xref: /openbmc/linux/include/net/tcp.h (revision 293d5b43)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
101 				 * when active opening a connection.
102 				 * RFC1122 says the minimum retry MUST
103 				 * be at least 180secs.  Nevertheless
104 				 * this value is corresponding to
105 				 * 63secs of retransmission with the
106 				 * current initial RTO.
107 				 */
108 
109 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
110 				 * when passive opening a connection.
111 				 * This is corresponding to 31secs of
112 				 * retransmission with the current
113 				 * initial RTO.
114 				 */
115 
116 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
117 				  * state, about 60 seconds	*/
118 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
119                                  /* BSD style FIN_WAIT2 deadlock breaker.
120 				  * It used to be 3min, new value is 60sec,
121 				  * to combine FIN-WAIT-2 timeout with
122 				  * TIME-WAIT timer.
123 				  */
124 
125 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
126 #if HZ >= 100
127 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
128 #define TCP_ATO_MIN	((unsigned)(HZ/25))
129 #else
130 #define TCP_DELACK_MIN	4U
131 #define TCP_ATO_MIN	4U
132 #endif
133 #define TCP_RTO_MAX	((unsigned)(120*HZ))
134 #define TCP_RTO_MIN	((unsigned)(HZ/5))
135 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
136 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
137 						 * used as a fallback RTO for the
138 						 * initial data transmission if no
139 						 * valid RTT sample has been acquired,
140 						 * most likely due to retrans in 3WHS.
141 						 */
142 
143 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
144 					                 * for local resources.
145 					                 */
146 
147 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
148 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
149 #define TCP_KEEPALIVE_INTVL	(75*HZ)
150 
151 #define MAX_TCP_KEEPIDLE	32767
152 #define MAX_TCP_KEEPINTVL	32767
153 #define MAX_TCP_KEEPCNT		127
154 #define MAX_TCP_SYNCNT		127
155 
156 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
157 
158 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
159 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
160 					 * after this time. It should be equal
161 					 * (or greater than) TCP_TIMEWAIT_LEN
162 					 * to provide reliability equal to one
163 					 * provided by timewait state.
164 					 */
165 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
166 					 * timestamps. It must be less than
167 					 * minimal timewait lifetime.
168 					 */
169 /*
170  *	TCP option
171  */
172 
173 #define TCPOPT_NOP		1	/* Padding */
174 #define TCPOPT_EOL		0	/* End of options */
175 #define TCPOPT_MSS		2	/* Segment size negotiating */
176 #define TCPOPT_WINDOW		3	/* Window scaling */
177 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
178 #define TCPOPT_SACK             5       /* SACK Block */
179 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
180 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
181 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
182 #define TCPOPT_EXP		254	/* Experimental */
183 /* Magic number to be after the option value for sharing TCP
184  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
185  */
186 #define TCPOPT_FASTOPEN_MAGIC	0xF989
187 
188 /*
189  *     TCP option lengths
190  */
191 
192 #define TCPOLEN_MSS            4
193 #define TCPOLEN_WINDOW         3
194 #define TCPOLEN_SACK_PERM      2
195 #define TCPOLEN_TIMESTAMP      10
196 #define TCPOLEN_MD5SIG         18
197 #define TCPOLEN_FASTOPEN_BASE  2
198 #define TCPOLEN_EXP_FASTOPEN_BASE  4
199 
200 /* But this is what stacks really send out. */
201 #define TCPOLEN_TSTAMP_ALIGNED		12
202 #define TCPOLEN_WSCALE_ALIGNED		4
203 #define TCPOLEN_SACKPERM_ALIGNED	4
204 #define TCPOLEN_SACK_BASE		2
205 #define TCPOLEN_SACK_BASE_ALIGNED	4
206 #define TCPOLEN_SACK_PERBLOCK		8
207 #define TCPOLEN_MD5SIG_ALIGNED		20
208 #define TCPOLEN_MSS_ALIGNED		4
209 
210 /* Flags in tp->nonagle */
211 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
212 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
213 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
214 
215 /* TCP thin-stream limits */
216 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
217 
218 /* TCP initial congestion window as per rfc6928 */
219 #define TCP_INIT_CWND		10
220 
221 /* Bit Flags for sysctl_tcp_fastopen */
222 #define	TFO_CLIENT_ENABLE	1
223 #define	TFO_SERVER_ENABLE	2
224 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
225 
226 /* Accept SYN data w/o any cookie option */
227 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
228 
229 /* Force enable TFO on all listeners, i.e., not requiring the
230  * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
231  */
232 #define	TFO_SERVER_WO_SOCKOPT1	0x400
233 #define	TFO_SERVER_WO_SOCKOPT2	0x800
234 
235 extern struct inet_timewait_death_row tcp_death_row;
236 
237 /* sysctl variables for tcp */
238 extern int sysctl_tcp_timestamps;
239 extern int sysctl_tcp_window_scaling;
240 extern int sysctl_tcp_sack;
241 extern int sysctl_tcp_fastopen;
242 extern int sysctl_tcp_retrans_collapse;
243 extern int sysctl_tcp_stdurg;
244 extern int sysctl_tcp_rfc1337;
245 extern int sysctl_tcp_abort_on_overflow;
246 extern int sysctl_tcp_max_orphans;
247 extern int sysctl_tcp_fack;
248 extern int sysctl_tcp_reordering;
249 extern int sysctl_tcp_max_reordering;
250 extern int sysctl_tcp_dsack;
251 extern long sysctl_tcp_mem[3];
252 extern int sysctl_tcp_wmem[3];
253 extern int sysctl_tcp_rmem[3];
254 extern int sysctl_tcp_app_win;
255 extern int sysctl_tcp_adv_win_scale;
256 extern int sysctl_tcp_tw_reuse;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_low_latency;
259 extern int sysctl_tcp_nometrics_save;
260 extern int sysctl_tcp_moderate_rcvbuf;
261 extern int sysctl_tcp_tso_win_divisor;
262 extern int sysctl_tcp_workaround_signed_windows;
263 extern int sysctl_tcp_slow_start_after_idle;
264 extern int sysctl_tcp_thin_linear_timeouts;
265 extern int sysctl_tcp_thin_dupack;
266 extern int sysctl_tcp_early_retrans;
267 extern int sysctl_tcp_limit_output_bytes;
268 extern int sysctl_tcp_challenge_ack_limit;
269 extern int sysctl_tcp_min_tso_segs;
270 extern int sysctl_tcp_min_rtt_wlen;
271 extern int sysctl_tcp_autocorking;
272 extern int sysctl_tcp_invalid_ratelimit;
273 extern int sysctl_tcp_pacing_ss_ratio;
274 extern int sysctl_tcp_pacing_ca_ratio;
275 
276 extern atomic_long_t tcp_memory_allocated;
277 extern struct percpu_counter tcp_sockets_allocated;
278 extern int tcp_memory_pressure;
279 
280 /* optimized version of sk_under_memory_pressure() for TCP sockets */
281 static inline bool tcp_under_memory_pressure(const struct sock *sk)
282 {
283 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
284 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
285 		return true;
286 
287 	return tcp_memory_pressure;
288 }
289 /*
290  * The next routines deal with comparing 32 bit unsigned ints
291  * and worry about wraparound (automatic with unsigned arithmetic).
292  */
293 
294 static inline bool before(__u32 seq1, __u32 seq2)
295 {
296         return (__s32)(seq1-seq2) < 0;
297 }
298 #define after(seq2, seq1) 	before(seq1, seq2)
299 
300 /* is s2<=s1<=s3 ? */
301 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
302 {
303 	return seq3 - seq2 >= seq1 - seq2;
304 }
305 
306 static inline bool tcp_out_of_memory(struct sock *sk)
307 {
308 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
309 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
310 		return true;
311 	return false;
312 }
313 
314 void sk_forced_mem_schedule(struct sock *sk, int size);
315 
316 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
317 {
318 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
319 	int orphans = percpu_counter_read_positive(ocp);
320 
321 	if (orphans << shift > sysctl_tcp_max_orphans) {
322 		orphans = percpu_counter_sum_positive(ocp);
323 		if (orphans << shift > sysctl_tcp_max_orphans)
324 			return true;
325 	}
326 	return false;
327 }
328 
329 bool tcp_check_oom(struct sock *sk, int shift);
330 
331 
332 extern struct proto tcp_prot;
333 
334 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
335 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
336 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
338 
339 void tcp_tasklet_init(void);
340 
341 void tcp_v4_err(struct sk_buff *skb, u32);
342 
343 void tcp_shutdown(struct sock *sk, int how);
344 
345 void tcp_v4_early_demux(struct sk_buff *skb);
346 int tcp_v4_rcv(struct sk_buff *skb);
347 
348 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
350 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
351 		 int flags);
352 void tcp_release_cb(struct sock *sk);
353 void tcp_wfree(struct sk_buff *skb);
354 void tcp_write_timer_handler(struct sock *sk);
355 void tcp_delack_timer_handler(struct sock *sk);
356 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
357 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
359 			 const struct tcphdr *th, unsigned int len);
360 void tcp_rcv_space_adjust(struct sock *sk);
361 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
362 void tcp_twsk_destructor(struct sock *sk);
363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
364 			struct pipe_inode_info *pipe, size_t len,
365 			unsigned int flags);
366 
367 static inline void tcp_dec_quickack_mode(struct sock *sk,
368 					 const unsigned int pkts)
369 {
370 	struct inet_connection_sock *icsk = inet_csk(sk);
371 
372 	if (icsk->icsk_ack.quick) {
373 		if (pkts >= icsk->icsk_ack.quick) {
374 			icsk->icsk_ack.quick = 0;
375 			/* Leaving quickack mode we deflate ATO. */
376 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
377 		} else
378 			icsk->icsk_ack.quick -= pkts;
379 	}
380 }
381 
382 #define	TCP_ECN_OK		1
383 #define	TCP_ECN_QUEUE_CWR	2
384 #define	TCP_ECN_DEMAND_CWR	4
385 #define	TCP_ECN_SEEN		8
386 
387 enum tcp_tw_status {
388 	TCP_TW_SUCCESS = 0,
389 	TCP_TW_RST = 1,
390 	TCP_TW_ACK = 2,
391 	TCP_TW_SYN = 3
392 };
393 
394 
395 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
396 					      struct sk_buff *skb,
397 					      const struct tcphdr *th);
398 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
399 			   struct request_sock *req, bool fastopen);
400 int tcp_child_process(struct sock *parent, struct sock *child,
401 		      struct sk_buff *skb);
402 void tcp_enter_loss(struct sock *sk);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
408 			bool paws_check, bool timestamps);
409 bool tcp_remember_stamp(struct sock *sk);
410 bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
411 void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
412 void tcp_disable_fack(struct tcp_sock *tp);
413 void tcp_close(struct sock *sk, long timeout);
414 void tcp_init_sock(struct sock *sk);
415 unsigned int tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int tcp_getsockopt(struct sock *sk, int level, int optname,
418 		   char __user *optval, int __user *optlen);
419 int tcp_setsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, unsigned int optlen);
421 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
422 			  char __user *optval, int __user *optlen);
423 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
424 			  char __user *optval, unsigned int optlen);
425 void tcp_set_keepalive(struct sock *sk, int val);
426 void tcp_syn_ack_timeout(const struct request_sock *req);
427 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
428 		int flags, int *addr_len);
429 void tcp_parse_options(const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	TCP v4 functions exported for the inet6 API
436  */
437 
438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
439 void tcp_v4_mtu_reduced(struct sock *sk);
440 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443 				      struct request_sock *req,
444 				      struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447 				  struct request_sock *req,
448 				  struct dst_entry *dst,
449 				  struct request_sock *req_unhash,
450 				  bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455 	TCP_SYNACK_NORMAL,
456 	TCP_SYNACK_FASTOPEN,
457 	TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc,
462 				enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
496 	unsigned long now = jiffies;
497 
498 	if (time_after(now, last_overflow + HZ))
499 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
500 }
501 
502 /* syncookies: no recent synqueue overflow on this listening socket? */
503 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
504 {
505 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
506 
507 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
508 }
509 
510 static inline u32 tcp_cookie_time(void)
511 {
512 	u64 val = get_jiffies_64();
513 
514 	do_div(val, TCP_SYNCOOKIE_PERIOD);
515 	return val;
516 }
517 
518 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
519 			      u16 *mssp);
520 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
521 __u32 cookie_init_timestamp(struct request_sock *req);
522 bool cookie_timestamp_decode(struct tcp_options_received *opt);
523 bool cookie_ecn_ok(const struct tcp_options_received *opt,
524 		   const struct net *net, const struct dst_entry *dst);
525 
526 /* From net/ipv6/syncookies.c */
527 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
528 		      u32 cookie);
529 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
530 
531 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
532 			      const struct tcphdr *th, u16 *mssp);
533 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
534 #endif
535 /* tcp_output.c */
536 
537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
538 			       int nonagle);
539 bool tcp_may_send_now(struct sock *sk);
540 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
541 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
542 void tcp_retransmit_timer(struct sock *sk);
543 void tcp_xmit_retransmit_queue(struct sock *);
544 void tcp_simple_retransmit(struct sock *);
545 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
546 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
547 
548 void tcp_send_probe0(struct sock *);
549 void tcp_send_partial(struct sock *);
550 int tcp_write_wakeup(struct sock *, int mib);
551 void tcp_send_fin(struct sock *sk);
552 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
553 int tcp_send_synack(struct sock *);
554 void tcp_push_one(struct sock *, unsigned int mss_now);
555 void tcp_send_ack(struct sock *sk);
556 void tcp_send_delayed_ack(struct sock *sk);
557 void tcp_send_loss_probe(struct sock *sk);
558 bool tcp_schedule_loss_probe(struct sock *sk);
559 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
560 			     const struct sk_buff *next_skb);
561 
562 /* tcp_input.c */
563 void tcp_resume_early_retransmit(struct sock *sk);
564 void tcp_rearm_rto(struct sock *sk);
565 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
566 void tcp_reset(struct sock *sk);
567 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
568 void tcp_fin(struct sock *sk);
569 
570 /* tcp_timer.c */
571 void tcp_init_xmit_timers(struct sock *);
572 static inline void tcp_clear_xmit_timers(struct sock *sk)
573 {
574 	inet_csk_clear_xmit_timers(sk);
575 }
576 
577 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
578 unsigned int tcp_current_mss(struct sock *sk);
579 
580 /* Bound MSS / TSO packet size with the half of the window */
581 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
582 {
583 	int cutoff;
584 
585 	/* When peer uses tiny windows, there is no use in packetizing
586 	 * to sub-MSS pieces for the sake of SWS or making sure there
587 	 * are enough packets in the pipe for fast recovery.
588 	 *
589 	 * On the other hand, for extremely large MSS devices, handling
590 	 * smaller than MSS windows in this way does make sense.
591 	 */
592 	if (tp->max_window > TCP_MSS_DEFAULT)
593 		cutoff = (tp->max_window >> 1);
594 	else
595 		cutoff = tp->max_window;
596 
597 	if (cutoff && pktsize > cutoff)
598 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
599 	else
600 		return pktsize;
601 }
602 
603 /* tcp.c */
604 void tcp_get_info(struct sock *, struct tcp_info *);
605 
606 /* Read 'sendfile()'-style from a TCP socket */
607 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
608 				unsigned int, size_t);
609 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
610 		  sk_read_actor_t recv_actor);
611 
612 void tcp_initialize_rcv_mss(struct sock *sk);
613 
614 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
615 int tcp_mss_to_mtu(struct sock *sk, int mss);
616 void tcp_mtup_init(struct sock *sk);
617 void tcp_init_buffer_space(struct sock *sk);
618 
619 static inline void tcp_bound_rto(const struct sock *sk)
620 {
621 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
622 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
623 }
624 
625 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
626 {
627 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
628 }
629 
630 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
631 {
632 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
633 			       ntohl(TCP_FLAG_ACK) |
634 			       snd_wnd);
635 }
636 
637 static inline void tcp_fast_path_on(struct tcp_sock *tp)
638 {
639 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
640 }
641 
642 static inline void tcp_fast_path_check(struct sock *sk)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 
646 	if (skb_queue_empty(&tp->out_of_order_queue) &&
647 	    tp->rcv_wnd &&
648 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
649 	    !tp->urg_data)
650 		tcp_fast_path_on(tp);
651 }
652 
653 /* Compute the actual rto_min value */
654 static inline u32 tcp_rto_min(struct sock *sk)
655 {
656 	const struct dst_entry *dst = __sk_dst_get(sk);
657 	u32 rto_min = TCP_RTO_MIN;
658 
659 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
660 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
661 	return rto_min;
662 }
663 
664 static inline u32 tcp_rto_min_us(struct sock *sk)
665 {
666 	return jiffies_to_usecs(tcp_rto_min(sk));
667 }
668 
669 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
670 {
671 	return dst_metric_locked(dst, RTAX_CC_ALGO);
672 }
673 
674 /* Minimum RTT in usec. ~0 means not available. */
675 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
676 {
677 	return tp->rtt_min[0].rtt;
678 }
679 
680 /* Compute the actual receive window we are currently advertising.
681  * Rcv_nxt can be after the window if our peer push more data
682  * than the offered window.
683  */
684 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
685 {
686 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
687 
688 	if (win < 0)
689 		win = 0;
690 	return (u32) win;
691 }
692 
693 /* Choose a new window, without checks for shrinking, and without
694  * scaling applied to the result.  The caller does these things
695  * if necessary.  This is a "raw" window selection.
696  */
697 u32 __tcp_select_window(struct sock *sk);
698 
699 void tcp_send_window_probe(struct sock *sk);
700 
701 /* TCP timestamps are only 32-bits, this causes a slight
702  * complication on 64-bit systems since we store a snapshot
703  * of jiffies in the buffer control blocks below.  We decided
704  * to use only the low 32-bits of jiffies and hide the ugly
705  * casts with the following macro.
706  */
707 #define tcp_time_stamp		((__u32)(jiffies))
708 
709 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
710 {
711 	return skb->skb_mstamp.stamp_jiffies;
712 }
713 
714 
715 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
716 
717 #define TCPHDR_FIN 0x01
718 #define TCPHDR_SYN 0x02
719 #define TCPHDR_RST 0x04
720 #define TCPHDR_PSH 0x08
721 #define TCPHDR_ACK 0x10
722 #define TCPHDR_URG 0x20
723 #define TCPHDR_ECE 0x40
724 #define TCPHDR_CWR 0x80
725 
726 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
727 
728 /* This is what the send packet queuing engine uses to pass
729  * TCP per-packet control information to the transmission code.
730  * We also store the host-order sequence numbers in here too.
731  * This is 44 bytes if IPV6 is enabled.
732  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
733  */
734 struct tcp_skb_cb {
735 	__u32		seq;		/* Starting sequence number	*/
736 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
737 	union {
738 		/* Note : tcp_tw_isn is used in input path only
739 		 *	  (isn chosen by tcp_timewait_state_process())
740 		 *
741 		 * 	  tcp_gso_segs/size are used in write queue only,
742 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
743 		 */
744 		__u32		tcp_tw_isn;
745 		struct {
746 			u16	tcp_gso_segs;
747 			u16	tcp_gso_size;
748 		};
749 	};
750 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
751 
752 	__u8		sacked;		/* State flags for SACK/FACK.	*/
753 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
754 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
755 #define TCPCB_LOST		0x04	/* SKB is lost			*/
756 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
757 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
758 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
759 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
760 				TCPCB_REPAIRED)
761 
762 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
763 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
764 			eor:1,		/* Is skb MSG_EOR marked? */
765 			unused:6;
766 	__u32		ack_seq;	/* Sequence number ACK'd	*/
767 	union {
768 		struct {
769 			/* There is space for up to 20 bytes */
770 			__u32 in_flight;/* Bytes in flight when packet sent */
771 		} tx;   /* only used for outgoing skbs */
772 		union {
773 			struct inet_skb_parm	h4;
774 #if IS_ENABLED(CONFIG_IPV6)
775 			struct inet6_skb_parm	h6;
776 #endif
777 		} header;	/* For incoming skbs */
778 	};
779 };
780 
781 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
782 
783 
784 #if IS_ENABLED(CONFIG_IPV6)
785 /* This is the variant of inet6_iif() that must be used by TCP,
786  * as TCP moves IP6CB into a different location in skb->cb[]
787  */
788 static inline int tcp_v6_iif(const struct sk_buff *skb)
789 {
790 	bool l3_slave = skb_l3mdev_slave(TCP_SKB_CB(skb)->header.h6.flags);
791 
792 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
793 }
794 #endif
795 
796 /* Due to TSO, an SKB can be composed of multiple actual
797  * packets.  To keep these tracked properly, we use this.
798  */
799 static inline int tcp_skb_pcount(const struct sk_buff *skb)
800 {
801 	return TCP_SKB_CB(skb)->tcp_gso_segs;
802 }
803 
804 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
805 {
806 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
807 }
808 
809 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
810 {
811 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
812 }
813 
814 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
815 static inline int tcp_skb_mss(const struct sk_buff *skb)
816 {
817 	return TCP_SKB_CB(skb)->tcp_gso_size;
818 }
819 
820 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
821 {
822 	return likely(!TCP_SKB_CB(skb)->eor);
823 }
824 
825 /* Events passed to congestion control interface */
826 enum tcp_ca_event {
827 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
828 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
829 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
830 	CA_EVENT_LOSS,		/* loss timeout */
831 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
832 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
833 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
834 	CA_EVENT_NON_DELAYED_ACK,
835 };
836 
837 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
838 enum tcp_ca_ack_event_flags {
839 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
840 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
841 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
842 };
843 
844 /*
845  * Interface for adding new TCP congestion control handlers
846  */
847 #define TCP_CA_NAME_MAX	16
848 #define TCP_CA_MAX	128
849 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
850 
851 #define TCP_CA_UNSPEC	0
852 
853 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
854 #define TCP_CONG_NON_RESTRICTED 0x1
855 /* Requires ECN/ECT set on all packets */
856 #define TCP_CONG_NEEDS_ECN	0x2
857 
858 union tcp_cc_info;
859 
860 struct ack_sample {
861 	u32 pkts_acked;
862 	s32 rtt_us;
863 	u32 in_flight;
864 };
865 
866 struct tcp_congestion_ops {
867 	struct list_head	list;
868 	u32 key;
869 	u32 flags;
870 
871 	/* initialize private data (optional) */
872 	void (*init)(struct sock *sk);
873 	/* cleanup private data  (optional) */
874 	void (*release)(struct sock *sk);
875 
876 	/* return slow start threshold (required) */
877 	u32 (*ssthresh)(struct sock *sk);
878 	/* do new cwnd calculation (required) */
879 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
880 	/* call before changing ca_state (optional) */
881 	void (*set_state)(struct sock *sk, u8 new_state);
882 	/* call when cwnd event occurs (optional) */
883 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
884 	/* call when ack arrives (optional) */
885 	void (*in_ack_event)(struct sock *sk, u32 flags);
886 	/* new value of cwnd after loss (optional) */
887 	u32  (*undo_cwnd)(struct sock *sk);
888 	/* hook for packet ack accounting (optional) */
889 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
890 	/* get info for inet_diag (optional) */
891 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
892 			   union tcp_cc_info *info);
893 
894 	char 		name[TCP_CA_NAME_MAX];
895 	struct module 	*owner;
896 };
897 
898 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
899 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
900 
901 void tcp_assign_congestion_control(struct sock *sk);
902 void tcp_init_congestion_control(struct sock *sk);
903 void tcp_cleanup_congestion_control(struct sock *sk);
904 int tcp_set_default_congestion_control(const char *name);
905 void tcp_get_default_congestion_control(char *name);
906 void tcp_get_available_congestion_control(char *buf, size_t len);
907 void tcp_get_allowed_congestion_control(char *buf, size_t len);
908 int tcp_set_allowed_congestion_control(char *allowed);
909 int tcp_set_congestion_control(struct sock *sk, const char *name);
910 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
911 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
912 
913 u32 tcp_reno_ssthresh(struct sock *sk);
914 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
915 extern struct tcp_congestion_ops tcp_reno;
916 
917 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
918 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
919 #ifdef CONFIG_INET
920 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
921 #else
922 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
923 {
924 	return NULL;
925 }
926 #endif
927 
928 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
929 {
930 	const struct inet_connection_sock *icsk = inet_csk(sk);
931 
932 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
933 }
934 
935 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
936 {
937 	struct inet_connection_sock *icsk = inet_csk(sk);
938 
939 	if (icsk->icsk_ca_ops->set_state)
940 		icsk->icsk_ca_ops->set_state(sk, ca_state);
941 	icsk->icsk_ca_state = ca_state;
942 }
943 
944 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
945 {
946 	const struct inet_connection_sock *icsk = inet_csk(sk);
947 
948 	if (icsk->icsk_ca_ops->cwnd_event)
949 		icsk->icsk_ca_ops->cwnd_event(sk, event);
950 }
951 
952 /* These functions determine how the current flow behaves in respect of SACK
953  * handling. SACK is negotiated with the peer, and therefore it can vary
954  * between different flows.
955  *
956  * tcp_is_sack - SACK enabled
957  * tcp_is_reno - No SACK
958  * tcp_is_fack - FACK enabled, implies SACK enabled
959  */
960 static inline int tcp_is_sack(const struct tcp_sock *tp)
961 {
962 	return tp->rx_opt.sack_ok;
963 }
964 
965 static inline bool tcp_is_reno(const struct tcp_sock *tp)
966 {
967 	return !tcp_is_sack(tp);
968 }
969 
970 static inline bool tcp_is_fack(const struct tcp_sock *tp)
971 {
972 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
973 }
974 
975 static inline void tcp_enable_fack(struct tcp_sock *tp)
976 {
977 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
978 }
979 
980 /* TCP early-retransmit (ER) is similar to but more conservative than
981  * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
982  */
983 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
984 {
985 	struct net *net = sock_net((struct sock *)tp);
986 
987 	tp->do_early_retrans = sysctl_tcp_early_retrans &&
988 		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
989 		net->ipv4.sysctl_tcp_reordering == 3;
990 }
991 
992 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
993 {
994 	tp->do_early_retrans = 0;
995 }
996 
997 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
998 {
999 	return tp->sacked_out + tp->lost_out;
1000 }
1001 
1002 /* This determines how many packets are "in the network" to the best
1003  * of our knowledge.  In many cases it is conservative, but where
1004  * detailed information is available from the receiver (via SACK
1005  * blocks etc.) we can make more aggressive calculations.
1006  *
1007  * Use this for decisions involving congestion control, use just
1008  * tp->packets_out to determine if the send queue is empty or not.
1009  *
1010  * Read this equation as:
1011  *
1012  *	"Packets sent once on transmission queue" MINUS
1013  *	"Packets left network, but not honestly ACKed yet" PLUS
1014  *	"Packets fast retransmitted"
1015  */
1016 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1017 {
1018 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1019 }
1020 
1021 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1022 
1023 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1024 {
1025 	return tp->snd_cwnd < tp->snd_ssthresh;
1026 }
1027 
1028 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1029 {
1030 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1031 }
1032 
1033 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1034 {
1035 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1036 	       (1 << inet_csk(sk)->icsk_ca_state);
1037 }
1038 
1039 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1040  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1041  * ssthresh.
1042  */
1043 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1044 {
1045 	const struct tcp_sock *tp = tcp_sk(sk);
1046 
1047 	if (tcp_in_cwnd_reduction(sk))
1048 		return tp->snd_ssthresh;
1049 	else
1050 		return max(tp->snd_ssthresh,
1051 			   ((tp->snd_cwnd >> 1) +
1052 			    (tp->snd_cwnd >> 2)));
1053 }
1054 
1055 /* Use define here intentionally to get WARN_ON location shown at the caller */
1056 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1057 
1058 void tcp_enter_cwr(struct sock *sk);
1059 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1060 
1061 /* The maximum number of MSS of available cwnd for which TSO defers
1062  * sending if not using sysctl_tcp_tso_win_divisor.
1063  */
1064 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1065 {
1066 	return 3;
1067 }
1068 
1069 /* Returns end sequence number of the receiver's advertised window */
1070 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1071 {
1072 	return tp->snd_una + tp->snd_wnd;
1073 }
1074 
1075 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1076  * flexible approach. The RFC suggests cwnd should not be raised unless
1077  * it was fully used previously. And that's exactly what we do in
1078  * congestion avoidance mode. But in slow start we allow cwnd to grow
1079  * as long as the application has used half the cwnd.
1080  * Example :
1081  *    cwnd is 10 (IW10), but application sends 9 frames.
1082  *    We allow cwnd to reach 18 when all frames are ACKed.
1083  * This check is safe because it's as aggressive as slow start which already
1084  * risks 100% overshoot. The advantage is that we discourage application to
1085  * either send more filler packets or data to artificially blow up the cwnd
1086  * usage, and allow application-limited process to probe bw more aggressively.
1087  */
1088 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1089 {
1090 	const struct tcp_sock *tp = tcp_sk(sk);
1091 
1092 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1093 	if (tcp_in_slow_start(tp))
1094 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1095 
1096 	return tp->is_cwnd_limited;
1097 }
1098 
1099 /* Something is really bad, we could not queue an additional packet,
1100  * because qdisc is full or receiver sent a 0 window.
1101  * We do not want to add fuel to the fire, or abort too early,
1102  * so make sure the timer we arm now is at least 200ms in the future,
1103  * regardless of current icsk_rto value (as it could be ~2ms)
1104  */
1105 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1106 {
1107 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1108 }
1109 
1110 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1111 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1112 					    unsigned long max_when)
1113 {
1114 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1115 
1116 	return (unsigned long)min_t(u64, when, max_when);
1117 }
1118 
1119 static inline void tcp_check_probe_timer(struct sock *sk)
1120 {
1121 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1122 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1123 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1124 }
1125 
1126 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1127 {
1128 	tp->snd_wl1 = seq;
1129 }
1130 
1131 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1132 {
1133 	tp->snd_wl1 = seq;
1134 }
1135 
1136 /*
1137  * Calculate(/check) TCP checksum
1138  */
1139 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1140 				   __be32 daddr, __wsum base)
1141 {
1142 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1143 }
1144 
1145 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1146 {
1147 	return __skb_checksum_complete(skb);
1148 }
1149 
1150 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1151 {
1152 	return !skb_csum_unnecessary(skb) &&
1153 		__tcp_checksum_complete(skb);
1154 }
1155 
1156 /* Prequeue for VJ style copy to user, combined with checksumming. */
1157 
1158 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1159 {
1160 	tp->ucopy.task = NULL;
1161 	tp->ucopy.len = 0;
1162 	tp->ucopy.memory = 0;
1163 	skb_queue_head_init(&tp->ucopy.prequeue);
1164 }
1165 
1166 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1167 
1168 #undef STATE_TRACE
1169 
1170 #ifdef STATE_TRACE
1171 static const char *statename[]={
1172 	"Unused","Established","Syn Sent","Syn Recv",
1173 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1174 	"Close Wait","Last ACK","Listen","Closing"
1175 };
1176 #endif
1177 void tcp_set_state(struct sock *sk, int state);
1178 
1179 void tcp_done(struct sock *sk);
1180 
1181 int tcp_abort(struct sock *sk, int err);
1182 
1183 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1184 {
1185 	rx_opt->dsack = 0;
1186 	rx_opt->num_sacks = 0;
1187 }
1188 
1189 u32 tcp_default_init_rwnd(u32 mss);
1190 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1191 
1192 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1193 {
1194 	struct tcp_sock *tp = tcp_sk(sk);
1195 	s32 delta;
1196 
1197 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1198 		return;
1199 	delta = tcp_time_stamp - tp->lsndtime;
1200 	if (delta > inet_csk(sk)->icsk_rto)
1201 		tcp_cwnd_restart(sk, delta);
1202 }
1203 
1204 /* Determine a window scaling and initial window to offer. */
1205 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1206 			       __u32 *window_clamp, int wscale_ok,
1207 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1208 
1209 static inline int tcp_win_from_space(int space)
1210 {
1211 	return sysctl_tcp_adv_win_scale<=0 ?
1212 		(space>>(-sysctl_tcp_adv_win_scale)) :
1213 		space - (space>>sysctl_tcp_adv_win_scale);
1214 }
1215 
1216 /* Note: caller must be prepared to deal with negative returns */
1217 static inline int tcp_space(const struct sock *sk)
1218 {
1219 	return tcp_win_from_space(sk->sk_rcvbuf -
1220 				  atomic_read(&sk->sk_rmem_alloc));
1221 }
1222 
1223 static inline int tcp_full_space(const struct sock *sk)
1224 {
1225 	return tcp_win_from_space(sk->sk_rcvbuf);
1226 }
1227 
1228 extern void tcp_openreq_init_rwin(struct request_sock *req,
1229 				  const struct sock *sk_listener,
1230 				  const struct dst_entry *dst);
1231 
1232 void tcp_enter_memory_pressure(struct sock *sk);
1233 
1234 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1235 {
1236 	struct net *net = sock_net((struct sock *)tp);
1237 
1238 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1239 }
1240 
1241 static inline int keepalive_time_when(const struct tcp_sock *tp)
1242 {
1243 	struct net *net = sock_net((struct sock *)tp);
1244 
1245 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1246 }
1247 
1248 static inline int keepalive_probes(const struct tcp_sock *tp)
1249 {
1250 	struct net *net = sock_net((struct sock *)tp);
1251 
1252 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1253 }
1254 
1255 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1256 {
1257 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1258 
1259 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1260 			  tcp_time_stamp - tp->rcv_tstamp);
1261 }
1262 
1263 static inline int tcp_fin_time(const struct sock *sk)
1264 {
1265 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1266 	const int rto = inet_csk(sk)->icsk_rto;
1267 
1268 	if (fin_timeout < (rto << 2) - (rto >> 1))
1269 		fin_timeout = (rto << 2) - (rto >> 1);
1270 
1271 	return fin_timeout;
1272 }
1273 
1274 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1275 				  int paws_win)
1276 {
1277 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1278 		return true;
1279 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1280 		return true;
1281 	/*
1282 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1283 	 * then following tcp messages have valid values. Ignore 0 value,
1284 	 * or else 'negative' tsval might forbid us to accept their packets.
1285 	 */
1286 	if (!rx_opt->ts_recent)
1287 		return true;
1288 	return false;
1289 }
1290 
1291 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1292 				   int rst)
1293 {
1294 	if (tcp_paws_check(rx_opt, 0))
1295 		return false;
1296 
1297 	/* RST segments are not recommended to carry timestamp,
1298 	   and, if they do, it is recommended to ignore PAWS because
1299 	   "their cleanup function should take precedence over timestamps."
1300 	   Certainly, it is mistake. It is necessary to understand the reasons
1301 	   of this constraint to relax it: if peer reboots, clock may go
1302 	   out-of-sync and half-open connections will not be reset.
1303 	   Actually, the problem would be not existing if all
1304 	   the implementations followed draft about maintaining clock
1305 	   via reboots. Linux-2.2 DOES NOT!
1306 
1307 	   However, we can relax time bounds for RST segments to MSL.
1308 	 */
1309 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1310 		return false;
1311 	return true;
1312 }
1313 
1314 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1315 			  int mib_idx, u32 *last_oow_ack_time);
1316 
1317 static inline void tcp_mib_init(struct net *net)
1318 {
1319 	/* See RFC 2012 */
1320 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1321 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1322 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1323 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1324 }
1325 
1326 /* from STCP */
1327 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1328 {
1329 	tp->lost_skb_hint = NULL;
1330 }
1331 
1332 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1333 {
1334 	tcp_clear_retrans_hints_partial(tp);
1335 	tp->retransmit_skb_hint = NULL;
1336 }
1337 
1338 union tcp_md5_addr {
1339 	struct in_addr  a4;
1340 #if IS_ENABLED(CONFIG_IPV6)
1341 	struct in6_addr	a6;
1342 #endif
1343 };
1344 
1345 /* - key database */
1346 struct tcp_md5sig_key {
1347 	struct hlist_node	node;
1348 	u8			keylen;
1349 	u8			family; /* AF_INET or AF_INET6 */
1350 	union tcp_md5_addr	addr;
1351 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1352 	struct rcu_head		rcu;
1353 };
1354 
1355 /* - sock block */
1356 struct tcp_md5sig_info {
1357 	struct hlist_head	head;
1358 	struct rcu_head		rcu;
1359 };
1360 
1361 /* - pseudo header */
1362 struct tcp4_pseudohdr {
1363 	__be32		saddr;
1364 	__be32		daddr;
1365 	__u8		pad;
1366 	__u8		protocol;
1367 	__be16		len;
1368 };
1369 
1370 struct tcp6_pseudohdr {
1371 	struct in6_addr	saddr;
1372 	struct in6_addr daddr;
1373 	__be32		len;
1374 	__be32		protocol;	/* including padding */
1375 };
1376 
1377 union tcp_md5sum_block {
1378 	struct tcp4_pseudohdr ip4;
1379 #if IS_ENABLED(CONFIG_IPV6)
1380 	struct tcp6_pseudohdr ip6;
1381 #endif
1382 };
1383 
1384 /* - pool: digest algorithm, hash description and scratch buffer */
1385 struct tcp_md5sig_pool {
1386 	struct ahash_request	*md5_req;
1387 	void			*scratch;
1388 };
1389 
1390 /* - functions */
1391 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1392 			const struct sock *sk, const struct sk_buff *skb);
1393 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1394 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1395 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1396 		   int family);
1397 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1398 					 const struct sock *addr_sk);
1399 
1400 #ifdef CONFIG_TCP_MD5SIG
1401 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1402 					 const union tcp_md5_addr *addr,
1403 					 int family);
1404 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1405 #else
1406 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1407 					 const union tcp_md5_addr *addr,
1408 					 int family)
1409 {
1410 	return NULL;
1411 }
1412 #define tcp_twsk_md5_key(twsk)	NULL
1413 #endif
1414 
1415 bool tcp_alloc_md5sig_pool(void);
1416 
1417 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1418 static inline void tcp_put_md5sig_pool(void)
1419 {
1420 	local_bh_enable();
1421 }
1422 
1423 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1424 			  unsigned int header_len);
1425 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1426 		     const struct tcp_md5sig_key *key);
1427 
1428 /* From tcp_fastopen.c */
1429 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1430 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1431 			    unsigned long *last_syn_loss);
1432 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1433 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1434 			    u16 try_exp);
1435 struct tcp_fastopen_request {
1436 	/* Fast Open cookie. Size 0 means a cookie request */
1437 	struct tcp_fastopen_cookie	cookie;
1438 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1439 	size_t				size;
1440 	int				copied;	/* queued in tcp_connect() */
1441 };
1442 void tcp_free_fastopen_req(struct tcp_sock *tp);
1443 
1444 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1445 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1446 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1447 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1448 			      struct request_sock *req,
1449 			      struct tcp_fastopen_cookie *foc,
1450 			      struct dst_entry *dst);
1451 void tcp_fastopen_init_key_once(bool publish);
1452 #define TCP_FASTOPEN_KEY_LENGTH 16
1453 
1454 /* Fastopen key context */
1455 struct tcp_fastopen_context {
1456 	struct crypto_cipher	*tfm;
1457 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1458 	struct rcu_head		rcu;
1459 };
1460 
1461 /* write queue abstraction */
1462 static inline void tcp_write_queue_purge(struct sock *sk)
1463 {
1464 	struct sk_buff *skb;
1465 
1466 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1467 		sk_wmem_free_skb(sk, skb);
1468 	sk_mem_reclaim(sk);
1469 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1470 }
1471 
1472 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1473 {
1474 	return skb_peek(&sk->sk_write_queue);
1475 }
1476 
1477 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1478 {
1479 	return skb_peek_tail(&sk->sk_write_queue);
1480 }
1481 
1482 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1483 						   const struct sk_buff *skb)
1484 {
1485 	return skb_queue_next(&sk->sk_write_queue, skb);
1486 }
1487 
1488 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1489 						   const struct sk_buff *skb)
1490 {
1491 	return skb_queue_prev(&sk->sk_write_queue, skb);
1492 }
1493 
1494 #define tcp_for_write_queue(skb, sk)					\
1495 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1496 
1497 #define tcp_for_write_queue_from(skb, sk)				\
1498 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1499 
1500 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1501 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1502 
1503 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1504 {
1505 	return sk->sk_send_head;
1506 }
1507 
1508 static inline bool tcp_skb_is_last(const struct sock *sk,
1509 				   const struct sk_buff *skb)
1510 {
1511 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1512 }
1513 
1514 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1515 {
1516 	if (tcp_skb_is_last(sk, skb))
1517 		sk->sk_send_head = NULL;
1518 	else
1519 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1520 }
1521 
1522 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1523 {
1524 	if (sk->sk_send_head == skb_unlinked)
1525 		sk->sk_send_head = NULL;
1526 }
1527 
1528 static inline void tcp_init_send_head(struct sock *sk)
1529 {
1530 	sk->sk_send_head = NULL;
1531 }
1532 
1533 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1534 {
1535 	__skb_queue_tail(&sk->sk_write_queue, skb);
1536 }
1537 
1538 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1539 {
1540 	__tcp_add_write_queue_tail(sk, skb);
1541 
1542 	/* Queue it, remembering where we must start sending. */
1543 	if (sk->sk_send_head == NULL) {
1544 		sk->sk_send_head = skb;
1545 
1546 		if (tcp_sk(sk)->highest_sack == NULL)
1547 			tcp_sk(sk)->highest_sack = skb;
1548 	}
1549 }
1550 
1551 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1552 {
1553 	__skb_queue_head(&sk->sk_write_queue, skb);
1554 }
1555 
1556 /* Insert buff after skb on the write queue of sk.  */
1557 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1558 						struct sk_buff *buff,
1559 						struct sock *sk)
1560 {
1561 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1562 }
1563 
1564 /* Insert new before skb on the write queue of sk.  */
1565 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1566 						  struct sk_buff *skb,
1567 						  struct sock *sk)
1568 {
1569 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1570 
1571 	if (sk->sk_send_head == skb)
1572 		sk->sk_send_head = new;
1573 }
1574 
1575 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1576 {
1577 	__skb_unlink(skb, &sk->sk_write_queue);
1578 }
1579 
1580 static inline bool tcp_write_queue_empty(struct sock *sk)
1581 {
1582 	return skb_queue_empty(&sk->sk_write_queue);
1583 }
1584 
1585 static inline void tcp_push_pending_frames(struct sock *sk)
1586 {
1587 	if (tcp_send_head(sk)) {
1588 		struct tcp_sock *tp = tcp_sk(sk);
1589 
1590 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1591 	}
1592 }
1593 
1594 /* Start sequence of the skb just after the highest skb with SACKed
1595  * bit, valid only if sacked_out > 0 or when the caller has ensured
1596  * validity by itself.
1597  */
1598 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1599 {
1600 	if (!tp->sacked_out)
1601 		return tp->snd_una;
1602 
1603 	if (tp->highest_sack == NULL)
1604 		return tp->snd_nxt;
1605 
1606 	return TCP_SKB_CB(tp->highest_sack)->seq;
1607 }
1608 
1609 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1610 {
1611 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1612 						tcp_write_queue_next(sk, skb);
1613 }
1614 
1615 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1616 {
1617 	return tcp_sk(sk)->highest_sack;
1618 }
1619 
1620 static inline void tcp_highest_sack_reset(struct sock *sk)
1621 {
1622 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1623 }
1624 
1625 /* Called when old skb is about to be deleted (to be combined with new skb) */
1626 static inline void tcp_highest_sack_combine(struct sock *sk,
1627 					    struct sk_buff *old,
1628 					    struct sk_buff *new)
1629 {
1630 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1631 		tcp_sk(sk)->highest_sack = new;
1632 }
1633 
1634 /* This helper checks if socket has IP_TRANSPARENT set */
1635 static inline bool inet_sk_transparent(const struct sock *sk)
1636 {
1637 	switch (sk->sk_state) {
1638 	case TCP_TIME_WAIT:
1639 		return inet_twsk(sk)->tw_transparent;
1640 	case TCP_NEW_SYN_RECV:
1641 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1642 	}
1643 	return inet_sk(sk)->transparent;
1644 }
1645 
1646 /* Determines whether this is a thin stream (which may suffer from
1647  * increased latency). Used to trigger latency-reducing mechanisms.
1648  */
1649 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1650 {
1651 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1652 }
1653 
1654 /* /proc */
1655 enum tcp_seq_states {
1656 	TCP_SEQ_STATE_LISTENING,
1657 	TCP_SEQ_STATE_ESTABLISHED,
1658 };
1659 
1660 int tcp_seq_open(struct inode *inode, struct file *file);
1661 
1662 struct tcp_seq_afinfo {
1663 	char				*name;
1664 	sa_family_t			family;
1665 	const struct file_operations	*seq_fops;
1666 	struct seq_operations		seq_ops;
1667 };
1668 
1669 struct tcp_iter_state {
1670 	struct seq_net_private	p;
1671 	sa_family_t		family;
1672 	enum tcp_seq_states	state;
1673 	struct sock		*syn_wait_sk;
1674 	int			bucket, offset, sbucket, num;
1675 	loff_t			last_pos;
1676 };
1677 
1678 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1679 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1680 
1681 extern struct request_sock_ops tcp_request_sock_ops;
1682 extern struct request_sock_ops tcp6_request_sock_ops;
1683 
1684 void tcp_v4_destroy_sock(struct sock *sk);
1685 
1686 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1687 				netdev_features_t features);
1688 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1689 int tcp_gro_complete(struct sk_buff *skb);
1690 
1691 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1692 
1693 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1694 {
1695 	struct net *net = sock_net((struct sock *)tp);
1696 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1697 }
1698 
1699 static inline bool tcp_stream_memory_free(const struct sock *sk)
1700 {
1701 	const struct tcp_sock *tp = tcp_sk(sk);
1702 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1703 
1704 	return notsent_bytes < tcp_notsent_lowat(tp);
1705 }
1706 
1707 #ifdef CONFIG_PROC_FS
1708 int tcp4_proc_init(void);
1709 void tcp4_proc_exit(void);
1710 #endif
1711 
1712 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1713 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1714 		     const struct tcp_request_sock_ops *af_ops,
1715 		     struct sock *sk, struct sk_buff *skb);
1716 
1717 /* TCP af-specific functions */
1718 struct tcp_sock_af_ops {
1719 #ifdef CONFIG_TCP_MD5SIG
1720 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1721 						const struct sock *addr_sk);
1722 	int		(*calc_md5_hash)(char *location,
1723 					 const struct tcp_md5sig_key *md5,
1724 					 const struct sock *sk,
1725 					 const struct sk_buff *skb);
1726 	int		(*md5_parse)(struct sock *sk,
1727 				     char __user *optval,
1728 				     int optlen);
1729 #endif
1730 };
1731 
1732 struct tcp_request_sock_ops {
1733 	u16 mss_clamp;
1734 #ifdef CONFIG_TCP_MD5SIG
1735 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1736 						 const struct sock *addr_sk);
1737 	int		(*calc_md5_hash) (char *location,
1738 					  const struct tcp_md5sig_key *md5,
1739 					  const struct sock *sk,
1740 					  const struct sk_buff *skb);
1741 #endif
1742 	void (*init_req)(struct request_sock *req,
1743 			 const struct sock *sk_listener,
1744 			 struct sk_buff *skb);
1745 #ifdef CONFIG_SYN_COOKIES
1746 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1747 				 __u16 *mss);
1748 #endif
1749 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1750 				       const struct request_sock *req,
1751 				       bool *strict);
1752 	__u32 (*init_seq)(const struct sk_buff *skb);
1753 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1754 			   struct flowi *fl, struct request_sock *req,
1755 			   struct tcp_fastopen_cookie *foc,
1756 			   enum tcp_synack_type synack_type);
1757 };
1758 
1759 #ifdef CONFIG_SYN_COOKIES
1760 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1761 					 const struct sock *sk, struct sk_buff *skb,
1762 					 __u16 *mss)
1763 {
1764 	tcp_synq_overflow(sk);
1765 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1766 	return ops->cookie_init_seq(skb, mss);
1767 }
1768 #else
1769 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1770 					 const struct sock *sk, struct sk_buff *skb,
1771 					 __u16 *mss)
1772 {
1773 	return 0;
1774 }
1775 #endif
1776 
1777 int tcpv4_offload_init(void);
1778 
1779 void tcp_v4_init(void);
1780 void tcp_init(void);
1781 
1782 /* tcp_recovery.c */
1783 
1784 /* Flags to enable various loss recovery features. See below */
1785 extern int sysctl_tcp_recovery;
1786 
1787 /* Use TCP RACK to detect (some) tail and retransmit losses */
1788 #define TCP_RACK_LOST_RETRANS  0x1
1789 
1790 extern int tcp_rack_mark_lost(struct sock *sk);
1791 
1792 extern void tcp_rack_advance(struct tcp_sock *tp,
1793 			     const struct skb_mstamp *xmit_time, u8 sacked);
1794 
1795 /*
1796  * Save and compile IPv4 options, return a pointer to it
1797  */
1798 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1799 {
1800 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1801 	struct ip_options_rcu *dopt = NULL;
1802 
1803 	if (opt->optlen) {
1804 		int opt_size = sizeof(*dopt) + opt->optlen;
1805 
1806 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1807 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1808 			kfree(dopt);
1809 			dopt = NULL;
1810 		}
1811 	}
1812 	return dopt;
1813 }
1814 
1815 /* locally generated TCP pure ACKs have skb->truesize == 2
1816  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1817  * This is much faster than dissecting the packet to find out.
1818  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1819  */
1820 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1821 {
1822 	return skb->truesize == 2;
1823 }
1824 
1825 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1826 {
1827 	skb->truesize = 2;
1828 }
1829 
1830 static inline int tcp_inq(struct sock *sk)
1831 {
1832 	struct tcp_sock *tp = tcp_sk(sk);
1833 	int answ;
1834 
1835 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1836 		answ = 0;
1837 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1838 		   !tp->urg_data ||
1839 		   before(tp->urg_seq, tp->copied_seq) ||
1840 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1841 
1842 		answ = tp->rcv_nxt - tp->copied_seq;
1843 
1844 		/* Subtract 1, if FIN was received */
1845 		if (answ && sock_flag(sk, SOCK_DONE))
1846 			answ--;
1847 	} else {
1848 		answ = tp->urg_seq - tp->copied_seq;
1849 	}
1850 
1851 	return answ;
1852 }
1853 
1854 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1855 {
1856 	u16 segs_in;
1857 
1858 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1859 	tp->segs_in += segs_in;
1860 	if (skb->len > tcp_hdrlen(skb))
1861 		tp->data_segs_in += segs_in;
1862 }
1863 
1864 /*
1865  * TCP listen path runs lockless.
1866  * We forced "struct sock" to be const qualified to make sure
1867  * we don't modify one of its field by mistake.
1868  * Here, we increment sk_drops which is an atomic_t, so we can safely
1869  * make sock writable again.
1870  */
1871 static inline void tcp_listendrop(const struct sock *sk)
1872 {
1873 	atomic_inc(&((struct sock *)sk)->sk_drops);
1874 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1875 }
1876 
1877 #endif	/* _TCP_H */
1878