len, int nonblock, int flags, int *addr_len);
438 extern void tcp_parse_options(const struct sk_buff *skb,
439 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
440 			      int estab, struct tcp_fastopen_cookie *foc);
441 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
449 extern struct sock * tcp_create_openreq_child(struct sock *sk,
450 					      struct request_sock *req,
451 					      struct sk_buff *skb);
452 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
453 					  struct request_sock *req,
454 					  struct dst_entry *dst);
455 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
456 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
457 			  int addr_len);
458 extern int tcp_connect(struct sock *sk);
459 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
460 					struct request_sock *req,
461 					struct request_values *rvp);
462 extern int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_connect_init(struct sock *sk);
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
471 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
472 				    struct ip_options *opt);
473 #ifdef CONFIG_SYN_COOKIES
474 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
475 				     __u16 *mss);
476 #else
477 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
478 					    struct sk_buff *skb,
479 					    __u16 *mss)
480 {
481 	return 0;
482 }
483 #endif
484 
485 extern __u32 cookie_init_timestamp(struct request_sock *req);
486 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
487 
488 /* From net/ipv6/syncookies.c */
489 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
490 #ifdef CONFIG_SYN_COOKIES
491 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
492 				     __u16 *mss);
493 #else
494 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
495 					    struct sk_buff *skb,
496 					    __u16 *mss)
497 {
498 	return 0;
499 }
500 #endif
501 /* tcp_output.c */
502 
503 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
504 				      int nonagle);
505 extern bool tcp_may_send_now(struct sock *sk);
506 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
507 extern void tcp_retransmit_timer(struct sock *sk);
508 extern void tcp_xmit_retransmit_queue(struct sock *);
509 extern void tcp_simple_retransmit(struct sock *);
510 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
511 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
512 
513 extern void tcp_send_probe0(struct sock *);
514 extern void tcp_send_partial(struct sock *);
515 extern int tcp_write_wakeup(struct sock *);
516 extern void tcp_send_fin(struct sock *sk);
517 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
518 extern int tcp_send_synack(struct sock *);
519 extern bool tcp_syn_flood_action(struct sock *sk,
520 				 const struct sk_buff *skb,
521 				 const char *proto);
522 extern void tcp_push_one(struct sock *, unsigned int mss_now);
523 extern void tcp_send_ack(struct sock *sk);
524 extern void tcp_send_delayed_ack(struct sock *sk);
525 
526 /* tcp_input.c */
527 extern void tcp_cwnd_application_limited(struct sock *sk);
528 extern void tcp_resume_early_retransmit(struct sock *sk);
529 extern void tcp_rearm_rto(struct sock *sk);
530 
531 /* tcp_timer.c */
532 extern void tcp_init_xmit_timers(struct sock *);
533 static inline void tcp_clear_xmit_timers(struct sock *sk)
534 {
535 	inet_csk_clear_xmit_timers(sk);
536 }
537 
538 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
539 extern unsigned int tcp_current_mss(struct sock *sk);
540 
541 /* Bound MSS / TSO packet size with the half of the window */
542 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
543 {
544 	int cutoff;
545 
546 	/* When peer uses tiny windows, there is no use in packetizing
547 	 * to sub-MSS pieces for the sake of SWS or making sure there
548 	 * are enough packets in the pipe for fast recovery.
549 	 *
550 	 * On the other hand, for extremely large MSS devices, handling
551 	 * smaller than MSS windows in this way does make sense.
552 	 */
553 	if (tp->max_window >= 512)
554 		cutoff = (tp->max_window >> 1);
555 	else
556 		cutoff = tp->max_window;
557 
558 	if (cutoff && pktsize > cutoff)
559 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
560 	else
561 		return pktsize;
562 }
563 
564 /* tcp.c */
565 extern void tcp_get_info(const struct sock *, struct tcp_info *);
566 
567 /* Read 'sendfile()'-style from a TCP socket */
568 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
569 				unsigned int, size_t);
570 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
571 			 sk_read_actor_t recv_actor);
572 
573 extern void tcp_initialize_rcv_mss(struct sock *sk);
574 
575 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
576 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
577 extern void tcp_mtup_init(struct sock *sk);
578 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
579 
580 static inline void tcp_bound_rto(const struct sock *sk)
581 {
582 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
583 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
584 }
585 
586 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
587 {
588 	return (tp->srtt >> 3) + tp->rttvar;
589 }
590 
591 extern void tcp_set_rto(struct sock *sk);
592 
593 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
594 {
595 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
596 			       ntohl(TCP_FLAG_ACK) |
597 			       snd_wnd);
598 }
599 
600 static inline void tcp_fast_path_on(struct tcp_sock *tp)
601 {
602 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
603 }
604 
605 static inline void tcp_fast_path_check(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 
609 	if (skb_queue_empty(&tp->out_of_order_queue) &&
610 	    tp->rcv_wnd &&
611 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
612 	    !tp->urg_data)
613 		tcp_fast_path_on(tp);
614 }
615 
616 /* Compute the actual rto_min value */
617 static inline u32 tcp_rto_min(struct sock *sk)
618 {
619 	const struct dst_entry *dst = __sk_dst_get(sk);
620 	u32 rto_min = TCP_RTO_MIN;
621 
622 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
623 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
624 	return rto_min;
625 }
626 
627 /* Compute the actual receive window we are currently advertising.
628  * Rcv_nxt can be after the window if our peer push more data
629  * than the offered window.
630  */
631 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
632 {
633 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
634 
635 	if (win < 0)
636 		win = 0;
637 	return (u32) win;
638 }
639 
640 /* Choose a new window, without checks for shrinking, and without
641  * scaling applied to the result.  The caller does these things
642  * if necessary.  This is a "raw" window selection.
643  */
644 extern u32 __tcp_select_window(struct sock *sk);
645 
646 void tcp_send_window_probe(struct sock *sk);
647 
648 /* TCP timestamps are only 32-bits, this causes a slight
649  * complication on 64-bit systems since we store a snapshot
650  * of jiffies in the buffer control blocks below.  We decided
651  * to use only the low 32-bits of jiffies and hide the ugly
652  * casts with the following macro.
653  */
654 #define tcp_time_stamp		((__u32)(jiffies))
655 
656 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
657 
658 #define TCPHDR_FIN 0x01
659 #define TCPHDR_SYN 0x02
660 #define TCPHDR_RST 0x04
661 #define TCPHDR_PSH 0x08
662 #define TCPHDR_ACK 0x10
663 #define TCPHDR_URG 0x20
664 #define TCPHDR_ECE 0x40
665 #define TCPHDR_CWR 0x80
666 
667 /* This is what the send packet queuing engine uses to pass
668  * TCP per-packet control information to the transmission code.
669  * We also store the host-order sequence numbers in here too.
670  * This is 44 bytes if IPV6 is enabled.
671  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
672  */
673 struct tcp_skb_cb {
674 	union {
675 		struct inet_skb_parm	h4;
676 #if IS_ENABLED(CONFIG_IPV6)
677 		struct inet6_skb_parm	h6;
678 #endif
679 	} header;	/* For incoming frames		*/
680 	__u32		seq;		/* Starting sequence number	*/
681 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
682 	__u32		when;		/* used to compute rtt's	*/
683 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
684 
685 	__u8		sacked;		/* State flags for SACK/FACK.	*/
686 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
687 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
688 #define TCPCB_LOST		0x04	/* SKB is lost			*/
689 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
690 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
691 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
692 
693 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
694 	/* 1 byte hole */
695 	__u32		ack_seq;	/* Sequence number ACK'd	*/
696 };
697 
698 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
699 
700 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
701  *
702  * If we receive a SYN packet with these bits set, it means a network is
703  * playing bad games with TOS bits. In order to avoid possible false congestion
704  * notifications, we disable TCP ECN negociation.
705  */
706 static inline void
707 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb)
708 {
709 	const struct tcphdr *th = tcp_hdr(skb);
710 
711 	if (sysctl_tcp_ecn && th->ece && th->cwr &&
712 	    INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
713 		inet_rsk(req)->ecn_ok = 1;
714 }
715 
716 /* Due to TSO, an SKB can be composed of multiple actual
717  * packets.  To keep these tracked properly, we use this.
718  */
719 static inline int tcp_skb_pcount(const struct sk_buff *skb)
720 {
721 	return skb_shinfo(skb)->gso_segs;
722 }
723 
724 /* This is valid iff tcp_skb_pcount() > 1. */
725 static inline int tcp_skb_mss(const struct sk_buff *skb)
726 {
727 	return skb_shinfo(skb)->gso_size;
728 }
729 
730 /* Events passed to congestion control interface */
731 enum tcp_ca_event {
732 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
733 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
734 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
735 	CA_EVENT_FRTO,		/* fast recovery timeout */
736 	CA_EVENT_LOSS,		/* loss timeout */
737 	CA_EVENT_FAST_ACK,	/* in sequence ack */
738 	CA_EVENT_SLOW_ACK,	/* other ack */
739 };
740 
741 /*
742  * Interface for adding new TCP congestion control handlers
743  */
744 #define TCP_CA_NAME_MAX	16
745 #define TCP_CA_MAX	128
746 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
747 
748 #define TCP_CONG_NON_RESTRICTED 0x1
749 #define TCP_CONG_RTT_STAMP	0x2
750 
751 struct tcp_congestion_ops {
752 	struct list_head	list;
753 	unsigned long flags;
754 
755 	/* initialize private data (optional) */
756 	void (*init)(struct sock *sk);
757 	/* cleanup private data  (optional) */
758 	void (*release)(struct sock *sk);
759 
760 	/* return slow start threshold (required) */
761 	u32 (*ssthresh)(struct sock *sk);
762 	/* lower bound for congestion window (optional) */
763 	u32 (*min_cwnd)(const struct sock *sk);
764 	/* do new cwnd calculation (required) */
765 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
766 	/* call before changing ca_state (optional) */
767 	void (*set_state)(struct sock *sk, u8 new_state);
768 	/* call when cwnd event occurs (optional) */
769 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
770 	/* new value of cwnd after loss (optional) */
771 	u32  (*undo_cwnd)(struct sock *sk);
772 	/* hook for packet ack accounting (optional) */
773 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
774 	/* get info for inet_diag (optional) */
775 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
776 
777 	char 		name[TCP_CA_NAME_MAX];
778 	struct module 	*owner;
779 };
780 
781 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
782 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
783 
784 extern void tcp_init_congestion_control(struct sock *sk);
785 extern void tcp_cleanup_congestion_control(struct sock *sk);
786 extern int tcp_set_default_congestion_control(const char *name);
787 extern void tcp_get_default_congestion_control(char *name);
788 extern void tcp_get_available_congestion_control(char *buf, size_t len);
789 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
790 extern int tcp_set_allowed_congestion_control(char *allowed);
791 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
792 extern void tcp_slow_start(struct tcp_sock *tp);
793 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
794 
795 extern struct tcp_congestion_ops tcp_init_congestion_ops;
796 extern u32 tcp_reno_ssthresh(struct sock *sk);
797 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
798 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
799 extern struct tcp_congestion_ops tcp_reno;
800 
801 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
802 {
803 	struct inet_connection_sock *icsk = inet_csk(sk);
804 
805 	if (icsk->icsk_ca_ops->set_state)
806 		icsk->icsk_ca_ops->set_state(sk, ca_state);
807 	icsk->icsk_ca_state = ca_state;
808 }
809 
810 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
811 {
812 	const struct inet_connection_sock *icsk = inet_csk(sk);
813 
814 	if (icsk->icsk_ca_ops->cwnd_event)
815 		icsk->icsk_ca_ops->cwnd_event(sk, event);
816 }
817 
818 /* These functions determine how the current flow behaves in respect of SACK
819  * handling. SACK is negotiated with the peer, and therefore it can vary
820  * between different flows.
821  *
822  * tcp_is_sack - SACK enabled
823  * tcp_is_reno - No SACK
824  * tcp_is_fack - FACK enabled, implies SACK enabled
825  */
826 static inline int tcp_is_sack(const struct tcp_sock *tp)
827 {
828 	return tp->rx_opt.sack_ok;
829 }
830 
831 static inline bool tcp_is_reno(const struct tcp_sock *tp)
832 {
833 	return !tcp_is_sack(tp);
834 }
835 
836 static inline bool tcp_is_fack(const struct tcp_sock *tp)
837 {
838 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
839 }
840 
841 static inline void tcp_enable_fack(struct tcp_sock *tp)
842 {
843 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
844 }
845 
846 /* TCP early-retransmit (ER) is similar to but more conservative than
847  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
848  */
849 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
850 {
851 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
852 		!sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
853 	tp->early_retrans_delayed = 0;
854 }
855 
856 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
857 {
858 	tp->do_early_retrans = 0;
859 }
860 
861 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
862 {
863 	return tp->sacked_out + tp->lost_out;
864 }
865 
866 /* This determines how many packets are "in the network" to the best
867  * of our knowledge.  In many cases it is conservative, but where
868  * detailed information is available from the receiver (via SACK
869  * blocks etc.) we can make more aggressive calculations.
870  *
871  * Use this for decisions involving congestion control, use just
872  * tp->packets_out to determine if the send queue is empty or not.
873  *
874  * Read this equation as:
875  *
876  *	"Packets sent once on transmission queue" MINUS
877  *	"Packets left network, but not honestly ACKed yet" PLUS
878  *	"Packets fast retransmitted"
879  */
880 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
881 {
882 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
883 }
884 
885 #define TCP_INFINITE_SSTHRESH	0x7fffffff
886 
887 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
888 {
889 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
890 }
891 
892 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
893  * The exception is rate halving phase, when cwnd is decreasing towards
894  * ssthresh.
895  */
896 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
897 {
898 	const struct tcp_sock *tp = tcp_sk(sk);
899 
900 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
901 		return tp->snd_ssthresh;
902 	else
903 		return max(tp->snd_ssthresh,
904 			   ((tp->snd_cwnd >> 1) +
905 			    (tp->snd_cwnd >> 2)));
906 }
907 
908 /* Use define here intentionally to get WARN_ON location shown at the caller */
909 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
910 
911 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
912 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
913 
914 /* The maximum number of MSS of available cwnd for which TSO defers
915  * sending if not using sysctl_tcp_tso_win_divisor.
916  */
917 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
918 {
919 	return 3;
920 }
921 
922 /* Slow start with delack produces 3 packets of burst, so that
923  * it is safe "de facto".  This will be the default - same as
924  * the default reordering threshold - but if reordering increases,
925  * we must be able to allow cwnd to burst at least this much in order
926  * to not pull it back when holes are filled.
927  */
928 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
929 {
930 	return tp->reordering;
931 }
932 
933 /* Returns end sequence number of the receiver's advertised window */
934 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
935 {
936 	return tp->snd_una + tp->snd_wnd;
937 }
938 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
939 
940 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
941 				       const struct sk_buff *skb)
942 {
943 	if (skb->len < mss)
944 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
945 }
946 
947 static inline void tcp_check_probe_timer(struct sock *sk)
948 {
949 	const struct tcp_sock *tp = tcp_sk(sk);
950 	const struct inet_connection_sock *icsk = inet_csk(sk);
951 
952 	if (!tp->packets_out && !icsk->icsk_pending)
953 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
954 					  icsk->icsk_rto, TCP_RTO_MAX);
955 }
956 
957 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
958 {
959 	tp->snd_wl1 = seq;
960 }
961 
962 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
963 {
964 	tp->snd_wl1 = seq;
965 }
966 
967 /*
968  * Calculate(/check) TCP checksum
969  */
970 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
971 				   __be32 daddr, __wsum base)
972 {
973 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
974 }
975 
976 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
977 {
978 	return __skb_checksum_complete(skb);
979 }
980 
981 static inline bool tcp_checksum_complete(struct sk_buff *skb)
982 {
983 	return !skb_csum_unnecessary(skb) &&
984 		__tcp_checksum_complete(skb);
985 }
986 
987 /* Prequeue for VJ style copy to user, combined with checksumming. */
988 
989 static inline void tcp_prequeue_init(struct tcp_sock *tp)
990 {
991 	tp->ucopy.task = NULL;
992 	tp->ucopy.len = 0;
993 	tp->ucopy.memory = 0;
994 	skb_queue_head_init(&tp->ucopy.prequeue);
995 #ifdef CONFIG_NET_DMA
996 	tp->ucopy.dma_chan = NULL;
997 	tp->ucopy.wakeup = 0;
998 	tp->ucopy.pinned_list = NULL;
999 	tp->ucopy.dma_cookie = 0;
1000 #endif
1001 }
1002 
1003 /* Packet is added to VJ-style prequeue for processing in process
1004  * context, if a reader task is waiting. Apparently, this exciting
1005  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1006  * failed somewhere. Latency? Burstiness? Well, at least now we will
1007  * see, why it failed. 8)8)				  --ANK
1008  *
1009  * NOTE: is this not too big to inline?
1010  */
1011 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1012 {
1013 	struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
1016 		return false;
1017 
1018 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1019 	tp->ucopy.memory += skb->truesize;
1020 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1021 		struct sk_buff *skb1;
1022 
1023 		BUG_ON(sock_owned_by_user(sk));
1024 
1025 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1026 			sk_backlog_rcv(sk, skb1);
1027 			NET_INC_STATS_BH(sock_net(sk),
1028 					 LINUX_MIB_TCPPREQUEUEDROPPED);
1029 		}
1030 
1031 		tp->ucopy.memory = 0;
1032 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1033 		wake_up_interruptible_sync_poll(sk_sleep(sk),
1034 					   POLLIN | POLLRDNORM | POLLRDBAND);
1035 		if (!inet_csk_ack_scheduled(sk))
1036 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1037 						  (3 * tcp_rto_min(sk)) / 4,
1038 						  TCP_RTO_MAX);
1039 	}
1040 	return true;
1041 }
1042 
1043 
1044 #undef STATE_TRACE
1045 
1046 #ifdef STATE_TRACE
1047 static const char *statename[]={
1048 	"Unused","Established","Syn Sent","Syn Recv",
1049 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1050 	"Close Wait","Last ACK","Listen","Closing"
1051 };
1052 #endif
1053 extern void tcp_set_state(struct sock *sk, int state);
1054 
1055 extern void tcp_done(struct sock *sk);
1056 
1057 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1058 {
1059 	rx_opt->dsack = 0;
1060 	rx_opt->num_sacks = 0;
1061 }
1062 
1063 /* Determine a window scaling and initial window to offer. */
1064 extern void tcp_select_initial_window(int __space, __u32 mss,
1065 				      __u32 *rcv_wnd, __u32 *window_clamp,
1066 				      int wscale_ok, __u8 *rcv_wscale,
1067 				      __u32 init_rcv_wnd);
1068 
1069 static inline int tcp_win_from_space(int space)
1070 {
1071 	return sysctl_tcp_adv_win_scale<=0 ?
1072 		(space>>(-sysctl_tcp_adv_win_scale)) :
1073 		space - (space>>sysctl_tcp_adv_win_scale);
1074 }
1075 
1076 /* Note: caller must be prepared to deal with negative returns */
1077 static inline int tcp_space(const struct sock *sk)
1078 {
1079 	return tcp_win_from_space(sk->sk_rcvbuf -
1080 				  atomic_read(&sk->sk_rmem_alloc));
1081 }
1082 
1083 static inline int tcp_full_space(const struct sock *sk)
1084 {
1085 	return tcp_win_from_space(sk->sk_rcvbuf);
1086 }
1087 
1088 static inline void tcp_openreq_init(struct request_sock *req,
1089 				    struct tcp_options_received *rx_opt,
1090 				    struct sk_buff *skb)
1091 {
1092 	struct inet_request_sock *ireq = inet_rsk(req);
1093 
1094 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1095 	req->cookie_ts = 0;
1096 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1097 	req->mss = rx_opt->mss_clamp;
1098 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1099 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1100 	ireq->sack_ok = rx_opt->sack_ok;
1101 	ireq->snd_wscale = rx_opt->snd_wscale;
1102 	ireq->wscale_ok = rx_opt->wscale_ok;
1103 	ireq->acked = 0;
1104 	ireq->ecn_ok = 0;
1105 	ireq->rmt_port = tcp_hdr(skb)->source;
1106 	ireq->loc_port = tcp_hdr(skb)->dest;
1107 }
1108 
1109 extern void tcp_enter_memory_pressure(struct sock *sk);
1110 
1111 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1112 {
1113 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1114 }
1115 
1116 static inline int keepalive_time_when(const struct tcp_sock *tp)
1117 {
1118 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1119 }
1120 
1121 static inline int keepalive_probes(const struct tcp_sock *tp)
1122 {
1123 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1124 }
1125 
1126 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1127 {
1128 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1129 
1130 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1131 			  tcp_time_stamp - tp->rcv_tstamp);
1132 }
1133 
1134 static inline int tcp_fin_time(const struct sock *sk)
1135 {
1136 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1137 	const int rto = inet_csk(sk)->icsk_rto;
1138 
1139 	if (fin_timeout < (rto << 2) - (rto >> 1))
1140 		fin_timeout = (rto << 2) - (rto >> 1);
1141 
1142 	return fin_timeout;
1143 }
1144 
1145 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1146 				  int paws_win)
1147 {
1148 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1149 		return true;
1150 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1151 		return true;
1152 	/*
1153 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1154 	 * then following tcp messages have valid values. Ignore 0 value,
1155 	 * or else 'negative' tsval might forbid us to accept their packets.
1156 	 */
1157 	if (!rx_opt->ts_recent)
1158 		return true;
1159 	return false;
1160 }
1161 
1162 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1163 				   int rst)
1164 {
1165 	if (tcp_paws_check(rx_opt, 0))
1166 		return false;
1167 
1168 	/* RST segments are not recommended to carry timestamp,
1169 	   and, if they do, it is recommended to ignore PAWS because
1170 	   "their cleanup function should take precedence over timestamps."
1171 	   Certainly, it is mistake. It is necessary to understand the reasons
1172 	   of this constraint to relax it: if peer reboots, clock may go
1173 	   out-of-sync and half-open connections will not be reset.
1174 	   Actually, the problem would be not existing if all
1175 	   the implementations followed draft about maintaining clock
1176 	   via reboots. Linux-2.2 DOES NOT!
1177 
1178 	   However, we can relax time bounds for RST segments to MSL.
1179 	 */
1180 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1181 		return false;
1182 	return true;
1183 }
1184 
1185 static inline void tcp_mib_init(struct net *net)
1186 {
1187 	/* See RFC 2012 */
1188 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1189 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1190 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1191 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1192 }
1193 
1194 /* from STCP */
1195 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1196 {
1197 	tp->lost_skb_hint = NULL;
1198 	tp->scoreboard_skb_hint = NULL;
1199 }
1200 
1201 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1202 {
1203 	tcp_clear_retrans_hints_partial(tp);
1204 	tp->retransmit_skb_hint = NULL;
1205 }
1206 
1207 /* MD5 Signature */
1208 struct crypto_hash;
1209 
1210 union tcp_md5_addr {
1211 	struct in_addr  a4;
1212 #if IS_ENABLED(CONFIG_IPV6)
1213 	struct in6_addr	a6;
1214 #endif
1215 };
1216 
1217 /* - key database */
1218 struct tcp_md5sig_key {
1219 	struct hlist_node	node;
1220 	u8			keylen;
1221 	u8			family; /* AF_INET or AF_INET6 */
1222 	union tcp_md5_addr	addr;
1223 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1224 	struct rcu_head		rcu;
1225 };
1226 
1227 /* - sock block */
1228 struct tcp_md5sig_info {
1229 	struct hlist_head	head;
1230 	struct rcu_head		rcu;
1231 };
1232 
1233 /* - pseudo header */
1234 struct tcp4_pseudohdr {
1235 	__be32		saddr;
1236 	__be32		daddr;
1237 	__u8		pad;
1238 	__u8		protocol;
1239 	__be16		len;
1240 };
1241 
1242 struct tcp6_pseudohdr {
1243 	struct in6_addr	saddr;
1244 	struct in6_addr daddr;
1245 	__be32		len;
1246 	__be32		protocol;	/* including padding */
1247 };
1248 
1249 union tcp_md5sum_block {
1250 	struct tcp4_pseudohdr ip4;
1251 #if IS_ENABLED(CONFIG_IPV6)
1252 	struct tcp6_pseudohdr ip6;
1253 #endif
1254 };
1255 
1256 /* - pool: digest algorithm, hash description and scratch buffer */
1257 struct tcp_md5sig_pool {
1258 	struct hash_desc	md5_desc;
1259 	union tcp_md5sum_block	md5_blk;
1260 };
1261 
1262 /* - functions */
1263 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1264 			       const struct sock *sk,
1265 			       const struct request_sock *req,
1266 			       const struct sk_buff *skb);
1267 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1268 			  int family, const u8 *newkey,
1269 			  u8 newkeylen, gfp_t gfp);
1270 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1271 			  int family);
1272 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1273 					 struct sock *addr_sk);
1274 
1275 #ifdef CONFIG_TCP_MD5SIG
1276 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1277 			const union tcp_md5_addr *addr, int family);
1278 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1279 #else
1280 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1281 					 const union tcp_md5_addr *addr,
1282 					 int family)
1283 {
1284 	return NULL;
1285 }
1286 #define tcp_twsk_md5_key(twsk)	NULL
1287 #endif
1288 
1289 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1290 extern void tcp_free_md5sig_pool(void);
1291 
1292 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1293 extern void tcp_put_md5sig_pool(void);
1294 
1295 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1296 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1297 				 unsigned int header_len);
1298 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1299 			    const struct tcp_md5sig_key *key);
1300 
1301 struct tcp_fastopen_request {
1302 	/* Fast Open cookie. Size 0 means a cookie request */
1303 	struct tcp_fastopen_cookie	cookie;
1304 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1305 	u16				copied;	/* queued in tcp_connect() */
1306 };
1307 
1308 void tcp_free_fastopen_req(struct tcp_sock *tp);
1309 
1310 /* write queue abstraction */
1311 static inline void tcp_write_queue_purge(struct sock *sk)
1312 {
1313 	struct sk_buff *skb;
1314 
1315 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1316 		sk_wmem_free_skb(sk, skb);
1317 	sk_mem_reclaim(sk);
1318 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1319 }
1320 
1321 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1322 {
1323 	return skb_peek(&sk->sk_write_queue);
1324 }
1325 
1326 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1327 {
1328 	return skb_peek_tail(&sk->sk_write_queue);
1329 }
1330 
1331 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1332 						   const struct sk_buff *skb)
1333 {
1334 	return skb_queue_next(&sk->sk_write_queue, skb);
1335 }
1336 
1337 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1338 						   const struct sk_buff *skb)
1339 {
1340 	return skb_queue_prev(&sk->sk_write_queue, skb);
1341 }
1342 
1343 #define tcp_for_write_queue(skb, sk)					\
1344 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1345 
1346 #define tcp_for_write_queue_from(skb, sk)				\
1347 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1348 
1349 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1350 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1351 
1352 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1353 {
1354 	return sk->sk_send_head;
1355 }
1356 
1357 static inline bool tcp_skb_is_last(const struct sock *sk,
1358 				   const struct sk_buff *skb)
1359 {
1360 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1361 }
1362 
1363 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1364 {
1365 	if (tcp_skb_is_last(sk, skb))
1366 		sk->sk_send_head = NULL;
1367 	else
1368 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1369 }
1370 
1371 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1372 {
1373 	if (sk->sk_send_head == skb_unlinked)
1374 		sk->sk_send_head = NULL;
1375 }
1376 
1377 static inline void tcp_init_send_head(struct sock *sk)
1378 {
1379 	sk->sk_send_head = NULL;
1380 }
1381 
1382 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1383 {
1384 	__skb_queue_tail(&sk->sk_write_queue, skb);
1385 }
1386 
1387 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1388 {
1389 	__tcp_add_write_queue_tail(sk, skb);
1390 
1391 	/* Queue it, remembering where we must start sending. */
1392 	if (sk->sk_send_head == NULL) {
1393 		sk->sk_send_head = skb;
1394 
1395 		if (tcp_sk(sk)->highest_sack == NULL)
1396 			tcp_sk(sk)->highest_sack = skb;
1397 	}
1398 }
1399 
1400 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1401 {
1402 	__skb_queue_head(&sk->sk_write_queue, skb);
1403 }
1404 
1405 /* Insert buff after skb on the write queue of sk.  */
1406 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1407 						struct sk_buff *buff,
1408 						struct sock *sk)
1409 {
1410 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1411 }
1412 
1413 /* Insert new before skb on the write queue of sk.  */
1414 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1415 						  struct sk_buff *skb,
1416 						  struct sock *sk)
1417 {
1418 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1419 
1420 	if (sk->sk_send_head == skb)
1421 		sk->sk_send_head = new;
1422 }
1423 
1424 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1425 {
1426 	__skb_unlink(skb, &sk->sk_write_queue);
1427 }
1428 
1429 static inline bool tcp_write_queue_empty(struct sock *sk)
1430 {
1431 	return skb_queue_empty(&sk->sk_write_queue);
1432 }
1433 
1434 static inline void tcp_push_pending_frames(struct sock *sk)
1435 {
1436 	if (tcp_send_head(sk)) {
1437 		struct tcp_sock *tp = tcp_sk(sk);
1438 
1439 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1440 	}
1441 }
1442 
1443 /* Start sequence of the skb just after the highest skb with SACKed
1444  * bit, valid only if sacked_out > 0 or when the caller has ensured
1445  * validity by itself.
1446  */
1447 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1448 {
1449 	if (!tp->sacked_out)
1450 		return tp->snd_una;
1451 
1452 	if (tp->highest_sack == NULL)
1453 		return tp->snd_nxt;
1454 
1455 	return TCP_SKB_CB(tp->highest_sack)->seq;
1456 }
1457 
1458 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1459 {
1460 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1461 						tcp_write_queue_next(sk, skb);
1462 }
1463 
1464 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1465 {
1466 	return tcp_sk(sk)->highest_sack;
1467 }
1468 
1469 static inline void tcp_highest_sack_reset(struct sock *sk)
1470 {
1471 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1472 }
1473 
1474 /* Called when old skb is about to be deleted (to be combined with new skb) */
1475 static inline void tcp_highest_sack_combine(struct sock *sk,
1476 					    struct sk_buff *old,
1477 					    struct sk_buff *new)
1478 {
1479 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1480 		tcp_sk(sk)->highest_sack = new;
1481 }
1482 
1483 /* Determines whether this is a thin stream (which may suffer from
1484  * increased latency). Used to trigger latency-reducing mechanisms.
1485  */
1486 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1487 {
1488 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1489 }
1490 
1491 /* /proc */
1492 enum tcp_seq_states {
1493 	TCP_SEQ_STATE_LISTENING,
1494 	TCP_SEQ_STATE_OPENREQ,
1495 	TCP_SEQ_STATE_ESTABLISHED,
1496 	TCP_SEQ_STATE_TIME_WAIT,
1497 };
1498 
1499 int tcp_seq_open(struct inode *inode, struct file *file);
1500 
1501 struct tcp_seq_afinfo {
1502 	char				*name;
1503 	sa_family_t			family;
1504 	const struct file_operations	*seq_fops;
1505 	struct seq_operations		seq_ops;
1506 };
1507 
1508 struct tcp_iter_state {
1509 	struct seq_net_private	p;
1510 	sa_family_t		family;
1511 	enum tcp_seq_states	state;
1512 	struct sock		*syn_wait_sk;
1513 	int			bucket, offset, sbucket, num, uid;
1514 	loff_t			last_pos;
1515 };
1516 
1517 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1518 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1519 
1520 extern struct request_sock_ops tcp_request_sock_ops;
1521 extern struct request_sock_ops tcp6_request_sock_ops;
1522 
1523 extern void tcp_v4_destroy_sock(struct sock *sk);
1524 
1525 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1526 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1527 				       netdev_features_t features);
1528 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1529 					struct sk_buff *skb);
1530 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1531 					 struct sk_buff *skb);
1532 extern int tcp_gro_complete(struct sk_buff *skb);
1533 extern int tcp4_gro_complete(struct sk_buff *skb);
1534 
1535 #ifdef CONFIG_PROC_FS
1536 extern int tcp4_proc_init(void);
1537 extern void tcp4_proc_exit(void);
1538 #endif
1539 
1540 /* TCP af-specific functions */
1541 struct tcp_sock_af_ops {
1542 #ifdef CONFIG_TCP_MD5SIG
1543 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1544 						struct sock *addr_sk);
1545 	int			(*calc_md5_hash) (char *location,
1546 						  struct tcp_md5sig_key *md5,
1547 						  const struct sock *sk,
1548 						  const struct request_sock *req,
1549 						  const struct sk_buff *skb);
1550 	int			(*md5_parse) (struct sock *sk,
1551 					      char __user *optval,
1552 					      int optlen);
1553 #endif
1554 };
1555 
1556 struct tcp_request_sock_ops {
1557 #ifdef CONFIG_TCP_MD5SIG
1558 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1559 						struct request_sock *req);
1560 	int			(*calc_md5_hash) (char *location,
1561 						  struct tcp_md5sig_key *md5,
1562 						  const struct sock *sk,
1563 						  const struct request_sock *req,
1564 						  const struct sk_buff *skb);
1565 #endif
1566 };
1567 
1568 /* Using SHA1 for now, define some constants.
1569  */
1570 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1571 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1572 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1573 
1574 extern int tcp_cookie_generator(u32 *bakery);
1575 
1576 /**
1577  *	struct tcp_cookie_values - each socket needs extra space for the
1578  *	cookies, together with (optional) space for any SYN data.
1579  *
1580  *	A tcp_sock contains a pointer to the current value, and this is
1581  *	cloned to the tcp_timewait_sock.
1582  *
1583  * @cookie_pair:	variable data from the option exchange.
1584  *
1585  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1586  *			indicates default (sysctl_tcp_cookie_size).
1587  *			After cookie sent, remembers size of cookie.
1588  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1589  *
1590  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1591  *			constant payload is specified (@s_data_constant),
1592  *			holds its length instead.
1593  *			Range 0 to TCP_MSS_DESIRED.
1594  *
1595  * @s_data_payload:	constant data that is to be included in the
1596  *			payload of SYN or SYNACK segments when the
1597  *			cookie option is present.
1598  */
1599 struct tcp_cookie_values {
1600 	struct kref	kref;
1601 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1602 	u8		cookie_pair_size;
1603 	u8		cookie_desired;
1604 	u16		s_data_desired:11,
1605 			s_data_constant:1,
1606 			s_data_in:1,
1607 			s_data_out:1,
1608 			s_data_unused:2;
1609 	u8		s_data_payload[0];
1610 };
1611 
1612 static inline void tcp_cookie_values_release(struct kref *kref)
1613 {
1614 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1615 }
1616 
1617 /* The length of constant payload data.  Note that s_data_desired is
1618  * overloaded, depending on s_data_constant: either the length of constant
1619  * data (returned here) or the limit on variable data.
1620  */
1621 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1622 {
1623 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1624 		? tp->cookie_values->s_data_desired
1625 		: 0;
1626 }
1627 
1628 /**
1629  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1630  *
1631  *	As tcp_request_sock has already been extended in other places, the
1632  *	only remaining method is to pass stack values along as function
1633  *	parameters.  These parameters are not needed after sending SYNACK.
1634  *
1635  * @cookie_bakery:	cryptographic secret and message workspace.
1636  *
1637  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1638  *			struct tcp_options_received (above).
1639  */
1640 struct tcp_extend_values {
1641 	struct request_values		rv;
1642 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1643 	u8				cookie_plus:6,
1644 					cookie_out_never:1,
1645 					cookie_in_always:1;
1646 };
1647 
1648 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1649 {
1650 	return (struct tcp_extend_values *)rvp;
1651 }
1652 
1653 extern void tcp_v4_init(void);
1654 extern void tcp_init(void);
1655 
1656 #endif	/* _TCP_H */
1657