xref: /openbmc/linux/include/net/tcp.h (revision 34facb04)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 
29 #include <net/inet_connection_sock.h>
30 #include <net/inet_timewait_sock.h>
31 #include <net/inet_hashtables.h>
32 #include <net/checksum.h>
33 #include <net/request_sock.h>
34 #include <net/sock_reuseport.h>
35 #include <net/sock.h>
36 #include <net/snmp.h>
37 #include <net/ip.h>
38 #include <net/tcp_states.h>
39 #include <net/inet_ecn.h>
40 #include <net/dst.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
187 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
188 #define TCPOPT_EXP		254	/* Experimental */
189 /* Magic number to be after the option value for sharing TCP
190  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
191  */
192 #define TCPOPT_FASTOPEN_MAGIC	0xF989
193 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
194 
195 /*
196  *     TCP option lengths
197  */
198 
199 #define TCPOLEN_MSS            4
200 #define TCPOLEN_WINDOW         3
201 #define TCPOLEN_SACK_PERM      2
202 #define TCPOLEN_TIMESTAMP      10
203 #define TCPOLEN_MD5SIG         18
204 #define TCPOLEN_FASTOPEN_BASE  2
205 #define TCPOLEN_EXP_FASTOPEN_BASE  4
206 #define TCPOLEN_EXP_SMC_BASE   6
207 
208 /* But this is what stacks really send out. */
209 #define TCPOLEN_TSTAMP_ALIGNED		12
210 #define TCPOLEN_WSCALE_ALIGNED		4
211 #define TCPOLEN_SACKPERM_ALIGNED	4
212 #define TCPOLEN_SACK_BASE		2
213 #define TCPOLEN_SACK_BASE_ALIGNED	4
214 #define TCPOLEN_SACK_PERBLOCK		8
215 #define TCPOLEN_MD5SIG_ALIGNED		20
216 #define TCPOLEN_MSS_ALIGNED		4
217 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
218 
219 /* Flags in tp->nonagle */
220 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
221 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
222 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
223 
224 /* TCP thin-stream limits */
225 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
226 
227 /* TCP initial congestion window as per rfc6928 */
228 #define TCP_INIT_CWND		10
229 
230 /* Bit Flags for sysctl_tcp_fastopen */
231 #define	TFO_CLIENT_ENABLE	1
232 #define	TFO_SERVER_ENABLE	2
233 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
234 
235 /* Accept SYN data w/o any cookie option */
236 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
237 
238 /* Force enable TFO on all listeners, i.e., not requiring the
239  * TCP_FASTOPEN socket option.
240  */
241 #define	TFO_SERVER_WO_SOCKOPT1	0x400
242 
243 
244 /* sysctl variables for tcp */
245 extern int sysctl_tcp_max_orphans;
246 extern long sysctl_tcp_mem[3];
247 
248 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
249 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
250 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
251 
252 extern atomic_long_t tcp_memory_allocated;
253 extern struct percpu_counter tcp_sockets_allocated;
254 extern unsigned long tcp_memory_pressure;
255 
256 /* optimized version of sk_under_memory_pressure() for TCP sockets */
257 static inline bool tcp_under_memory_pressure(const struct sock *sk)
258 {
259 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
260 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
261 		return true;
262 
263 	return READ_ONCE(tcp_memory_pressure);
264 }
265 /*
266  * The next routines deal with comparing 32 bit unsigned ints
267  * and worry about wraparound (automatic with unsigned arithmetic).
268  */
269 
270 static inline bool before(__u32 seq1, __u32 seq2)
271 {
272         return (__s32)(seq1-seq2) < 0;
273 }
274 #define after(seq2, seq1) 	before(seq1, seq2)
275 
276 /* is s2<=s1<=s3 ? */
277 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
278 {
279 	return seq3 - seq2 >= seq1 - seq2;
280 }
281 
282 static inline bool tcp_out_of_memory(struct sock *sk)
283 {
284 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
285 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
286 		return true;
287 	return false;
288 }
289 
290 void sk_forced_mem_schedule(struct sock *sk, int size);
291 
292 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
293 {
294 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
295 	int orphans = percpu_counter_read_positive(ocp);
296 
297 	if (orphans << shift > sysctl_tcp_max_orphans) {
298 		orphans = percpu_counter_sum_positive(ocp);
299 		if (orphans << shift > sysctl_tcp_max_orphans)
300 			return true;
301 	}
302 	return false;
303 }
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
325 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
328 		 int flags);
329 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
330 			size_t size, int flags);
331 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
332 		 size_t size, int flags);
333 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
335 	      int size_goal);
336 void tcp_release_cb(struct sock *sk);
337 void tcp_wfree(struct sk_buff *skb);
338 void tcp_write_timer_handler(struct sock *sk);
339 void tcp_delack_timer_handler(struct sock *sk);
340 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
341 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_space_adjust(struct sock *sk);
344 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 void tcp_twsk_destructor(struct sock *sk);
346 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 			struct pipe_inode_info *pipe, size_t len,
348 			unsigned int flags);
349 
350 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
351 static inline void tcp_dec_quickack_mode(struct sock *sk,
352 					 const unsigned int pkts)
353 {
354 	struct inet_connection_sock *icsk = inet_csk(sk);
355 
356 	if (icsk->icsk_ack.quick) {
357 		if (pkts >= icsk->icsk_ack.quick) {
358 			icsk->icsk_ack.quick = 0;
359 			/* Leaving quickack mode we deflate ATO. */
360 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
361 		} else
362 			icsk->icsk_ack.quick -= pkts;
363 	}
364 }
365 
366 #define	TCP_ECN_OK		1
367 #define	TCP_ECN_QUEUE_CWR	2
368 #define	TCP_ECN_DEMAND_CWR	4
369 #define	TCP_ECN_SEEN		8
370 
371 enum tcp_tw_status {
372 	TCP_TW_SUCCESS = 0,
373 	TCP_TW_RST = 1,
374 	TCP_TW_ACK = 2,
375 	TCP_TW_SYN = 3
376 };
377 
378 
379 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 					      struct sk_buff *skb,
381 					      const struct tcphdr *th);
382 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 			   struct request_sock *req, bool fastopen,
384 			   bool *lost_race);
385 int tcp_child_process(struct sock *parent, struct sock *child,
386 		      struct sk_buff *skb);
387 void tcp_enter_loss(struct sock *sk);
388 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
389 void tcp_clear_retrans(struct tcp_sock *tp);
390 void tcp_update_metrics(struct sock *sk);
391 void tcp_init_metrics(struct sock *sk);
392 void tcp_metrics_init(void);
393 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394 void tcp_close(struct sock *sk, long timeout);
395 void tcp_init_sock(struct sock *sk);
396 void tcp_init_transfer(struct sock *sk, int bpf_op);
397 __poll_t tcp_poll(struct file *file, struct socket *sock,
398 		      struct poll_table_struct *wait);
399 int tcp_getsockopt(struct sock *sk, int level, int optname,
400 		   char __user *optval, int __user *optlen);
401 int tcp_setsockopt(struct sock *sk, int level, int optname,
402 		   char __user *optval, unsigned int optlen);
403 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
404 			  char __user *optval, int __user *optlen);
405 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
406 			  char __user *optval, unsigned int optlen);
407 void tcp_set_keepalive(struct sock *sk, int val);
408 void tcp_syn_ack_timeout(const struct request_sock *req);
409 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
410 		int flags, int *addr_len);
411 int tcp_set_rcvlowat(struct sock *sk, int val);
412 void tcp_data_ready(struct sock *sk);
413 #ifdef CONFIG_MMU
414 int tcp_mmap(struct file *file, struct socket *sock,
415 	     struct vm_area_struct *vma);
416 #endif
417 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
418 		       struct tcp_options_received *opt_rx,
419 		       int estab, struct tcp_fastopen_cookie *foc);
420 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
421 
422 /*
423  *	BPF SKB-less helpers
424  */
425 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
426 			 struct tcphdr *th, u32 *cookie);
427 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
428 			 struct tcphdr *th, u32 *cookie);
429 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
430 			  const struct tcp_request_sock_ops *af_ops,
431 			  struct sock *sk, struct tcphdr *th);
432 /*
433  *	TCP v4 functions exported for the inet6 API
434  */
435 
436 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
437 void tcp_v4_mtu_reduced(struct sock *sk);
438 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
439 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 				      struct request_sock *req,
443 				      struct sk_buff *skb);
444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 				  struct request_sock *req,
447 				  struct dst_entry *dst,
448 				  struct request_sock *req_unhash,
449 				  bool *own_req);
450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452 int tcp_connect(struct sock *sk);
453 enum tcp_synack_type {
454 	TCP_SYNACK_NORMAL,
455 	TCP_SYNACK_FASTOPEN,
456 	TCP_SYNACK_COOKIE,
457 };
458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 				struct request_sock *req,
460 				struct tcp_fastopen_cookie *foc,
461 				enum tcp_synack_type synack_type);
462 int tcp_disconnect(struct sock *sk, int flags);
463 
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467 
468 /* From syncookies.c */
469 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
470 				 struct request_sock *req,
471 				 struct dst_entry *dst, u32 tsoff);
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 		      u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476 
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478  * This counter is used both as a hash input and partially encoded into
479  * the cookie value.  A cookie is only validated further if the delta
480  * between the current counter value and the encoded one is less than this,
481  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482  * the counter advances immediately after a cookie is generated).
483  */
484 #define MAX_SYNCOOKIE_AGE	2
485 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
486 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487 
488 /* syncookies: remember time of last synqueue overflow
489  * But do not dirty this field too often (once per second is enough)
490  * It is racy as we do not hold a lock, but race is very minor.
491  */
492 static inline void tcp_synq_overflow(const struct sock *sk)
493 {
494 	unsigned int last_overflow;
495 	unsigned int now = jiffies;
496 
497 	if (sk->sk_reuseport) {
498 		struct sock_reuseport *reuse;
499 
500 		reuse = rcu_dereference(sk->sk_reuseport_cb);
501 		if (likely(reuse)) {
502 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 			if (!time_between32(now, last_overflow,
504 					    last_overflow + HZ))
505 				WRITE_ONCE(reuse->synq_overflow_ts, now);
506 			return;
507 		}
508 	}
509 
510 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 	if (!time_between32(now, last_overflow, last_overflow + HZ))
512 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
513 }
514 
515 /* syncookies: no recent synqueue overflow on this listening socket? */
516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
517 {
518 	unsigned int last_overflow;
519 	unsigned int now = jiffies;
520 
521 	if (sk->sk_reuseport) {
522 		struct sock_reuseport *reuse;
523 
524 		reuse = rcu_dereference(sk->sk_reuseport_cb);
525 		if (likely(reuse)) {
526 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 			return !time_between32(now, last_overflow - HZ,
528 					       last_overflow +
529 					       TCP_SYNCOOKIE_VALID);
530 		}
531 	}
532 
533 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
534 
535 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 	 * then we're under synflood. However, we have to use
537 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 	 * which could lead to rejecting a valid syncookie.
541 	 */
542 	return !time_between32(now, last_overflow - HZ,
543 			       last_overflow + TCP_SYNCOOKIE_VALID);
544 }
545 
546 static inline u32 tcp_cookie_time(void)
547 {
548 	u64 val = get_jiffies_64();
549 
550 	do_div(val, TCP_SYNCOOKIE_PERIOD);
551 	return val;
552 }
553 
554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
555 			      u16 *mssp);
556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558 bool cookie_timestamp_decode(const struct net *net,
559 			     struct tcp_options_received *opt);
560 bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 		   const struct net *net, const struct dst_entry *dst);
562 
563 /* From net/ipv6/syncookies.c */
564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
565 		      u32 cookie);
566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
567 
568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 			      const struct tcphdr *th, u16 *mssp);
570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 #endif
572 /* tcp_output.c */
573 
574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
575 			       int nonagle);
576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 void tcp_retransmit_timer(struct sock *sk);
579 void tcp_xmit_retransmit_queue(struct sock *);
580 void tcp_simple_retransmit(struct sock *);
581 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
583 enum tcp_queue {
584 	TCP_FRAG_IN_WRITE_QUEUE,
585 	TCP_FRAG_IN_RTX_QUEUE,
586 };
587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 		 struct sk_buff *skb, u32 len,
589 		 unsigned int mss_now, gfp_t gfp);
590 
591 void tcp_send_probe0(struct sock *);
592 void tcp_send_partial(struct sock *);
593 int tcp_write_wakeup(struct sock *, int mib);
594 void tcp_send_fin(struct sock *sk);
595 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596 int tcp_send_synack(struct sock *);
597 void tcp_push_one(struct sock *, unsigned int mss_now);
598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599 void tcp_send_ack(struct sock *sk);
600 void tcp_send_delayed_ack(struct sock *sk);
601 void tcp_send_loss_probe(struct sock *sk);
602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 			     const struct sk_buff *next_skb);
605 
606 /* tcp_input.c */
607 void tcp_rearm_rto(struct sock *sk);
608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609 void tcp_reset(struct sock *sk);
610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611 void tcp_fin(struct sock *sk);
612 
613 /* tcp_timer.c */
614 void tcp_init_xmit_timers(struct sock *);
615 static inline void tcp_clear_xmit_timers(struct sock *sk)
616 {
617 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
618 		__sock_put(sk);
619 
620 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
621 		__sock_put(sk);
622 
623 	inet_csk_clear_xmit_timers(sk);
624 }
625 
626 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
627 unsigned int tcp_current_mss(struct sock *sk);
628 
629 /* Bound MSS / TSO packet size with the half of the window */
630 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
631 {
632 	int cutoff;
633 
634 	/* When peer uses tiny windows, there is no use in packetizing
635 	 * to sub-MSS pieces for the sake of SWS or making sure there
636 	 * are enough packets in the pipe for fast recovery.
637 	 *
638 	 * On the other hand, for extremely large MSS devices, handling
639 	 * smaller than MSS windows in this way does make sense.
640 	 */
641 	if (tp->max_window > TCP_MSS_DEFAULT)
642 		cutoff = (tp->max_window >> 1);
643 	else
644 		cutoff = tp->max_window;
645 
646 	if (cutoff && pktsize > cutoff)
647 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
648 	else
649 		return pktsize;
650 }
651 
652 /* tcp.c */
653 void tcp_get_info(struct sock *, struct tcp_info *);
654 
655 /* Read 'sendfile()'-style from a TCP socket */
656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
657 		  sk_read_actor_t recv_actor);
658 
659 void tcp_initialize_rcv_mss(struct sock *sk);
660 
661 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
662 int tcp_mss_to_mtu(struct sock *sk, int mss);
663 void tcp_mtup_init(struct sock *sk);
664 
665 static inline void tcp_bound_rto(const struct sock *sk)
666 {
667 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669 }
670 
671 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672 {
673 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
674 }
675 
676 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677 {
678 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
679 			       ntohl(TCP_FLAG_ACK) |
680 			       snd_wnd);
681 }
682 
683 static inline void tcp_fast_path_on(struct tcp_sock *tp)
684 {
685 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
686 }
687 
688 static inline void tcp_fast_path_check(struct sock *sk)
689 {
690 	struct tcp_sock *tp = tcp_sk(sk);
691 
692 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
693 	    tp->rcv_wnd &&
694 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
695 	    !tp->urg_data)
696 		tcp_fast_path_on(tp);
697 }
698 
699 /* Compute the actual rto_min value */
700 static inline u32 tcp_rto_min(struct sock *sk)
701 {
702 	const struct dst_entry *dst = __sk_dst_get(sk);
703 	u32 rto_min = TCP_RTO_MIN;
704 
705 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
706 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
707 	return rto_min;
708 }
709 
710 static inline u32 tcp_rto_min_us(struct sock *sk)
711 {
712 	return jiffies_to_usecs(tcp_rto_min(sk));
713 }
714 
715 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
716 {
717 	return dst_metric_locked(dst, RTAX_CC_ALGO);
718 }
719 
720 /* Minimum RTT in usec. ~0 means not available. */
721 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
722 {
723 	return minmax_get(&tp->rtt_min);
724 }
725 
726 /* Compute the actual receive window we are currently advertising.
727  * Rcv_nxt can be after the window if our peer push more data
728  * than the offered window.
729  */
730 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
731 {
732 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
733 
734 	if (win < 0)
735 		win = 0;
736 	return (u32) win;
737 }
738 
739 /* Choose a new window, without checks for shrinking, and without
740  * scaling applied to the result.  The caller does these things
741  * if necessary.  This is a "raw" window selection.
742  */
743 u32 __tcp_select_window(struct sock *sk);
744 
745 void tcp_send_window_probe(struct sock *sk);
746 
747 /* TCP uses 32bit jiffies to save some space.
748  * Note that this is different from tcp_time_stamp, which
749  * historically has been the same until linux-4.13.
750  */
751 #define tcp_jiffies32 ((u32)jiffies)
752 
753 /*
754  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
755  * It is no longer tied to jiffies, but to 1 ms clock.
756  * Note: double check if you want to use tcp_jiffies32 instead of this.
757  */
758 #define TCP_TS_HZ	1000
759 
760 static inline u64 tcp_clock_ns(void)
761 {
762 	return ktime_get_ns();
763 }
764 
765 static inline u64 tcp_clock_us(void)
766 {
767 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
768 }
769 
770 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
771 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
772 {
773 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
774 }
775 
776 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
777 static inline u32 tcp_ns_to_ts(u64 ns)
778 {
779 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
780 }
781 
782 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
783 static inline u32 tcp_time_stamp_raw(void)
784 {
785 	return tcp_ns_to_ts(tcp_clock_ns());
786 }
787 
788 void tcp_mstamp_refresh(struct tcp_sock *tp);
789 
790 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
791 {
792 	return max_t(s64, t1 - t0, 0);
793 }
794 
795 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
796 {
797 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
798 }
799 
800 /* provide the departure time in us unit */
801 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
802 {
803 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
804 }
805 
806 
807 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
808 
809 #define TCPHDR_FIN 0x01
810 #define TCPHDR_SYN 0x02
811 #define TCPHDR_RST 0x04
812 #define TCPHDR_PSH 0x08
813 #define TCPHDR_ACK 0x10
814 #define TCPHDR_URG 0x20
815 #define TCPHDR_ECE 0x40
816 #define TCPHDR_CWR 0x80
817 
818 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
819 
820 /* This is what the send packet queuing engine uses to pass
821  * TCP per-packet control information to the transmission code.
822  * We also store the host-order sequence numbers in here too.
823  * This is 44 bytes if IPV6 is enabled.
824  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
825  */
826 struct tcp_skb_cb {
827 	__u32		seq;		/* Starting sequence number	*/
828 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
829 	union {
830 		/* Note : tcp_tw_isn is used in input path only
831 		 *	  (isn chosen by tcp_timewait_state_process())
832 		 *
833 		 * 	  tcp_gso_segs/size are used in write queue only,
834 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
835 		 */
836 		__u32		tcp_tw_isn;
837 		struct {
838 			u16	tcp_gso_segs;
839 			u16	tcp_gso_size;
840 		};
841 	};
842 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
843 
844 	__u8		sacked;		/* State flags for SACK.	*/
845 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
846 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
847 #define TCPCB_LOST		0x04	/* SKB is lost			*/
848 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
849 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
850 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
851 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
852 				TCPCB_REPAIRED)
853 
854 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
855 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
856 			eor:1,		/* Is skb MSG_EOR marked? */
857 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
858 			unused:5;
859 	__u32		ack_seq;	/* Sequence number ACK'd	*/
860 	union {
861 		struct {
862 			/* There is space for up to 24 bytes */
863 			__u32 in_flight:30,/* Bytes in flight at transmit */
864 			      is_app_limited:1, /* cwnd not fully used? */
865 			      unused:1;
866 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
867 			__u32 delivered;
868 			/* start of send pipeline phase */
869 			u64 first_tx_mstamp;
870 			/* when we reached the "delivered" count */
871 			u64 delivered_mstamp;
872 		} tx;   /* only used for outgoing skbs */
873 		union {
874 			struct inet_skb_parm	h4;
875 #if IS_ENABLED(CONFIG_IPV6)
876 			struct inet6_skb_parm	h6;
877 #endif
878 		} header;	/* For incoming skbs */
879 		struct {
880 			__u32 flags;
881 			struct sock *sk_redir;
882 			void *data_end;
883 		} bpf;
884 	};
885 };
886 
887 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
888 
889 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
890 {
891 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
892 }
893 
894 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
895 {
896 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
897 }
898 
899 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
900 {
901 	return TCP_SKB_CB(skb)->bpf.sk_redir;
902 }
903 
904 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
905 {
906 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
907 }
908 
909 #if IS_ENABLED(CONFIG_IPV6)
910 /* This is the variant of inet6_iif() that must be used by TCP,
911  * as TCP moves IP6CB into a different location in skb->cb[]
912  */
913 static inline int tcp_v6_iif(const struct sk_buff *skb)
914 {
915 	return TCP_SKB_CB(skb)->header.h6.iif;
916 }
917 
918 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
919 {
920 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
921 
922 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
923 }
924 
925 /* TCP_SKB_CB reference means this can not be used from early demux */
926 static inline int tcp_v6_sdif(const struct sk_buff *skb)
927 {
928 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
929 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
930 		return TCP_SKB_CB(skb)->header.h6.iif;
931 #endif
932 	return 0;
933 }
934 #endif
935 
936 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
937 {
938 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
940 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
941 		return true;
942 #endif
943 	return false;
944 }
945 
946 /* TCP_SKB_CB reference means this can not be used from early demux */
947 static inline int tcp_v4_sdif(struct sk_buff *skb)
948 {
949 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
950 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
951 		return TCP_SKB_CB(skb)->header.h4.iif;
952 #endif
953 	return 0;
954 }
955 
956 /* Due to TSO, an SKB can be composed of multiple actual
957  * packets.  To keep these tracked properly, we use this.
958  */
959 static inline int tcp_skb_pcount(const struct sk_buff *skb)
960 {
961 	return TCP_SKB_CB(skb)->tcp_gso_segs;
962 }
963 
964 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
965 {
966 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
967 }
968 
969 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
970 {
971 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
972 }
973 
974 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
975 static inline int tcp_skb_mss(const struct sk_buff *skb)
976 {
977 	return TCP_SKB_CB(skb)->tcp_gso_size;
978 }
979 
980 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
981 {
982 	return likely(!TCP_SKB_CB(skb)->eor);
983 }
984 
985 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
986 					const struct sk_buff *from)
987 {
988 	return likely(tcp_skb_can_collapse_to(to) &&
989 		      mptcp_skb_can_collapse(to, from));
990 }
991 
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
995 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
996 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
997 	CA_EVENT_LOSS,		/* loss timeout */
998 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
999 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1000 };
1001 
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1005 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1006 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1007 };
1008 
1009 /*
1010  * Interface for adding new TCP congestion control handlers
1011  */
1012 #define TCP_CA_NAME_MAX	16
1013 #define TCP_CA_MAX	128
1014 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1015 
1016 #define TCP_CA_UNSPEC	0
1017 
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN	0x2
1022 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023 
1024 union tcp_cc_info;
1025 
1026 struct ack_sample {
1027 	u32 pkts_acked;
1028 	s32 rtt_us;
1029 	u32 in_flight;
1030 };
1031 
1032 /* A rate sample measures the number of (original/retransmitted) data
1033  * packets delivered "delivered" over an interval of time "interval_us".
1034  * The tcp_rate.c code fills in the rate sample, and congestion
1035  * control modules that define a cong_control function to run at the end
1036  * of ACK processing can optionally chose to consult this sample when
1037  * setting cwnd and pacing rate.
1038  * A sample is invalid if "delivered" or "interval_us" is negative.
1039  */
1040 struct rate_sample {
1041 	u64  prior_mstamp; /* starting timestamp for interval */
1042 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1043 	s32  delivered;		/* number of packets delivered over interval */
1044 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1045 	u32 snd_interval_us;	/* snd interval for delivered packets */
1046 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1047 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1048 	int  losses;		/* number of packets marked lost upon ACK */
1049 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1050 	u32  prior_in_flight;	/* in flight before this ACK */
1051 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1052 	bool is_retrans;	/* is sample from retransmission? */
1053 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1054 };
1055 
1056 struct tcp_congestion_ops {
1057 	struct list_head	list;
1058 	u32 key;
1059 	u32 flags;
1060 
1061 	/* initialize private data (optional) */
1062 	void (*init)(struct sock *sk);
1063 	/* cleanup private data  (optional) */
1064 	void (*release)(struct sock *sk);
1065 
1066 	/* return slow start threshold (required) */
1067 	u32 (*ssthresh)(struct sock *sk);
1068 	/* do new cwnd calculation (required) */
1069 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1070 	/* call before changing ca_state (optional) */
1071 	void (*set_state)(struct sock *sk, u8 new_state);
1072 	/* call when cwnd event occurs (optional) */
1073 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1074 	/* call when ack arrives (optional) */
1075 	void (*in_ack_event)(struct sock *sk, u32 flags);
1076 	/* new value of cwnd after loss (required) */
1077 	u32  (*undo_cwnd)(struct sock *sk);
1078 	/* hook for packet ack accounting (optional) */
1079 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1080 	/* override sysctl_tcp_min_tso_segs */
1081 	u32 (*min_tso_segs)(struct sock *sk);
1082 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1083 	u32 (*sndbuf_expand)(struct sock *sk);
1084 	/* call when packets are delivered to update cwnd and pacing rate,
1085 	 * after all the ca_state processing. (optional)
1086 	 */
1087 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1088 	/* get info for inet_diag (optional) */
1089 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1090 			   union tcp_cc_info *info);
1091 
1092 	char 		name[TCP_CA_NAME_MAX];
1093 	struct module 	*owner;
1094 };
1095 
1096 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1097 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1098 
1099 void tcp_assign_congestion_control(struct sock *sk);
1100 void tcp_init_congestion_control(struct sock *sk);
1101 void tcp_cleanup_congestion_control(struct sock *sk);
1102 int tcp_set_default_congestion_control(struct net *net, const char *name);
1103 void tcp_get_default_congestion_control(struct net *net, char *name);
1104 void tcp_get_available_congestion_control(char *buf, size_t len);
1105 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1106 int tcp_set_allowed_congestion_control(char *allowed);
1107 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1108 			       bool reinit, bool cap_net_admin);
1109 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1110 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1111 
1112 u32 tcp_reno_ssthresh(struct sock *sk);
1113 u32 tcp_reno_undo_cwnd(struct sock *sk);
1114 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1115 extern struct tcp_congestion_ops tcp_reno;
1116 
1117 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1118 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1119 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1120 #ifdef CONFIG_INET
1121 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1122 #else
1123 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1124 {
1125 	return NULL;
1126 }
1127 #endif
1128 
1129 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1130 {
1131 	const struct inet_connection_sock *icsk = inet_csk(sk);
1132 
1133 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1134 }
1135 
1136 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1137 {
1138 	struct inet_connection_sock *icsk = inet_csk(sk);
1139 
1140 	if (icsk->icsk_ca_ops->set_state)
1141 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1142 	icsk->icsk_ca_state = ca_state;
1143 }
1144 
1145 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1146 {
1147 	const struct inet_connection_sock *icsk = inet_csk(sk);
1148 
1149 	if (icsk->icsk_ca_ops->cwnd_event)
1150 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1151 }
1152 
1153 /* From tcp_rate.c */
1154 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1155 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1156 			    struct rate_sample *rs);
1157 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1158 		  bool is_sack_reneg, struct rate_sample *rs);
1159 void tcp_rate_check_app_limited(struct sock *sk);
1160 
1161 /* These functions determine how the current flow behaves in respect of SACK
1162  * handling. SACK is negotiated with the peer, and therefore it can vary
1163  * between different flows.
1164  *
1165  * tcp_is_sack - SACK enabled
1166  * tcp_is_reno - No SACK
1167  */
1168 static inline int tcp_is_sack(const struct tcp_sock *tp)
1169 {
1170 	return likely(tp->rx_opt.sack_ok);
1171 }
1172 
1173 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1174 {
1175 	return !tcp_is_sack(tp);
1176 }
1177 
1178 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1179 {
1180 	return tp->sacked_out + tp->lost_out;
1181 }
1182 
1183 /* This determines how many packets are "in the network" to the best
1184  * of our knowledge.  In many cases it is conservative, but where
1185  * detailed information is available from the receiver (via SACK
1186  * blocks etc.) we can make more aggressive calculations.
1187  *
1188  * Use this for decisions involving congestion control, use just
1189  * tp->packets_out to determine if the send queue is empty or not.
1190  *
1191  * Read this equation as:
1192  *
1193  *	"Packets sent once on transmission queue" MINUS
1194  *	"Packets left network, but not honestly ACKed yet" PLUS
1195  *	"Packets fast retransmitted"
1196  */
1197 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1198 {
1199 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1200 }
1201 
1202 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1203 
1204 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1205 {
1206 	return tp->snd_cwnd < tp->snd_ssthresh;
1207 }
1208 
1209 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1210 {
1211 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1212 }
1213 
1214 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1215 {
1216 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1217 	       (1 << inet_csk(sk)->icsk_ca_state);
1218 }
1219 
1220 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1221  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1222  * ssthresh.
1223  */
1224 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1225 {
1226 	const struct tcp_sock *tp = tcp_sk(sk);
1227 
1228 	if (tcp_in_cwnd_reduction(sk))
1229 		return tp->snd_ssthresh;
1230 	else
1231 		return max(tp->snd_ssthresh,
1232 			   ((tp->snd_cwnd >> 1) +
1233 			    (tp->snd_cwnd >> 2)));
1234 }
1235 
1236 /* Use define here intentionally to get WARN_ON location shown at the caller */
1237 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1238 
1239 void tcp_enter_cwr(struct sock *sk);
1240 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1241 
1242 /* The maximum number of MSS of available cwnd for which TSO defers
1243  * sending if not using sysctl_tcp_tso_win_divisor.
1244  */
1245 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1246 {
1247 	return 3;
1248 }
1249 
1250 /* Returns end sequence number of the receiver's advertised window */
1251 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1252 {
1253 	return tp->snd_una + tp->snd_wnd;
1254 }
1255 
1256 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1257  * flexible approach. The RFC suggests cwnd should not be raised unless
1258  * it was fully used previously. And that's exactly what we do in
1259  * congestion avoidance mode. But in slow start we allow cwnd to grow
1260  * as long as the application has used half the cwnd.
1261  * Example :
1262  *    cwnd is 10 (IW10), but application sends 9 frames.
1263  *    We allow cwnd to reach 18 when all frames are ACKed.
1264  * This check is safe because it's as aggressive as slow start which already
1265  * risks 100% overshoot. The advantage is that we discourage application to
1266  * either send more filler packets or data to artificially blow up the cwnd
1267  * usage, and allow application-limited process to probe bw more aggressively.
1268  */
1269 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1270 {
1271 	const struct tcp_sock *tp = tcp_sk(sk);
1272 
1273 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1274 	if (tcp_in_slow_start(tp))
1275 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1276 
1277 	return tp->is_cwnd_limited;
1278 }
1279 
1280 /* BBR congestion control needs pacing.
1281  * Same remark for SO_MAX_PACING_RATE.
1282  * sch_fq packet scheduler is efficiently handling pacing,
1283  * but is not always installed/used.
1284  * Return true if TCP stack should pace packets itself.
1285  */
1286 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1287 {
1288 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1289 }
1290 
1291 /* Estimates in how many jiffies next packet for this flow can be sent.
1292  * Scheduling a retransmit timer too early would be silly.
1293  */
1294 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1295 {
1296 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1297 
1298 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1299 }
1300 
1301 static inline void tcp_reset_xmit_timer(struct sock *sk,
1302 					const int what,
1303 					unsigned long when,
1304 					const unsigned long max_when)
1305 {
1306 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1307 				  max_when);
1308 }
1309 
1310 /* Something is really bad, we could not queue an additional packet,
1311  * because qdisc is full or receiver sent a 0 window, or we are paced.
1312  * We do not want to add fuel to the fire, or abort too early,
1313  * so make sure the timer we arm now is at least 200ms in the future,
1314  * regardless of current icsk_rto value (as it could be ~2ms)
1315  */
1316 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1317 {
1318 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1319 }
1320 
1321 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1322 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1323 					    unsigned long max_when)
1324 {
1325 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1326 
1327 	return (unsigned long)min_t(u64, when, max_when);
1328 }
1329 
1330 static inline void tcp_check_probe_timer(struct sock *sk)
1331 {
1332 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1333 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1334 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1335 }
1336 
1337 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1338 {
1339 	tp->snd_wl1 = seq;
1340 }
1341 
1342 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1343 {
1344 	tp->snd_wl1 = seq;
1345 }
1346 
1347 /*
1348  * Calculate(/check) TCP checksum
1349  */
1350 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1351 				   __be32 daddr, __wsum base)
1352 {
1353 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1354 }
1355 
1356 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1357 {
1358 	return !skb_csum_unnecessary(skb) &&
1359 		__skb_checksum_complete(skb);
1360 }
1361 
1362 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1363 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1364 void tcp_set_state(struct sock *sk, int state);
1365 void tcp_done(struct sock *sk);
1366 int tcp_abort(struct sock *sk, int err);
1367 
1368 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1369 {
1370 	rx_opt->dsack = 0;
1371 	rx_opt->num_sacks = 0;
1372 }
1373 
1374 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1375 
1376 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1377 {
1378 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 	s32 delta;
1381 
1382 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1383 	    ca_ops->cong_control)
1384 		return;
1385 	delta = tcp_jiffies32 - tp->lsndtime;
1386 	if (delta > inet_csk(sk)->icsk_rto)
1387 		tcp_cwnd_restart(sk, delta);
1388 }
1389 
1390 /* Determine a window scaling and initial window to offer. */
1391 void tcp_select_initial_window(const struct sock *sk, int __space,
1392 			       __u32 mss, __u32 *rcv_wnd,
1393 			       __u32 *window_clamp, int wscale_ok,
1394 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1395 
1396 static inline int tcp_win_from_space(const struct sock *sk, int space)
1397 {
1398 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1399 
1400 	return tcp_adv_win_scale <= 0 ?
1401 		(space>>(-tcp_adv_win_scale)) :
1402 		space - (space>>tcp_adv_win_scale);
1403 }
1404 
1405 /* Note: caller must be prepared to deal with negative returns */
1406 static inline int tcp_space(const struct sock *sk)
1407 {
1408 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1409 				  READ_ONCE(sk->sk_backlog.len) -
1410 				  atomic_read(&sk->sk_rmem_alloc));
1411 }
1412 
1413 static inline int tcp_full_space(const struct sock *sk)
1414 {
1415 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1416 }
1417 
1418 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1419  * If 87.5 % (7/8) of the space has been consumed, we want to override
1420  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1421  * len/truesize ratio.
1422  */
1423 static inline bool tcp_rmem_pressure(const struct sock *sk)
1424 {
1425 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1426 	int threshold = rcvbuf - (rcvbuf >> 3);
1427 
1428 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1429 }
1430 
1431 extern void tcp_openreq_init_rwin(struct request_sock *req,
1432 				  const struct sock *sk_listener,
1433 				  const struct dst_entry *dst);
1434 
1435 void tcp_enter_memory_pressure(struct sock *sk);
1436 void tcp_leave_memory_pressure(struct sock *sk);
1437 
1438 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1439 {
1440 	struct net *net = sock_net((struct sock *)tp);
1441 
1442 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1443 }
1444 
1445 static inline int keepalive_time_when(const struct tcp_sock *tp)
1446 {
1447 	struct net *net = sock_net((struct sock *)tp);
1448 
1449 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1450 }
1451 
1452 static inline int keepalive_probes(const struct tcp_sock *tp)
1453 {
1454 	struct net *net = sock_net((struct sock *)tp);
1455 
1456 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1457 }
1458 
1459 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1460 {
1461 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1462 
1463 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1464 			  tcp_jiffies32 - tp->rcv_tstamp);
1465 }
1466 
1467 static inline int tcp_fin_time(const struct sock *sk)
1468 {
1469 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1470 	const int rto = inet_csk(sk)->icsk_rto;
1471 
1472 	if (fin_timeout < (rto << 2) - (rto >> 1))
1473 		fin_timeout = (rto << 2) - (rto >> 1);
1474 
1475 	return fin_timeout;
1476 }
1477 
1478 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1479 				  int paws_win)
1480 {
1481 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1482 		return true;
1483 	if (unlikely(!time_before32(ktime_get_seconds(),
1484 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1485 		return true;
1486 	/*
1487 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1488 	 * then following tcp messages have valid values. Ignore 0 value,
1489 	 * or else 'negative' tsval might forbid us to accept their packets.
1490 	 */
1491 	if (!rx_opt->ts_recent)
1492 		return true;
1493 	return false;
1494 }
1495 
1496 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1497 				   int rst)
1498 {
1499 	if (tcp_paws_check(rx_opt, 0))
1500 		return false;
1501 
1502 	/* RST segments are not recommended to carry timestamp,
1503 	   and, if they do, it is recommended to ignore PAWS because
1504 	   "their cleanup function should take precedence over timestamps."
1505 	   Certainly, it is mistake. It is necessary to understand the reasons
1506 	   of this constraint to relax it: if peer reboots, clock may go
1507 	   out-of-sync and half-open connections will not be reset.
1508 	   Actually, the problem would be not existing if all
1509 	   the implementations followed draft about maintaining clock
1510 	   via reboots. Linux-2.2 DOES NOT!
1511 
1512 	   However, we can relax time bounds for RST segments to MSL.
1513 	 */
1514 	if (rst && !time_before32(ktime_get_seconds(),
1515 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1516 		return false;
1517 	return true;
1518 }
1519 
1520 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1521 			  int mib_idx, u32 *last_oow_ack_time);
1522 
1523 static inline void tcp_mib_init(struct net *net)
1524 {
1525 	/* See RFC 2012 */
1526 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1527 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1528 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1529 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1530 }
1531 
1532 /* from STCP */
1533 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1534 {
1535 	tp->lost_skb_hint = NULL;
1536 }
1537 
1538 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1539 {
1540 	tcp_clear_retrans_hints_partial(tp);
1541 	tp->retransmit_skb_hint = NULL;
1542 }
1543 
1544 union tcp_md5_addr {
1545 	struct in_addr  a4;
1546 #if IS_ENABLED(CONFIG_IPV6)
1547 	struct in6_addr	a6;
1548 #endif
1549 };
1550 
1551 /* - key database */
1552 struct tcp_md5sig_key {
1553 	struct hlist_node	node;
1554 	u8			keylen;
1555 	u8			family; /* AF_INET or AF_INET6 */
1556 	u8			prefixlen;
1557 	union tcp_md5_addr	addr;
1558 	int			l3index; /* set if key added with L3 scope */
1559 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1560 	struct rcu_head		rcu;
1561 };
1562 
1563 /* - sock block */
1564 struct tcp_md5sig_info {
1565 	struct hlist_head	head;
1566 	struct rcu_head		rcu;
1567 };
1568 
1569 /* - pseudo header */
1570 struct tcp4_pseudohdr {
1571 	__be32		saddr;
1572 	__be32		daddr;
1573 	__u8		pad;
1574 	__u8		protocol;
1575 	__be16		len;
1576 };
1577 
1578 struct tcp6_pseudohdr {
1579 	struct in6_addr	saddr;
1580 	struct in6_addr daddr;
1581 	__be32		len;
1582 	__be32		protocol;	/* including padding */
1583 };
1584 
1585 union tcp_md5sum_block {
1586 	struct tcp4_pseudohdr ip4;
1587 #if IS_ENABLED(CONFIG_IPV6)
1588 	struct tcp6_pseudohdr ip6;
1589 #endif
1590 };
1591 
1592 /* - pool: digest algorithm, hash description and scratch buffer */
1593 struct tcp_md5sig_pool {
1594 	struct ahash_request	*md5_req;
1595 	void			*scratch;
1596 };
1597 
1598 /* - functions */
1599 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1600 			const struct sock *sk, const struct sk_buff *skb);
1601 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1602 		   int family, u8 prefixlen, int l3index,
1603 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1604 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1605 		   int family, u8 prefixlen, int l3index);
1606 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1607 					 const struct sock *addr_sk);
1608 
1609 #ifdef CONFIG_TCP_MD5SIG
1610 #include <linux/jump_label.h>
1611 extern struct static_key_false tcp_md5_needed;
1612 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1613 					   const union tcp_md5_addr *addr,
1614 					   int family);
1615 static inline struct tcp_md5sig_key *
1616 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1617 		  const union tcp_md5_addr *addr, int family)
1618 {
1619 	if (!static_branch_unlikely(&tcp_md5_needed))
1620 		return NULL;
1621 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1622 }
1623 
1624 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1625 #else
1626 static inline struct tcp_md5sig_key *
1627 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1628 		  const union tcp_md5_addr *addr, int family)
1629 {
1630 	return NULL;
1631 }
1632 #define tcp_twsk_md5_key(twsk)	NULL
1633 #endif
1634 
1635 bool tcp_alloc_md5sig_pool(void);
1636 
1637 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1638 static inline void tcp_put_md5sig_pool(void)
1639 {
1640 	local_bh_enable();
1641 }
1642 
1643 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1644 			  unsigned int header_len);
1645 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1646 		     const struct tcp_md5sig_key *key);
1647 
1648 /* From tcp_fastopen.c */
1649 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1650 			    struct tcp_fastopen_cookie *cookie);
1651 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1652 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1653 			    u16 try_exp);
1654 struct tcp_fastopen_request {
1655 	/* Fast Open cookie. Size 0 means a cookie request */
1656 	struct tcp_fastopen_cookie	cookie;
1657 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1658 	size_t				size;
1659 	int				copied;	/* queued in tcp_connect() */
1660 	struct ubuf_info		*uarg;
1661 };
1662 void tcp_free_fastopen_req(struct tcp_sock *tp);
1663 void tcp_fastopen_destroy_cipher(struct sock *sk);
1664 void tcp_fastopen_ctx_destroy(struct net *net);
1665 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1666 			      void *primary_key, void *backup_key);
1667 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1668 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1669 			      struct request_sock *req,
1670 			      struct tcp_fastopen_cookie *foc,
1671 			      const struct dst_entry *dst);
1672 void tcp_fastopen_init_key_once(struct net *net);
1673 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1674 			     struct tcp_fastopen_cookie *cookie);
1675 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1676 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1677 #define TCP_FASTOPEN_KEY_MAX 2
1678 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1679 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1680 
1681 /* Fastopen key context */
1682 struct tcp_fastopen_context {
1683 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1684 	int		num;
1685 	struct rcu_head	rcu;
1686 };
1687 
1688 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1689 void tcp_fastopen_active_disable(struct sock *sk);
1690 bool tcp_fastopen_active_should_disable(struct sock *sk);
1691 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1692 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1693 
1694 /* Caller needs to wrap with rcu_read_(un)lock() */
1695 static inline
1696 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1697 {
1698 	struct tcp_fastopen_context *ctx;
1699 
1700 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1701 	if (!ctx)
1702 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1703 	return ctx;
1704 }
1705 
1706 static inline
1707 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1708 			       const struct tcp_fastopen_cookie *orig)
1709 {
1710 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1711 	    orig->len == foc->len &&
1712 	    !memcmp(orig->val, foc->val, foc->len))
1713 		return true;
1714 	return false;
1715 }
1716 
1717 static inline
1718 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1719 {
1720 	return ctx->num;
1721 }
1722 
1723 /* Latencies incurred by various limits for a sender. They are
1724  * chronograph-like stats that are mutually exclusive.
1725  */
1726 enum tcp_chrono {
1727 	TCP_CHRONO_UNSPEC,
1728 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1729 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1730 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1731 	__TCP_CHRONO_MAX,
1732 };
1733 
1734 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1735 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1736 
1737 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1738  * the same memory storage than skb->destructor/_skb_refdst
1739  */
1740 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1741 {
1742 	skb->destructor = NULL;
1743 	skb->_skb_refdst = 0UL;
1744 }
1745 
1746 #define tcp_skb_tsorted_save(skb) {		\
1747 	unsigned long _save = skb->_skb_refdst;	\
1748 	skb->_skb_refdst = 0UL;
1749 
1750 #define tcp_skb_tsorted_restore(skb)		\
1751 	skb->_skb_refdst = _save;		\
1752 }
1753 
1754 void tcp_write_queue_purge(struct sock *sk);
1755 
1756 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1757 {
1758 	return skb_rb_first(&sk->tcp_rtx_queue);
1759 }
1760 
1761 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1762 {
1763 	return skb_rb_last(&sk->tcp_rtx_queue);
1764 }
1765 
1766 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1767 {
1768 	return skb_peek(&sk->sk_write_queue);
1769 }
1770 
1771 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1772 {
1773 	return skb_peek_tail(&sk->sk_write_queue);
1774 }
1775 
1776 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1777 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1778 
1779 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1780 {
1781 	return skb_peek(&sk->sk_write_queue);
1782 }
1783 
1784 static inline bool tcp_skb_is_last(const struct sock *sk,
1785 				   const struct sk_buff *skb)
1786 {
1787 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1788 }
1789 
1790 /**
1791  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1792  * @sk: socket
1793  *
1794  * Since the write queue can have a temporary empty skb in it,
1795  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1796  */
1797 static inline bool tcp_write_queue_empty(const struct sock *sk)
1798 {
1799 	const struct tcp_sock *tp = tcp_sk(sk);
1800 
1801 	return tp->write_seq == tp->snd_nxt;
1802 }
1803 
1804 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1805 {
1806 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1807 }
1808 
1809 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1810 {
1811 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1812 }
1813 
1814 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1815 {
1816 	__skb_queue_tail(&sk->sk_write_queue, skb);
1817 
1818 	/* Queue it, remembering where we must start sending. */
1819 	if (sk->sk_write_queue.next == skb)
1820 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1821 }
1822 
1823 /* Insert new before skb on the write queue of sk.  */
1824 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1825 						  struct sk_buff *skb,
1826 						  struct sock *sk)
1827 {
1828 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1829 }
1830 
1831 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1832 {
1833 	tcp_skb_tsorted_anchor_cleanup(skb);
1834 	__skb_unlink(skb, &sk->sk_write_queue);
1835 }
1836 
1837 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1838 
1839 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1840 {
1841 	tcp_skb_tsorted_anchor_cleanup(skb);
1842 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1843 }
1844 
1845 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1846 {
1847 	list_del(&skb->tcp_tsorted_anchor);
1848 	tcp_rtx_queue_unlink(skb, sk);
1849 	sk_wmem_free_skb(sk, skb);
1850 }
1851 
1852 static inline void tcp_push_pending_frames(struct sock *sk)
1853 {
1854 	if (tcp_send_head(sk)) {
1855 		struct tcp_sock *tp = tcp_sk(sk);
1856 
1857 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1858 	}
1859 }
1860 
1861 /* Start sequence of the skb just after the highest skb with SACKed
1862  * bit, valid only if sacked_out > 0 or when the caller has ensured
1863  * validity by itself.
1864  */
1865 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1866 {
1867 	if (!tp->sacked_out)
1868 		return tp->snd_una;
1869 
1870 	if (tp->highest_sack == NULL)
1871 		return tp->snd_nxt;
1872 
1873 	return TCP_SKB_CB(tp->highest_sack)->seq;
1874 }
1875 
1876 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1877 {
1878 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1879 }
1880 
1881 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1882 {
1883 	return tcp_sk(sk)->highest_sack;
1884 }
1885 
1886 static inline void tcp_highest_sack_reset(struct sock *sk)
1887 {
1888 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1889 }
1890 
1891 /* Called when old skb is about to be deleted and replaced by new skb */
1892 static inline void tcp_highest_sack_replace(struct sock *sk,
1893 					    struct sk_buff *old,
1894 					    struct sk_buff *new)
1895 {
1896 	if (old == tcp_highest_sack(sk))
1897 		tcp_sk(sk)->highest_sack = new;
1898 }
1899 
1900 /* This helper checks if socket has IP_TRANSPARENT set */
1901 static inline bool inet_sk_transparent(const struct sock *sk)
1902 {
1903 	switch (sk->sk_state) {
1904 	case TCP_TIME_WAIT:
1905 		return inet_twsk(sk)->tw_transparent;
1906 	case TCP_NEW_SYN_RECV:
1907 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1908 	}
1909 	return inet_sk(sk)->transparent;
1910 }
1911 
1912 /* Determines whether this is a thin stream (which may suffer from
1913  * increased latency). Used to trigger latency-reducing mechanisms.
1914  */
1915 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1916 {
1917 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1918 }
1919 
1920 /* /proc */
1921 enum tcp_seq_states {
1922 	TCP_SEQ_STATE_LISTENING,
1923 	TCP_SEQ_STATE_ESTABLISHED,
1924 };
1925 
1926 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1927 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1928 void tcp_seq_stop(struct seq_file *seq, void *v);
1929 
1930 struct tcp_seq_afinfo {
1931 	sa_family_t			family;
1932 };
1933 
1934 struct tcp_iter_state {
1935 	struct seq_net_private	p;
1936 	enum tcp_seq_states	state;
1937 	struct sock		*syn_wait_sk;
1938 	int			bucket, offset, sbucket, num;
1939 	loff_t			last_pos;
1940 };
1941 
1942 extern struct request_sock_ops tcp_request_sock_ops;
1943 extern struct request_sock_ops tcp6_request_sock_ops;
1944 
1945 void tcp_v4_destroy_sock(struct sock *sk);
1946 
1947 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1948 				netdev_features_t features);
1949 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1950 int tcp_gro_complete(struct sk_buff *skb);
1951 
1952 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1953 
1954 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1955 {
1956 	struct net *net = sock_net((struct sock *)tp);
1957 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1958 }
1959 
1960 /* @wake is one when sk_stream_write_space() calls us.
1961  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1962  * This mimics the strategy used in sock_def_write_space().
1963  */
1964 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1965 {
1966 	const struct tcp_sock *tp = tcp_sk(sk);
1967 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1968 			    READ_ONCE(tp->snd_nxt);
1969 
1970 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1971 }
1972 
1973 #ifdef CONFIG_PROC_FS
1974 int tcp4_proc_init(void);
1975 void tcp4_proc_exit(void);
1976 #endif
1977 
1978 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1979 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1980 		     const struct tcp_request_sock_ops *af_ops,
1981 		     struct sock *sk, struct sk_buff *skb);
1982 
1983 /* TCP af-specific functions */
1984 struct tcp_sock_af_ops {
1985 #ifdef CONFIG_TCP_MD5SIG
1986 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1987 						const struct sock *addr_sk);
1988 	int		(*calc_md5_hash)(char *location,
1989 					 const struct tcp_md5sig_key *md5,
1990 					 const struct sock *sk,
1991 					 const struct sk_buff *skb);
1992 	int		(*md5_parse)(struct sock *sk,
1993 				     int optname,
1994 				     char __user *optval,
1995 				     int optlen);
1996 #endif
1997 };
1998 
1999 struct tcp_request_sock_ops {
2000 	u16 mss_clamp;
2001 #ifdef CONFIG_TCP_MD5SIG
2002 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2003 						 const struct sock *addr_sk);
2004 	int		(*calc_md5_hash) (char *location,
2005 					  const struct tcp_md5sig_key *md5,
2006 					  const struct sock *sk,
2007 					  const struct sk_buff *skb);
2008 #endif
2009 	void (*init_req)(struct request_sock *req,
2010 			 const struct sock *sk_listener,
2011 			 struct sk_buff *skb);
2012 #ifdef CONFIG_SYN_COOKIES
2013 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2014 				 __u16 *mss);
2015 #endif
2016 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2017 				       const struct request_sock *req);
2018 	u32 (*init_seq)(const struct sk_buff *skb);
2019 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2020 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2021 			   struct flowi *fl, struct request_sock *req,
2022 			   struct tcp_fastopen_cookie *foc,
2023 			   enum tcp_synack_type synack_type);
2024 };
2025 
2026 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2027 #if IS_ENABLED(CONFIG_IPV6)
2028 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2029 #endif
2030 
2031 #ifdef CONFIG_SYN_COOKIES
2032 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2033 					 const struct sock *sk, struct sk_buff *skb,
2034 					 __u16 *mss)
2035 {
2036 	tcp_synq_overflow(sk);
2037 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2038 	return ops->cookie_init_seq(skb, mss);
2039 }
2040 #else
2041 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2042 					 const struct sock *sk, struct sk_buff *skb,
2043 					 __u16 *mss)
2044 {
2045 	return 0;
2046 }
2047 #endif
2048 
2049 int tcpv4_offload_init(void);
2050 
2051 void tcp_v4_init(void);
2052 void tcp_init(void);
2053 
2054 /* tcp_recovery.c */
2055 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2056 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2057 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2058 				u32 reo_wnd);
2059 extern void tcp_rack_mark_lost(struct sock *sk);
2060 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2061 			     u64 xmit_time);
2062 extern void tcp_rack_reo_timeout(struct sock *sk);
2063 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2064 
2065 /* At how many usecs into the future should the RTO fire? */
2066 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2067 {
2068 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2069 	u32 rto = inet_csk(sk)->icsk_rto;
2070 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2071 
2072 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2073 }
2074 
2075 /*
2076  * Save and compile IPv4 options, return a pointer to it
2077  */
2078 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2079 							 struct sk_buff *skb)
2080 {
2081 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2082 	struct ip_options_rcu *dopt = NULL;
2083 
2084 	if (opt->optlen) {
2085 		int opt_size = sizeof(*dopt) + opt->optlen;
2086 
2087 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2088 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2089 			kfree(dopt);
2090 			dopt = NULL;
2091 		}
2092 	}
2093 	return dopt;
2094 }
2095 
2096 /* locally generated TCP pure ACKs have skb->truesize == 2
2097  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2098  * This is much faster than dissecting the packet to find out.
2099  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2100  */
2101 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2102 {
2103 	return skb->truesize == 2;
2104 }
2105 
2106 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2107 {
2108 	skb->truesize = 2;
2109 }
2110 
2111 static inline int tcp_inq(struct sock *sk)
2112 {
2113 	struct tcp_sock *tp = tcp_sk(sk);
2114 	int answ;
2115 
2116 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2117 		answ = 0;
2118 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2119 		   !tp->urg_data ||
2120 		   before(tp->urg_seq, tp->copied_seq) ||
2121 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2122 
2123 		answ = tp->rcv_nxt - tp->copied_seq;
2124 
2125 		/* Subtract 1, if FIN was received */
2126 		if (answ && sock_flag(sk, SOCK_DONE))
2127 			answ--;
2128 	} else {
2129 		answ = tp->urg_seq - tp->copied_seq;
2130 	}
2131 
2132 	return answ;
2133 }
2134 
2135 int tcp_peek_len(struct socket *sock);
2136 
2137 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2138 {
2139 	u16 segs_in;
2140 
2141 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2142 	tp->segs_in += segs_in;
2143 	if (skb->len > tcp_hdrlen(skb))
2144 		tp->data_segs_in += segs_in;
2145 }
2146 
2147 /*
2148  * TCP listen path runs lockless.
2149  * We forced "struct sock" to be const qualified to make sure
2150  * we don't modify one of its field by mistake.
2151  * Here, we increment sk_drops which is an atomic_t, so we can safely
2152  * make sock writable again.
2153  */
2154 static inline void tcp_listendrop(const struct sock *sk)
2155 {
2156 	atomic_inc(&((struct sock *)sk)->sk_drops);
2157 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2158 }
2159 
2160 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2161 
2162 /*
2163  * Interface for adding Upper Level Protocols over TCP
2164  */
2165 
2166 #define TCP_ULP_NAME_MAX	16
2167 #define TCP_ULP_MAX		128
2168 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2169 
2170 struct tcp_ulp_ops {
2171 	struct list_head	list;
2172 
2173 	/* initialize ulp */
2174 	int (*init)(struct sock *sk);
2175 	/* update ulp */
2176 	void (*update)(struct sock *sk, struct proto *p,
2177 		       void (*write_space)(struct sock *sk));
2178 	/* cleanup ulp */
2179 	void (*release)(struct sock *sk);
2180 	/* diagnostic */
2181 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2182 	size_t (*get_info_size)(const struct sock *sk);
2183 	/* clone ulp */
2184 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2185 		      const gfp_t priority);
2186 
2187 	char		name[TCP_ULP_NAME_MAX];
2188 	struct module	*owner;
2189 };
2190 int tcp_register_ulp(struct tcp_ulp_ops *type);
2191 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2192 int tcp_set_ulp(struct sock *sk, const char *name);
2193 void tcp_get_available_ulp(char *buf, size_t len);
2194 void tcp_cleanup_ulp(struct sock *sk);
2195 void tcp_update_ulp(struct sock *sk, struct proto *p,
2196 		    void (*write_space)(struct sock *sk));
2197 
2198 #define MODULE_ALIAS_TCP_ULP(name)				\
2199 	__MODULE_INFO(alias, alias_userspace, name);		\
2200 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2201 
2202 struct sk_msg;
2203 struct sk_psock;
2204 
2205 #ifdef CONFIG_BPF_STREAM_PARSER
2206 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2207 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2208 #else
2209 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2210 {
2211 }
2212 #endif /* CONFIG_BPF_STREAM_PARSER */
2213 
2214 #ifdef CONFIG_NET_SOCK_MSG
2215 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2216 			  int flags);
2217 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2218 		      struct msghdr *msg, int len, int flags);
2219 #endif /* CONFIG_NET_SOCK_MSG */
2220 
2221 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2222  * is < 0, then the BPF op failed (for example if the loaded BPF
2223  * program does not support the chosen operation or there is no BPF
2224  * program loaded).
2225  */
2226 #ifdef CONFIG_BPF
2227 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2228 {
2229 	struct bpf_sock_ops_kern sock_ops;
2230 	int ret;
2231 
2232 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2233 	if (sk_fullsock(sk)) {
2234 		sock_ops.is_fullsock = 1;
2235 		sock_owned_by_me(sk);
2236 	}
2237 
2238 	sock_ops.sk = sk;
2239 	sock_ops.op = op;
2240 	if (nargs > 0)
2241 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2242 
2243 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2244 	if (ret == 0)
2245 		ret = sock_ops.reply;
2246 	else
2247 		ret = -1;
2248 	return ret;
2249 }
2250 
2251 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2252 {
2253 	u32 args[2] = {arg1, arg2};
2254 
2255 	return tcp_call_bpf(sk, op, 2, args);
2256 }
2257 
2258 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2259 				    u32 arg3)
2260 {
2261 	u32 args[3] = {arg1, arg2, arg3};
2262 
2263 	return tcp_call_bpf(sk, op, 3, args);
2264 }
2265 
2266 #else
2267 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2268 {
2269 	return -EPERM;
2270 }
2271 
2272 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2273 {
2274 	return -EPERM;
2275 }
2276 
2277 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2278 				    u32 arg3)
2279 {
2280 	return -EPERM;
2281 }
2282 
2283 #endif
2284 
2285 static inline u32 tcp_timeout_init(struct sock *sk)
2286 {
2287 	int timeout;
2288 
2289 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2290 
2291 	if (timeout <= 0)
2292 		timeout = TCP_TIMEOUT_INIT;
2293 	return timeout;
2294 }
2295 
2296 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2297 {
2298 	int rwnd;
2299 
2300 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2301 
2302 	if (rwnd < 0)
2303 		rwnd = 0;
2304 	return rwnd;
2305 }
2306 
2307 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2308 {
2309 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2310 }
2311 
2312 static inline void tcp_bpf_rtt(struct sock *sk)
2313 {
2314 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2315 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2316 }
2317 
2318 #if IS_ENABLED(CONFIG_SMC)
2319 extern struct static_key_false tcp_have_smc;
2320 #endif
2321 
2322 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2323 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2324 			     void (*cad)(struct sock *sk, u32 ack_seq));
2325 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2326 void clean_acked_data_flush(void);
2327 #endif
2328 
2329 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2330 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2331 				    const struct tcp_sock *tp)
2332 {
2333 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2334 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2335 }
2336 
2337 /* Compute Earliest Departure Time for some control packets
2338  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2339  */
2340 static inline u64 tcp_transmit_time(const struct sock *sk)
2341 {
2342 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2343 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2344 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2345 
2346 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2347 	}
2348 	return 0;
2349 }
2350 
2351 #endif	/* _TCP_H */
2352