xref: /openbmc/linux/include/net/tcp.h (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252 
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 		return true;
259 
260 	return tcp_memory_pressure;
261 }
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288 
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 	int orphans = percpu_counter_read_positive(ocp);
293 
294 	if (orphans << shift > sysctl_tcp_max_orphans) {
295 		orphans = percpu_counter_sum_positive(ocp);
296 		if (orphans << shift > sysctl_tcp_max_orphans)
297 			return true;
298 	}
299 	return false;
300 }
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 		 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 			size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 		 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 			 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 int tcp_set_rcvlowat(struct sock *sk, int val);
406 void tcp_data_ready(struct sock *sk);
407 int tcp_mmap(struct file *file, struct socket *sock,
408 	     struct vm_area_struct *vma);
409 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
410 		       struct tcp_options_received *opt_rx,
411 		       int estab, struct tcp_fastopen_cookie *foc);
412 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
413 
414 /*
415  *	TCP v4 functions exported for the inet6 API
416  */
417 
418 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
419 void tcp_v4_mtu_reduced(struct sock *sk);
420 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
421 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 struct sock *tcp_create_openreq_child(const struct sock *sk,
423 				      struct request_sock *req,
424 				      struct sk_buff *skb);
425 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
426 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
427 				  struct request_sock *req,
428 				  struct dst_entry *dst,
429 				  struct request_sock *req_unhash,
430 				  bool *own_req);
431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
433 int tcp_connect(struct sock *sk);
434 enum tcp_synack_type {
435 	TCP_SYNACK_NORMAL,
436 	TCP_SYNACK_FASTOPEN,
437 	TCP_SYNACK_COOKIE,
438 };
439 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
440 				struct request_sock *req,
441 				struct tcp_fastopen_cookie *foc,
442 				enum tcp_synack_type synack_type);
443 int tcp_disconnect(struct sock *sk, int flags);
444 
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
448 
449 /* From syncookies.c */
450 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
451 				 struct request_sock *req,
452 				 struct dst_entry *dst, u32 tsoff);
453 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
454 		      u32 cookie);
455 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
456 #ifdef CONFIG_SYN_COOKIES
457 
458 /* Syncookies use a monotonic timer which increments every 60 seconds.
459  * This counter is used both as a hash input and partially encoded into
460  * the cookie value.  A cookie is only validated further if the delta
461  * between the current counter value and the encoded one is less than this,
462  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
463  * the counter advances immediately after a cookie is generated).
464  */
465 #define MAX_SYNCOOKIE_AGE	2
466 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
467 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
468 
469 /* syncookies: remember time of last synqueue overflow
470  * But do not dirty this field too often (once per second is enough)
471  * It is racy as we do not hold a lock, but race is very minor.
472  */
473 static inline void tcp_synq_overflow(const struct sock *sk)
474 {
475 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
476 	unsigned long now = jiffies;
477 
478 	if (time_after(now, last_overflow + HZ))
479 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
480 }
481 
482 /* syncookies: no recent synqueue overflow on this listening socket? */
483 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
484 {
485 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
486 
487 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
488 }
489 
490 static inline u32 tcp_cookie_time(void)
491 {
492 	u64 val = get_jiffies_64();
493 
494 	do_div(val, TCP_SYNCOOKIE_PERIOD);
495 	return val;
496 }
497 
498 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
499 			      u16 *mssp);
500 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
501 u64 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_timestamp_decode(const struct net *net,
503 			     struct tcp_options_received *opt);
504 bool cookie_ecn_ok(const struct tcp_options_received *opt,
505 		   const struct net *net, const struct dst_entry *dst);
506 
507 /* From net/ipv6/syncookies.c */
508 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
509 		      u32 cookie);
510 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
511 
512 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
513 			      const struct tcphdr *th, u16 *mssp);
514 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
515 #endif
516 /* tcp_output.c */
517 
518 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
519 			       int nonagle);
520 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
526 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
527 enum tcp_queue {
528 	TCP_FRAG_IN_WRITE_QUEUE,
529 	TCP_FRAG_IN_RTX_QUEUE,
530 };
531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
532 		 struct sk_buff *skb, u32 len,
533 		 unsigned int mss_now, gfp_t gfp);
534 
535 void tcp_send_probe0(struct sock *);
536 void tcp_send_partial(struct sock *);
537 int tcp_write_wakeup(struct sock *, int mib);
538 void tcp_send_fin(struct sock *sk);
539 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
540 int tcp_send_synack(struct sock *);
541 void tcp_push_one(struct sock *, unsigned int mss_now);
542 void tcp_send_ack(struct sock *sk);
543 void tcp_send_delayed_ack(struct sock *sk);
544 void tcp_send_loss_probe(struct sock *sk);
545 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
546 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
547 			     const struct sk_buff *next_skb);
548 
549 /* tcp_input.c */
550 void tcp_rearm_rto(struct sock *sk);
551 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
552 void tcp_reset(struct sock *sk);
553 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
554 void tcp_fin(struct sock *sk);
555 
556 /* tcp_timer.c */
557 void tcp_init_xmit_timers(struct sock *);
558 static inline void tcp_clear_xmit_timers(struct sock *sk)
559 {
560 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
561 	inet_csk_clear_xmit_timers(sk);
562 }
563 
564 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
565 unsigned int tcp_current_mss(struct sock *sk);
566 
567 /* Bound MSS / TSO packet size with the half of the window */
568 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
569 {
570 	int cutoff;
571 
572 	/* When peer uses tiny windows, there is no use in packetizing
573 	 * to sub-MSS pieces for the sake of SWS or making sure there
574 	 * are enough packets in the pipe for fast recovery.
575 	 *
576 	 * On the other hand, for extremely large MSS devices, handling
577 	 * smaller than MSS windows in this way does make sense.
578 	 */
579 	if (tp->max_window > TCP_MSS_DEFAULT)
580 		cutoff = (tp->max_window >> 1);
581 	else
582 		cutoff = tp->max_window;
583 
584 	if (cutoff && pktsize > cutoff)
585 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
586 	else
587 		return pktsize;
588 }
589 
590 /* tcp.c */
591 void tcp_get_info(struct sock *, struct tcp_info *);
592 
593 /* Read 'sendfile()'-style from a TCP socket */
594 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
595 		  sk_read_actor_t recv_actor);
596 
597 void tcp_initialize_rcv_mss(struct sock *sk);
598 
599 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
600 int tcp_mss_to_mtu(struct sock *sk, int mss);
601 void tcp_mtup_init(struct sock *sk);
602 void tcp_init_buffer_space(struct sock *sk);
603 
604 static inline void tcp_bound_rto(const struct sock *sk)
605 {
606 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
607 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
608 }
609 
610 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
611 {
612 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
613 }
614 
615 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
616 {
617 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
618 			       ntohl(TCP_FLAG_ACK) |
619 			       snd_wnd);
620 }
621 
622 static inline void tcp_fast_path_on(struct tcp_sock *tp)
623 {
624 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
625 }
626 
627 static inline void tcp_fast_path_check(struct sock *sk)
628 {
629 	struct tcp_sock *tp = tcp_sk(sk);
630 
631 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
632 	    tp->rcv_wnd &&
633 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
634 	    !tp->urg_data)
635 		tcp_fast_path_on(tp);
636 }
637 
638 /* Compute the actual rto_min value */
639 static inline u32 tcp_rto_min(struct sock *sk)
640 {
641 	const struct dst_entry *dst = __sk_dst_get(sk);
642 	u32 rto_min = TCP_RTO_MIN;
643 
644 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
645 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
646 	return rto_min;
647 }
648 
649 static inline u32 tcp_rto_min_us(struct sock *sk)
650 {
651 	return jiffies_to_usecs(tcp_rto_min(sk));
652 }
653 
654 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
655 {
656 	return dst_metric_locked(dst, RTAX_CC_ALGO);
657 }
658 
659 /* Minimum RTT in usec. ~0 means not available. */
660 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
661 {
662 	return minmax_get(&tp->rtt_min);
663 }
664 
665 /* Compute the actual receive window we are currently advertising.
666  * Rcv_nxt can be after the window if our peer push more data
667  * than the offered window.
668  */
669 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
670 {
671 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
672 
673 	if (win < 0)
674 		win = 0;
675 	return (u32) win;
676 }
677 
678 /* Choose a new window, without checks for shrinking, and without
679  * scaling applied to the result.  The caller does these things
680  * if necessary.  This is a "raw" window selection.
681  */
682 u32 __tcp_select_window(struct sock *sk);
683 
684 void tcp_send_window_probe(struct sock *sk);
685 
686 /* TCP uses 32bit jiffies to save some space.
687  * Note that this is different from tcp_time_stamp, which
688  * historically has been the same until linux-4.13.
689  */
690 #define tcp_jiffies32 ((u32)jiffies)
691 
692 /*
693  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
694  * It is no longer tied to jiffies, but to 1 ms clock.
695  * Note: double check if you want to use tcp_jiffies32 instead of this.
696  */
697 #define TCP_TS_HZ	1000
698 
699 static inline u64 tcp_clock_ns(void)
700 {
701 	return local_clock();
702 }
703 
704 static inline u64 tcp_clock_us(void)
705 {
706 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
707 }
708 
709 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
710 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
711 {
712 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
713 }
714 
715 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
716 static inline u32 tcp_time_stamp_raw(void)
717 {
718 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
719 }
720 
721 
722 /* Refresh 1us clock of a TCP socket,
723  * ensuring monotically increasing values.
724  */
725 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
726 {
727 	u64 val = tcp_clock_us();
728 
729 	if (val > tp->tcp_mstamp)
730 		tp->tcp_mstamp = val;
731 }
732 
733 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
734 {
735 	return max_t(s64, t1 - t0, 0);
736 }
737 
738 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
739 {
740 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
741 }
742 
743 
744 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
745 
746 #define TCPHDR_FIN 0x01
747 #define TCPHDR_SYN 0x02
748 #define TCPHDR_RST 0x04
749 #define TCPHDR_PSH 0x08
750 #define TCPHDR_ACK 0x10
751 #define TCPHDR_URG 0x20
752 #define TCPHDR_ECE 0x40
753 #define TCPHDR_CWR 0x80
754 
755 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
756 
757 /* This is what the send packet queuing engine uses to pass
758  * TCP per-packet control information to the transmission code.
759  * We also store the host-order sequence numbers in here too.
760  * This is 44 bytes if IPV6 is enabled.
761  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
762  */
763 struct tcp_skb_cb {
764 	__u32		seq;		/* Starting sequence number	*/
765 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
766 	union {
767 		/* Note : tcp_tw_isn is used in input path only
768 		 *	  (isn chosen by tcp_timewait_state_process())
769 		 *
770 		 * 	  tcp_gso_segs/size are used in write queue only,
771 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
772 		 */
773 		__u32		tcp_tw_isn;
774 		struct {
775 			u16	tcp_gso_segs;
776 			u16	tcp_gso_size;
777 		};
778 	};
779 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
780 
781 	__u8		sacked;		/* State flags for SACK.	*/
782 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
783 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
784 #define TCPCB_LOST		0x04	/* SKB is lost			*/
785 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
786 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
787 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
788 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
789 				TCPCB_REPAIRED)
790 
791 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
792 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
793 			eor:1,		/* Is skb MSG_EOR marked? */
794 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
795 			unused:5;
796 	__u32		ack_seq;	/* Sequence number ACK'd	*/
797 	union {
798 		struct {
799 			/* There is space for up to 24 bytes */
800 			__u32 in_flight:30,/* Bytes in flight at transmit */
801 			      is_app_limited:1, /* cwnd not fully used? */
802 			      unused:1;
803 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
804 			__u32 delivered;
805 			/* start of send pipeline phase */
806 			u64 first_tx_mstamp;
807 			/* when we reached the "delivered" count */
808 			u64 delivered_mstamp;
809 		} tx;   /* only used for outgoing skbs */
810 		union {
811 			struct inet_skb_parm	h4;
812 #if IS_ENABLED(CONFIG_IPV6)
813 			struct inet6_skb_parm	h6;
814 #endif
815 		} header;	/* For incoming skbs */
816 		struct {
817 			__u32 key;
818 			__u32 flags;
819 			struct bpf_map *map;
820 			void *data_end;
821 		} bpf;
822 	};
823 };
824 
825 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
826 
827 
828 #if IS_ENABLED(CONFIG_IPV6)
829 /* This is the variant of inet6_iif() that must be used by TCP,
830  * as TCP moves IP6CB into a different location in skb->cb[]
831  */
832 static inline int tcp_v6_iif(const struct sk_buff *skb)
833 {
834 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
835 
836 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
837 }
838 
839 /* TCP_SKB_CB reference means this can not be used from early demux */
840 static inline int tcp_v6_sdif(const struct sk_buff *skb)
841 {
842 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
843 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
844 		return TCP_SKB_CB(skb)->header.h6.iif;
845 #endif
846 	return 0;
847 }
848 #endif
849 
850 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
851 {
852 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
853 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
854 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
855 		return true;
856 #endif
857 	return false;
858 }
859 
860 /* TCP_SKB_CB reference means this can not be used from early demux */
861 static inline int tcp_v4_sdif(struct sk_buff *skb)
862 {
863 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
864 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
865 		return TCP_SKB_CB(skb)->header.h4.iif;
866 #endif
867 	return 0;
868 }
869 
870 /* Due to TSO, an SKB can be composed of multiple actual
871  * packets.  To keep these tracked properly, we use this.
872  */
873 static inline int tcp_skb_pcount(const struct sk_buff *skb)
874 {
875 	return TCP_SKB_CB(skb)->tcp_gso_segs;
876 }
877 
878 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
879 {
880 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
881 }
882 
883 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
884 {
885 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
886 }
887 
888 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
889 static inline int tcp_skb_mss(const struct sk_buff *skb)
890 {
891 	return TCP_SKB_CB(skb)->tcp_gso_size;
892 }
893 
894 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
895 {
896 	return likely(!TCP_SKB_CB(skb)->eor);
897 }
898 
899 /* Events passed to congestion control interface */
900 enum tcp_ca_event {
901 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
902 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
903 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
904 	CA_EVENT_LOSS,		/* loss timeout */
905 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
906 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
907 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
908 	CA_EVENT_NON_DELAYED_ACK,
909 };
910 
911 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
912 enum tcp_ca_ack_event_flags {
913 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
914 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
915 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
916 };
917 
918 /*
919  * Interface for adding new TCP congestion control handlers
920  */
921 #define TCP_CA_NAME_MAX	16
922 #define TCP_CA_MAX	128
923 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
924 
925 #define TCP_CA_UNSPEC	0
926 
927 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
928 #define TCP_CONG_NON_RESTRICTED 0x1
929 /* Requires ECN/ECT set on all packets */
930 #define TCP_CONG_NEEDS_ECN	0x2
931 
932 union tcp_cc_info;
933 
934 struct ack_sample {
935 	u32 pkts_acked;
936 	s32 rtt_us;
937 	u32 in_flight;
938 };
939 
940 /* A rate sample measures the number of (original/retransmitted) data
941  * packets delivered "delivered" over an interval of time "interval_us".
942  * The tcp_rate.c code fills in the rate sample, and congestion
943  * control modules that define a cong_control function to run at the end
944  * of ACK processing can optionally chose to consult this sample when
945  * setting cwnd and pacing rate.
946  * A sample is invalid if "delivered" or "interval_us" is negative.
947  */
948 struct rate_sample {
949 	u64  prior_mstamp; /* starting timestamp for interval */
950 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
951 	s32  delivered;		/* number of packets delivered over interval */
952 	long interval_us;	/* time for tp->delivered to incr "delivered" */
953 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
954 	int  losses;		/* number of packets marked lost upon ACK */
955 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
956 	u32  prior_in_flight;	/* in flight before this ACK */
957 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
958 	bool is_retrans;	/* is sample from retransmission? */
959 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
960 };
961 
962 struct tcp_congestion_ops {
963 	struct list_head	list;
964 	u32 key;
965 	u32 flags;
966 
967 	/* initialize private data (optional) */
968 	void (*init)(struct sock *sk);
969 	/* cleanup private data  (optional) */
970 	void (*release)(struct sock *sk);
971 
972 	/* return slow start threshold (required) */
973 	u32 (*ssthresh)(struct sock *sk);
974 	/* do new cwnd calculation (required) */
975 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
976 	/* call before changing ca_state (optional) */
977 	void (*set_state)(struct sock *sk, u8 new_state);
978 	/* call when cwnd event occurs (optional) */
979 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
980 	/* call when ack arrives (optional) */
981 	void (*in_ack_event)(struct sock *sk, u32 flags);
982 	/* new value of cwnd after loss (required) */
983 	u32  (*undo_cwnd)(struct sock *sk);
984 	/* hook for packet ack accounting (optional) */
985 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
986 	/* override sysctl_tcp_min_tso_segs */
987 	u32 (*min_tso_segs)(struct sock *sk);
988 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
989 	u32 (*sndbuf_expand)(struct sock *sk);
990 	/* call when packets are delivered to update cwnd and pacing rate,
991 	 * after all the ca_state processing. (optional)
992 	 */
993 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
994 	/* get info for inet_diag (optional) */
995 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
996 			   union tcp_cc_info *info);
997 
998 	char 		name[TCP_CA_NAME_MAX];
999 	struct module 	*owner;
1000 };
1001 
1002 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1003 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1004 
1005 void tcp_assign_congestion_control(struct sock *sk);
1006 void tcp_init_congestion_control(struct sock *sk);
1007 void tcp_cleanup_congestion_control(struct sock *sk);
1008 int tcp_set_default_congestion_control(struct net *net, const char *name);
1009 void tcp_get_default_congestion_control(struct net *net, char *name);
1010 void tcp_get_available_congestion_control(char *buf, size_t len);
1011 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1012 int tcp_set_allowed_congestion_control(char *allowed);
1013 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1014 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1015 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1016 
1017 u32 tcp_reno_ssthresh(struct sock *sk);
1018 u32 tcp_reno_undo_cwnd(struct sock *sk);
1019 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1020 extern struct tcp_congestion_ops tcp_reno;
1021 
1022 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1023 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1024 #ifdef CONFIG_INET
1025 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1026 #else
1027 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1028 {
1029 	return NULL;
1030 }
1031 #endif
1032 
1033 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1034 {
1035 	const struct inet_connection_sock *icsk = inet_csk(sk);
1036 
1037 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1038 }
1039 
1040 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1041 {
1042 	struct inet_connection_sock *icsk = inet_csk(sk);
1043 
1044 	if (icsk->icsk_ca_ops->set_state)
1045 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1046 	icsk->icsk_ca_state = ca_state;
1047 }
1048 
1049 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1050 {
1051 	const struct inet_connection_sock *icsk = inet_csk(sk);
1052 
1053 	if (icsk->icsk_ca_ops->cwnd_event)
1054 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1055 }
1056 
1057 /* From tcp_rate.c */
1058 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1059 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1060 			    struct rate_sample *rs);
1061 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1062 		  bool is_sack_reneg, struct rate_sample *rs);
1063 void tcp_rate_check_app_limited(struct sock *sk);
1064 
1065 /* These functions determine how the current flow behaves in respect of SACK
1066  * handling. SACK is negotiated with the peer, and therefore it can vary
1067  * between different flows.
1068  *
1069  * tcp_is_sack - SACK enabled
1070  * tcp_is_reno - No SACK
1071  */
1072 static inline int tcp_is_sack(const struct tcp_sock *tp)
1073 {
1074 	return tp->rx_opt.sack_ok;
1075 }
1076 
1077 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1078 {
1079 	return !tcp_is_sack(tp);
1080 }
1081 
1082 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1083 {
1084 	return tp->sacked_out + tp->lost_out;
1085 }
1086 
1087 /* This determines how many packets are "in the network" to the best
1088  * of our knowledge.  In many cases it is conservative, but where
1089  * detailed information is available from the receiver (via SACK
1090  * blocks etc.) we can make more aggressive calculations.
1091  *
1092  * Use this for decisions involving congestion control, use just
1093  * tp->packets_out to determine if the send queue is empty or not.
1094  *
1095  * Read this equation as:
1096  *
1097  *	"Packets sent once on transmission queue" MINUS
1098  *	"Packets left network, but not honestly ACKed yet" PLUS
1099  *	"Packets fast retransmitted"
1100  */
1101 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1102 {
1103 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1104 }
1105 
1106 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1107 
1108 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1109 {
1110 	return tp->snd_cwnd < tp->snd_ssthresh;
1111 }
1112 
1113 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1114 {
1115 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1116 }
1117 
1118 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1119 {
1120 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1121 	       (1 << inet_csk(sk)->icsk_ca_state);
1122 }
1123 
1124 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1125  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1126  * ssthresh.
1127  */
1128 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1129 {
1130 	const struct tcp_sock *tp = tcp_sk(sk);
1131 
1132 	if (tcp_in_cwnd_reduction(sk))
1133 		return tp->snd_ssthresh;
1134 	else
1135 		return max(tp->snd_ssthresh,
1136 			   ((tp->snd_cwnd >> 1) +
1137 			    (tp->snd_cwnd >> 2)));
1138 }
1139 
1140 /* Use define here intentionally to get WARN_ON location shown at the caller */
1141 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1142 
1143 void tcp_enter_cwr(struct sock *sk);
1144 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1145 
1146 /* The maximum number of MSS of available cwnd for which TSO defers
1147  * sending if not using sysctl_tcp_tso_win_divisor.
1148  */
1149 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1150 {
1151 	return 3;
1152 }
1153 
1154 /* Returns end sequence number of the receiver's advertised window */
1155 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1156 {
1157 	return tp->snd_una + tp->snd_wnd;
1158 }
1159 
1160 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1161  * flexible approach. The RFC suggests cwnd should not be raised unless
1162  * it was fully used previously. And that's exactly what we do in
1163  * congestion avoidance mode. But in slow start we allow cwnd to grow
1164  * as long as the application has used half the cwnd.
1165  * Example :
1166  *    cwnd is 10 (IW10), but application sends 9 frames.
1167  *    We allow cwnd to reach 18 when all frames are ACKed.
1168  * This check is safe because it's as aggressive as slow start which already
1169  * risks 100% overshoot. The advantage is that we discourage application to
1170  * either send more filler packets or data to artificially blow up the cwnd
1171  * usage, and allow application-limited process to probe bw more aggressively.
1172  */
1173 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1174 {
1175 	const struct tcp_sock *tp = tcp_sk(sk);
1176 
1177 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1178 	if (tcp_in_slow_start(tp))
1179 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1180 
1181 	return tp->is_cwnd_limited;
1182 }
1183 
1184 /* Something is really bad, we could not queue an additional packet,
1185  * because qdisc is full or receiver sent a 0 window.
1186  * We do not want to add fuel to the fire, or abort too early,
1187  * so make sure the timer we arm now is at least 200ms in the future,
1188  * regardless of current icsk_rto value (as it could be ~2ms)
1189  */
1190 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1191 {
1192 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1193 }
1194 
1195 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1196 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1197 					    unsigned long max_when)
1198 {
1199 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1200 
1201 	return (unsigned long)min_t(u64, when, max_when);
1202 }
1203 
1204 static inline void tcp_check_probe_timer(struct sock *sk)
1205 {
1206 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1207 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1208 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1209 }
1210 
1211 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1212 {
1213 	tp->snd_wl1 = seq;
1214 }
1215 
1216 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1217 {
1218 	tp->snd_wl1 = seq;
1219 }
1220 
1221 /*
1222  * Calculate(/check) TCP checksum
1223  */
1224 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1225 				   __be32 daddr, __wsum base)
1226 {
1227 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1228 }
1229 
1230 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1231 {
1232 	return __skb_checksum_complete(skb);
1233 }
1234 
1235 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1236 {
1237 	return !skb_csum_unnecessary(skb) &&
1238 		__tcp_checksum_complete(skb);
1239 }
1240 
1241 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1242 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1243 
1244 #undef STATE_TRACE
1245 
1246 #ifdef STATE_TRACE
1247 static const char *statename[]={
1248 	"Unused","Established","Syn Sent","Syn Recv",
1249 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1250 	"Close Wait","Last ACK","Listen","Closing"
1251 };
1252 #endif
1253 void tcp_set_state(struct sock *sk, int state);
1254 
1255 void tcp_done(struct sock *sk);
1256 
1257 int tcp_abort(struct sock *sk, int err);
1258 
1259 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1260 {
1261 	rx_opt->dsack = 0;
1262 	rx_opt->num_sacks = 0;
1263 }
1264 
1265 u32 tcp_default_init_rwnd(u32 mss);
1266 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1267 
1268 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1269 {
1270 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1271 	struct tcp_sock *tp = tcp_sk(sk);
1272 	s32 delta;
1273 
1274 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1275 	    ca_ops->cong_control)
1276 		return;
1277 	delta = tcp_jiffies32 - tp->lsndtime;
1278 	if (delta > inet_csk(sk)->icsk_rto)
1279 		tcp_cwnd_restart(sk, delta);
1280 }
1281 
1282 /* Determine a window scaling and initial window to offer. */
1283 void tcp_select_initial_window(const struct sock *sk, int __space,
1284 			       __u32 mss, __u32 *rcv_wnd,
1285 			       __u32 *window_clamp, int wscale_ok,
1286 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1287 
1288 static inline int tcp_win_from_space(const struct sock *sk, int space)
1289 {
1290 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1291 
1292 	return tcp_adv_win_scale <= 0 ?
1293 		(space>>(-tcp_adv_win_scale)) :
1294 		space - (space>>tcp_adv_win_scale);
1295 }
1296 
1297 /* Note: caller must be prepared to deal with negative returns */
1298 static inline int tcp_space(const struct sock *sk)
1299 {
1300 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1301 				  atomic_read(&sk->sk_rmem_alloc));
1302 }
1303 
1304 static inline int tcp_full_space(const struct sock *sk)
1305 {
1306 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1307 }
1308 
1309 extern void tcp_openreq_init_rwin(struct request_sock *req,
1310 				  const struct sock *sk_listener,
1311 				  const struct dst_entry *dst);
1312 
1313 void tcp_enter_memory_pressure(struct sock *sk);
1314 void tcp_leave_memory_pressure(struct sock *sk);
1315 
1316 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1317 {
1318 	struct net *net = sock_net((struct sock *)tp);
1319 
1320 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1321 }
1322 
1323 static inline int keepalive_time_when(const struct tcp_sock *tp)
1324 {
1325 	struct net *net = sock_net((struct sock *)tp);
1326 
1327 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1328 }
1329 
1330 static inline int keepalive_probes(const struct tcp_sock *tp)
1331 {
1332 	struct net *net = sock_net((struct sock *)tp);
1333 
1334 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1335 }
1336 
1337 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1338 {
1339 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1340 
1341 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1342 			  tcp_jiffies32 - tp->rcv_tstamp);
1343 }
1344 
1345 static inline int tcp_fin_time(const struct sock *sk)
1346 {
1347 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1348 	const int rto = inet_csk(sk)->icsk_rto;
1349 
1350 	if (fin_timeout < (rto << 2) - (rto >> 1))
1351 		fin_timeout = (rto << 2) - (rto >> 1);
1352 
1353 	return fin_timeout;
1354 }
1355 
1356 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1357 				  int paws_win)
1358 {
1359 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1360 		return true;
1361 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1362 		return true;
1363 	/*
1364 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1365 	 * then following tcp messages have valid values. Ignore 0 value,
1366 	 * or else 'negative' tsval might forbid us to accept their packets.
1367 	 */
1368 	if (!rx_opt->ts_recent)
1369 		return true;
1370 	return false;
1371 }
1372 
1373 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1374 				   int rst)
1375 {
1376 	if (tcp_paws_check(rx_opt, 0))
1377 		return false;
1378 
1379 	/* RST segments are not recommended to carry timestamp,
1380 	   and, if they do, it is recommended to ignore PAWS because
1381 	   "their cleanup function should take precedence over timestamps."
1382 	   Certainly, it is mistake. It is necessary to understand the reasons
1383 	   of this constraint to relax it: if peer reboots, clock may go
1384 	   out-of-sync and half-open connections will not be reset.
1385 	   Actually, the problem would be not existing if all
1386 	   the implementations followed draft about maintaining clock
1387 	   via reboots. Linux-2.2 DOES NOT!
1388 
1389 	   However, we can relax time bounds for RST segments to MSL.
1390 	 */
1391 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1392 		return false;
1393 	return true;
1394 }
1395 
1396 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1397 			  int mib_idx, u32 *last_oow_ack_time);
1398 
1399 static inline void tcp_mib_init(struct net *net)
1400 {
1401 	/* See RFC 2012 */
1402 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1403 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1404 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1405 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1406 }
1407 
1408 /* from STCP */
1409 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1410 {
1411 	tp->lost_skb_hint = NULL;
1412 }
1413 
1414 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1415 {
1416 	tcp_clear_retrans_hints_partial(tp);
1417 	tp->retransmit_skb_hint = NULL;
1418 }
1419 
1420 union tcp_md5_addr {
1421 	struct in_addr  a4;
1422 #if IS_ENABLED(CONFIG_IPV6)
1423 	struct in6_addr	a6;
1424 #endif
1425 };
1426 
1427 /* - key database */
1428 struct tcp_md5sig_key {
1429 	struct hlist_node	node;
1430 	u8			keylen;
1431 	u8			family; /* AF_INET or AF_INET6 */
1432 	union tcp_md5_addr	addr;
1433 	u8			prefixlen;
1434 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1435 	struct rcu_head		rcu;
1436 };
1437 
1438 /* - sock block */
1439 struct tcp_md5sig_info {
1440 	struct hlist_head	head;
1441 	struct rcu_head		rcu;
1442 };
1443 
1444 /* - pseudo header */
1445 struct tcp4_pseudohdr {
1446 	__be32		saddr;
1447 	__be32		daddr;
1448 	__u8		pad;
1449 	__u8		protocol;
1450 	__be16		len;
1451 };
1452 
1453 struct tcp6_pseudohdr {
1454 	struct in6_addr	saddr;
1455 	struct in6_addr daddr;
1456 	__be32		len;
1457 	__be32		protocol;	/* including padding */
1458 };
1459 
1460 union tcp_md5sum_block {
1461 	struct tcp4_pseudohdr ip4;
1462 #if IS_ENABLED(CONFIG_IPV6)
1463 	struct tcp6_pseudohdr ip6;
1464 #endif
1465 };
1466 
1467 /* - pool: digest algorithm, hash description and scratch buffer */
1468 struct tcp_md5sig_pool {
1469 	struct ahash_request	*md5_req;
1470 	void			*scratch;
1471 };
1472 
1473 /* - functions */
1474 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1475 			const struct sock *sk, const struct sk_buff *skb);
1476 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1477 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1478 		   gfp_t gfp);
1479 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1480 		   int family, u8 prefixlen);
1481 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1482 					 const struct sock *addr_sk);
1483 
1484 #ifdef CONFIG_TCP_MD5SIG
1485 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1486 					 const union tcp_md5_addr *addr,
1487 					 int family);
1488 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1489 #else
1490 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1491 					 const union tcp_md5_addr *addr,
1492 					 int family)
1493 {
1494 	return NULL;
1495 }
1496 #define tcp_twsk_md5_key(twsk)	NULL
1497 #endif
1498 
1499 bool tcp_alloc_md5sig_pool(void);
1500 
1501 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1502 static inline void tcp_put_md5sig_pool(void)
1503 {
1504 	local_bh_enable();
1505 }
1506 
1507 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1508 			  unsigned int header_len);
1509 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1510 		     const struct tcp_md5sig_key *key);
1511 
1512 /* From tcp_fastopen.c */
1513 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1514 			    struct tcp_fastopen_cookie *cookie);
1515 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1516 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1517 			    u16 try_exp);
1518 struct tcp_fastopen_request {
1519 	/* Fast Open cookie. Size 0 means a cookie request */
1520 	struct tcp_fastopen_cookie	cookie;
1521 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1522 	size_t				size;
1523 	int				copied;	/* queued in tcp_connect() */
1524 };
1525 void tcp_free_fastopen_req(struct tcp_sock *tp);
1526 void tcp_fastopen_destroy_cipher(struct sock *sk);
1527 void tcp_fastopen_ctx_destroy(struct net *net);
1528 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1529 			      void *key, unsigned int len);
1530 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1531 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1532 			      struct request_sock *req,
1533 			      struct tcp_fastopen_cookie *foc,
1534 			      const struct dst_entry *dst);
1535 void tcp_fastopen_init_key_once(struct net *net);
1536 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1537 			     struct tcp_fastopen_cookie *cookie);
1538 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1539 #define TCP_FASTOPEN_KEY_LENGTH 16
1540 
1541 /* Fastopen key context */
1542 struct tcp_fastopen_context {
1543 	struct crypto_cipher	*tfm;
1544 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1545 	struct rcu_head		rcu;
1546 };
1547 
1548 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1549 void tcp_fastopen_active_disable(struct sock *sk);
1550 bool tcp_fastopen_active_should_disable(struct sock *sk);
1551 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1552 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1553 
1554 /* Latencies incurred by various limits for a sender. They are
1555  * chronograph-like stats that are mutually exclusive.
1556  */
1557 enum tcp_chrono {
1558 	TCP_CHRONO_UNSPEC,
1559 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1560 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1561 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1562 	__TCP_CHRONO_MAX,
1563 };
1564 
1565 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1566 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1567 
1568 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1569  * the same memory storage than skb->destructor/_skb_refdst
1570  */
1571 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1572 {
1573 	skb->destructor = NULL;
1574 	skb->_skb_refdst = 0UL;
1575 }
1576 
1577 #define tcp_skb_tsorted_save(skb) {		\
1578 	unsigned long _save = skb->_skb_refdst;	\
1579 	skb->_skb_refdst = 0UL;
1580 
1581 #define tcp_skb_tsorted_restore(skb)		\
1582 	skb->_skb_refdst = _save;		\
1583 }
1584 
1585 void tcp_write_queue_purge(struct sock *sk);
1586 
1587 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1588 {
1589 	return skb_rb_first(&sk->tcp_rtx_queue);
1590 }
1591 
1592 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1593 {
1594 	return skb_peek(&sk->sk_write_queue);
1595 }
1596 
1597 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1598 {
1599 	return skb_peek_tail(&sk->sk_write_queue);
1600 }
1601 
1602 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1603 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1604 
1605 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1606 {
1607 	return skb_peek(&sk->sk_write_queue);
1608 }
1609 
1610 static inline bool tcp_skb_is_last(const struct sock *sk,
1611 				   const struct sk_buff *skb)
1612 {
1613 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1614 }
1615 
1616 static inline bool tcp_write_queue_empty(const struct sock *sk)
1617 {
1618 	return skb_queue_empty(&sk->sk_write_queue);
1619 }
1620 
1621 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1622 {
1623 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1624 }
1625 
1626 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1627 {
1628 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1629 }
1630 
1631 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1632 {
1633 	if (tcp_write_queue_empty(sk))
1634 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1635 }
1636 
1637 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1638 {
1639 	__skb_queue_tail(&sk->sk_write_queue, skb);
1640 }
1641 
1642 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1643 {
1644 	__tcp_add_write_queue_tail(sk, skb);
1645 
1646 	/* Queue it, remembering where we must start sending. */
1647 	if (sk->sk_write_queue.next == skb)
1648 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1649 }
1650 
1651 /* Insert new before skb on the write queue of sk.  */
1652 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1653 						  struct sk_buff *skb,
1654 						  struct sock *sk)
1655 {
1656 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1657 }
1658 
1659 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1660 {
1661 	tcp_skb_tsorted_anchor_cleanup(skb);
1662 	__skb_unlink(skb, &sk->sk_write_queue);
1663 }
1664 
1665 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1666 
1667 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1668 {
1669 	tcp_skb_tsorted_anchor_cleanup(skb);
1670 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1671 }
1672 
1673 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1674 {
1675 	list_del(&skb->tcp_tsorted_anchor);
1676 	tcp_rtx_queue_unlink(skb, sk);
1677 	sk_wmem_free_skb(sk, skb);
1678 }
1679 
1680 static inline void tcp_push_pending_frames(struct sock *sk)
1681 {
1682 	if (tcp_send_head(sk)) {
1683 		struct tcp_sock *tp = tcp_sk(sk);
1684 
1685 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1686 	}
1687 }
1688 
1689 /* Start sequence of the skb just after the highest skb with SACKed
1690  * bit, valid only if sacked_out > 0 or when the caller has ensured
1691  * validity by itself.
1692  */
1693 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1694 {
1695 	if (!tp->sacked_out)
1696 		return tp->snd_una;
1697 
1698 	if (tp->highest_sack == NULL)
1699 		return tp->snd_nxt;
1700 
1701 	return TCP_SKB_CB(tp->highest_sack)->seq;
1702 }
1703 
1704 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1705 {
1706 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1707 }
1708 
1709 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1710 {
1711 	return tcp_sk(sk)->highest_sack;
1712 }
1713 
1714 static inline void tcp_highest_sack_reset(struct sock *sk)
1715 {
1716 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1717 }
1718 
1719 /* Called when old skb is about to be deleted and replaced by new skb */
1720 static inline void tcp_highest_sack_replace(struct sock *sk,
1721 					    struct sk_buff *old,
1722 					    struct sk_buff *new)
1723 {
1724 	if (old == tcp_highest_sack(sk))
1725 		tcp_sk(sk)->highest_sack = new;
1726 }
1727 
1728 /* This helper checks if socket has IP_TRANSPARENT set */
1729 static inline bool inet_sk_transparent(const struct sock *sk)
1730 {
1731 	switch (sk->sk_state) {
1732 	case TCP_TIME_WAIT:
1733 		return inet_twsk(sk)->tw_transparent;
1734 	case TCP_NEW_SYN_RECV:
1735 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1736 	}
1737 	return inet_sk(sk)->transparent;
1738 }
1739 
1740 /* Determines whether this is a thin stream (which may suffer from
1741  * increased latency). Used to trigger latency-reducing mechanisms.
1742  */
1743 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1744 {
1745 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1746 }
1747 
1748 /* /proc */
1749 enum tcp_seq_states {
1750 	TCP_SEQ_STATE_LISTENING,
1751 	TCP_SEQ_STATE_ESTABLISHED,
1752 };
1753 
1754 int tcp_seq_open(struct inode *inode, struct file *file);
1755 
1756 struct tcp_seq_afinfo {
1757 	char				*name;
1758 	sa_family_t			family;
1759 	const struct file_operations	*seq_fops;
1760 	struct seq_operations		seq_ops;
1761 };
1762 
1763 struct tcp_iter_state {
1764 	struct seq_net_private	p;
1765 	sa_family_t		family;
1766 	enum tcp_seq_states	state;
1767 	struct sock		*syn_wait_sk;
1768 	int			bucket, offset, sbucket, num;
1769 	loff_t			last_pos;
1770 };
1771 
1772 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1773 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1774 
1775 extern struct request_sock_ops tcp_request_sock_ops;
1776 extern struct request_sock_ops tcp6_request_sock_ops;
1777 
1778 void tcp_v4_destroy_sock(struct sock *sk);
1779 
1780 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1781 				netdev_features_t features);
1782 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1783 int tcp_gro_complete(struct sk_buff *skb);
1784 
1785 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1786 
1787 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1788 {
1789 	struct net *net = sock_net((struct sock *)tp);
1790 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1791 }
1792 
1793 static inline bool tcp_stream_memory_free(const struct sock *sk)
1794 {
1795 	const struct tcp_sock *tp = tcp_sk(sk);
1796 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1797 
1798 	return notsent_bytes < tcp_notsent_lowat(tp);
1799 }
1800 
1801 #ifdef CONFIG_PROC_FS
1802 int tcp4_proc_init(void);
1803 void tcp4_proc_exit(void);
1804 #endif
1805 
1806 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1807 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1808 		     const struct tcp_request_sock_ops *af_ops,
1809 		     struct sock *sk, struct sk_buff *skb);
1810 
1811 /* TCP af-specific functions */
1812 struct tcp_sock_af_ops {
1813 #ifdef CONFIG_TCP_MD5SIG
1814 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1815 						const struct sock *addr_sk);
1816 	int		(*calc_md5_hash)(char *location,
1817 					 const struct tcp_md5sig_key *md5,
1818 					 const struct sock *sk,
1819 					 const struct sk_buff *skb);
1820 	int		(*md5_parse)(struct sock *sk,
1821 				     int optname,
1822 				     char __user *optval,
1823 				     int optlen);
1824 #endif
1825 };
1826 
1827 struct tcp_request_sock_ops {
1828 	u16 mss_clamp;
1829 #ifdef CONFIG_TCP_MD5SIG
1830 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1831 						 const struct sock *addr_sk);
1832 	int		(*calc_md5_hash) (char *location,
1833 					  const struct tcp_md5sig_key *md5,
1834 					  const struct sock *sk,
1835 					  const struct sk_buff *skb);
1836 #endif
1837 	void (*init_req)(struct request_sock *req,
1838 			 const struct sock *sk_listener,
1839 			 struct sk_buff *skb);
1840 #ifdef CONFIG_SYN_COOKIES
1841 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1842 				 __u16 *mss);
1843 #endif
1844 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1845 				       const struct request_sock *req);
1846 	u32 (*init_seq)(const struct sk_buff *skb);
1847 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1848 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1849 			   struct flowi *fl, struct request_sock *req,
1850 			   struct tcp_fastopen_cookie *foc,
1851 			   enum tcp_synack_type synack_type);
1852 };
1853 
1854 #ifdef CONFIG_SYN_COOKIES
1855 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1856 					 const struct sock *sk, struct sk_buff *skb,
1857 					 __u16 *mss)
1858 {
1859 	tcp_synq_overflow(sk);
1860 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1861 	return ops->cookie_init_seq(skb, mss);
1862 }
1863 #else
1864 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1865 					 const struct sock *sk, struct sk_buff *skb,
1866 					 __u16 *mss)
1867 {
1868 	return 0;
1869 }
1870 #endif
1871 
1872 int tcpv4_offload_init(void);
1873 
1874 void tcp_v4_init(void);
1875 void tcp_init(void);
1876 
1877 /* tcp_recovery.c */
1878 extern void tcp_rack_mark_lost(struct sock *sk);
1879 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1880 			     u64 xmit_time);
1881 extern void tcp_rack_reo_timeout(struct sock *sk);
1882 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1883 
1884 /* At how many usecs into the future should the RTO fire? */
1885 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1886 {
1887 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1888 	u32 rto = inet_csk(sk)->icsk_rto;
1889 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1890 
1891 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1892 }
1893 
1894 /*
1895  * Save and compile IPv4 options, return a pointer to it
1896  */
1897 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1898 							 struct sk_buff *skb)
1899 {
1900 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1901 	struct ip_options_rcu *dopt = NULL;
1902 
1903 	if (opt->optlen) {
1904 		int opt_size = sizeof(*dopt) + opt->optlen;
1905 
1906 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1907 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1908 			kfree(dopt);
1909 			dopt = NULL;
1910 		}
1911 	}
1912 	return dopt;
1913 }
1914 
1915 /* locally generated TCP pure ACKs have skb->truesize == 2
1916  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1917  * This is much faster than dissecting the packet to find out.
1918  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1919  */
1920 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1921 {
1922 	return skb->truesize == 2;
1923 }
1924 
1925 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1926 {
1927 	skb->truesize = 2;
1928 }
1929 
1930 static inline int tcp_inq(struct sock *sk)
1931 {
1932 	struct tcp_sock *tp = tcp_sk(sk);
1933 	int answ;
1934 
1935 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1936 		answ = 0;
1937 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1938 		   !tp->urg_data ||
1939 		   before(tp->urg_seq, tp->copied_seq) ||
1940 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1941 
1942 		answ = tp->rcv_nxt - tp->copied_seq;
1943 
1944 		/* Subtract 1, if FIN was received */
1945 		if (answ && sock_flag(sk, SOCK_DONE))
1946 			answ--;
1947 	} else {
1948 		answ = tp->urg_seq - tp->copied_seq;
1949 	}
1950 
1951 	return answ;
1952 }
1953 
1954 int tcp_peek_len(struct socket *sock);
1955 
1956 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1957 {
1958 	u16 segs_in;
1959 
1960 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1961 	tp->segs_in += segs_in;
1962 	if (skb->len > tcp_hdrlen(skb))
1963 		tp->data_segs_in += segs_in;
1964 }
1965 
1966 /*
1967  * TCP listen path runs lockless.
1968  * We forced "struct sock" to be const qualified to make sure
1969  * we don't modify one of its field by mistake.
1970  * Here, we increment sk_drops which is an atomic_t, so we can safely
1971  * make sock writable again.
1972  */
1973 static inline void tcp_listendrop(const struct sock *sk)
1974 {
1975 	atomic_inc(&((struct sock *)sk)->sk_drops);
1976 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1977 }
1978 
1979 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1980 
1981 /*
1982  * Interface for adding Upper Level Protocols over TCP
1983  */
1984 
1985 #define TCP_ULP_NAME_MAX	16
1986 #define TCP_ULP_MAX		128
1987 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1988 
1989 enum {
1990 	TCP_ULP_TLS,
1991 	TCP_ULP_BPF,
1992 };
1993 
1994 struct tcp_ulp_ops {
1995 	struct list_head	list;
1996 
1997 	/* initialize ulp */
1998 	int (*init)(struct sock *sk);
1999 	/* cleanup ulp */
2000 	void (*release)(struct sock *sk);
2001 
2002 	int		uid;
2003 	char		name[TCP_ULP_NAME_MAX];
2004 	bool		user_visible;
2005 	struct module	*owner;
2006 };
2007 int tcp_register_ulp(struct tcp_ulp_ops *type);
2008 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2009 int tcp_set_ulp(struct sock *sk, const char *name);
2010 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2011 void tcp_get_available_ulp(char *buf, size_t len);
2012 void tcp_cleanup_ulp(struct sock *sk);
2013 
2014 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2015  * is < 0, then the BPF op failed (for example if the loaded BPF
2016  * program does not support the chosen operation or there is no BPF
2017  * program loaded).
2018  */
2019 #ifdef CONFIG_BPF
2020 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2021 {
2022 	struct bpf_sock_ops_kern sock_ops;
2023 	int ret;
2024 
2025 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2026 	if (sk_fullsock(sk)) {
2027 		sock_ops.is_fullsock = 1;
2028 		sock_owned_by_me(sk);
2029 	}
2030 
2031 	sock_ops.sk = sk;
2032 	sock_ops.op = op;
2033 	if (nargs > 0)
2034 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2035 
2036 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2037 	if (ret == 0)
2038 		ret = sock_ops.reply;
2039 	else
2040 		ret = -1;
2041 	return ret;
2042 }
2043 
2044 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2045 {
2046 	u32 args[2] = {arg1, arg2};
2047 
2048 	return tcp_call_bpf(sk, op, 2, args);
2049 }
2050 
2051 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2052 				    u32 arg3)
2053 {
2054 	u32 args[3] = {arg1, arg2, arg3};
2055 
2056 	return tcp_call_bpf(sk, op, 3, args);
2057 }
2058 
2059 #else
2060 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2061 {
2062 	return -EPERM;
2063 }
2064 
2065 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2066 {
2067 	return -EPERM;
2068 }
2069 
2070 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2071 				    u32 arg3)
2072 {
2073 	return -EPERM;
2074 }
2075 
2076 #endif
2077 
2078 static inline u32 tcp_timeout_init(struct sock *sk)
2079 {
2080 	int timeout;
2081 
2082 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2083 
2084 	if (timeout <= 0)
2085 		timeout = TCP_TIMEOUT_INIT;
2086 	return timeout;
2087 }
2088 
2089 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2090 {
2091 	int rwnd;
2092 
2093 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2094 
2095 	if (rwnd < 0)
2096 		rwnd = 0;
2097 	return rwnd;
2098 }
2099 
2100 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2101 {
2102 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2103 }
2104 
2105 #if IS_ENABLED(CONFIG_SMC)
2106 extern struct static_key_false tcp_have_smc;
2107 #endif
2108 #endif	/* _TCP_H */
2109