xref: /openbmc/linux/include/net/tcp.h (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 extern int sysctl_tcp_wmem[3];
246 extern int sysctl_tcp_rmem[3];
247 
248 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
249 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 void tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
339 			 const struct tcphdr *th);
340 void tcp_rcv_space_adjust(struct sock *sk);
341 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
342 void tcp_twsk_destructor(struct sock *sk);
343 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
344 			struct pipe_inode_info *pipe, size_t len,
345 			unsigned int flags);
346 
347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_disable_fack(struct tcp_sock *tp);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 unsigned int tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
408 		       struct tcp_options_received *opt_rx,
409 		       int estab, struct tcp_fastopen_cookie *foc);
410 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
411 
412 /*
413  *	TCP v4 functions exported for the inet6 API
414  */
415 
416 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
417 void tcp_v4_mtu_reduced(struct sock *sk);
418 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
419 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
420 struct sock *tcp_create_openreq_child(const struct sock *sk,
421 				      struct request_sock *req,
422 				      struct sk_buff *skb);
423 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
424 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
425 				  struct request_sock *req,
426 				  struct dst_entry *dst,
427 				  struct request_sock *req_unhash,
428 				  bool *own_req);
429 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
430 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
431 int tcp_connect(struct sock *sk);
432 enum tcp_synack_type {
433 	TCP_SYNACK_NORMAL,
434 	TCP_SYNACK_FASTOPEN,
435 	TCP_SYNACK_COOKIE,
436 };
437 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
438 				struct request_sock *req,
439 				struct tcp_fastopen_cookie *foc,
440 				enum tcp_synack_type synack_type);
441 int tcp_disconnect(struct sock *sk, int flags);
442 
443 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
444 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
445 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
446 
447 /* From syncookies.c */
448 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
449 				 struct request_sock *req,
450 				 struct dst_entry *dst, u32 tsoff);
451 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
452 		      u32 cookie);
453 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
454 #ifdef CONFIG_SYN_COOKIES
455 
456 /* Syncookies use a monotonic timer which increments every 60 seconds.
457  * This counter is used both as a hash input and partially encoded into
458  * the cookie value.  A cookie is only validated further if the delta
459  * between the current counter value and the encoded one is less than this,
460  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
461  * the counter advances immediately after a cookie is generated).
462  */
463 #define MAX_SYNCOOKIE_AGE	2
464 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
465 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
466 
467 /* syncookies: remember time of last synqueue overflow
468  * But do not dirty this field too often (once per second is enough)
469  * It is racy as we do not hold a lock, but race is very minor.
470  */
471 static inline void tcp_synq_overflow(const struct sock *sk)
472 {
473 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
474 	unsigned long now = jiffies;
475 
476 	if (time_after(now, last_overflow + HZ))
477 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
478 }
479 
480 /* syncookies: no recent synqueue overflow on this listening socket? */
481 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
482 {
483 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
484 
485 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
486 }
487 
488 static inline u32 tcp_cookie_time(void)
489 {
490 	u64 val = get_jiffies_64();
491 
492 	do_div(val, TCP_SYNCOOKIE_PERIOD);
493 	return val;
494 }
495 
496 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
497 			      u16 *mssp);
498 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
499 u64 cookie_init_timestamp(struct request_sock *req);
500 bool cookie_timestamp_decode(const struct net *net,
501 			     struct tcp_options_received *opt);
502 bool cookie_ecn_ok(const struct tcp_options_received *opt,
503 		   const struct net *net, const struct dst_entry *dst);
504 
505 /* From net/ipv6/syncookies.c */
506 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
507 		      u32 cookie);
508 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
509 
510 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
511 			      const struct tcphdr *th, u16 *mssp);
512 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
513 #endif
514 /* tcp_output.c */
515 
516 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
517 		     int min_tso_segs);
518 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
519 			       int nonagle);
520 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
526 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
527 enum tcp_queue {
528 	TCP_FRAG_IN_WRITE_QUEUE,
529 	TCP_FRAG_IN_RTX_QUEUE,
530 };
531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
532 		 struct sk_buff *skb, u32 len,
533 		 unsigned int mss_now, gfp_t gfp);
534 
535 void tcp_send_probe0(struct sock *);
536 void tcp_send_partial(struct sock *);
537 int tcp_write_wakeup(struct sock *, int mib);
538 void tcp_send_fin(struct sock *sk);
539 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
540 int tcp_send_synack(struct sock *);
541 void tcp_push_one(struct sock *, unsigned int mss_now);
542 void tcp_send_ack(struct sock *sk);
543 void tcp_send_delayed_ack(struct sock *sk);
544 void tcp_send_loss_probe(struct sock *sk);
545 bool tcp_schedule_loss_probe(struct sock *sk);
546 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
547 			     const struct sk_buff *next_skb);
548 
549 /* tcp_input.c */
550 void tcp_rearm_rto(struct sock *sk);
551 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
552 void tcp_reset(struct sock *sk);
553 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
554 void tcp_fin(struct sock *sk);
555 
556 /* tcp_timer.c */
557 void tcp_init_xmit_timers(struct sock *);
558 static inline void tcp_clear_xmit_timers(struct sock *sk)
559 {
560 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
561 	inet_csk_clear_xmit_timers(sk);
562 }
563 
564 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
565 unsigned int tcp_current_mss(struct sock *sk);
566 
567 /* Bound MSS / TSO packet size with the half of the window */
568 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
569 {
570 	int cutoff;
571 
572 	/* When peer uses tiny windows, there is no use in packetizing
573 	 * to sub-MSS pieces for the sake of SWS or making sure there
574 	 * are enough packets in the pipe for fast recovery.
575 	 *
576 	 * On the other hand, for extremely large MSS devices, handling
577 	 * smaller than MSS windows in this way does make sense.
578 	 */
579 	if (tp->max_window > TCP_MSS_DEFAULT)
580 		cutoff = (tp->max_window >> 1);
581 	else
582 		cutoff = tp->max_window;
583 
584 	if (cutoff && pktsize > cutoff)
585 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
586 	else
587 		return pktsize;
588 }
589 
590 /* tcp.c */
591 void tcp_get_info(struct sock *, struct tcp_info *);
592 
593 /* Read 'sendfile()'-style from a TCP socket */
594 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
595 		  sk_read_actor_t recv_actor);
596 
597 void tcp_initialize_rcv_mss(struct sock *sk);
598 
599 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
600 int tcp_mss_to_mtu(struct sock *sk, int mss);
601 void tcp_mtup_init(struct sock *sk);
602 void tcp_init_buffer_space(struct sock *sk);
603 
604 static inline void tcp_bound_rto(const struct sock *sk)
605 {
606 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
607 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
608 }
609 
610 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
611 {
612 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
613 }
614 
615 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
616 {
617 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
618 			       ntohl(TCP_FLAG_ACK) |
619 			       snd_wnd);
620 }
621 
622 static inline void tcp_fast_path_on(struct tcp_sock *tp)
623 {
624 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
625 }
626 
627 static inline void tcp_fast_path_check(struct sock *sk)
628 {
629 	struct tcp_sock *tp = tcp_sk(sk);
630 
631 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
632 	    tp->rcv_wnd &&
633 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
634 	    !tp->urg_data)
635 		tcp_fast_path_on(tp);
636 }
637 
638 /* Compute the actual rto_min value */
639 static inline u32 tcp_rto_min(struct sock *sk)
640 {
641 	const struct dst_entry *dst = __sk_dst_get(sk);
642 	u32 rto_min = TCP_RTO_MIN;
643 
644 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
645 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
646 	return rto_min;
647 }
648 
649 static inline u32 tcp_rto_min_us(struct sock *sk)
650 {
651 	return jiffies_to_usecs(tcp_rto_min(sk));
652 }
653 
654 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
655 {
656 	return dst_metric_locked(dst, RTAX_CC_ALGO);
657 }
658 
659 /* Minimum RTT in usec. ~0 means not available. */
660 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
661 {
662 	return minmax_get(&tp->rtt_min);
663 }
664 
665 /* Compute the actual receive window we are currently advertising.
666  * Rcv_nxt can be after the window if our peer push more data
667  * than the offered window.
668  */
669 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
670 {
671 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
672 
673 	if (win < 0)
674 		win = 0;
675 	return (u32) win;
676 }
677 
678 /* Choose a new window, without checks for shrinking, and without
679  * scaling applied to the result.  The caller does these things
680  * if necessary.  This is a "raw" window selection.
681  */
682 u32 __tcp_select_window(struct sock *sk);
683 
684 void tcp_send_window_probe(struct sock *sk);
685 
686 /* TCP uses 32bit jiffies to save some space.
687  * Note that this is different from tcp_time_stamp, which
688  * historically has been the same until linux-4.13.
689  */
690 #define tcp_jiffies32 ((u32)jiffies)
691 
692 /*
693  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
694  * It is no longer tied to jiffies, but to 1 ms clock.
695  * Note: double check if you want to use tcp_jiffies32 instead of this.
696  */
697 #define TCP_TS_HZ	1000
698 
699 static inline u64 tcp_clock_ns(void)
700 {
701 	return local_clock();
702 }
703 
704 static inline u64 tcp_clock_us(void)
705 {
706 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
707 }
708 
709 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
710 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
711 {
712 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
713 }
714 
715 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
716 static inline u32 tcp_time_stamp_raw(void)
717 {
718 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
719 }
720 
721 
722 /* Refresh 1us clock of a TCP socket,
723  * ensuring monotically increasing values.
724  */
725 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
726 {
727 	u64 val = tcp_clock_us();
728 
729 	if (val > tp->tcp_mstamp)
730 		tp->tcp_mstamp = val;
731 }
732 
733 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
734 {
735 	return max_t(s64, t1 - t0, 0);
736 }
737 
738 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
739 {
740 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
741 }
742 
743 
744 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
745 
746 #define TCPHDR_FIN 0x01
747 #define TCPHDR_SYN 0x02
748 #define TCPHDR_RST 0x04
749 #define TCPHDR_PSH 0x08
750 #define TCPHDR_ACK 0x10
751 #define TCPHDR_URG 0x20
752 #define TCPHDR_ECE 0x40
753 #define TCPHDR_CWR 0x80
754 
755 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
756 
757 /* This is what the send packet queuing engine uses to pass
758  * TCP per-packet control information to the transmission code.
759  * We also store the host-order sequence numbers in here too.
760  * This is 44 bytes if IPV6 is enabled.
761  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
762  */
763 struct tcp_skb_cb {
764 	__u32		seq;		/* Starting sequence number	*/
765 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
766 	union {
767 		/* Note : tcp_tw_isn is used in input path only
768 		 *	  (isn chosen by tcp_timewait_state_process())
769 		 *
770 		 * 	  tcp_gso_segs/size are used in write queue only,
771 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
772 		 */
773 		__u32		tcp_tw_isn;
774 		struct {
775 			u16	tcp_gso_segs;
776 			u16	tcp_gso_size;
777 		};
778 	};
779 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
780 
781 	__u8		sacked;		/* State flags for SACK/FACK.	*/
782 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
783 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
784 #define TCPCB_LOST		0x04	/* SKB is lost			*/
785 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
786 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
787 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
788 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
789 				TCPCB_REPAIRED)
790 
791 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
792 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
793 			eor:1,		/* Is skb MSG_EOR marked? */
794 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
795 			unused:5;
796 	__u32		ack_seq;	/* Sequence number ACK'd	*/
797 	union {
798 		struct {
799 			/* There is space for up to 24 bytes */
800 			__u32 in_flight:30,/* Bytes in flight at transmit */
801 			      is_app_limited:1, /* cwnd not fully used? */
802 			      unused:1;
803 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
804 			__u32 delivered;
805 			/* start of send pipeline phase */
806 			u64 first_tx_mstamp;
807 			/* when we reached the "delivered" count */
808 			u64 delivered_mstamp;
809 		} tx;   /* only used for outgoing skbs */
810 		union {
811 			struct inet_skb_parm	h4;
812 #if IS_ENABLED(CONFIG_IPV6)
813 			struct inet6_skb_parm	h6;
814 #endif
815 		} header;	/* For incoming skbs */
816 		struct {
817 			__u32 key;
818 			__u32 flags;
819 			struct bpf_map *map;
820 			void *data_end;
821 		} bpf;
822 	};
823 };
824 
825 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
826 
827 
828 #if IS_ENABLED(CONFIG_IPV6)
829 /* This is the variant of inet6_iif() that must be used by TCP,
830  * as TCP moves IP6CB into a different location in skb->cb[]
831  */
832 static inline int tcp_v6_iif(const struct sk_buff *skb)
833 {
834 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
835 
836 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
837 }
838 
839 /* TCP_SKB_CB reference means this can not be used from early demux */
840 static inline int tcp_v6_sdif(const struct sk_buff *skb)
841 {
842 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
843 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
844 		return TCP_SKB_CB(skb)->header.h6.iif;
845 #endif
846 	return 0;
847 }
848 #endif
849 
850 /* TCP_SKB_CB reference means this can not be used from early demux */
851 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
852 {
853 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
854 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
855 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
856 		return true;
857 #endif
858 	return false;
859 }
860 
861 /* TCP_SKB_CB reference means this can not be used from early demux */
862 static inline int tcp_v4_sdif(struct sk_buff *skb)
863 {
864 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
865 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
866 		return TCP_SKB_CB(skb)->header.h4.iif;
867 #endif
868 	return 0;
869 }
870 
871 /* Due to TSO, an SKB can be composed of multiple actual
872  * packets.  To keep these tracked properly, we use this.
873  */
874 static inline int tcp_skb_pcount(const struct sk_buff *skb)
875 {
876 	return TCP_SKB_CB(skb)->tcp_gso_segs;
877 }
878 
879 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
880 {
881 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
882 }
883 
884 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
885 {
886 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
887 }
888 
889 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
890 static inline int tcp_skb_mss(const struct sk_buff *skb)
891 {
892 	return TCP_SKB_CB(skb)->tcp_gso_size;
893 }
894 
895 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
896 {
897 	return likely(!TCP_SKB_CB(skb)->eor);
898 }
899 
900 /* Events passed to congestion control interface */
901 enum tcp_ca_event {
902 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
903 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
904 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
905 	CA_EVENT_LOSS,		/* loss timeout */
906 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
907 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
908 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
909 	CA_EVENT_NON_DELAYED_ACK,
910 };
911 
912 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
913 enum tcp_ca_ack_event_flags {
914 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
915 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
916 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
917 };
918 
919 /*
920  * Interface for adding new TCP congestion control handlers
921  */
922 #define TCP_CA_NAME_MAX	16
923 #define TCP_CA_MAX	128
924 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
925 
926 #define TCP_CA_UNSPEC	0
927 
928 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
929 #define TCP_CONG_NON_RESTRICTED 0x1
930 /* Requires ECN/ECT set on all packets */
931 #define TCP_CONG_NEEDS_ECN	0x2
932 
933 union tcp_cc_info;
934 
935 struct ack_sample {
936 	u32 pkts_acked;
937 	s32 rtt_us;
938 	u32 in_flight;
939 };
940 
941 /* A rate sample measures the number of (original/retransmitted) data
942  * packets delivered "delivered" over an interval of time "interval_us".
943  * The tcp_rate.c code fills in the rate sample, and congestion
944  * control modules that define a cong_control function to run at the end
945  * of ACK processing can optionally chose to consult this sample when
946  * setting cwnd and pacing rate.
947  * A sample is invalid if "delivered" or "interval_us" is negative.
948  */
949 struct rate_sample {
950 	u64  prior_mstamp; /* starting timestamp for interval */
951 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
952 	s32  delivered;		/* number of packets delivered over interval */
953 	long interval_us;	/* time for tp->delivered to incr "delivered" */
954 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
955 	int  losses;		/* number of packets marked lost upon ACK */
956 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
957 	u32  prior_in_flight;	/* in flight before this ACK */
958 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
959 	bool is_retrans;	/* is sample from retransmission? */
960 };
961 
962 struct tcp_congestion_ops {
963 	struct list_head	list;
964 	u32 key;
965 	u32 flags;
966 
967 	/* initialize private data (optional) */
968 	void (*init)(struct sock *sk);
969 	/* cleanup private data  (optional) */
970 	void (*release)(struct sock *sk);
971 
972 	/* return slow start threshold (required) */
973 	u32 (*ssthresh)(struct sock *sk);
974 	/* do new cwnd calculation (required) */
975 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
976 	/* call before changing ca_state (optional) */
977 	void (*set_state)(struct sock *sk, u8 new_state);
978 	/* call when cwnd event occurs (optional) */
979 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
980 	/* call when ack arrives (optional) */
981 	void (*in_ack_event)(struct sock *sk, u32 flags);
982 	/* new value of cwnd after loss (required) */
983 	u32  (*undo_cwnd)(struct sock *sk);
984 	/* hook for packet ack accounting (optional) */
985 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
986 	/* suggest number of segments for each skb to transmit (optional) */
987 	u32 (*tso_segs_goal)(struct sock *sk);
988 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
989 	u32 (*sndbuf_expand)(struct sock *sk);
990 	/* call when packets are delivered to update cwnd and pacing rate,
991 	 * after all the ca_state processing. (optional)
992 	 */
993 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
994 	/* get info for inet_diag (optional) */
995 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
996 			   union tcp_cc_info *info);
997 
998 	char 		name[TCP_CA_NAME_MAX];
999 	struct module 	*owner;
1000 };
1001 
1002 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1003 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1004 
1005 void tcp_assign_congestion_control(struct sock *sk);
1006 void tcp_init_congestion_control(struct sock *sk);
1007 void tcp_cleanup_congestion_control(struct sock *sk);
1008 int tcp_set_default_congestion_control(const char *name);
1009 void tcp_get_default_congestion_control(char *name);
1010 void tcp_get_available_congestion_control(char *buf, size_t len);
1011 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1012 int tcp_set_allowed_congestion_control(char *allowed);
1013 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1014 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1015 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1016 
1017 u32 tcp_reno_ssthresh(struct sock *sk);
1018 u32 tcp_reno_undo_cwnd(struct sock *sk);
1019 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1020 extern struct tcp_congestion_ops tcp_reno;
1021 
1022 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1023 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1024 #ifdef CONFIG_INET
1025 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1026 #else
1027 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1028 {
1029 	return NULL;
1030 }
1031 #endif
1032 
1033 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1034 {
1035 	const struct inet_connection_sock *icsk = inet_csk(sk);
1036 
1037 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1038 }
1039 
1040 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1041 {
1042 	struct inet_connection_sock *icsk = inet_csk(sk);
1043 
1044 	if (icsk->icsk_ca_ops->set_state)
1045 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1046 	icsk->icsk_ca_state = ca_state;
1047 }
1048 
1049 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1050 {
1051 	const struct inet_connection_sock *icsk = inet_csk(sk);
1052 
1053 	if (icsk->icsk_ca_ops->cwnd_event)
1054 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1055 }
1056 
1057 /* From tcp_rate.c */
1058 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1059 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1060 			    struct rate_sample *rs);
1061 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1062 		  struct rate_sample *rs);
1063 void tcp_rate_check_app_limited(struct sock *sk);
1064 
1065 /* These functions determine how the current flow behaves in respect of SACK
1066  * handling. SACK is negotiated with the peer, and therefore it can vary
1067  * between different flows.
1068  *
1069  * tcp_is_sack - SACK enabled
1070  * tcp_is_reno - No SACK
1071  * tcp_is_fack - FACK enabled, implies SACK enabled
1072  */
1073 static inline int tcp_is_sack(const struct tcp_sock *tp)
1074 {
1075 	return tp->rx_opt.sack_ok;
1076 }
1077 
1078 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1079 {
1080 	return !tcp_is_sack(tp);
1081 }
1082 
1083 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1084 {
1085 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1086 }
1087 
1088 static inline void tcp_enable_fack(struct tcp_sock *tp)
1089 {
1090 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1091 }
1092 
1093 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1094 {
1095 	return tp->sacked_out + tp->lost_out;
1096 }
1097 
1098 /* This determines how many packets are "in the network" to the best
1099  * of our knowledge.  In many cases it is conservative, but where
1100  * detailed information is available from the receiver (via SACK
1101  * blocks etc.) we can make more aggressive calculations.
1102  *
1103  * Use this for decisions involving congestion control, use just
1104  * tp->packets_out to determine if the send queue is empty or not.
1105  *
1106  * Read this equation as:
1107  *
1108  *	"Packets sent once on transmission queue" MINUS
1109  *	"Packets left network, but not honestly ACKed yet" PLUS
1110  *	"Packets fast retransmitted"
1111  */
1112 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1113 {
1114 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1115 }
1116 
1117 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1118 
1119 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1120 {
1121 	return tp->snd_cwnd < tp->snd_ssthresh;
1122 }
1123 
1124 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1125 {
1126 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1127 }
1128 
1129 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1130 {
1131 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1132 	       (1 << inet_csk(sk)->icsk_ca_state);
1133 }
1134 
1135 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1136  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1137  * ssthresh.
1138  */
1139 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1140 {
1141 	const struct tcp_sock *tp = tcp_sk(sk);
1142 
1143 	if (tcp_in_cwnd_reduction(sk))
1144 		return tp->snd_ssthresh;
1145 	else
1146 		return max(tp->snd_ssthresh,
1147 			   ((tp->snd_cwnd >> 1) +
1148 			    (tp->snd_cwnd >> 2)));
1149 }
1150 
1151 /* Use define here intentionally to get WARN_ON location shown at the caller */
1152 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1153 
1154 void tcp_enter_cwr(struct sock *sk);
1155 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1156 
1157 /* The maximum number of MSS of available cwnd for which TSO defers
1158  * sending if not using sysctl_tcp_tso_win_divisor.
1159  */
1160 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1161 {
1162 	return 3;
1163 }
1164 
1165 /* Returns end sequence number of the receiver's advertised window */
1166 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1167 {
1168 	return tp->snd_una + tp->snd_wnd;
1169 }
1170 
1171 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1172  * flexible approach. The RFC suggests cwnd should not be raised unless
1173  * it was fully used previously. And that's exactly what we do in
1174  * congestion avoidance mode. But in slow start we allow cwnd to grow
1175  * as long as the application has used half the cwnd.
1176  * Example :
1177  *    cwnd is 10 (IW10), but application sends 9 frames.
1178  *    We allow cwnd to reach 18 when all frames are ACKed.
1179  * This check is safe because it's as aggressive as slow start which already
1180  * risks 100% overshoot. The advantage is that we discourage application to
1181  * either send more filler packets or data to artificially blow up the cwnd
1182  * usage, and allow application-limited process to probe bw more aggressively.
1183  */
1184 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1185 {
1186 	const struct tcp_sock *tp = tcp_sk(sk);
1187 
1188 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1189 	if (tcp_in_slow_start(tp))
1190 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1191 
1192 	return tp->is_cwnd_limited;
1193 }
1194 
1195 /* Something is really bad, we could not queue an additional packet,
1196  * because qdisc is full or receiver sent a 0 window.
1197  * We do not want to add fuel to the fire, or abort too early,
1198  * so make sure the timer we arm now is at least 200ms in the future,
1199  * regardless of current icsk_rto value (as it could be ~2ms)
1200  */
1201 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1202 {
1203 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1204 }
1205 
1206 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1207 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1208 					    unsigned long max_when)
1209 {
1210 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1211 
1212 	return (unsigned long)min_t(u64, when, max_when);
1213 }
1214 
1215 static inline void tcp_check_probe_timer(struct sock *sk)
1216 {
1217 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1218 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1219 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1220 }
1221 
1222 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1223 {
1224 	tp->snd_wl1 = seq;
1225 }
1226 
1227 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1228 {
1229 	tp->snd_wl1 = seq;
1230 }
1231 
1232 /*
1233  * Calculate(/check) TCP checksum
1234  */
1235 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1236 				   __be32 daddr, __wsum base)
1237 {
1238 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1239 }
1240 
1241 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1242 {
1243 	return __skb_checksum_complete(skb);
1244 }
1245 
1246 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1247 {
1248 	return !skb_csum_unnecessary(skb) &&
1249 		__tcp_checksum_complete(skb);
1250 }
1251 
1252 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1253 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1254 
1255 #undef STATE_TRACE
1256 
1257 #ifdef STATE_TRACE
1258 static const char *statename[]={
1259 	"Unused","Established","Syn Sent","Syn Recv",
1260 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1261 	"Close Wait","Last ACK","Listen","Closing"
1262 };
1263 #endif
1264 void tcp_set_state(struct sock *sk, int state);
1265 
1266 void tcp_done(struct sock *sk);
1267 
1268 int tcp_abort(struct sock *sk, int err);
1269 
1270 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1271 {
1272 	rx_opt->dsack = 0;
1273 	rx_opt->num_sacks = 0;
1274 }
1275 
1276 u32 tcp_default_init_rwnd(u32 mss);
1277 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1278 
1279 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1280 {
1281 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 	s32 delta;
1284 
1285 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1286 	    ca_ops->cong_control)
1287 		return;
1288 	delta = tcp_jiffies32 - tp->lsndtime;
1289 	if (delta > inet_csk(sk)->icsk_rto)
1290 		tcp_cwnd_restart(sk, delta);
1291 }
1292 
1293 /* Determine a window scaling and initial window to offer. */
1294 void tcp_select_initial_window(const struct sock *sk, int __space,
1295 			       __u32 mss, __u32 *rcv_wnd,
1296 			       __u32 *window_clamp, int wscale_ok,
1297 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1298 
1299 static inline int tcp_win_from_space(const struct sock *sk, int space)
1300 {
1301 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1302 
1303 	return tcp_adv_win_scale <= 0 ?
1304 		(space>>(-tcp_adv_win_scale)) :
1305 		space - (space>>tcp_adv_win_scale);
1306 }
1307 
1308 /* Note: caller must be prepared to deal with negative returns */
1309 static inline int tcp_space(const struct sock *sk)
1310 {
1311 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1312 				  atomic_read(&sk->sk_rmem_alloc));
1313 }
1314 
1315 static inline int tcp_full_space(const struct sock *sk)
1316 {
1317 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1318 }
1319 
1320 extern void tcp_openreq_init_rwin(struct request_sock *req,
1321 				  const struct sock *sk_listener,
1322 				  const struct dst_entry *dst);
1323 
1324 void tcp_enter_memory_pressure(struct sock *sk);
1325 void tcp_leave_memory_pressure(struct sock *sk);
1326 
1327 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1328 {
1329 	struct net *net = sock_net((struct sock *)tp);
1330 
1331 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1332 }
1333 
1334 static inline int keepalive_time_when(const struct tcp_sock *tp)
1335 {
1336 	struct net *net = sock_net((struct sock *)tp);
1337 
1338 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1339 }
1340 
1341 static inline int keepalive_probes(const struct tcp_sock *tp)
1342 {
1343 	struct net *net = sock_net((struct sock *)tp);
1344 
1345 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1346 }
1347 
1348 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1349 {
1350 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1351 
1352 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1353 			  tcp_jiffies32 - tp->rcv_tstamp);
1354 }
1355 
1356 static inline int tcp_fin_time(const struct sock *sk)
1357 {
1358 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1359 	const int rto = inet_csk(sk)->icsk_rto;
1360 
1361 	if (fin_timeout < (rto << 2) - (rto >> 1))
1362 		fin_timeout = (rto << 2) - (rto >> 1);
1363 
1364 	return fin_timeout;
1365 }
1366 
1367 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1368 				  int paws_win)
1369 {
1370 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1371 		return true;
1372 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1373 		return true;
1374 	/*
1375 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1376 	 * then following tcp messages have valid values. Ignore 0 value,
1377 	 * or else 'negative' tsval might forbid us to accept their packets.
1378 	 */
1379 	if (!rx_opt->ts_recent)
1380 		return true;
1381 	return false;
1382 }
1383 
1384 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1385 				   int rst)
1386 {
1387 	if (tcp_paws_check(rx_opt, 0))
1388 		return false;
1389 
1390 	/* RST segments are not recommended to carry timestamp,
1391 	   and, if they do, it is recommended to ignore PAWS because
1392 	   "their cleanup function should take precedence over timestamps."
1393 	   Certainly, it is mistake. It is necessary to understand the reasons
1394 	   of this constraint to relax it: if peer reboots, clock may go
1395 	   out-of-sync and half-open connections will not be reset.
1396 	   Actually, the problem would be not existing if all
1397 	   the implementations followed draft about maintaining clock
1398 	   via reboots. Linux-2.2 DOES NOT!
1399 
1400 	   However, we can relax time bounds for RST segments to MSL.
1401 	 */
1402 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1403 		return false;
1404 	return true;
1405 }
1406 
1407 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1408 			  int mib_idx, u32 *last_oow_ack_time);
1409 
1410 static inline void tcp_mib_init(struct net *net)
1411 {
1412 	/* See RFC 2012 */
1413 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1414 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1415 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1416 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1417 }
1418 
1419 /* from STCP */
1420 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1421 {
1422 	tp->lost_skb_hint = NULL;
1423 }
1424 
1425 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1426 {
1427 	tcp_clear_retrans_hints_partial(tp);
1428 	tp->retransmit_skb_hint = NULL;
1429 }
1430 
1431 union tcp_md5_addr {
1432 	struct in_addr  a4;
1433 #if IS_ENABLED(CONFIG_IPV6)
1434 	struct in6_addr	a6;
1435 #endif
1436 };
1437 
1438 /* - key database */
1439 struct tcp_md5sig_key {
1440 	struct hlist_node	node;
1441 	u8			keylen;
1442 	u8			family; /* AF_INET or AF_INET6 */
1443 	union tcp_md5_addr	addr;
1444 	u8			prefixlen;
1445 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1446 	struct rcu_head		rcu;
1447 };
1448 
1449 /* - sock block */
1450 struct tcp_md5sig_info {
1451 	struct hlist_head	head;
1452 	struct rcu_head		rcu;
1453 };
1454 
1455 /* - pseudo header */
1456 struct tcp4_pseudohdr {
1457 	__be32		saddr;
1458 	__be32		daddr;
1459 	__u8		pad;
1460 	__u8		protocol;
1461 	__be16		len;
1462 };
1463 
1464 struct tcp6_pseudohdr {
1465 	struct in6_addr	saddr;
1466 	struct in6_addr daddr;
1467 	__be32		len;
1468 	__be32		protocol;	/* including padding */
1469 };
1470 
1471 union tcp_md5sum_block {
1472 	struct tcp4_pseudohdr ip4;
1473 #if IS_ENABLED(CONFIG_IPV6)
1474 	struct tcp6_pseudohdr ip6;
1475 #endif
1476 };
1477 
1478 /* - pool: digest algorithm, hash description and scratch buffer */
1479 struct tcp_md5sig_pool {
1480 	struct ahash_request	*md5_req;
1481 	void			*scratch;
1482 };
1483 
1484 /* - functions */
1485 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1486 			const struct sock *sk, const struct sk_buff *skb);
1487 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1488 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1489 		   gfp_t gfp);
1490 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1491 		   int family, u8 prefixlen);
1492 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1493 					 const struct sock *addr_sk);
1494 
1495 #ifdef CONFIG_TCP_MD5SIG
1496 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1497 					 const union tcp_md5_addr *addr,
1498 					 int family);
1499 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1500 #else
1501 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1502 					 const union tcp_md5_addr *addr,
1503 					 int family)
1504 {
1505 	return NULL;
1506 }
1507 #define tcp_twsk_md5_key(twsk)	NULL
1508 #endif
1509 
1510 bool tcp_alloc_md5sig_pool(void);
1511 
1512 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1513 static inline void tcp_put_md5sig_pool(void)
1514 {
1515 	local_bh_enable();
1516 }
1517 
1518 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1519 			  unsigned int header_len);
1520 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1521 		     const struct tcp_md5sig_key *key);
1522 
1523 /* From tcp_fastopen.c */
1524 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1525 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1526 			    unsigned long *last_syn_loss);
1527 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1528 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1529 			    u16 try_exp);
1530 struct tcp_fastopen_request {
1531 	/* Fast Open cookie. Size 0 means a cookie request */
1532 	struct tcp_fastopen_cookie	cookie;
1533 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1534 	size_t				size;
1535 	int				copied;	/* queued in tcp_connect() */
1536 };
1537 void tcp_free_fastopen_req(struct tcp_sock *tp);
1538 void tcp_fastopen_destroy_cipher(struct sock *sk);
1539 void tcp_fastopen_ctx_destroy(struct net *net);
1540 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1541 			      void *key, unsigned int len);
1542 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1543 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1544 			      struct request_sock *req,
1545 			      struct tcp_fastopen_cookie *foc,
1546 			      const struct dst_entry *dst);
1547 void tcp_fastopen_init_key_once(struct net *net);
1548 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1549 			     struct tcp_fastopen_cookie *cookie);
1550 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1551 #define TCP_FASTOPEN_KEY_LENGTH 16
1552 
1553 /* Fastopen key context */
1554 struct tcp_fastopen_context {
1555 	struct crypto_cipher	*tfm;
1556 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1557 	struct rcu_head		rcu;
1558 };
1559 
1560 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1561 void tcp_fastopen_active_disable(struct sock *sk);
1562 bool tcp_fastopen_active_should_disable(struct sock *sk);
1563 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1564 void tcp_fastopen_active_timeout_reset(void);
1565 
1566 /* Latencies incurred by various limits for a sender. They are
1567  * chronograph-like stats that are mutually exclusive.
1568  */
1569 enum tcp_chrono {
1570 	TCP_CHRONO_UNSPEC,
1571 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1572 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1573 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1574 	__TCP_CHRONO_MAX,
1575 };
1576 
1577 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1578 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1579 
1580 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1581  * the same memory storage than skb->destructor/_skb_refdst
1582  */
1583 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1584 {
1585 	skb->destructor = NULL;
1586 	skb->_skb_refdst = 0UL;
1587 }
1588 
1589 #define tcp_skb_tsorted_save(skb) {		\
1590 	unsigned long _save = skb->_skb_refdst;	\
1591 	skb->_skb_refdst = 0UL;
1592 
1593 #define tcp_skb_tsorted_restore(skb)		\
1594 	skb->_skb_refdst = _save;		\
1595 }
1596 
1597 void tcp_write_queue_purge(struct sock *sk);
1598 
1599 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1600 {
1601 	return skb_rb_first(&sk->tcp_rtx_queue);
1602 }
1603 
1604 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1605 {
1606 	return skb_peek(&sk->sk_write_queue);
1607 }
1608 
1609 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1610 {
1611 	return skb_peek_tail(&sk->sk_write_queue);
1612 }
1613 
1614 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1615 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1616 
1617 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1618 {
1619 	return skb_peek(&sk->sk_write_queue);
1620 }
1621 
1622 static inline bool tcp_skb_is_last(const struct sock *sk,
1623 				   const struct sk_buff *skb)
1624 {
1625 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1626 }
1627 
1628 static inline bool tcp_write_queue_empty(const struct sock *sk)
1629 {
1630 	return skb_queue_empty(&sk->sk_write_queue);
1631 }
1632 
1633 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1634 {
1635 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1636 }
1637 
1638 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1639 {
1640 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1641 }
1642 
1643 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1644 {
1645 	if (tcp_write_queue_empty(sk))
1646 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1647 
1648 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1649 		tcp_sk(sk)->highest_sack = NULL;
1650 }
1651 
1652 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1653 {
1654 	__skb_queue_tail(&sk->sk_write_queue, skb);
1655 }
1656 
1657 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1658 {
1659 	__tcp_add_write_queue_tail(sk, skb);
1660 
1661 	/* Queue it, remembering where we must start sending. */
1662 	if (sk->sk_write_queue.next == skb) {
1663 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1664 
1665 		if (tcp_sk(sk)->highest_sack == NULL)
1666 			tcp_sk(sk)->highest_sack = skb;
1667 	}
1668 }
1669 
1670 /* Insert new before skb on the write queue of sk.  */
1671 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1672 						  struct sk_buff *skb,
1673 						  struct sock *sk)
1674 {
1675 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1676 }
1677 
1678 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1679 {
1680 	tcp_skb_tsorted_anchor_cleanup(skb);
1681 	__skb_unlink(skb, &sk->sk_write_queue);
1682 }
1683 
1684 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1685 
1686 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1687 {
1688 	tcp_skb_tsorted_anchor_cleanup(skb);
1689 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1690 }
1691 
1692 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1693 {
1694 	list_del(&skb->tcp_tsorted_anchor);
1695 	tcp_rtx_queue_unlink(skb, sk);
1696 	sk_wmem_free_skb(sk, skb);
1697 }
1698 
1699 static inline void tcp_push_pending_frames(struct sock *sk)
1700 {
1701 	if (tcp_send_head(sk)) {
1702 		struct tcp_sock *tp = tcp_sk(sk);
1703 
1704 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1705 	}
1706 }
1707 
1708 /* Start sequence of the skb just after the highest skb with SACKed
1709  * bit, valid only if sacked_out > 0 or when the caller has ensured
1710  * validity by itself.
1711  */
1712 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1713 {
1714 	if (!tp->sacked_out)
1715 		return tp->snd_una;
1716 
1717 	if (tp->highest_sack == NULL)
1718 		return tp->snd_nxt;
1719 
1720 	return TCP_SKB_CB(tp->highest_sack)->seq;
1721 }
1722 
1723 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1724 {
1725 	struct sk_buff *next = skb_rb_next(skb);
1726 
1727 	tcp_sk(sk)->highest_sack = next ?: tcp_send_head(sk);
1728 }
1729 
1730 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1731 {
1732 	return tcp_sk(sk)->highest_sack;
1733 }
1734 
1735 static inline void tcp_highest_sack_reset(struct sock *sk)
1736 {
1737 	struct sk_buff *skb = tcp_rtx_queue_head(sk);
1738 
1739 	tcp_sk(sk)->highest_sack = skb ?: tcp_send_head(sk);
1740 }
1741 
1742 /* Called when old skb is about to be deleted and replaced by new skb */
1743 static inline void tcp_highest_sack_replace(struct sock *sk,
1744 					    struct sk_buff *old,
1745 					    struct sk_buff *new)
1746 {
1747 	if (old == tcp_highest_sack(sk))
1748 		tcp_sk(sk)->highest_sack = new;
1749 }
1750 
1751 /* This helper checks if socket has IP_TRANSPARENT set */
1752 static inline bool inet_sk_transparent(const struct sock *sk)
1753 {
1754 	switch (sk->sk_state) {
1755 	case TCP_TIME_WAIT:
1756 		return inet_twsk(sk)->tw_transparent;
1757 	case TCP_NEW_SYN_RECV:
1758 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1759 	}
1760 	return inet_sk(sk)->transparent;
1761 }
1762 
1763 /* Determines whether this is a thin stream (which may suffer from
1764  * increased latency). Used to trigger latency-reducing mechanisms.
1765  */
1766 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1767 {
1768 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1769 }
1770 
1771 /* /proc */
1772 enum tcp_seq_states {
1773 	TCP_SEQ_STATE_LISTENING,
1774 	TCP_SEQ_STATE_ESTABLISHED,
1775 };
1776 
1777 int tcp_seq_open(struct inode *inode, struct file *file);
1778 
1779 struct tcp_seq_afinfo {
1780 	char				*name;
1781 	sa_family_t			family;
1782 	const struct file_operations	*seq_fops;
1783 	struct seq_operations		seq_ops;
1784 };
1785 
1786 struct tcp_iter_state {
1787 	struct seq_net_private	p;
1788 	sa_family_t		family;
1789 	enum tcp_seq_states	state;
1790 	struct sock		*syn_wait_sk;
1791 	int			bucket, offset, sbucket, num;
1792 	loff_t			last_pos;
1793 };
1794 
1795 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1796 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1797 
1798 extern struct request_sock_ops tcp_request_sock_ops;
1799 extern struct request_sock_ops tcp6_request_sock_ops;
1800 
1801 void tcp_v4_destroy_sock(struct sock *sk);
1802 
1803 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1804 				netdev_features_t features);
1805 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1806 int tcp_gro_complete(struct sk_buff *skb);
1807 
1808 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1809 
1810 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1811 {
1812 	struct net *net = sock_net((struct sock *)tp);
1813 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1814 }
1815 
1816 static inline bool tcp_stream_memory_free(const struct sock *sk)
1817 {
1818 	const struct tcp_sock *tp = tcp_sk(sk);
1819 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1820 
1821 	return notsent_bytes < tcp_notsent_lowat(tp);
1822 }
1823 
1824 #ifdef CONFIG_PROC_FS
1825 int tcp4_proc_init(void);
1826 void tcp4_proc_exit(void);
1827 #endif
1828 
1829 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1830 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1831 		     const struct tcp_request_sock_ops *af_ops,
1832 		     struct sock *sk, struct sk_buff *skb);
1833 
1834 /* TCP af-specific functions */
1835 struct tcp_sock_af_ops {
1836 #ifdef CONFIG_TCP_MD5SIG
1837 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1838 						const struct sock *addr_sk);
1839 	int		(*calc_md5_hash)(char *location,
1840 					 const struct tcp_md5sig_key *md5,
1841 					 const struct sock *sk,
1842 					 const struct sk_buff *skb);
1843 	int		(*md5_parse)(struct sock *sk,
1844 				     int optname,
1845 				     char __user *optval,
1846 				     int optlen);
1847 #endif
1848 };
1849 
1850 struct tcp_request_sock_ops {
1851 	u16 mss_clamp;
1852 #ifdef CONFIG_TCP_MD5SIG
1853 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1854 						 const struct sock *addr_sk);
1855 	int		(*calc_md5_hash) (char *location,
1856 					  const struct tcp_md5sig_key *md5,
1857 					  const struct sock *sk,
1858 					  const struct sk_buff *skb);
1859 #endif
1860 	void (*init_req)(struct request_sock *req,
1861 			 const struct sock *sk_listener,
1862 			 struct sk_buff *skb);
1863 #ifdef CONFIG_SYN_COOKIES
1864 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1865 				 __u16 *mss);
1866 #endif
1867 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1868 				       const struct request_sock *req);
1869 	u32 (*init_seq)(const struct sk_buff *skb);
1870 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1871 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1872 			   struct flowi *fl, struct request_sock *req,
1873 			   struct tcp_fastopen_cookie *foc,
1874 			   enum tcp_synack_type synack_type);
1875 };
1876 
1877 #ifdef CONFIG_SYN_COOKIES
1878 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1879 					 const struct sock *sk, struct sk_buff *skb,
1880 					 __u16 *mss)
1881 {
1882 	tcp_synq_overflow(sk);
1883 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1884 	return ops->cookie_init_seq(skb, mss);
1885 }
1886 #else
1887 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1888 					 const struct sock *sk, struct sk_buff *skb,
1889 					 __u16 *mss)
1890 {
1891 	return 0;
1892 }
1893 #endif
1894 
1895 int tcpv4_offload_init(void);
1896 
1897 void tcp_v4_init(void);
1898 void tcp_init(void);
1899 
1900 /* tcp_recovery.c */
1901 extern void tcp_rack_mark_lost(struct sock *sk);
1902 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1903 			     u64 xmit_time);
1904 extern void tcp_rack_reo_timeout(struct sock *sk);
1905 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1906 
1907 /* At how many usecs into the future should the RTO fire? */
1908 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1909 {
1910 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1911 	u32 rto = inet_csk(sk)->icsk_rto;
1912 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1913 
1914 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1915 }
1916 
1917 /*
1918  * Save and compile IPv4 options, return a pointer to it
1919  */
1920 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1921 							 struct sk_buff *skb)
1922 {
1923 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1924 	struct ip_options_rcu *dopt = NULL;
1925 
1926 	if (opt->optlen) {
1927 		int opt_size = sizeof(*dopt) + opt->optlen;
1928 
1929 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1930 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1931 			kfree(dopt);
1932 			dopt = NULL;
1933 		}
1934 	}
1935 	return dopt;
1936 }
1937 
1938 /* locally generated TCP pure ACKs have skb->truesize == 2
1939  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1940  * This is much faster than dissecting the packet to find out.
1941  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1942  */
1943 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1944 {
1945 	return skb->truesize == 2;
1946 }
1947 
1948 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1949 {
1950 	skb->truesize = 2;
1951 }
1952 
1953 static inline int tcp_inq(struct sock *sk)
1954 {
1955 	struct tcp_sock *tp = tcp_sk(sk);
1956 	int answ;
1957 
1958 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1959 		answ = 0;
1960 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1961 		   !tp->urg_data ||
1962 		   before(tp->urg_seq, tp->copied_seq) ||
1963 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1964 
1965 		answ = tp->rcv_nxt - tp->copied_seq;
1966 
1967 		/* Subtract 1, if FIN was received */
1968 		if (answ && sock_flag(sk, SOCK_DONE))
1969 			answ--;
1970 	} else {
1971 		answ = tp->urg_seq - tp->copied_seq;
1972 	}
1973 
1974 	return answ;
1975 }
1976 
1977 int tcp_peek_len(struct socket *sock);
1978 
1979 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1980 {
1981 	u16 segs_in;
1982 
1983 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1984 	tp->segs_in += segs_in;
1985 	if (skb->len > tcp_hdrlen(skb))
1986 		tp->data_segs_in += segs_in;
1987 }
1988 
1989 /*
1990  * TCP listen path runs lockless.
1991  * We forced "struct sock" to be const qualified to make sure
1992  * we don't modify one of its field by mistake.
1993  * Here, we increment sk_drops which is an atomic_t, so we can safely
1994  * make sock writable again.
1995  */
1996 static inline void tcp_listendrop(const struct sock *sk)
1997 {
1998 	atomic_inc(&((struct sock *)sk)->sk_drops);
1999 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2000 }
2001 
2002 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2003 
2004 /*
2005  * Interface for adding Upper Level Protocols over TCP
2006  */
2007 
2008 #define TCP_ULP_NAME_MAX	16
2009 #define TCP_ULP_MAX		128
2010 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2011 
2012 struct tcp_ulp_ops {
2013 	struct list_head	list;
2014 
2015 	/* initialize ulp */
2016 	int (*init)(struct sock *sk);
2017 	/* cleanup ulp */
2018 	void (*release)(struct sock *sk);
2019 
2020 	char		name[TCP_ULP_NAME_MAX];
2021 	struct module	*owner;
2022 };
2023 int tcp_register_ulp(struct tcp_ulp_ops *type);
2024 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2025 int tcp_set_ulp(struct sock *sk, const char *name);
2026 void tcp_get_available_ulp(char *buf, size_t len);
2027 void tcp_cleanup_ulp(struct sock *sk);
2028 
2029 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2030  * is < 0, then the BPF op failed (for example if the loaded BPF
2031  * program does not support the chosen operation or there is no BPF
2032  * program loaded).
2033  */
2034 #ifdef CONFIG_BPF
2035 static inline int tcp_call_bpf(struct sock *sk, int op)
2036 {
2037 	struct bpf_sock_ops_kern sock_ops;
2038 	int ret;
2039 
2040 	if (sk_fullsock(sk))
2041 		sock_owned_by_me(sk);
2042 
2043 	memset(&sock_ops, 0, sizeof(sock_ops));
2044 	sock_ops.sk = sk;
2045 	sock_ops.op = op;
2046 
2047 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2048 	if (ret == 0)
2049 		ret = sock_ops.reply;
2050 	else
2051 		ret = -1;
2052 	return ret;
2053 }
2054 #else
2055 static inline int tcp_call_bpf(struct sock *sk, int op)
2056 {
2057 	return -EPERM;
2058 }
2059 #endif
2060 
2061 static inline u32 tcp_timeout_init(struct sock *sk)
2062 {
2063 	int timeout;
2064 
2065 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2066 
2067 	if (timeout <= 0)
2068 		timeout = TCP_TIMEOUT_INIT;
2069 	return timeout;
2070 }
2071 
2072 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2073 {
2074 	int rwnd;
2075 
2076 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2077 
2078 	if (rwnd < 0)
2079 		rwnd = 0;
2080 	return rwnd;
2081 }
2082 
2083 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2084 {
2085 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2086 }
2087 
2088 #if IS_ENABLED(CONFIG_SMC)
2089 extern struct static_key_false tcp_have_smc;
2090 #endif
2091 #endif	/* _TCP_H */
2092