xref: /openbmc/linux/include/net/tcp.h (revision 249592bf)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 		 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 			size_t size, int flags);
333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 			       struct page *page, int offset, size_t *size);
335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 		 size_t size, int flags);
337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 
354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355 static inline void tcp_dec_quickack_mode(struct sock *sk,
356 					 const unsigned int pkts)
357 {
358 	struct inet_connection_sock *icsk = inet_csk(sk);
359 
360 	if (icsk->icsk_ack.quick) {
361 		if (pkts >= icsk->icsk_ack.quick) {
362 			icsk->icsk_ack.quick = 0;
363 			/* Leaving quickack mode we deflate ATO. */
364 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
365 		} else
366 			icsk->icsk_ack.quick -= pkts;
367 	}
368 }
369 
370 #define	TCP_ECN_OK		1
371 #define	TCP_ECN_QUEUE_CWR	2
372 #define	TCP_ECN_DEMAND_CWR	4
373 #define	TCP_ECN_SEEN		8
374 
375 enum tcp_tw_status {
376 	TCP_TW_SUCCESS = 0,
377 	TCP_TW_RST = 1,
378 	TCP_TW_ACK = 2,
379 	TCP_TW_SYN = 3
380 };
381 
382 
383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 					      struct sk_buff *skb,
385 					      const struct tcphdr *th);
386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 			   struct request_sock *req, bool fastopen,
388 			   bool *lost_race);
389 int tcp_child_process(struct sock *parent, struct sock *child,
390 		      struct sk_buff *skb);
391 void tcp_enter_loss(struct sock *sk);
392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393 void tcp_clear_retrans(struct tcp_sock *tp);
394 void tcp_update_metrics(struct sock *sk);
395 void tcp_init_metrics(struct sock *sk);
396 void tcp_metrics_init(void);
397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398 void __tcp_close(struct sock *sk, long timeout);
399 void tcp_close(struct sock *sk, long timeout);
400 void tcp_init_sock(struct sock *sk);
401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402 __poll_t tcp_poll(struct file *file, struct socket *sock,
403 		      struct poll_table_struct *wait);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 		   unsigned int optlen);
409 void tcp_set_keepalive(struct sock *sk, int val);
410 void tcp_syn_ack_timeout(const struct request_sock *req);
411 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 		int flags, int *addr_len);
413 int tcp_set_rcvlowat(struct sock *sk, int val);
414 int tcp_set_window_clamp(struct sock *sk, int val);
415 void tcp_data_ready(struct sock *sk);
416 #ifdef CONFIG_MMU
417 int tcp_mmap(struct file *file, struct socket *sock,
418 	     struct vm_area_struct *vma);
419 #endif
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 		       struct tcp_options_received *opt_rx,
422 		       int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424 
425 /*
426  *	BPF SKB-less helpers
427  */
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 			 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 			 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 			  const struct tcp_request_sock_ops *af_ops,
434 			  struct sock *sk, struct tcphdr *th);
435 /*
436  *	TCP v4 functions exported for the inet6 API
437  */
438 
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct dst_entry *dst,
451 				  struct request_sock *req_unhash,
452 				  bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 	TCP_SYNACK_NORMAL,
458 	TCP_SYNACK_FASTOPEN,
459 	TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc,
464 				enum tcp_synack_type synack_type,
465 				struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
467 
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
471 
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 				 struct request_sock *req,
475 				 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 		      u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 					    struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			if (!time_between32(now, last_overflow,
510 					    last_overflow + HZ))
511 				WRITE_ONCE(reuse->synq_overflow_ts, now);
512 			return;
513 		}
514 	}
515 
516 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 	if (!time_between32(now, last_overflow, last_overflow + HZ))
518 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
519 }
520 
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
523 {
524 	unsigned int last_overflow;
525 	unsigned int now = jiffies;
526 
527 	if (sk->sk_reuseport) {
528 		struct sock_reuseport *reuse;
529 
530 		reuse = rcu_dereference(sk->sk_reuseport_cb);
531 		if (likely(reuse)) {
532 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 			return !time_between32(now, last_overflow - HZ,
534 					       last_overflow +
535 					       TCP_SYNCOOKIE_VALID);
536 		}
537 	}
538 
539 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
540 
541 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 	 * then we're under synflood. However, we have to use
543 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 	 * which could lead to rejecting a valid syncookie.
547 	 */
548 	return !time_between32(now, last_overflow - HZ,
549 			       last_overflow + TCP_SYNCOOKIE_VALID);
550 }
551 
552 static inline u32 tcp_cookie_time(void)
553 {
554 	u64 val = get_jiffies_64();
555 
556 	do_div(val, TCP_SYNCOOKIE_PERIOD);
557 	return val;
558 }
559 
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
561 			      u16 *mssp);
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 			     struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 		   const struct net *net, const struct dst_entry *dst);
568 
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
571 		      u32 cookie);
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
573 
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 			      const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 #endif
578 /* tcp_output.c */
579 
580 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
581 			       int nonagle);
582 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
583 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
584 void tcp_retransmit_timer(struct sock *sk);
585 void tcp_xmit_retransmit_queue(struct sock *);
586 void tcp_simple_retransmit(struct sock *);
587 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
588 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
589 enum tcp_queue {
590 	TCP_FRAG_IN_WRITE_QUEUE,
591 	TCP_FRAG_IN_RTX_QUEUE,
592 };
593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
594 		 struct sk_buff *skb, u32 len,
595 		 unsigned int mss_now, gfp_t gfp);
596 
597 void tcp_send_probe0(struct sock *);
598 void tcp_send_partial(struct sock *);
599 int tcp_write_wakeup(struct sock *, int mib);
600 void tcp_send_fin(struct sock *sk);
601 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
602 int tcp_send_synack(struct sock *);
603 void tcp_push_one(struct sock *, unsigned int mss_now);
604 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
605 void tcp_send_ack(struct sock *sk);
606 void tcp_send_delayed_ack(struct sock *sk);
607 void tcp_send_loss_probe(struct sock *sk);
608 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
609 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
610 			     const struct sk_buff *next_skb);
611 
612 /* tcp_input.c */
613 void tcp_rearm_rto(struct sock *sk);
614 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
615 void tcp_reset(struct sock *sk, struct sk_buff *skb);
616 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
617 void tcp_fin(struct sock *sk);
618 
619 /* tcp_timer.c */
620 void tcp_init_xmit_timers(struct sock *);
621 static inline void tcp_clear_xmit_timers(struct sock *sk)
622 {
623 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
624 		__sock_put(sk);
625 
626 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
627 		__sock_put(sk);
628 
629 	inet_csk_clear_xmit_timers(sk);
630 }
631 
632 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
633 unsigned int tcp_current_mss(struct sock *sk);
634 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
635 
636 /* Bound MSS / TSO packet size with the half of the window */
637 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
638 {
639 	int cutoff;
640 
641 	/* When peer uses tiny windows, there is no use in packetizing
642 	 * to sub-MSS pieces for the sake of SWS or making sure there
643 	 * are enough packets in the pipe for fast recovery.
644 	 *
645 	 * On the other hand, for extremely large MSS devices, handling
646 	 * smaller than MSS windows in this way does make sense.
647 	 */
648 	if (tp->max_window > TCP_MSS_DEFAULT)
649 		cutoff = (tp->max_window >> 1);
650 	else
651 		cutoff = tp->max_window;
652 
653 	if (cutoff && pktsize > cutoff)
654 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
655 	else
656 		return pktsize;
657 }
658 
659 /* tcp.c */
660 void tcp_get_info(struct sock *, struct tcp_info *);
661 
662 /* Read 'sendfile()'-style from a TCP socket */
663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
664 		  sk_read_actor_t recv_actor);
665 
666 void tcp_initialize_rcv_mss(struct sock *sk);
667 
668 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
669 int tcp_mss_to_mtu(struct sock *sk, int mss);
670 void tcp_mtup_init(struct sock *sk);
671 
672 static inline void tcp_bound_rto(const struct sock *sk)
673 {
674 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
675 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
676 }
677 
678 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
679 {
680 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
681 }
682 
683 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
684 {
685 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
686 			       ntohl(TCP_FLAG_ACK) |
687 			       snd_wnd);
688 }
689 
690 static inline void tcp_fast_path_on(struct tcp_sock *tp)
691 {
692 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
693 }
694 
695 static inline void tcp_fast_path_check(struct sock *sk)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 
699 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
700 	    tp->rcv_wnd &&
701 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
702 	    !tp->urg_data)
703 		tcp_fast_path_on(tp);
704 }
705 
706 /* Compute the actual rto_min value */
707 static inline u32 tcp_rto_min(struct sock *sk)
708 {
709 	const struct dst_entry *dst = __sk_dst_get(sk);
710 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
711 
712 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
713 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
714 	return rto_min;
715 }
716 
717 static inline u32 tcp_rto_min_us(struct sock *sk)
718 {
719 	return jiffies_to_usecs(tcp_rto_min(sk));
720 }
721 
722 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
723 {
724 	return dst_metric_locked(dst, RTAX_CC_ALGO);
725 }
726 
727 /* Minimum RTT in usec. ~0 means not available. */
728 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
729 {
730 	return minmax_get(&tp->rtt_min);
731 }
732 
733 /* Compute the actual receive window we are currently advertising.
734  * Rcv_nxt can be after the window if our peer push more data
735  * than the offered window.
736  */
737 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
738 {
739 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740 
741 	if (win < 0)
742 		win = 0;
743 	return (u32) win;
744 }
745 
746 /* Choose a new window, without checks for shrinking, and without
747  * scaling applied to the result.  The caller does these things
748  * if necessary.  This is a "raw" window selection.
749  */
750 u32 __tcp_select_window(struct sock *sk);
751 
752 void tcp_send_window_probe(struct sock *sk);
753 
754 /* TCP uses 32bit jiffies to save some space.
755  * Note that this is different from tcp_time_stamp, which
756  * historically has been the same until linux-4.13.
757  */
758 #define tcp_jiffies32 ((u32)jiffies)
759 
760 /*
761  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
762  * It is no longer tied to jiffies, but to 1 ms clock.
763  * Note: double check if you want to use tcp_jiffies32 instead of this.
764  */
765 #define TCP_TS_HZ	1000
766 
767 static inline u64 tcp_clock_ns(void)
768 {
769 	return ktime_get_ns();
770 }
771 
772 static inline u64 tcp_clock_us(void)
773 {
774 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
775 }
776 
777 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
778 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
779 {
780 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
781 }
782 
783 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
784 static inline u32 tcp_ns_to_ts(u64 ns)
785 {
786 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788 
789 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
790 static inline u32 tcp_time_stamp_raw(void)
791 {
792 	return tcp_ns_to_ts(tcp_clock_ns());
793 }
794 
795 void tcp_mstamp_refresh(struct tcp_sock *tp);
796 
797 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
798 {
799 	return max_t(s64, t1 - t0, 0);
800 }
801 
802 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
803 {
804 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
805 }
806 
807 /* provide the departure time in us unit */
808 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
809 {
810 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
811 }
812 
813 
814 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
815 
816 #define TCPHDR_FIN 0x01
817 #define TCPHDR_SYN 0x02
818 #define TCPHDR_RST 0x04
819 #define TCPHDR_PSH 0x08
820 #define TCPHDR_ACK 0x10
821 #define TCPHDR_URG 0x20
822 #define TCPHDR_ECE 0x40
823 #define TCPHDR_CWR 0x80
824 
825 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
826 
827 /* This is what the send packet queuing engine uses to pass
828  * TCP per-packet control information to the transmission code.
829  * We also store the host-order sequence numbers in here too.
830  * This is 44 bytes if IPV6 is enabled.
831  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
832  */
833 struct tcp_skb_cb {
834 	__u32		seq;		/* Starting sequence number	*/
835 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
836 	union {
837 		/* Note : tcp_tw_isn is used in input path only
838 		 *	  (isn chosen by tcp_timewait_state_process())
839 		 *
840 		 * 	  tcp_gso_segs/size are used in write queue only,
841 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
842 		 */
843 		__u32		tcp_tw_isn;
844 		struct {
845 			u16	tcp_gso_segs;
846 			u16	tcp_gso_size;
847 		};
848 	};
849 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
850 
851 	__u8		sacked;		/* State flags for SACK.	*/
852 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
853 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
854 #define TCPCB_LOST		0x04	/* SKB is lost			*/
855 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
856 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
857 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
858 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
859 				TCPCB_REPAIRED)
860 
861 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
862 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
863 			eor:1,		/* Is skb MSG_EOR marked? */
864 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
865 			unused:5;
866 	__u32		ack_seq;	/* Sequence number ACK'd	*/
867 	union {
868 		struct {
869 			/* There is space for up to 24 bytes */
870 			__u32 in_flight:30,/* Bytes in flight at transmit */
871 			      is_app_limited:1, /* cwnd not fully used? */
872 			      unused:1;
873 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
874 			__u32 delivered;
875 			/* start of send pipeline phase */
876 			u64 first_tx_mstamp;
877 			/* when we reached the "delivered" count */
878 			u64 delivered_mstamp;
879 		} tx;   /* only used for outgoing skbs */
880 		union {
881 			struct inet_skb_parm	h4;
882 #if IS_ENABLED(CONFIG_IPV6)
883 			struct inet6_skb_parm	h6;
884 #endif
885 		} header;	/* For incoming skbs */
886 	};
887 };
888 
889 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
890 
891 extern const struct inet_connection_sock_af_ops ipv4_specific;
892 
893 #if IS_ENABLED(CONFIG_IPV6)
894 /* This is the variant of inet6_iif() that must be used by TCP,
895  * as TCP moves IP6CB into a different location in skb->cb[]
896  */
897 static inline int tcp_v6_iif(const struct sk_buff *skb)
898 {
899 	return TCP_SKB_CB(skb)->header.h6.iif;
900 }
901 
902 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
903 {
904 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
905 
906 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
907 }
908 
909 /* TCP_SKB_CB reference means this can not be used from early demux */
910 static inline int tcp_v6_sdif(const struct sk_buff *skb)
911 {
912 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
913 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
914 		return TCP_SKB_CB(skb)->header.h6.iif;
915 #endif
916 	return 0;
917 }
918 
919 extern const struct inet_connection_sock_af_ops ipv6_specific;
920 
921 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
922 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
923 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
924 
925 #endif
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v4_sdif(struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
932 		return TCP_SKB_CB(skb)->header.h4.iif;
933 #endif
934 	return 0;
935 }
936 
937 /* Due to TSO, an SKB can be composed of multiple actual
938  * packets.  To keep these tracked properly, we use this.
939  */
940 static inline int tcp_skb_pcount(const struct sk_buff *skb)
941 {
942 	return TCP_SKB_CB(skb)->tcp_gso_segs;
943 }
944 
945 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
946 {
947 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
948 }
949 
950 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
951 {
952 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
953 }
954 
955 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
956 static inline int tcp_skb_mss(const struct sk_buff *skb)
957 {
958 	return TCP_SKB_CB(skb)->tcp_gso_size;
959 }
960 
961 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
962 {
963 	return likely(!TCP_SKB_CB(skb)->eor);
964 }
965 
966 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
967 					const struct sk_buff *from)
968 {
969 	return likely(tcp_skb_can_collapse_to(to) &&
970 		      mptcp_skb_can_collapse(to, from));
971 }
972 
973 /* Events passed to congestion control interface */
974 enum tcp_ca_event {
975 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
976 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
977 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
978 	CA_EVENT_LOSS,		/* loss timeout */
979 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
980 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
981 };
982 
983 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
984 enum tcp_ca_ack_event_flags {
985 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
986 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
987 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
988 };
989 
990 /*
991  * Interface for adding new TCP congestion control handlers
992  */
993 #define TCP_CA_NAME_MAX	16
994 #define TCP_CA_MAX	128
995 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
996 
997 #define TCP_CA_UNSPEC	0
998 
999 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1000 #define TCP_CONG_NON_RESTRICTED 0x1
1001 /* Requires ECN/ECT set on all packets */
1002 #define TCP_CONG_NEEDS_ECN	0x2
1003 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1004 
1005 union tcp_cc_info;
1006 
1007 struct ack_sample {
1008 	u32 pkts_acked;
1009 	s32 rtt_us;
1010 	u32 in_flight;
1011 };
1012 
1013 /* A rate sample measures the number of (original/retransmitted) data
1014  * packets delivered "delivered" over an interval of time "interval_us".
1015  * The tcp_rate.c code fills in the rate sample, and congestion
1016  * control modules that define a cong_control function to run at the end
1017  * of ACK processing can optionally chose to consult this sample when
1018  * setting cwnd and pacing rate.
1019  * A sample is invalid if "delivered" or "interval_us" is negative.
1020  */
1021 struct rate_sample {
1022 	u64  prior_mstamp; /* starting timestamp for interval */
1023 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1024 	s32  delivered;		/* number of packets delivered over interval */
1025 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1026 	u32 snd_interval_us;	/* snd interval for delivered packets */
1027 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1028 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1029 	int  losses;		/* number of packets marked lost upon ACK */
1030 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1031 	u32  prior_in_flight;	/* in flight before this ACK */
1032 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1033 	bool is_retrans;	/* is sample from retransmission? */
1034 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1035 };
1036 
1037 struct tcp_congestion_ops {
1038 /* fast path fields are put first to fill one cache line */
1039 
1040 	/* return slow start threshold (required) */
1041 	u32 (*ssthresh)(struct sock *sk);
1042 
1043 	/* do new cwnd calculation (required) */
1044 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1045 
1046 	/* call before changing ca_state (optional) */
1047 	void (*set_state)(struct sock *sk, u8 new_state);
1048 
1049 	/* call when cwnd event occurs (optional) */
1050 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1051 
1052 	/* call when ack arrives (optional) */
1053 	void (*in_ack_event)(struct sock *sk, u32 flags);
1054 
1055 	/* hook for packet ack accounting (optional) */
1056 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1057 
1058 	/* override sysctl_tcp_min_tso_segs */
1059 	u32 (*min_tso_segs)(struct sock *sk);
1060 
1061 	/* call when packets are delivered to update cwnd and pacing rate,
1062 	 * after all the ca_state processing. (optional)
1063 	 */
1064 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1065 
1066 
1067 	/* new value of cwnd after loss (required) */
1068 	u32  (*undo_cwnd)(struct sock *sk);
1069 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1070 	u32 (*sndbuf_expand)(struct sock *sk);
1071 
1072 /* control/slow paths put last */
1073 	/* get info for inet_diag (optional) */
1074 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1075 			   union tcp_cc_info *info);
1076 
1077 	char 			name[TCP_CA_NAME_MAX];
1078 	struct module		*owner;
1079 	struct list_head	list;
1080 	u32			key;
1081 	u32			flags;
1082 
1083 	/* initialize private data (optional) */
1084 	void (*init)(struct sock *sk);
1085 	/* cleanup private data  (optional) */
1086 	void (*release)(struct sock *sk);
1087 } ____cacheline_aligned_in_smp;
1088 
1089 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1090 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1091 
1092 void tcp_assign_congestion_control(struct sock *sk);
1093 void tcp_init_congestion_control(struct sock *sk);
1094 void tcp_cleanup_congestion_control(struct sock *sk);
1095 int tcp_set_default_congestion_control(struct net *net, const char *name);
1096 void tcp_get_default_congestion_control(struct net *net, char *name);
1097 void tcp_get_available_congestion_control(char *buf, size_t len);
1098 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1099 int tcp_set_allowed_congestion_control(char *allowed);
1100 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1101 			       bool cap_net_admin);
1102 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1103 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1104 
1105 u32 tcp_reno_ssthresh(struct sock *sk);
1106 u32 tcp_reno_undo_cwnd(struct sock *sk);
1107 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1108 extern struct tcp_congestion_ops tcp_reno;
1109 
1110 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1111 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1112 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1113 #ifdef CONFIG_INET
1114 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1115 #else
1116 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1117 {
1118 	return NULL;
1119 }
1120 #endif
1121 
1122 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1123 {
1124 	const struct inet_connection_sock *icsk = inet_csk(sk);
1125 
1126 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1127 }
1128 
1129 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1130 {
1131 	struct inet_connection_sock *icsk = inet_csk(sk);
1132 
1133 	if (icsk->icsk_ca_ops->set_state)
1134 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1135 	icsk->icsk_ca_state = ca_state;
1136 }
1137 
1138 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1139 {
1140 	const struct inet_connection_sock *icsk = inet_csk(sk);
1141 
1142 	if (icsk->icsk_ca_ops->cwnd_event)
1143 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1144 }
1145 
1146 /* From tcp_rate.c */
1147 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1148 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1149 			    struct rate_sample *rs);
1150 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1151 		  bool is_sack_reneg, struct rate_sample *rs);
1152 void tcp_rate_check_app_limited(struct sock *sk);
1153 
1154 /* These functions determine how the current flow behaves in respect of SACK
1155  * handling. SACK is negotiated with the peer, and therefore it can vary
1156  * between different flows.
1157  *
1158  * tcp_is_sack - SACK enabled
1159  * tcp_is_reno - No SACK
1160  */
1161 static inline int tcp_is_sack(const struct tcp_sock *tp)
1162 {
1163 	return likely(tp->rx_opt.sack_ok);
1164 }
1165 
1166 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1167 {
1168 	return !tcp_is_sack(tp);
1169 }
1170 
1171 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1172 {
1173 	return tp->sacked_out + tp->lost_out;
1174 }
1175 
1176 /* This determines how many packets are "in the network" to the best
1177  * of our knowledge.  In many cases it is conservative, but where
1178  * detailed information is available from the receiver (via SACK
1179  * blocks etc.) we can make more aggressive calculations.
1180  *
1181  * Use this for decisions involving congestion control, use just
1182  * tp->packets_out to determine if the send queue is empty or not.
1183  *
1184  * Read this equation as:
1185  *
1186  *	"Packets sent once on transmission queue" MINUS
1187  *	"Packets left network, but not honestly ACKed yet" PLUS
1188  *	"Packets fast retransmitted"
1189  */
1190 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1191 {
1192 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1193 }
1194 
1195 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1196 
1197 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1198 {
1199 	return tp->snd_cwnd < tp->snd_ssthresh;
1200 }
1201 
1202 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1203 {
1204 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1205 }
1206 
1207 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1208 {
1209 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1210 	       (1 << inet_csk(sk)->icsk_ca_state);
1211 }
1212 
1213 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1214  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1215  * ssthresh.
1216  */
1217 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1218 {
1219 	const struct tcp_sock *tp = tcp_sk(sk);
1220 
1221 	if (tcp_in_cwnd_reduction(sk))
1222 		return tp->snd_ssthresh;
1223 	else
1224 		return max(tp->snd_ssthresh,
1225 			   ((tp->snd_cwnd >> 1) +
1226 			    (tp->snd_cwnd >> 2)));
1227 }
1228 
1229 /* Use define here intentionally to get WARN_ON location shown at the caller */
1230 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1231 
1232 void tcp_enter_cwr(struct sock *sk);
1233 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1234 
1235 /* The maximum number of MSS of available cwnd for which TSO defers
1236  * sending if not using sysctl_tcp_tso_win_divisor.
1237  */
1238 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1239 {
1240 	return 3;
1241 }
1242 
1243 /* Returns end sequence number of the receiver's advertised window */
1244 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1245 {
1246 	return tp->snd_una + tp->snd_wnd;
1247 }
1248 
1249 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1250  * flexible approach. The RFC suggests cwnd should not be raised unless
1251  * it was fully used previously. And that's exactly what we do in
1252  * congestion avoidance mode. But in slow start we allow cwnd to grow
1253  * as long as the application has used half the cwnd.
1254  * Example :
1255  *    cwnd is 10 (IW10), but application sends 9 frames.
1256  *    We allow cwnd to reach 18 when all frames are ACKed.
1257  * This check is safe because it's as aggressive as slow start which already
1258  * risks 100% overshoot. The advantage is that we discourage application to
1259  * either send more filler packets or data to artificially blow up the cwnd
1260  * usage, and allow application-limited process to probe bw more aggressively.
1261  */
1262 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1263 {
1264 	const struct tcp_sock *tp = tcp_sk(sk);
1265 
1266 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1267 	if (tcp_in_slow_start(tp))
1268 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1269 
1270 	return tp->is_cwnd_limited;
1271 }
1272 
1273 /* BBR congestion control needs pacing.
1274  * Same remark for SO_MAX_PACING_RATE.
1275  * sch_fq packet scheduler is efficiently handling pacing,
1276  * but is not always installed/used.
1277  * Return true if TCP stack should pace packets itself.
1278  */
1279 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1280 {
1281 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1282 }
1283 
1284 /* Estimates in how many jiffies next packet for this flow can be sent.
1285  * Scheduling a retransmit timer too early would be silly.
1286  */
1287 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1288 {
1289 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1290 
1291 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1292 }
1293 
1294 static inline void tcp_reset_xmit_timer(struct sock *sk,
1295 					const int what,
1296 					unsigned long when,
1297 					const unsigned long max_when)
1298 {
1299 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1300 				  max_when);
1301 }
1302 
1303 /* Something is really bad, we could not queue an additional packet,
1304  * because qdisc is full or receiver sent a 0 window, or we are paced.
1305  * We do not want to add fuel to the fire, or abort too early,
1306  * so make sure the timer we arm now is at least 200ms in the future,
1307  * regardless of current icsk_rto value (as it could be ~2ms)
1308  */
1309 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1310 {
1311 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1312 }
1313 
1314 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1315 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1316 					    unsigned long max_when)
1317 {
1318 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1319 			   inet_csk(sk)->icsk_backoff);
1320 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1321 
1322 	return (unsigned long)min_t(u64, when, max_when);
1323 }
1324 
1325 static inline void tcp_check_probe_timer(struct sock *sk)
1326 {
1327 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1328 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1329 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1330 }
1331 
1332 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1333 {
1334 	tp->snd_wl1 = seq;
1335 }
1336 
1337 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1338 {
1339 	tp->snd_wl1 = seq;
1340 }
1341 
1342 /*
1343  * Calculate(/check) TCP checksum
1344  */
1345 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1346 				   __be32 daddr, __wsum base)
1347 {
1348 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1349 }
1350 
1351 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1352 {
1353 	return !skb_csum_unnecessary(skb) &&
1354 		__skb_checksum_complete(skb);
1355 }
1356 
1357 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1358 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1359 void tcp_set_state(struct sock *sk, int state);
1360 void tcp_done(struct sock *sk);
1361 int tcp_abort(struct sock *sk, int err);
1362 
1363 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1364 {
1365 	rx_opt->dsack = 0;
1366 	rx_opt->num_sacks = 0;
1367 }
1368 
1369 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1370 
1371 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1372 {
1373 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 	s32 delta;
1376 
1377 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1378 	    ca_ops->cong_control)
1379 		return;
1380 	delta = tcp_jiffies32 - tp->lsndtime;
1381 	if (delta > inet_csk(sk)->icsk_rto)
1382 		tcp_cwnd_restart(sk, delta);
1383 }
1384 
1385 /* Determine a window scaling and initial window to offer. */
1386 void tcp_select_initial_window(const struct sock *sk, int __space,
1387 			       __u32 mss, __u32 *rcv_wnd,
1388 			       __u32 *window_clamp, int wscale_ok,
1389 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1390 
1391 static inline int tcp_win_from_space(const struct sock *sk, int space)
1392 {
1393 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1394 
1395 	return tcp_adv_win_scale <= 0 ?
1396 		(space>>(-tcp_adv_win_scale)) :
1397 		space - (space>>tcp_adv_win_scale);
1398 }
1399 
1400 /* Note: caller must be prepared to deal with negative returns */
1401 static inline int tcp_space(const struct sock *sk)
1402 {
1403 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1404 				  READ_ONCE(sk->sk_backlog.len) -
1405 				  atomic_read(&sk->sk_rmem_alloc));
1406 }
1407 
1408 static inline int tcp_full_space(const struct sock *sk)
1409 {
1410 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1411 }
1412 
1413 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1414 
1415 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1416  * If 87.5 % (7/8) of the space has been consumed, we want to override
1417  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1418  * len/truesize ratio.
1419  */
1420 static inline bool tcp_rmem_pressure(const struct sock *sk)
1421 {
1422 	int rcvbuf, threshold;
1423 
1424 	if (tcp_under_memory_pressure(sk))
1425 		return true;
1426 
1427 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1428 	threshold = rcvbuf - (rcvbuf >> 3);
1429 
1430 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1431 }
1432 
1433 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1434 {
1435 	const struct tcp_sock *tp = tcp_sk(sk);
1436 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1437 
1438 	if (avail <= 0)
1439 		return false;
1440 
1441 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1442 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1443 }
1444 
1445 extern void tcp_openreq_init_rwin(struct request_sock *req,
1446 				  const struct sock *sk_listener,
1447 				  const struct dst_entry *dst);
1448 
1449 void tcp_enter_memory_pressure(struct sock *sk);
1450 void tcp_leave_memory_pressure(struct sock *sk);
1451 
1452 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1453 {
1454 	struct net *net = sock_net((struct sock *)tp);
1455 
1456 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1457 }
1458 
1459 static inline int keepalive_time_when(const struct tcp_sock *tp)
1460 {
1461 	struct net *net = sock_net((struct sock *)tp);
1462 
1463 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1464 }
1465 
1466 static inline int keepalive_probes(const struct tcp_sock *tp)
1467 {
1468 	struct net *net = sock_net((struct sock *)tp);
1469 
1470 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1471 }
1472 
1473 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1474 {
1475 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1476 
1477 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1478 			  tcp_jiffies32 - tp->rcv_tstamp);
1479 }
1480 
1481 static inline int tcp_fin_time(const struct sock *sk)
1482 {
1483 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1484 	const int rto = inet_csk(sk)->icsk_rto;
1485 
1486 	if (fin_timeout < (rto << 2) - (rto >> 1))
1487 		fin_timeout = (rto << 2) - (rto >> 1);
1488 
1489 	return fin_timeout;
1490 }
1491 
1492 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1493 				  int paws_win)
1494 {
1495 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1496 		return true;
1497 	if (unlikely(!time_before32(ktime_get_seconds(),
1498 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1499 		return true;
1500 	/*
1501 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1502 	 * then following tcp messages have valid values. Ignore 0 value,
1503 	 * or else 'negative' tsval might forbid us to accept their packets.
1504 	 */
1505 	if (!rx_opt->ts_recent)
1506 		return true;
1507 	return false;
1508 }
1509 
1510 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1511 				   int rst)
1512 {
1513 	if (tcp_paws_check(rx_opt, 0))
1514 		return false;
1515 
1516 	/* RST segments are not recommended to carry timestamp,
1517 	   and, if they do, it is recommended to ignore PAWS because
1518 	   "their cleanup function should take precedence over timestamps."
1519 	   Certainly, it is mistake. It is necessary to understand the reasons
1520 	   of this constraint to relax it: if peer reboots, clock may go
1521 	   out-of-sync and half-open connections will not be reset.
1522 	   Actually, the problem would be not existing if all
1523 	   the implementations followed draft about maintaining clock
1524 	   via reboots. Linux-2.2 DOES NOT!
1525 
1526 	   However, we can relax time bounds for RST segments to MSL.
1527 	 */
1528 	if (rst && !time_before32(ktime_get_seconds(),
1529 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1530 		return false;
1531 	return true;
1532 }
1533 
1534 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1535 			  int mib_idx, u32 *last_oow_ack_time);
1536 
1537 static inline void tcp_mib_init(struct net *net)
1538 {
1539 	/* See RFC 2012 */
1540 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1541 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1542 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1543 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1544 }
1545 
1546 /* from STCP */
1547 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1548 {
1549 	tp->lost_skb_hint = NULL;
1550 }
1551 
1552 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1553 {
1554 	tcp_clear_retrans_hints_partial(tp);
1555 	tp->retransmit_skb_hint = NULL;
1556 }
1557 
1558 union tcp_md5_addr {
1559 	struct in_addr  a4;
1560 #if IS_ENABLED(CONFIG_IPV6)
1561 	struct in6_addr	a6;
1562 #endif
1563 };
1564 
1565 /* - key database */
1566 struct tcp_md5sig_key {
1567 	struct hlist_node	node;
1568 	u8			keylen;
1569 	u8			family; /* AF_INET or AF_INET6 */
1570 	u8			prefixlen;
1571 	union tcp_md5_addr	addr;
1572 	int			l3index; /* set if key added with L3 scope */
1573 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1574 	struct rcu_head		rcu;
1575 };
1576 
1577 /* - sock block */
1578 struct tcp_md5sig_info {
1579 	struct hlist_head	head;
1580 	struct rcu_head		rcu;
1581 };
1582 
1583 /* - pseudo header */
1584 struct tcp4_pseudohdr {
1585 	__be32		saddr;
1586 	__be32		daddr;
1587 	__u8		pad;
1588 	__u8		protocol;
1589 	__be16		len;
1590 };
1591 
1592 struct tcp6_pseudohdr {
1593 	struct in6_addr	saddr;
1594 	struct in6_addr daddr;
1595 	__be32		len;
1596 	__be32		protocol;	/* including padding */
1597 };
1598 
1599 union tcp_md5sum_block {
1600 	struct tcp4_pseudohdr ip4;
1601 #if IS_ENABLED(CONFIG_IPV6)
1602 	struct tcp6_pseudohdr ip6;
1603 #endif
1604 };
1605 
1606 /* - pool: digest algorithm, hash description and scratch buffer */
1607 struct tcp_md5sig_pool {
1608 	struct ahash_request	*md5_req;
1609 	void			*scratch;
1610 };
1611 
1612 /* - functions */
1613 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1614 			const struct sock *sk, const struct sk_buff *skb);
1615 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1616 		   int family, u8 prefixlen, int l3index,
1617 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1618 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1619 		   int family, u8 prefixlen, int l3index);
1620 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1621 					 const struct sock *addr_sk);
1622 
1623 #ifdef CONFIG_TCP_MD5SIG
1624 #include <linux/jump_label.h>
1625 extern struct static_key_false tcp_md5_needed;
1626 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1627 					   const union tcp_md5_addr *addr,
1628 					   int family);
1629 static inline struct tcp_md5sig_key *
1630 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1631 		  const union tcp_md5_addr *addr, int family)
1632 {
1633 	if (!static_branch_unlikely(&tcp_md5_needed))
1634 		return NULL;
1635 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1636 }
1637 
1638 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1639 #else
1640 static inline struct tcp_md5sig_key *
1641 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1642 		  const union tcp_md5_addr *addr, int family)
1643 {
1644 	return NULL;
1645 }
1646 #define tcp_twsk_md5_key(twsk)	NULL
1647 #endif
1648 
1649 bool tcp_alloc_md5sig_pool(void);
1650 
1651 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1652 static inline void tcp_put_md5sig_pool(void)
1653 {
1654 	local_bh_enable();
1655 }
1656 
1657 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1658 			  unsigned int header_len);
1659 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1660 		     const struct tcp_md5sig_key *key);
1661 
1662 /* From tcp_fastopen.c */
1663 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1664 			    struct tcp_fastopen_cookie *cookie);
1665 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1666 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1667 			    u16 try_exp);
1668 struct tcp_fastopen_request {
1669 	/* Fast Open cookie. Size 0 means a cookie request */
1670 	struct tcp_fastopen_cookie	cookie;
1671 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1672 	size_t				size;
1673 	int				copied;	/* queued in tcp_connect() */
1674 	struct ubuf_info		*uarg;
1675 };
1676 void tcp_free_fastopen_req(struct tcp_sock *tp);
1677 void tcp_fastopen_destroy_cipher(struct sock *sk);
1678 void tcp_fastopen_ctx_destroy(struct net *net);
1679 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1680 			      void *primary_key, void *backup_key);
1681 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1682 			    u64 *key);
1683 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1684 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1685 			      struct request_sock *req,
1686 			      struct tcp_fastopen_cookie *foc,
1687 			      const struct dst_entry *dst);
1688 void tcp_fastopen_init_key_once(struct net *net);
1689 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1690 			     struct tcp_fastopen_cookie *cookie);
1691 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1692 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1693 #define TCP_FASTOPEN_KEY_MAX 2
1694 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1695 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1696 
1697 /* Fastopen key context */
1698 struct tcp_fastopen_context {
1699 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1700 	int		num;
1701 	struct rcu_head	rcu;
1702 };
1703 
1704 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1705 void tcp_fastopen_active_disable(struct sock *sk);
1706 bool tcp_fastopen_active_should_disable(struct sock *sk);
1707 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1708 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1709 
1710 /* Caller needs to wrap with rcu_read_(un)lock() */
1711 static inline
1712 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1713 {
1714 	struct tcp_fastopen_context *ctx;
1715 
1716 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1717 	if (!ctx)
1718 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1719 	return ctx;
1720 }
1721 
1722 static inline
1723 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1724 			       const struct tcp_fastopen_cookie *orig)
1725 {
1726 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1727 	    orig->len == foc->len &&
1728 	    !memcmp(orig->val, foc->val, foc->len))
1729 		return true;
1730 	return false;
1731 }
1732 
1733 static inline
1734 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1735 {
1736 	return ctx->num;
1737 }
1738 
1739 /* Latencies incurred by various limits for a sender. They are
1740  * chronograph-like stats that are mutually exclusive.
1741  */
1742 enum tcp_chrono {
1743 	TCP_CHRONO_UNSPEC,
1744 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1745 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1746 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1747 	__TCP_CHRONO_MAX,
1748 };
1749 
1750 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1751 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1752 
1753 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1754  * the same memory storage than skb->destructor/_skb_refdst
1755  */
1756 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1757 {
1758 	skb->destructor = NULL;
1759 	skb->_skb_refdst = 0UL;
1760 }
1761 
1762 #define tcp_skb_tsorted_save(skb) {		\
1763 	unsigned long _save = skb->_skb_refdst;	\
1764 	skb->_skb_refdst = 0UL;
1765 
1766 #define tcp_skb_tsorted_restore(skb)		\
1767 	skb->_skb_refdst = _save;		\
1768 }
1769 
1770 void tcp_write_queue_purge(struct sock *sk);
1771 
1772 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1773 {
1774 	return skb_rb_first(&sk->tcp_rtx_queue);
1775 }
1776 
1777 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1778 {
1779 	return skb_rb_last(&sk->tcp_rtx_queue);
1780 }
1781 
1782 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1783 {
1784 	return skb_peek(&sk->sk_write_queue);
1785 }
1786 
1787 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1788 {
1789 	return skb_peek_tail(&sk->sk_write_queue);
1790 }
1791 
1792 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1793 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1794 
1795 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1796 {
1797 	return skb_peek(&sk->sk_write_queue);
1798 }
1799 
1800 static inline bool tcp_skb_is_last(const struct sock *sk,
1801 				   const struct sk_buff *skb)
1802 {
1803 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1804 }
1805 
1806 /**
1807  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1808  * @sk: socket
1809  *
1810  * Since the write queue can have a temporary empty skb in it,
1811  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1812  */
1813 static inline bool tcp_write_queue_empty(const struct sock *sk)
1814 {
1815 	const struct tcp_sock *tp = tcp_sk(sk);
1816 
1817 	return tp->write_seq == tp->snd_nxt;
1818 }
1819 
1820 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1821 {
1822 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1823 }
1824 
1825 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1826 {
1827 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1828 }
1829 
1830 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1831 {
1832 	__skb_queue_tail(&sk->sk_write_queue, skb);
1833 
1834 	/* Queue it, remembering where we must start sending. */
1835 	if (sk->sk_write_queue.next == skb)
1836 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1837 }
1838 
1839 /* Insert new before skb on the write queue of sk.  */
1840 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1841 						  struct sk_buff *skb,
1842 						  struct sock *sk)
1843 {
1844 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1845 }
1846 
1847 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1848 {
1849 	tcp_skb_tsorted_anchor_cleanup(skb);
1850 	__skb_unlink(skb, &sk->sk_write_queue);
1851 }
1852 
1853 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1854 
1855 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1856 {
1857 	tcp_skb_tsorted_anchor_cleanup(skb);
1858 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1859 }
1860 
1861 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1862 {
1863 	list_del(&skb->tcp_tsorted_anchor);
1864 	tcp_rtx_queue_unlink(skb, sk);
1865 	sk_wmem_free_skb(sk, skb);
1866 }
1867 
1868 static inline void tcp_push_pending_frames(struct sock *sk)
1869 {
1870 	if (tcp_send_head(sk)) {
1871 		struct tcp_sock *tp = tcp_sk(sk);
1872 
1873 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1874 	}
1875 }
1876 
1877 /* Start sequence of the skb just after the highest skb with SACKed
1878  * bit, valid only if sacked_out > 0 or when the caller has ensured
1879  * validity by itself.
1880  */
1881 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1882 {
1883 	if (!tp->sacked_out)
1884 		return tp->snd_una;
1885 
1886 	if (tp->highest_sack == NULL)
1887 		return tp->snd_nxt;
1888 
1889 	return TCP_SKB_CB(tp->highest_sack)->seq;
1890 }
1891 
1892 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1893 {
1894 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1895 }
1896 
1897 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1898 {
1899 	return tcp_sk(sk)->highest_sack;
1900 }
1901 
1902 static inline void tcp_highest_sack_reset(struct sock *sk)
1903 {
1904 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1905 }
1906 
1907 /* Called when old skb is about to be deleted and replaced by new skb */
1908 static inline void tcp_highest_sack_replace(struct sock *sk,
1909 					    struct sk_buff *old,
1910 					    struct sk_buff *new)
1911 {
1912 	if (old == tcp_highest_sack(sk))
1913 		tcp_sk(sk)->highest_sack = new;
1914 }
1915 
1916 /* This helper checks if socket has IP_TRANSPARENT set */
1917 static inline bool inet_sk_transparent(const struct sock *sk)
1918 {
1919 	switch (sk->sk_state) {
1920 	case TCP_TIME_WAIT:
1921 		return inet_twsk(sk)->tw_transparent;
1922 	case TCP_NEW_SYN_RECV:
1923 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1924 	}
1925 	return inet_sk(sk)->transparent;
1926 }
1927 
1928 /* Determines whether this is a thin stream (which may suffer from
1929  * increased latency). Used to trigger latency-reducing mechanisms.
1930  */
1931 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1932 {
1933 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1934 }
1935 
1936 /* /proc */
1937 enum tcp_seq_states {
1938 	TCP_SEQ_STATE_LISTENING,
1939 	TCP_SEQ_STATE_ESTABLISHED,
1940 };
1941 
1942 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1943 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1944 void tcp_seq_stop(struct seq_file *seq, void *v);
1945 
1946 struct tcp_seq_afinfo {
1947 	sa_family_t			family;
1948 };
1949 
1950 struct tcp_iter_state {
1951 	struct seq_net_private	p;
1952 	enum tcp_seq_states	state;
1953 	struct sock		*syn_wait_sk;
1954 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1955 	int			bucket, offset, sbucket, num;
1956 	loff_t			last_pos;
1957 };
1958 
1959 extern struct request_sock_ops tcp_request_sock_ops;
1960 extern struct request_sock_ops tcp6_request_sock_ops;
1961 
1962 void tcp_v4_destroy_sock(struct sock *sk);
1963 
1964 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1965 				netdev_features_t features);
1966 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1967 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1968 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1969 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1970 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1971 int tcp_gro_complete(struct sk_buff *skb);
1972 
1973 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1974 
1975 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1976 {
1977 	struct net *net = sock_net((struct sock *)tp);
1978 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1979 }
1980 
1981 bool tcp_stream_memory_free(const struct sock *sk, int wake);
1982 
1983 #ifdef CONFIG_PROC_FS
1984 int tcp4_proc_init(void);
1985 void tcp4_proc_exit(void);
1986 #endif
1987 
1988 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1989 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1990 		     const struct tcp_request_sock_ops *af_ops,
1991 		     struct sock *sk, struct sk_buff *skb);
1992 
1993 /* TCP af-specific functions */
1994 struct tcp_sock_af_ops {
1995 #ifdef CONFIG_TCP_MD5SIG
1996 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1997 						const struct sock *addr_sk);
1998 	int		(*calc_md5_hash)(char *location,
1999 					 const struct tcp_md5sig_key *md5,
2000 					 const struct sock *sk,
2001 					 const struct sk_buff *skb);
2002 	int		(*md5_parse)(struct sock *sk,
2003 				     int optname,
2004 				     sockptr_t optval,
2005 				     int optlen);
2006 #endif
2007 };
2008 
2009 struct tcp_request_sock_ops {
2010 	u16 mss_clamp;
2011 #ifdef CONFIG_TCP_MD5SIG
2012 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2013 						 const struct sock *addr_sk);
2014 	int		(*calc_md5_hash) (char *location,
2015 					  const struct tcp_md5sig_key *md5,
2016 					  const struct sock *sk,
2017 					  const struct sk_buff *skb);
2018 #endif
2019 #ifdef CONFIG_SYN_COOKIES
2020 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2021 				 __u16 *mss);
2022 #endif
2023 	struct dst_entry *(*route_req)(const struct sock *sk,
2024 				       struct sk_buff *skb,
2025 				       struct flowi *fl,
2026 				       struct request_sock *req);
2027 	u32 (*init_seq)(const struct sk_buff *skb);
2028 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2029 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2030 			   struct flowi *fl, struct request_sock *req,
2031 			   struct tcp_fastopen_cookie *foc,
2032 			   enum tcp_synack_type synack_type,
2033 			   struct sk_buff *syn_skb);
2034 };
2035 
2036 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2037 #if IS_ENABLED(CONFIG_IPV6)
2038 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2039 #endif
2040 
2041 #ifdef CONFIG_SYN_COOKIES
2042 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2043 					 const struct sock *sk, struct sk_buff *skb,
2044 					 __u16 *mss)
2045 {
2046 	tcp_synq_overflow(sk);
2047 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2048 	return ops->cookie_init_seq(skb, mss);
2049 }
2050 #else
2051 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2052 					 const struct sock *sk, struct sk_buff *skb,
2053 					 __u16 *mss)
2054 {
2055 	return 0;
2056 }
2057 #endif
2058 
2059 int tcpv4_offload_init(void);
2060 
2061 void tcp_v4_init(void);
2062 void tcp_init(void);
2063 
2064 /* tcp_recovery.c */
2065 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2066 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2067 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2068 				u32 reo_wnd);
2069 extern bool tcp_rack_mark_lost(struct sock *sk);
2070 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2071 			     u64 xmit_time);
2072 extern void tcp_rack_reo_timeout(struct sock *sk);
2073 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2074 
2075 /* At how many usecs into the future should the RTO fire? */
2076 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2077 {
2078 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2079 	u32 rto = inet_csk(sk)->icsk_rto;
2080 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2081 
2082 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2083 }
2084 
2085 /*
2086  * Save and compile IPv4 options, return a pointer to it
2087  */
2088 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2089 							 struct sk_buff *skb)
2090 {
2091 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2092 	struct ip_options_rcu *dopt = NULL;
2093 
2094 	if (opt->optlen) {
2095 		int opt_size = sizeof(*dopt) + opt->optlen;
2096 
2097 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2098 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2099 			kfree(dopt);
2100 			dopt = NULL;
2101 		}
2102 	}
2103 	return dopt;
2104 }
2105 
2106 /* locally generated TCP pure ACKs have skb->truesize == 2
2107  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2108  * This is much faster than dissecting the packet to find out.
2109  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2110  */
2111 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2112 {
2113 	return skb->truesize == 2;
2114 }
2115 
2116 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2117 {
2118 	skb->truesize = 2;
2119 }
2120 
2121 static inline int tcp_inq(struct sock *sk)
2122 {
2123 	struct tcp_sock *tp = tcp_sk(sk);
2124 	int answ;
2125 
2126 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2127 		answ = 0;
2128 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2129 		   !tp->urg_data ||
2130 		   before(tp->urg_seq, tp->copied_seq) ||
2131 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2132 
2133 		answ = tp->rcv_nxt - tp->copied_seq;
2134 
2135 		/* Subtract 1, if FIN was received */
2136 		if (answ && sock_flag(sk, SOCK_DONE))
2137 			answ--;
2138 	} else {
2139 		answ = tp->urg_seq - tp->copied_seq;
2140 	}
2141 
2142 	return answ;
2143 }
2144 
2145 int tcp_peek_len(struct socket *sock);
2146 
2147 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2148 {
2149 	u16 segs_in;
2150 
2151 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2152 	tp->segs_in += segs_in;
2153 	if (skb->len > tcp_hdrlen(skb))
2154 		tp->data_segs_in += segs_in;
2155 }
2156 
2157 /*
2158  * TCP listen path runs lockless.
2159  * We forced "struct sock" to be const qualified to make sure
2160  * we don't modify one of its field by mistake.
2161  * Here, we increment sk_drops which is an atomic_t, so we can safely
2162  * make sock writable again.
2163  */
2164 static inline void tcp_listendrop(const struct sock *sk)
2165 {
2166 	atomic_inc(&((struct sock *)sk)->sk_drops);
2167 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2168 }
2169 
2170 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2171 
2172 /*
2173  * Interface for adding Upper Level Protocols over TCP
2174  */
2175 
2176 #define TCP_ULP_NAME_MAX	16
2177 #define TCP_ULP_MAX		128
2178 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2179 
2180 struct tcp_ulp_ops {
2181 	struct list_head	list;
2182 
2183 	/* initialize ulp */
2184 	int (*init)(struct sock *sk);
2185 	/* update ulp */
2186 	void (*update)(struct sock *sk, struct proto *p,
2187 		       void (*write_space)(struct sock *sk));
2188 	/* cleanup ulp */
2189 	void (*release)(struct sock *sk);
2190 	/* diagnostic */
2191 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2192 	size_t (*get_info_size)(const struct sock *sk);
2193 	/* clone ulp */
2194 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2195 		      const gfp_t priority);
2196 
2197 	char		name[TCP_ULP_NAME_MAX];
2198 	struct module	*owner;
2199 };
2200 int tcp_register_ulp(struct tcp_ulp_ops *type);
2201 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2202 int tcp_set_ulp(struct sock *sk, const char *name);
2203 void tcp_get_available_ulp(char *buf, size_t len);
2204 void tcp_cleanup_ulp(struct sock *sk);
2205 void tcp_update_ulp(struct sock *sk, struct proto *p,
2206 		    void (*write_space)(struct sock *sk));
2207 
2208 #define MODULE_ALIAS_TCP_ULP(name)				\
2209 	__MODULE_INFO(alias, alias_userspace, name);		\
2210 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2211 
2212 #ifdef CONFIG_NET_SOCK_MSG
2213 struct sk_msg;
2214 struct sk_psock;
2215 
2216 #ifdef CONFIG_BPF_SYSCALL
2217 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2218 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2219 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2220 #endif /* CONFIG_BPF_SYSCALL */
2221 
2222 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2223 			  int flags);
2224 #endif /* CONFIG_NET_SOCK_MSG */
2225 
2226 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2227 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2228 {
2229 }
2230 #endif
2231 
2232 #ifdef CONFIG_CGROUP_BPF
2233 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2234 				      struct sk_buff *skb,
2235 				      unsigned int end_offset)
2236 {
2237 	skops->skb = skb;
2238 	skops->skb_data_end = skb->data + end_offset;
2239 }
2240 #else
2241 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2242 				      struct sk_buff *skb,
2243 				      unsigned int end_offset)
2244 {
2245 }
2246 #endif
2247 
2248 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2249  * is < 0, then the BPF op failed (for example if the loaded BPF
2250  * program does not support the chosen operation or there is no BPF
2251  * program loaded).
2252  */
2253 #ifdef CONFIG_BPF
2254 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2255 {
2256 	struct bpf_sock_ops_kern sock_ops;
2257 	int ret;
2258 
2259 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2260 	if (sk_fullsock(sk)) {
2261 		sock_ops.is_fullsock = 1;
2262 		sock_owned_by_me(sk);
2263 	}
2264 
2265 	sock_ops.sk = sk;
2266 	sock_ops.op = op;
2267 	if (nargs > 0)
2268 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2269 
2270 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2271 	if (ret == 0)
2272 		ret = sock_ops.reply;
2273 	else
2274 		ret = -1;
2275 	return ret;
2276 }
2277 
2278 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2279 {
2280 	u32 args[2] = {arg1, arg2};
2281 
2282 	return tcp_call_bpf(sk, op, 2, args);
2283 }
2284 
2285 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2286 				    u32 arg3)
2287 {
2288 	u32 args[3] = {arg1, arg2, arg3};
2289 
2290 	return tcp_call_bpf(sk, op, 3, args);
2291 }
2292 
2293 #else
2294 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2295 {
2296 	return -EPERM;
2297 }
2298 
2299 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2300 {
2301 	return -EPERM;
2302 }
2303 
2304 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2305 				    u32 arg3)
2306 {
2307 	return -EPERM;
2308 }
2309 
2310 #endif
2311 
2312 static inline u32 tcp_timeout_init(struct sock *sk)
2313 {
2314 	int timeout;
2315 
2316 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2317 
2318 	if (timeout <= 0)
2319 		timeout = TCP_TIMEOUT_INIT;
2320 	return timeout;
2321 }
2322 
2323 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2324 {
2325 	int rwnd;
2326 
2327 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2328 
2329 	if (rwnd < 0)
2330 		rwnd = 0;
2331 	return rwnd;
2332 }
2333 
2334 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2335 {
2336 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2337 }
2338 
2339 static inline void tcp_bpf_rtt(struct sock *sk)
2340 {
2341 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2342 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2343 }
2344 
2345 #if IS_ENABLED(CONFIG_SMC)
2346 extern struct static_key_false tcp_have_smc;
2347 #endif
2348 
2349 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2350 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2351 			     void (*cad)(struct sock *sk, u32 ack_seq));
2352 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2353 void clean_acked_data_flush(void);
2354 #endif
2355 
2356 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2357 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2358 				    const struct tcp_sock *tp)
2359 {
2360 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2361 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2362 }
2363 
2364 /* Compute Earliest Departure Time for some control packets
2365  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2366  */
2367 static inline u64 tcp_transmit_time(const struct sock *sk)
2368 {
2369 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2370 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2371 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2372 
2373 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2374 	}
2375 	return 0;
2376 }
2377 
2378 #endif	/* _TCP_H */
2379