xref: /openbmc/linux/include/net/tcp.h (revision 1da177e4)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 /* Cancel timers, when they are not required. */
25 #undef TCP_CLEAR_TIMERS
26 
27 #include <linux/config.h>
28 #include <linux/list.h>
29 #include <linux/tcp.h>
30 #include <linux/slab.h>
31 #include <linux/cache.h>
32 #include <linux/percpu.h>
33 #include <net/checksum.h>
34 #include <net/sock.h>
35 #include <net/snmp.h>
36 #include <net/ip.h>
37 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
38 #include <linux/ipv6.h>
39 #endif
40 #include <linux/seq_file.h>
41 
42 /* This is for all connections with a full identity, no wildcards.
43  * New scheme, half the table is for TIME_WAIT, the other half is
44  * for the rest.  I'll experiment with dynamic table growth later.
45  */
46 struct tcp_ehash_bucket {
47 	rwlock_t	  lock;
48 	struct hlist_head chain;
49 } __attribute__((__aligned__(8)));
50 
51 /* This is for listening sockets, thus all sockets which possess wildcards. */
52 #define TCP_LHTABLE_SIZE	32	/* Yes, really, this is all you need. */
53 
54 /* There are a few simple rules, which allow for local port reuse by
55  * an application.  In essence:
56  *
57  *	1) Sockets bound to different interfaces may share a local port.
58  *	   Failing that, goto test 2.
59  *	2) If all sockets have sk->sk_reuse set, and none of them are in
60  *	   TCP_LISTEN state, the port may be shared.
61  *	   Failing that, goto test 3.
62  *	3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local
63  *	   address, and none of them are the same, the port may be
64  *	   shared.
65  *	   Failing this, the port cannot be shared.
66  *
67  * The interesting point, is test #2.  This is what an FTP server does
68  * all day.  To optimize this case we use a specific flag bit defined
69  * below.  As we add sockets to a bind bucket list, we perform a
70  * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN))
71  * As long as all sockets added to a bind bucket pass this test,
72  * the flag bit will be set.
73  * The resulting situation is that tcp_v[46]_verify_bind() can just check
74  * for this flag bit, if it is set and the socket trying to bind has
75  * sk->sk_reuse set, we don't even have to walk the owners list at all,
76  * we return that it is ok to bind this socket to the requested local port.
77  *
78  * Sounds like a lot of work, but it is worth it.  In a more naive
79  * implementation (ie. current FreeBSD etc.) the entire list of ports
80  * must be walked for each data port opened by an ftp server.  Needless
81  * to say, this does not scale at all.  With a couple thousand FTP
82  * users logged onto your box, isn't it nice to know that new data
83  * ports are created in O(1) time?  I thought so. ;-)	-DaveM
84  */
85 struct tcp_bind_bucket {
86 	unsigned short		port;
87 	signed short		fastreuse;
88 	struct hlist_node	node;
89 	struct hlist_head	owners;
90 };
91 
92 #define tb_for_each(tb, node, head) hlist_for_each_entry(tb, node, head, node)
93 
94 struct tcp_bind_hashbucket {
95 	spinlock_t		lock;
96 	struct hlist_head	chain;
97 };
98 
99 static inline struct tcp_bind_bucket *__tb_head(struct tcp_bind_hashbucket *head)
100 {
101 	return hlist_entry(head->chain.first, struct tcp_bind_bucket, node);
102 }
103 
104 static inline struct tcp_bind_bucket *tb_head(struct tcp_bind_hashbucket *head)
105 {
106 	return hlist_empty(&head->chain) ? NULL : __tb_head(head);
107 }
108 
109 extern struct tcp_hashinfo {
110 	/* This is for sockets with full identity only.  Sockets here will
111 	 * always be without wildcards and will have the following invariant:
112 	 *
113 	 *          TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE
114 	 *
115 	 * First half of the table is for sockets not in TIME_WAIT, second half
116 	 * is for TIME_WAIT sockets only.
117 	 */
118 	struct tcp_ehash_bucket *__tcp_ehash;
119 
120 	/* Ok, let's try this, I give up, we do need a local binding
121 	 * TCP hash as well as the others for fast bind/connect.
122 	 */
123 	struct tcp_bind_hashbucket *__tcp_bhash;
124 
125 	int __tcp_bhash_size;
126 	int __tcp_ehash_size;
127 
128 	/* All sockets in TCP_LISTEN state will be in here.  This is the only
129 	 * table where wildcard'd TCP sockets can exist.  Hash function here
130 	 * is just local port number.
131 	 */
132 	struct hlist_head __tcp_listening_hash[TCP_LHTABLE_SIZE];
133 
134 	/* All the above members are written once at bootup and
135 	 * never written again _or_ are predominantly read-access.
136 	 *
137 	 * Now align to a new cache line as all the following members
138 	 * are often dirty.
139 	 */
140 	rwlock_t __tcp_lhash_lock ____cacheline_aligned;
141 	atomic_t __tcp_lhash_users;
142 	wait_queue_head_t __tcp_lhash_wait;
143 	spinlock_t __tcp_portalloc_lock;
144 } tcp_hashinfo;
145 
146 #define tcp_ehash	(tcp_hashinfo.__tcp_ehash)
147 #define tcp_bhash	(tcp_hashinfo.__tcp_bhash)
148 #define tcp_ehash_size	(tcp_hashinfo.__tcp_ehash_size)
149 #define tcp_bhash_size	(tcp_hashinfo.__tcp_bhash_size)
150 #define tcp_listening_hash (tcp_hashinfo.__tcp_listening_hash)
151 #define tcp_lhash_lock	(tcp_hashinfo.__tcp_lhash_lock)
152 #define tcp_lhash_users	(tcp_hashinfo.__tcp_lhash_users)
153 #define tcp_lhash_wait	(tcp_hashinfo.__tcp_lhash_wait)
154 #define tcp_portalloc_lock (tcp_hashinfo.__tcp_portalloc_lock)
155 
156 extern kmem_cache_t *tcp_bucket_cachep;
157 extern struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head,
158 						 unsigned short snum);
159 extern void tcp_bucket_destroy(struct tcp_bind_bucket *tb);
160 extern void tcp_bucket_unlock(struct sock *sk);
161 extern int tcp_port_rover;
162 
163 /* These are AF independent. */
164 static __inline__ int tcp_bhashfn(__u16 lport)
165 {
166 	return (lport & (tcp_bhash_size - 1));
167 }
168 
169 extern void tcp_bind_hash(struct sock *sk, struct tcp_bind_bucket *tb,
170 			  unsigned short snum);
171 
172 #if (BITS_PER_LONG == 64)
173 #define TCP_ADDRCMP_ALIGN_BYTES 8
174 #else
175 #define TCP_ADDRCMP_ALIGN_BYTES 4
176 #endif
177 
178 /* This is a TIME_WAIT bucket.  It works around the memory consumption
179  * problems of sockets in such a state on heavily loaded servers, but
180  * without violating the protocol specification.
181  */
182 struct tcp_tw_bucket {
183 	/*
184 	 * Now struct sock also uses sock_common, so please just
185 	 * don't add nothing before this first member (__tw_common) --acme
186 	 */
187 	struct sock_common	__tw_common;
188 #define tw_family		__tw_common.skc_family
189 #define tw_state		__tw_common.skc_state
190 #define tw_reuse		__tw_common.skc_reuse
191 #define tw_bound_dev_if		__tw_common.skc_bound_dev_if
192 #define tw_node			__tw_common.skc_node
193 #define tw_bind_node		__tw_common.skc_bind_node
194 #define tw_refcnt		__tw_common.skc_refcnt
195 	volatile unsigned char	tw_substate;
196 	unsigned char		tw_rcv_wscale;
197 	__u16			tw_sport;
198 	/* Socket demultiplex comparisons on incoming packets. */
199 	/* these five are in inet_sock */
200 	__u32			tw_daddr
201 		__attribute__((aligned(TCP_ADDRCMP_ALIGN_BYTES)));
202 	__u32			tw_rcv_saddr;
203 	__u16			tw_dport;
204 	__u16			tw_num;
205 	/* And these are ours. */
206 	int			tw_hashent;
207 	int			tw_timeout;
208 	__u32			tw_rcv_nxt;
209 	__u32			tw_snd_nxt;
210 	__u32			tw_rcv_wnd;
211 	__u32			tw_ts_recent;
212 	long			tw_ts_recent_stamp;
213 	unsigned long		tw_ttd;
214 	struct tcp_bind_bucket	*tw_tb;
215 	struct hlist_node	tw_death_node;
216 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
217 	struct in6_addr		tw_v6_daddr;
218 	struct in6_addr		tw_v6_rcv_saddr;
219 	int			tw_v6_ipv6only;
220 #endif
221 };
222 
223 static __inline__ void tw_add_node(struct tcp_tw_bucket *tw,
224 				   struct hlist_head *list)
225 {
226 	hlist_add_head(&tw->tw_node, list);
227 }
228 
229 static __inline__ void tw_add_bind_node(struct tcp_tw_bucket *tw,
230 					struct hlist_head *list)
231 {
232 	hlist_add_head(&tw->tw_bind_node, list);
233 }
234 
235 static inline int tw_dead_hashed(struct tcp_tw_bucket *tw)
236 {
237 	return tw->tw_death_node.pprev != NULL;
238 }
239 
240 static __inline__ void tw_dead_node_init(struct tcp_tw_bucket *tw)
241 {
242 	tw->tw_death_node.pprev = NULL;
243 }
244 
245 static __inline__ void __tw_del_dead_node(struct tcp_tw_bucket *tw)
246 {
247 	__hlist_del(&tw->tw_death_node);
248 	tw_dead_node_init(tw);
249 }
250 
251 static __inline__ int tw_del_dead_node(struct tcp_tw_bucket *tw)
252 {
253 	if (tw_dead_hashed(tw)) {
254 		__tw_del_dead_node(tw);
255 		return 1;
256 	}
257 	return 0;
258 }
259 
260 #define tw_for_each(tw, node, head) \
261 	hlist_for_each_entry(tw, node, head, tw_node)
262 
263 #define tw_for_each_inmate(tw, node, jail) \
264 	hlist_for_each_entry(tw, node, jail, tw_death_node)
265 
266 #define tw_for_each_inmate_safe(tw, node, safe, jail) \
267 	hlist_for_each_entry_safe(tw, node, safe, jail, tw_death_node)
268 
269 #define tcptw_sk(__sk)	((struct tcp_tw_bucket *)(__sk))
270 
271 static inline u32 tcp_v4_rcv_saddr(const struct sock *sk)
272 {
273 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
274 		inet_sk(sk)->rcv_saddr : tcptw_sk(sk)->tw_rcv_saddr;
275 }
276 
277 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
278 static inline struct in6_addr *__tcp_v6_rcv_saddr(const struct sock *sk)
279 {
280 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
281 		&inet6_sk(sk)->rcv_saddr : &tcptw_sk(sk)->tw_v6_rcv_saddr;
282 }
283 
284 static inline struct in6_addr *tcp_v6_rcv_saddr(const struct sock *sk)
285 {
286 	return sk->sk_family == AF_INET6 ? __tcp_v6_rcv_saddr(sk) : NULL;
287 }
288 
289 #define tcptw_sk_ipv6only(__sk)	(tcptw_sk(__sk)->tw_v6_ipv6only)
290 
291 static inline int tcp_v6_ipv6only(const struct sock *sk)
292 {
293 	return likely(sk->sk_state != TCP_TIME_WAIT) ?
294 		ipv6_only_sock(sk) : tcptw_sk_ipv6only(sk);
295 }
296 #else
297 # define __tcp_v6_rcv_saddr(__sk)	NULL
298 # define tcp_v6_rcv_saddr(__sk)		NULL
299 # define tcptw_sk_ipv6only(__sk)	0
300 # define tcp_v6_ipv6only(__sk)		0
301 #endif
302 
303 extern kmem_cache_t *tcp_timewait_cachep;
304 
305 static inline void tcp_tw_put(struct tcp_tw_bucket *tw)
306 {
307 	if (atomic_dec_and_test(&tw->tw_refcnt)) {
308 #ifdef INET_REFCNT_DEBUG
309 		printk(KERN_DEBUG "tw_bucket %p released\n", tw);
310 #endif
311 		kmem_cache_free(tcp_timewait_cachep, tw);
312 	}
313 }
314 
315 extern atomic_t tcp_orphan_count;
316 extern int tcp_tw_count;
317 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
318 extern void tcp_tw_deschedule(struct tcp_tw_bucket *tw);
319 
320 
321 /* Socket demux engine toys. */
322 #ifdef __BIG_ENDIAN
323 #define TCP_COMBINED_PORTS(__sport, __dport) \
324 	(((__u32)(__sport)<<16) | (__u32)(__dport))
325 #else /* __LITTLE_ENDIAN */
326 #define TCP_COMBINED_PORTS(__sport, __dport) \
327 	(((__u32)(__dport)<<16) | (__u32)(__sport))
328 #endif
329 
330 #if (BITS_PER_LONG == 64)
331 #ifdef __BIG_ENDIAN
332 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
333 	__u64 __name = (((__u64)(__saddr))<<32)|((__u64)(__daddr));
334 #else /* __LITTLE_ENDIAN */
335 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
336 	__u64 __name = (((__u64)(__daddr))<<32)|((__u64)(__saddr));
337 #endif /* __BIG_ENDIAN */
338 #define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
339 	(((*((__u64 *)&(inet_sk(__sk)->daddr)))== (__cookie))	&&	\
340 	 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))	&&	\
341 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
342 #define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
343 	(((*((__u64 *)&(tcptw_sk(__sk)->tw_daddr))) == (__cookie)) &&	\
344 	 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) &&	\
345 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
346 #else /* 32-bit arch */
347 #define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr)
348 #define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
349 	((inet_sk(__sk)->daddr			== (__saddr))	&&	\
350 	 (inet_sk(__sk)->rcv_saddr		== (__daddr))	&&	\
351 	 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))	&&	\
352 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
353 #define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
354 	((tcptw_sk(__sk)->tw_daddr		== (__saddr))	&&	\
355 	 (tcptw_sk(__sk)->tw_rcv_saddr		== (__daddr))	&&	\
356 	 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) &&	\
357 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
358 #endif /* 64-bit arch */
359 
360 #define TCP_IPV6_MATCH(__sk, __saddr, __daddr, __ports, __dif)	   \
361 	(((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports))   	&& \
362 	 ((__sk)->sk_family		== AF_INET6)		&& \
363 	 ipv6_addr_equal(&inet6_sk(__sk)->daddr, (__saddr))	&& \
364 	 ipv6_addr_equal(&inet6_sk(__sk)->rcv_saddr, (__daddr))	&& \
365 	 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
366 
367 /* These can have wildcards, don't try too hard. */
368 static __inline__ int tcp_lhashfn(unsigned short num)
369 {
370 	return num & (TCP_LHTABLE_SIZE - 1);
371 }
372 
373 static __inline__ int tcp_sk_listen_hashfn(struct sock *sk)
374 {
375 	return tcp_lhashfn(inet_sk(sk)->num);
376 }
377 
378 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
379 
380 /*
381  * Never offer a window over 32767 without using window scaling. Some
382  * poor stacks do signed 16bit maths!
383  */
384 #define MAX_TCP_WINDOW		32767U
385 
386 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
387 #define TCP_MIN_MSS		88U
388 
389 /* Minimal RCV_MSS. */
390 #define TCP_MIN_RCVMSS		536U
391 
392 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
393 #define TCP_FASTRETRANS_THRESH 3
394 
395 /* Maximal reordering. */
396 #define TCP_MAX_REORDERING	127
397 
398 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
399 #define TCP_MAX_QUICKACKS	16U
400 
401 /* urg_data states */
402 #define TCP_URG_VALID	0x0100
403 #define TCP_URG_NOTYET	0x0200
404 #define TCP_URG_READ	0x0400
405 
406 #define TCP_RETR1	3	/*
407 				 * This is how many retries it does before it
408 				 * tries to figure out if the gateway is
409 				 * down. Minimal RFC value is 3; it corresponds
410 				 * to ~3sec-8min depending on RTO.
411 				 */
412 
413 #define TCP_RETR2	15	/*
414 				 * This should take at least
415 				 * 90 minutes to time out.
416 				 * RFC1122 says that the limit is 100 sec.
417 				 * 15 is ~13-30min depending on RTO.
418 				 */
419 
420 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
421 				 * connection: ~180sec is RFC minumum	*/
422 
423 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
424 				 * connection: ~180sec is RFC minumum	*/
425 
426 
427 #define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
428 				 * socket. 7 is ~50sec-16min.
429 				 */
430 
431 
432 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
433 				  * state, about 60 seconds	*/
434 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
435                                  /* BSD style FIN_WAIT2 deadlock breaker.
436 				  * It used to be 3min, new value is 60sec,
437 				  * to combine FIN-WAIT-2 timeout with
438 				  * TIME-WAIT timer.
439 				  */
440 
441 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
442 #if HZ >= 100
443 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
444 #define TCP_ATO_MIN	((unsigned)(HZ/25))
445 #else
446 #define TCP_DELACK_MIN	4U
447 #define TCP_ATO_MIN	4U
448 #endif
449 #define TCP_RTO_MAX	((unsigned)(120*HZ))
450 #define TCP_RTO_MIN	((unsigned)(HZ/5))
451 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
452 
453 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
454 					                 * for local resources.
455 					                 */
456 
457 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
458 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
459 #define TCP_KEEPALIVE_INTVL	(75*HZ)
460 
461 #define MAX_TCP_KEEPIDLE	32767
462 #define MAX_TCP_KEEPINTVL	32767
463 #define MAX_TCP_KEEPCNT		127
464 #define MAX_TCP_SYNCNT		127
465 
466 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
467 #define TCP_SYNQ_HSIZE		512	/* Size of SYNACK hash table */
468 
469 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
470 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
471 					 * after this time. It should be equal
472 					 * (or greater than) TCP_TIMEWAIT_LEN
473 					 * to provide reliability equal to one
474 					 * provided by timewait state.
475 					 */
476 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
477 					 * timestamps. It must be less than
478 					 * minimal timewait lifetime.
479 					 */
480 
481 #define TCP_TW_RECYCLE_SLOTS_LOG	5
482 #define TCP_TW_RECYCLE_SLOTS		(1<<TCP_TW_RECYCLE_SLOTS_LOG)
483 
484 /* If time > 4sec, it is "slow" path, no recycling is required,
485    so that we select tick to get range about 4 seconds.
486  */
487 
488 #if HZ <= 16 || HZ > 4096
489 # error Unsupported: HZ <= 16 or HZ > 4096
490 #elif HZ <= 32
491 # define TCP_TW_RECYCLE_TICK (5+2-TCP_TW_RECYCLE_SLOTS_LOG)
492 #elif HZ <= 64
493 # define TCP_TW_RECYCLE_TICK (6+2-TCP_TW_RECYCLE_SLOTS_LOG)
494 #elif HZ <= 128
495 # define TCP_TW_RECYCLE_TICK (7+2-TCP_TW_RECYCLE_SLOTS_LOG)
496 #elif HZ <= 256
497 # define TCP_TW_RECYCLE_TICK (8+2-TCP_TW_RECYCLE_SLOTS_LOG)
498 #elif HZ <= 512
499 # define TCP_TW_RECYCLE_TICK (9+2-TCP_TW_RECYCLE_SLOTS_LOG)
500 #elif HZ <= 1024
501 # define TCP_TW_RECYCLE_TICK (10+2-TCP_TW_RECYCLE_SLOTS_LOG)
502 #elif HZ <= 2048
503 # define TCP_TW_RECYCLE_TICK (11+2-TCP_TW_RECYCLE_SLOTS_LOG)
504 #else
505 # define TCP_TW_RECYCLE_TICK (12+2-TCP_TW_RECYCLE_SLOTS_LOG)
506 #endif
507 
508 #define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
509 					 * max_cwnd = snd_cwnd * beta
510 					 */
511 #define BICTCP_MAX_INCREMENT 32		/*
512 					 * Limit on the amount of
513 					 * increment allowed during
514 					 * binary search.
515 					 */
516 #define BICTCP_FUNC_OF_MIN_INCR 11	/*
517 					 * log(B/Smin)/log(B/(B-1))+1,
518 					 * Smin:min increment
519 					 * B:log factor
520 					 */
521 #define BICTCP_B		4	 /*
522 					  * In binary search,
523 					  * go to point (max+min)/N
524 					  */
525 
526 /*
527  *	TCP option
528  */
529 
530 #define TCPOPT_NOP		1	/* Padding */
531 #define TCPOPT_EOL		0	/* End of options */
532 #define TCPOPT_MSS		2	/* Segment size negotiating */
533 #define TCPOPT_WINDOW		3	/* Window scaling */
534 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
535 #define TCPOPT_SACK             5       /* SACK Block */
536 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
537 
538 /*
539  *     TCP option lengths
540  */
541 
542 #define TCPOLEN_MSS            4
543 #define TCPOLEN_WINDOW         3
544 #define TCPOLEN_SACK_PERM      2
545 #define TCPOLEN_TIMESTAMP      10
546 
547 /* But this is what stacks really send out. */
548 #define TCPOLEN_TSTAMP_ALIGNED		12
549 #define TCPOLEN_WSCALE_ALIGNED		4
550 #define TCPOLEN_SACKPERM_ALIGNED	4
551 #define TCPOLEN_SACK_BASE		2
552 #define TCPOLEN_SACK_BASE_ALIGNED	4
553 #define TCPOLEN_SACK_PERBLOCK		8
554 
555 #define TCP_TIME_RETRANS	1	/* Retransmit timer */
556 #define TCP_TIME_DACK		2	/* Delayed ack timer */
557 #define TCP_TIME_PROBE0		3	/* Zero window probe timer */
558 #define TCP_TIME_KEEPOPEN	4	/* Keepalive timer */
559 
560 /* Flags in tp->nonagle */
561 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
562 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
563 #define TCP_NAGLE_PUSH		4	/* Cork is overriden for already queued data */
564 
565 /* sysctl variables for tcp */
566 extern int sysctl_max_syn_backlog;
567 extern int sysctl_tcp_timestamps;
568 extern int sysctl_tcp_window_scaling;
569 extern int sysctl_tcp_sack;
570 extern int sysctl_tcp_fin_timeout;
571 extern int sysctl_tcp_tw_recycle;
572 extern int sysctl_tcp_keepalive_time;
573 extern int sysctl_tcp_keepalive_probes;
574 extern int sysctl_tcp_keepalive_intvl;
575 extern int sysctl_tcp_syn_retries;
576 extern int sysctl_tcp_synack_retries;
577 extern int sysctl_tcp_retries1;
578 extern int sysctl_tcp_retries2;
579 extern int sysctl_tcp_orphan_retries;
580 extern int sysctl_tcp_syncookies;
581 extern int sysctl_tcp_retrans_collapse;
582 extern int sysctl_tcp_stdurg;
583 extern int sysctl_tcp_rfc1337;
584 extern int sysctl_tcp_abort_on_overflow;
585 extern int sysctl_tcp_max_orphans;
586 extern int sysctl_tcp_max_tw_buckets;
587 extern int sysctl_tcp_fack;
588 extern int sysctl_tcp_reordering;
589 extern int sysctl_tcp_ecn;
590 extern int sysctl_tcp_dsack;
591 extern int sysctl_tcp_mem[3];
592 extern int sysctl_tcp_wmem[3];
593 extern int sysctl_tcp_rmem[3];
594 extern int sysctl_tcp_app_win;
595 extern int sysctl_tcp_adv_win_scale;
596 extern int sysctl_tcp_tw_reuse;
597 extern int sysctl_tcp_frto;
598 extern int sysctl_tcp_low_latency;
599 extern int sysctl_tcp_westwood;
600 extern int sysctl_tcp_vegas_cong_avoid;
601 extern int sysctl_tcp_vegas_alpha;
602 extern int sysctl_tcp_vegas_beta;
603 extern int sysctl_tcp_vegas_gamma;
604 extern int sysctl_tcp_nometrics_save;
605 extern int sysctl_tcp_bic;
606 extern int sysctl_tcp_bic_fast_convergence;
607 extern int sysctl_tcp_bic_low_window;
608 extern int sysctl_tcp_bic_beta;
609 extern int sysctl_tcp_moderate_rcvbuf;
610 extern int sysctl_tcp_tso_win_divisor;
611 
612 extern atomic_t tcp_memory_allocated;
613 extern atomic_t tcp_sockets_allocated;
614 extern int tcp_memory_pressure;
615 
616 struct open_request;
617 
618 struct or_calltable {
619 	int  family;
620 	int  (*rtx_syn_ack)	(struct sock *sk, struct open_request *req, struct dst_entry*);
621 	void (*send_ack)	(struct sk_buff *skb, struct open_request *req);
622 	void (*destructor)	(struct open_request *req);
623 	void (*send_reset)	(struct sk_buff *skb);
624 };
625 
626 struct tcp_v4_open_req {
627 	__u32			loc_addr;
628 	__u32			rmt_addr;
629 	struct ip_options	*opt;
630 };
631 
632 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
633 struct tcp_v6_open_req {
634 	struct in6_addr		loc_addr;
635 	struct in6_addr		rmt_addr;
636 	struct sk_buff		*pktopts;
637 	int			iif;
638 };
639 #endif
640 
641 /* this structure is too big */
642 struct open_request {
643 	struct open_request	*dl_next; /* Must be first member! */
644 	__u32			rcv_isn;
645 	__u32			snt_isn;
646 	__u16			rmt_port;
647 	__u16			mss;
648 	__u8			retrans;
649 	__u8			__pad;
650 	__u16	snd_wscale : 4,
651 		rcv_wscale : 4,
652 		tstamp_ok : 1,
653 		sack_ok : 1,
654 		wscale_ok : 1,
655 		ecn_ok : 1,
656 		acked : 1;
657 	/* The following two fields can be easily recomputed I think -AK */
658 	__u32			window_clamp;	/* window clamp at creation time */
659 	__u32			rcv_wnd;	/* rcv_wnd offered first time */
660 	__u32			ts_recent;
661 	unsigned long		expires;
662 	struct or_calltable	*class;
663 	struct sock		*sk;
664 	union {
665 		struct tcp_v4_open_req v4_req;
666 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
667 		struct tcp_v6_open_req v6_req;
668 #endif
669 	} af;
670 };
671 
672 /* SLAB cache for open requests. */
673 extern kmem_cache_t *tcp_openreq_cachep;
674 
675 #define tcp_openreq_alloc()		kmem_cache_alloc(tcp_openreq_cachep, SLAB_ATOMIC)
676 #define tcp_openreq_fastfree(req)	kmem_cache_free(tcp_openreq_cachep, req)
677 
678 static inline void tcp_openreq_free(struct open_request *req)
679 {
680 	req->class->destructor(req);
681 	tcp_openreq_fastfree(req);
682 }
683 
684 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
685 #define TCP_INET_FAMILY(fam) ((fam) == AF_INET)
686 #else
687 #define TCP_INET_FAMILY(fam) 1
688 #endif
689 
690 /*
691  *	Pointers to address related TCP functions
692  *	(i.e. things that depend on the address family)
693  */
694 
695 struct tcp_func {
696 	int			(*queue_xmit)		(struct sk_buff *skb,
697 							 int ipfragok);
698 
699 	void			(*send_check)		(struct sock *sk,
700 							 struct tcphdr *th,
701 							 int len,
702 							 struct sk_buff *skb);
703 
704 	int			(*rebuild_header)	(struct sock *sk);
705 
706 	int			(*conn_request)		(struct sock *sk,
707 							 struct sk_buff *skb);
708 
709 	struct sock *		(*syn_recv_sock)	(struct sock *sk,
710 							 struct sk_buff *skb,
711 							 struct open_request *req,
712 							 struct dst_entry *dst);
713 
714 	int			(*remember_stamp)	(struct sock *sk);
715 
716 	__u16			net_header_len;
717 
718 	int			(*setsockopt)		(struct sock *sk,
719 							 int level,
720 							 int optname,
721 							 char __user *optval,
722 							 int optlen);
723 
724 	int			(*getsockopt)		(struct sock *sk,
725 							 int level,
726 							 int optname,
727 							 char __user *optval,
728 							 int __user *optlen);
729 
730 
731 	void			(*addr2sockaddr)	(struct sock *sk,
732 							 struct sockaddr *);
733 
734 	int sockaddr_len;
735 };
736 
737 /*
738  * The next routines deal with comparing 32 bit unsigned ints
739  * and worry about wraparound (automatic with unsigned arithmetic).
740  */
741 
742 static inline int before(__u32 seq1, __u32 seq2)
743 {
744         return (__s32)(seq1-seq2) < 0;
745 }
746 
747 static inline int after(__u32 seq1, __u32 seq2)
748 {
749 	return (__s32)(seq2-seq1) < 0;
750 }
751 
752 
753 /* is s2<=s1<=s3 ? */
754 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
755 {
756 	return seq3 - seq2 >= seq1 - seq2;
757 }
758 
759 
760 extern struct proto tcp_prot;
761 
762 DECLARE_SNMP_STAT(struct tcp_mib, tcp_statistics);
763 #define TCP_INC_STATS(field)		SNMP_INC_STATS(tcp_statistics, field)
764 #define TCP_INC_STATS_BH(field)		SNMP_INC_STATS_BH(tcp_statistics, field)
765 #define TCP_INC_STATS_USER(field) 	SNMP_INC_STATS_USER(tcp_statistics, field)
766 #define TCP_DEC_STATS(field)		SNMP_DEC_STATS(tcp_statistics, field)
767 #define TCP_ADD_STATS_BH(field, val)	SNMP_ADD_STATS_BH(tcp_statistics, field, val)
768 #define TCP_ADD_STATS_USER(field, val)	SNMP_ADD_STATS_USER(tcp_statistics, field, val)
769 
770 extern void			tcp_put_port(struct sock *sk);
771 extern void			tcp_inherit_port(struct sock *sk, struct sock *child);
772 
773 extern void			tcp_v4_err(struct sk_buff *skb, u32);
774 
775 extern void			tcp_shutdown (struct sock *sk, int how);
776 
777 extern int			tcp_v4_rcv(struct sk_buff *skb);
778 
779 extern int			tcp_v4_remember_stamp(struct sock *sk);
780 
781 extern int		    	tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw);
782 
783 extern int			tcp_sendmsg(struct kiocb *iocb, struct sock *sk,
784 					    struct msghdr *msg, size_t size);
785 extern ssize_t			tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags);
786 
787 extern int			tcp_ioctl(struct sock *sk,
788 					  int cmd,
789 					  unsigned long arg);
790 
791 extern int			tcp_rcv_state_process(struct sock *sk,
792 						      struct sk_buff *skb,
793 						      struct tcphdr *th,
794 						      unsigned len);
795 
796 extern int			tcp_rcv_established(struct sock *sk,
797 						    struct sk_buff *skb,
798 						    struct tcphdr *th,
799 						    unsigned len);
800 
801 extern void			tcp_rcv_space_adjust(struct sock *sk);
802 
803 enum tcp_ack_state_t
804 {
805 	TCP_ACK_SCHED = 1,
806 	TCP_ACK_TIMER = 2,
807 	TCP_ACK_PUSHED= 4
808 };
809 
810 static inline void tcp_schedule_ack(struct tcp_sock *tp)
811 {
812 	tp->ack.pending |= TCP_ACK_SCHED;
813 }
814 
815 static inline int tcp_ack_scheduled(struct tcp_sock *tp)
816 {
817 	return tp->ack.pending&TCP_ACK_SCHED;
818 }
819 
820 static __inline__ void tcp_dec_quickack_mode(struct tcp_sock *tp)
821 {
822 	if (tp->ack.quick && --tp->ack.quick == 0) {
823 		/* Leaving quickack mode we deflate ATO. */
824 		tp->ack.ato = TCP_ATO_MIN;
825 	}
826 }
827 
828 extern void tcp_enter_quickack_mode(struct tcp_sock *tp);
829 
830 static __inline__ void tcp_delack_init(struct tcp_sock *tp)
831 {
832 	memset(&tp->ack, 0, sizeof(tp->ack));
833 }
834 
835 static inline void tcp_clear_options(struct tcp_options_received *rx_opt)
836 {
837  	rx_opt->tstamp_ok = rx_opt->sack_ok = rx_opt->wscale_ok = rx_opt->snd_wscale = 0;
838 }
839 
840 enum tcp_tw_status
841 {
842 	TCP_TW_SUCCESS = 0,
843 	TCP_TW_RST = 1,
844 	TCP_TW_ACK = 2,
845 	TCP_TW_SYN = 3
846 };
847 
848 
849 extern enum tcp_tw_status	tcp_timewait_state_process(struct tcp_tw_bucket *tw,
850 							   struct sk_buff *skb,
851 							   struct tcphdr *th,
852 							   unsigned len);
853 
854 extern struct sock *		tcp_check_req(struct sock *sk,struct sk_buff *skb,
855 					      struct open_request *req,
856 					      struct open_request **prev);
857 extern int			tcp_child_process(struct sock *parent,
858 						  struct sock *child,
859 						  struct sk_buff *skb);
860 extern void			tcp_enter_frto(struct sock *sk);
861 extern void			tcp_enter_loss(struct sock *sk, int how);
862 extern void			tcp_clear_retrans(struct tcp_sock *tp);
863 extern void			tcp_update_metrics(struct sock *sk);
864 
865 extern void			tcp_close(struct sock *sk,
866 					  long timeout);
867 extern struct sock *		tcp_accept(struct sock *sk, int flags, int *err);
868 extern unsigned int		tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
869 
870 extern int			tcp_getsockopt(struct sock *sk, int level,
871 					       int optname,
872 					       char __user *optval,
873 					       int __user *optlen);
874 extern int			tcp_setsockopt(struct sock *sk, int level,
875 					       int optname, char __user *optval,
876 					       int optlen);
877 extern void			tcp_set_keepalive(struct sock *sk, int val);
878 extern int			tcp_recvmsg(struct kiocb *iocb, struct sock *sk,
879 					    struct msghdr *msg,
880 					    size_t len, int nonblock,
881 					    int flags, int *addr_len);
882 
883 extern int			tcp_listen_start(struct sock *sk);
884 
885 extern void			tcp_parse_options(struct sk_buff *skb,
886 						  struct tcp_options_received *opt_rx,
887 						  int estab);
888 
889 /*
890  *	TCP v4 functions exported for the inet6 API
891  */
892 
893 extern int		       	tcp_v4_rebuild_header(struct sock *sk);
894 
895 extern int		       	tcp_v4_build_header(struct sock *sk,
896 						    struct sk_buff *skb);
897 
898 extern void		       	tcp_v4_send_check(struct sock *sk,
899 						  struct tcphdr *th, int len,
900 						  struct sk_buff *skb);
901 
902 extern int			tcp_v4_conn_request(struct sock *sk,
903 						    struct sk_buff *skb);
904 
905 extern struct sock *		tcp_create_openreq_child(struct sock *sk,
906 							 struct open_request *req,
907 							 struct sk_buff *skb);
908 
909 extern struct sock *		tcp_v4_syn_recv_sock(struct sock *sk,
910 						     struct sk_buff *skb,
911 						     struct open_request *req,
912 							struct dst_entry *dst);
913 
914 extern int			tcp_v4_do_rcv(struct sock *sk,
915 					      struct sk_buff *skb);
916 
917 extern int			tcp_v4_connect(struct sock *sk,
918 					       struct sockaddr *uaddr,
919 					       int addr_len);
920 
921 extern int			tcp_connect(struct sock *sk);
922 
923 extern struct sk_buff *		tcp_make_synack(struct sock *sk,
924 						struct dst_entry *dst,
925 						struct open_request *req);
926 
927 extern int			tcp_disconnect(struct sock *sk, int flags);
928 
929 extern void			tcp_unhash(struct sock *sk);
930 
931 extern int			tcp_v4_hash_connecting(struct sock *sk);
932 
933 
934 /* From syncookies.c */
935 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
936 				    struct ip_options *opt);
937 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
938 				     __u16 *mss);
939 
940 /* tcp_output.c */
941 
942 extern int tcp_write_xmit(struct sock *, int nonagle);
943 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
944 extern void tcp_xmit_retransmit_queue(struct sock *);
945 extern void tcp_simple_retransmit(struct sock *);
946 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
947 
948 extern void tcp_send_probe0(struct sock *);
949 extern void tcp_send_partial(struct sock *);
950 extern int  tcp_write_wakeup(struct sock *);
951 extern void tcp_send_fin(struct sock *sk);
952 extern void tcp_send_active_reset(struct sock *sk, int priority);
953 extern int  tcp_send_synack(struct sock *);
954 extern void tcp_push_one(struct sock *, unsigned mss_now);
955 extern void tcp_send_ack(struct sock *sk);
956 extern void tcp_send_delayed_ack(struct sock *sk);
957 
958 /* tcp_timer.c */
959 extern void tcp_init_xmit_timers(struct sock *);
960 extern void tcp_clear_xmit_timers(struct sock *);
961 
962 extern void tcp_delete_keepalive_timer(struct sock *);
963 extern void tcp_reset_keepalive_timer(struct sock *, unsigned long);
964 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
965 extern unsigned int tcp_current_mss(struct sock *sk, int large);
966 
967 #ifdef TCP_DEBUG
968 extern const char tcp_timer_bug_msg[];
969 #endif
970 
971 /* tcp_diag.c */
972 extern void tcp_get_info(struct sock *, struct tcp_info *);
973 
974 /* Read 'sendfile()'-style from a TCP socket */
975 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
976 				unsigned int, size_t);
977 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
978 			 sk_read_actor_t recv_actor);
979 
980 static inline void tcp_clear_xmit_timer(struct sock *sk, int what)
981 {
982 	struct tcp_sock *tp = tcp_sk(sk);
983 
984 	switch (what) {
985 	case TCP_TIME_RETRANS:
986 	case TCP_TIME_PROBE0:
987 		tp->pending = 0;
988 
989 #ifdef TCP_CLEAR_TIMERS
990 		sk_stop_timer(sk, &tp->retransmit_timer);
991 #endif
992 		break;
993 	case TCP_TIME_DACK:
994 		tp->ack.blocked = 0;
995 		tp->ack.pending = 0;
996 
997 #ifdef TCP_CLEAR_TIMERS
998 		sk_stop_timer(sk, &tp->delack_timer);
999 #endif
1000 		break;
1001 	default:
1002 #ifdef TCP_DEBUG
1003 		printk(tcp_timer_bug_msg);
1004 #endif
1005 		return;
1006 	};
1007 
1008 }
1009 
1010 /*
1011  *	Reset the retransmission timer
1012  */
1013 static inline void tcp_reset_xmit_timer(struct sock *sk, int what, unsigned long when)
1014 {
1015 	struct tcp_sock *tp = tcp_sk(sk);
1016 
1017 	if (when > TCP_RTO_MAX) {
1018 #ifdef TCP_DEBUG
1019 		printk(KERN_DEBUG "reset_xmit_timer sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, current_text_addr());
1020 #endif
1021 		when = TCP_RTO_MAX;
1022 	}
1023 
1024 	switch (what) {
1025 	case TCP_TIME_RETRANS:
1026 	case TCP_TIME_PROBE0:
1027 		tp->pending = what;
1028 		tp->timeout = jiffies+when;
1029 		sk_reset_timer(sk, &tp->retransmit_timer, tp->timeout);
1030 		break;
1031 
1032 	case TCP_TIME_DACK:
1033 		tp->ack.pending |= TCP_ACK_TIMER;
1034 		tp->ack.timeout = jiffies+when;
1035 		sk_reset_timer(sk, &tp->delack_timer, tp->ack.timeout);
1036 		break;
1037 
1038 	default:
1039 #ifdef TCP_DEBUG
1040 		printk(tcp_timer_bug_msg);
1041 #endif
1042 		return;
1043 	};
1044 }
1045 
1046 /* Initialize RCV_MSS value.
1047  * RCV_MSS is an our guess about MSS used by the peer.
1048  * We haven't any direct information about the MSS.
1049  * It's better to underestimate the RCV_MSS rather than overestimate.
1050  * Overestimations make us ACKing less frequently than needed.
1051  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
1052  */
1053 
1054 static inline void tcp_initialize_rcv_mss(struct sock *sk)
1055 {
1056 	struct tcp_sock *tp = tcp_sk(sk);
1057 	unsigned int hint = min(tp->advmss, tp->mss_cache_std);
1058 
1059 	hint = min(hint, tp->rcv_wnd/2);
1060 	hint = min(hint, TCP_MIN_RCVMSS);
1061 	hint = max(hint, TCP_MIN_MSS);
1062 
1063 	tp->ack.rcv_mss = hint;
1064 }
1065 
1066 static __inline__ void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1067 {
1068 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1069 			       ntohl(TCP_FLAG_ACK) |
1070 			       snd_wnd);
1071 }
1072 
1073 static __inline__ void tcp_fast_path_on(struct tcp_sock *tp)
1074 {
1075 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1076 }
1077 
1078 static inline void tcp_fast_path_check(struct sock *sk, struct tcp_sock *tp)
1079 {
1080 	if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
1081 	    tp->rcv_wnd &&
1082 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1083 	    !tp->urg_data)
1084 		tcp_fast_path_on(tp);
1085 }
1086 
1087 /* Compute the actual receive window we are currently advertising.
1088  * Rcv_nxt can be after the window if our peer push more data
1089  * than the offered window.
1090  */
1091 static __inline__ u32 tcp_receive_window(const struct tcp_sock *tp)
1092 {
1093 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
1094 
1095 	if (win < 0)
1096 		win = 0;
1097 	return (u32) win;
1098 }
1099 
1100 /* Choose a new window, without checks for shrinking, and without
1101  * scaling applied to the result.  The caller does these things
1102  * if necessary.  This is a "raw" window selection.
1103  */
1104 extern u32	__tcp_select_window(struct sock *sk);
1105 
1106 /* TCP timestamps are only 32-bits, this causes a slight
1107  * complication on 64-bit systems since we store a snapshot
1108  * of jiffies in the buffer control blocks below.  We decidely
1109  * only use of the low 32-bits of jiffies and hide the ugly
1110  * casts with the following macro.
1111  */
1112 #define tcp_time_stamp		((__u32)(jiffies))
1113 
1114 /* This is what the send packet queueing engine uses to pass
1115  * TCP per-packet control information to the transmission
1116  * code.  We also store the host-order sequence numbers in
1117  * here too.  This is 36 bytes on 32-bit architectures,
1118  * 40 bytes on 64-bit machines, if this grows please adjust
1119  * skbuff.h:skbuff->cb[xxx] size appropriately.
1120  */
1121 struct tcp_skb_cb {
1122 	union {
1123 		struct inet_skb_parm	h4;
1124 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
1125 		struct inet6_skb_parm	h6;
1126 #endif
1127 	} header;	/* For incoming frames		*/
1128 	__u32		seq;		/* Starting sequence number	*/
1129 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1130 	__u32		when;		/* used to compute rtt's	*/
1131 	__u8		flags;		/* TCP header flags.		*/
1132 
1133 	/* NOTE: These must match up to the flags byte in a
1134 	 *       real TCP header.
1135 	 */
1136 #define TCPCB_FLAG_FIN		0x01
1137 #define TCPCB_FLAG_SYN		0x02
1138 #define TCPCB_FLAG_RST		0x04
1139 #define TCPCB_FLAG_PSH		0x08
1140 #define TCPCB_FLAG_ACK		0x10
1141 #define TCPCB_FLAG_URG		0x20
1142 #define TCPCB_FLAG_ECE		0x40
1143 #define TCPCB_FLAG_CWR		0x80
1144 
1145 	__u8		sacked;		/* State flags for SACK/FACK.	*/
1146 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
1147 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
1148 #define TCPCB_LOST		0x04	/* SKB is lost			*/
1149 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
1150 
1151 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
1152 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
1153 
1154 #define TCPCB_URG		0x20	/* Urgent pointer advenced here	*/
1155 
1156 #define TCPCB_AT_TAIL		(TCPCB_URG)
1157 
1158 	__u16		urg_ptr;	/* Valid w/URG flags is set.	*/
1159 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1160 };
1161 
1162 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1163 
1164 #include <net/tcp_ecn.h>
1165 
1166 /* Due to TSO, an SKB can be composed of multiple actual
1167  * packets.  To keep these tracked properly, we use this.
1168  */
1169 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1170 {
1171 	return skb_shinfo(skb)->tso_segs;
1172 }
1173 
1174 /* This is valid iff tcp_skb_pcount() > 1. */
1175 static inline int tcp_skb_mss(const struct sk_buff *skb)
1176 {
1177 	return skb_shinfo(skb)->tso_size;
1178 }
1179 
1180 static inline void tcp_dec_pcount_approx(__u32 *count,
1181 					 const struct sk_buff *skb)
1182 {
1183 	if (*count) {
1184 		*count -= tcp_skb_pcount(skb);
1185 		if ((int)*count < 0)
1186 			*count = 0;
1187 	}
1188 }
1189 
1190 static inline void tcp_packets_out_inc(struct sock *sk,
1191 				       struct tcp_sock *tp,
1192 				       const struct sk_buff *skb)
1193 {
1194 	int orig = tp->packets_out;
1195 
1196 	tp->packets_out += tcp_skb_pcount(skb);
1197 	if (!orig)
1198 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1199 }
1200 
1201 static inline void tcp_packets_out_dec(struct tcp_sock *tp,
1202 				       const struct sk_buff *skb)
1203 {
1204 	tp->packets_out -= tcp_skb_pcount(skb);
1205 }
1206 
1207 /* This determines how many packets are "in the network" to the best
1208  * of our knowledge.  In many cases it is conservative, but where
1209  * detailed information is available from the receiver (via SACK
1210  * blocks etc.) we can make more aggressive calculations.
1211  *
1212  * Use this for decisions involving congestion control, use just
1213  * tp->packets_out to determine if the send queue is empty or not.
1214  *
1215  * Read this equation as:
1216  *
1217  *	"Packets sent once on transmission queue" MINUS
1218  *	"Packets left network, but not honestly ACKed yet" PLUS
1219  *	"Packets fast retransmitted"
1220  */
1221 static __inline__ unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1222 {
1223 	return (tp->packets_out - tp->left_out + tp->retrans_out);
1224 }
1225 
1226 /*
1227  * Which congestion algorithim is in use on the connection.
1228  */
1229 #define tcp_is_vegas(__tp)	((__tp)->adv_cong == TCP_VEGAS)
1230 #define tcp_is_westwood(__tp)	((__tp)->adv_cong == TCP_WESTWOOD)
1231 #define tcp_is_bic(__tp)	((__tp)->adv_cong == TCP_BIC)
1232 
1233 /* Recalculate snd_ssthresh, we want to set it to:
1234  *
1235  * Reno:
1236  * 	one half the current congestion window, but no
1237  *	less than two segments
1238  *
1239  * BIC:
1240  *	behave like Reno until low_window is reached,
1241  *	then increase congestion window slowly
1242  */
1243 static inline __u32 tcp_recalc_ssthresh(struct tcp_sock *tp)
1244 {
1245 	if (tcp_is_bic(tp)) {
1246 		if (sysctl_tcp_bic_fast_convergence &&
1247 		    tp->snd_cwnd < tp->bictcp.last_max_cwnd)
1248 			tp->bictcp.last_max_cwnd = (tp->snd_cwnd *
1249 						    (BICTCP_BETA_SCALE
1250 						     + sysctl_tcp_bic_beta))
1251 				/ (2 * BICTCP_BETA_SCALE);
1252 		else
1253 			tp->bictcp.last_max_cwnd = tp->snd_cwnd;
1254 
1255 		if (tp->snd_cwnd > sysctl_tcp_bic_low_window)
1256 			return max((tp->snd_cwnd * sysctl_tcp_bic_beta)
1257 				   / BICTCP_BETA_SCALE, 2U);
1258 	}
1259 
1260 	return max(tp->snd_cwnd >> 1U, 2U);
1261 }
1262 
1263 /* Stop taking Vegas samples for now. */
1264 #define tcp_vegas_disable(__tp)	((__tp)->vegas.doing_vegas_now = 0)
1265 
1266 static inline void tcp_vegas_enable(struct tcp_sock *tp)
1267 {
1268 	/* There are several situations when we must "re-start" Vegas:
1269 	 *
1270 	 *  o when a connection is established
1271 	 *  o after an RTO
1272 	 *  o after fast recovery
1273 	 *  o when we send a packet and there is no outstanding
1274 	 *    unacknowledged data (restarting an idle connection)
1275 	 *
1276 	 * In these circumstances we cannot do a Vegas calculation at the
1277 	 * end of the first RTT, because any calculation we do is using
1278 	 * stale info -- both the saved cwnd and congestion feedback are
1279 	 * stale.
1280 	 *
1281 	 * Instead we must wait until the completion of an RTT during
1282 	 * which we actually receive ACKs.
1283 	 */
1284 
1285 	/* Begin taking Vegas samples next time we send something. */
1286 	tp->vegas.doing_vegas_now = 1;
1287 
1288 	/* Set the beginning of the next send window. */
1289 	tp->vegas.beg_snd_nxt = tp->snd_nxt;
1290 
1291 	tp->vegas.cntRTT = 0;
1292 	tp->vegas.minRTT = 0x7fffffff;
1293 }
1294 
1295 /* Should we be taking Vegas samples right now? */
1296 #define tcp_vegas_enabled(__tp)	((__tp)->vegas.doing_vegas_now)
1297 
1298 extern void tcp_ca_init(struct tcp_sock *tp);
1299 
1300 static inline void tcp_set_ca_state(struct tcp_sock *tp, u8 ca_state)
1301 {
1302 	if (tcp_is_vegas(tp)) {
1303 		if (ca_state == TCP_CA_Open)
1304 			tcp_vegas_enable(tp);
1305 		else
1306 			tcp_vegas_disable(tp);
1307 	}
1308 	tp->ca_state = ca_state;
1309 }
1310 
1311 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1312  * The exception is rate halving phase, when cwnd is decreasing towards
1313  * ssthresh.
1314  */
1315 static inline __u32 tcp_current_ssthresh(struct tcp_sock *tp)
1316 {
1317 	if ((1<<tp->ca_state)&(TCPF_CA_CWR|TCPF_CA_Recovery))
1318 		return tp->snd_ssthresh;
1319 	else
1320 		return max(tp->snd_ssthresh,
1321 			   ((tp->snd_cwnd >> 1) +
1322 			    (tp->snd_cwnd >> 2)));
1323 }
1324 
1325 static inline void tcp_sync_left_out(struct tcp_sock *tp)
1326 {
1327 	if (tp->rx_opt.sack_ok &&
1328 	    (tp->sacked_out >= tp->packets_out - tp->lost_out))
1329 		tp->sacked_out = tp->packets_out - tp->lost_out;
1330 	tp->left_out = tp->sacked_out + tp->lost_out;
1331 }
1332 
1333 extern void tcp_cwnd_application_limited(struct sock *sk);
1334 
1335 /* Congestion window validation. (RFC2861) */
1336 
1337 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
1338 {
1339 	__u32 packets_out = tp->packets_out;
1340 
1341 	if (packets_out >= tp->snd_cwnd) {
1342 		/* Network is feed fully. */
1343 		tp->snd_cwnd_used = 0;
1344 		tp->snd_cwnd_stamp = tcp_time_stamp;
1345 	} else {
1346 		/* Network starves. */
1347 		if (tp->packets_out > tp->snd_cwnd_used)
1348 			tp->snd_cwnd_used = tp->packets_out;
1349 
1350 		if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
1351 			tcp_cwnd_application_limited(sk);
1352 	}
1353 }
1354 
1355 /* Set slow start threshould and cwnd not falling to slow start */
1356 static inline void __tcp_enter_cwr(struct tcp_sock *tp)
1357 {
1358 	tp->undo_marker = 0;
1359 	tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1360 	tp->snd_cwnd = min(tp->snd_cwnd,
1361 			   tcp_packets_in_flight(tp) + 1U);
1362 	tp->snd_cwnd_cnt = 0;
1363 	tp->high_seq = tp->snd_nxt;
1364 	tp->snd_cwnd_stamp = tcp_time_stamp;
1365 	TCP_ECN_queue_cwr(tp);
1366 }
1367 
1368 static inline void tcp_enter_cwr(struct tcp_sock *tp)
1369 {
1370 	tp->prior_ssthresh = 0;
1371 	if (tp->ca_state < TCP_CA_CWR) {
1372 		__tcp_enter_cwr(tp);
1373 		tcp_set_ca_state(tp, TCP_CA_CWR);
1374 	}
1375 }
1376 
1377 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
1378 
1379 /* Slow start with delack produces 3 packets of burst, so that
1380  * it is safe "de facto".
1381  */
1382 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1383 {
1384 	return 3;
1385 }
1386 
1387 static __inline__ int tcp_minshall_check(const struct tcp_sock *tp)
1388 {
1389 	return after(tp->snd_sml,tp->snd_una) &&
1390 		!after(tp->snd_sml, tp->snd_nxt);
1391 }
1392 
1393 static __inline__ void tcp_minshall_update(struct tcp_sock *tp, int mss,
1394 					   const struct sk_buff *skb)
1395 {
1396 	if (skb->len < mss)
1397 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1398 }
1399 
1400 /* Return 0, if packet can be sent now without violation Nagle's rules:
1401    1. It is full sized.
1402    2. Or it contains FIN.
1403    3. Or TCP_NODELAY was set.
1404    4. Or TCP_CORK is not set, and all sent packets are ACKed.
1405       With Minshall's modification: all sent small packets are ACKed.
1406  */
1407 
1408 static __inline__ int
1409 tcp_nagle_check(const struct tcp_sock *tp, const struct sk_buff *skb,
1410 		unsigned mss_now, int nonagle)
1411 {
1412 	return (skb->len < mss_now &&
1413 		!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1414 		((nonagle&TCP_NAGLE_CORK) ||
1415 		 (!nonagle &&
1416 		  tp->packets_out &&
1417 		  tcp_minshall_check(tp))));
1418 }
1419 
1420 extern void tcp_set_skb_tso_segs(struct sk_buff *, unsigned int);
1421 
1422 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
1423  * should be put on the wire right now.
1424  */
1425 static __inline__ int tcp_snd_test(const struct tcp_sock *tp,
1426 				   struct sk_buff *skb,
1427 				   unsigned cur_mss, int nonagle)
1428 {
1429 	int pkts = tcp_skb_pcount(skb);
1430 
1431 	if (!pkts) {
1432 		tcp_set_skb_tso_segs(skb, tp->mss_cache_std);
1433 		pkts = tcp_skb_pcount(skb);
1434 	}
1435 
1436 	/*	RFC 1122 - section 4.2.3.4
1437 	 *
1438 	 *	We must queue if
1439 	 *
1440 	 *	a) The right edge of this frame exceeds the window
1441 	 *	b) There are packets in flight and we have a small segment
1442 	 *	   [SWS avoidance and Nagle algorithm]
1443 	 *	   (part of SWS is done on packetization)
1444 	 *	   Minshall version sounds: there are no _small_
1445 	 *	   segments in flight. (tcp_nagle_check)
1446 	 *	c) We have too many packets 'in flight'
1447 	 *
1448 	 * 	Don't use the nagle rule for urgent data (or
1449 	 *	for the final FIN -DaveM).
1450 	 *
1451 	 *	Also, Nagle rule does not apply to frames, which
1452 	 *	sit in the middle of queue (they have no chances
1453 	 *	to get new data) and if room at tail of skb is
1454 	 *	not enough to save something seriously (<32 for now).
1455 	 */
1456 
1457 	/* Don't be strict about the congestion window for the
1458 	 * final FIN frame.  -DaveM
1459 	 */
1460 	return (((nonagle&TCP_NAGLE_PUSH) || tp->urg_mode
1461 		 || !tcp_nagle_check(tp, skb, cur_mss, nonagle)) &&
1462 		(((tcp_packets_in_flight(tp) + (pkts-1)) < tp->snd_cwnd) ||
1463 		 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) &&
1464 		!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd));
1465 }
1466 
1467 static __inline__ void tcp_check_probe_timer(struct sock *sk, struct tcp_sock *tp)
1468 {
1469 	if (!tp->packets_out && !tp->pending)
1470 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, tp->rto);
1471 }
1472 
1473 static __inline__ int tcp_skb_is_last(const struct sock *sk,
1474 				      const struct sk_buff *skb)
1475 {
1476 	return skb->next == (struct sk_buff *)&sk->sk_write_queue;
1477 }
1478 
1479 /* Push out any pending frames which were held back due to
1480  * TCP_CORK or attempt at coalescing tiny packets.
1481  * The socket must be locked by the caller.
1482  */
1483 static __inline__ void __tcp_push_pending_frames(struct sock *sk,
1484 						 struct tcp_sock *tp,
1485 						 unsigned cur_mss,
1486 						 int nonagle)
1487 {
1488 	struct sk_buff *skb = sk->sk_send_head;
1489 
1490 	if (skb) {
1491 		if (!tcp_skb_is_last(sk, skb))
1492 			nonagle = TCP_NAGLE_PUSH;
1493 		if (!tcp_snd_test(tp, skb, cur_mss, nonagle) ||
1494 		    tcp_write_xmit(sk, nonagle))
1495 			tcp_check_probe_timer(sk, tp);
1496 	}
1497 	tcp_cwnd_validate(sk, tp);
1498 }
1499 
1500 static __inline__ void tcp_push_pending_frames(struct sock *sk,
1501 					       struct tcp_sock *tp)
1502 {
1503 	__tcp_push_pending_frames(sk, tp, tcp_current_mss(sk, 1), tp->nonagle);
1504 }
1505 
1506 static __inline__ int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
1507 {
1508 	struct sk_buff *skb = sk->sk_send_head;
1509 
1510 	return (skb &&
1511 		tcp_snd_test(tp, skb, tcp_current_mss(sk, 1),
1512 			     tcp_skb_is_last(sk, skb) ? TCP_NAGLE_PUSH : tp->nonagle));
1513 }
1514 
1515 static __inline__ void tcp_init_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1516 {
1517 	tp->snd_wl1 = seq;
1518 }
1519 
1520 static __inline__ void tcp_update_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1521 {
1522 	tp->snd_wl1 = seq;
1523 }
1524 
1525 extern void tcp_destroy_sock(struct sock *sk);
1526 
1527 
1528 /*
1529  * Calculate(/check) TCP checksum
1530  */
1531 static __inline__ u16 tcp_v4_check(struct tcphdr *th, int len,
1532 				   unsigned long saddr, unsigned long daddr,
1533 				   unsigned long base)
1534 {
1535 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1536 }
1537 
1538 static __inline__ int __tcp_checksum_complete(struct sk_buff *skb)
1539 {
1540 	return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum));
1541 }
1542 
1543 static __inline__ int tcp_checksum_complete(struct sk_buff *skb)
1544 {
1545 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1546 		__tcp_checksum_complete(skb);
1547 }
1548 
1549 /* Prequeue for VJ style copy to user, combined with checksumming. */
1550 
1551 static __inline__ void tcp_prequeue_init(struct tcp_sock *tp)
1552 {
1553 	tp->ucopy.task = NULL;
1554 	tp->ucopy.len = 0;
1555 	tp->ucopy.memory = 0;
1556 	skb_queue_head_init(&tp->ucopy.prequeue);
1557 }
1558 
1559 /* Packet is added to VJ-style prequeue for processing in process
1560  * context, if a reader task is waiting. Apparently, this exciting
1561  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1562  * failed somewhere. Latency? Burstiness? Well, at least now we will
1563  * see, why it failed. 8)8)				  --ANK
1564  *
1565  * NOTE: is this not too big to inline?
1566  */
1567 static __inline__ int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1568 {
1569 	struct tcp_sock *tp = tcp_sk(sk);
1570 
1571 	if (!sysctl_tcp_low_latency && tp->ucopy.task) {
1572 		__skb_queue_tail(&tp->ucopy.prequeue, skb);
1573 		tp->ucopy.memory += skb->truesize;
1574 		if (tp->ucopy.memory > sk->sk_rcvbuf) {
1575 			struct sk_buff *skb1;
1576 
1577 			BUG_ON(sock_owned_by_user(sk));
1578 
1579 			while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1580 				sk->sk_backlog_rcv(sk, skb1);
1581 				NET_INC_STATS_BH(LINUX_MIB_TCPPREQUEUEDROPPED);
1582 			}
1583 
1584 			tp->ucopy.memory = 0;
1585 		} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1586 			wake_up_interruptible(sk->sk_sleep);
1587 			if (!tcp_ack_scheduled(tp))
1588 				tcp_reset_xmit_timer(sk, TCP_TIME_DACK, (3*TCP_RTO_MIN)/4);
1589 		}
1590 		return 1;
1591 	}
1592 	return 0;
1593 }
1594 
1595 
1596 #undef STATE_TRACE
1597 
1598 #ifdef STATE_TRACE
1599 static const char *statename[]={
1600 	"Unused","Established","Syn Sent","Syn Recv",
1601 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1602 	"Close Wait","Last ACK","Listen","Closing"
1603 };
1604 #endif
1605 
1606 static __inline__ void tcp_set_state(struct sock *sk, int state)
1607 {
1608 	int oldstate = sk->sk_state;
1609 
1610 	switch (state) {
1611 	case TCP_ESTABLISHED:
1612 		if (oldstate != TCP_ESTABLISHED)
1613 			TCP_INC_STATS(TCP_MIB_CURRESTAB);
1614 		break;
1615 
1616 	case TCP_CLOSE:
1617 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1618 			TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1619 
1620 		sk->sk_prot->unhash(sk);
1621 		if (tcp_sk(sk)->bind_hash &&
1622 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1623 			tcp_put_port(sk);
1624 		/* fall through */
1625 	default:
1626 		if (oldstate==TCP_ESTABLISHED)
1627 			TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1628 	}
1629 
1630 	/* Change state AFTER socket is unhashed to avoid closed
1631 	 * socket sitting in hash tables.
1632 	 */
1633 	sk->sk_state = state;
1634 
1635 #ifdef STATE_TRACE
1636 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1637 #endif
1638 }
1639 
1640 static __inline__ void tcp_done(struct sock *sk)
1641 {
1642 	tcp_set_state(sk, TCP_CLOSE);
1643 	tcp_clear_xmit_timers(sk);
1644 
1645 	sk->sk_shutdown = SHUTDOWN_MASK;
1646 
1647 	if (!sock_flag(sk, SOCK_DEAD))
1648 		sk->sk_state_change(sk);
1649 	else
1650 		tcp_destroy_sock(sk);
1651 }
1652 
1653 static __inline__ void tcp_sack_reset(struct tcp_options_received *rx_opt)
1654 {
1655 	rx_opt->dsack = 0;
1656 	rx_opt->eff_sacks = 0;
1657 	rx_opt->num_sacks = 0;
1658 }
1659 
1660 static __inline__ void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp, __u32 tstamp)
1661 {
1662 	if (tp->rx_opt.tstamp_ok) {
1663 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1664 					  (TCPOPT_NOP << 16) |
1665 					  (TCPOPT_TIMESTAMP << 8) |
1666 					  TCPOLEN_TIMESTAMP);
1667 		*ptr++ = htonl(tstamp);
1668 		*ptr++ = htonl(tp->rx_opt.ts_recent);
1669 	}
1670 	if (tp->rx_opt.eff_sacks) {
1671 		struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
1672 		int this_sack;
1673 
1674 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1675 					  (TCPOPT_NOP << 16) |
1676 					  (TCPOPT_SACK << 8) |
1677 					  (TCPOLEN_SACK_BASE +
1678 					   (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)));
1679 		for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
1680 			*ptr++ = htonl(sp[this_sack].start_seq);
1681 			*ptr++ = htonl(sp[this_sack].end_seq);
1682 		}
1683 		if (tp->rx_opt.dsack) {
1684 			tp->rx_opt.dsack = 0;
1685 			tp->rx_opt.eff_sacks--;
1686 		}
1687 	}
1688 }
1689 
1690 /* Construct a tcp options header for a SYN or SYN_ACK packet.
1691  * If this is every changed make sure to change the definition of
1692  * MAX_SYN_SIZE to match the new maximum number of options that you
1693  * can generate.
1694  */
1695 static inline void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
1696 					     int offer_wscale, int wscale, __u32 tstamp, __u32 ts_recent)
1697 {
1698 	/* We always get an MSS option.
1699 	 * The option bytes which will be seen in normal data
1700 	 * packets should timestamps be used, must be in the MSS
1701 	 * advertised.  But we subtract them from tp->mss_cache so
1702 	 * that calculations in tcp_sendmsg are simpler etc.
1703 	 * So account for this fact here if necessary.  If we
1704 	 * don't do this correctly, as a receiver we won't
1705 	 * recognize data packets as being full sized when we
1706 	 * should, and thus we won't abide by the delayed ACK
1707 	 * rules correctly.
1708 	 * SACKs don't matter, we never delay an ACK when we
1709 	 * have any of those going out.
1710 	 */
1711 	*ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
1712 	if (ts) {
1713 		if(sack)
1714 			*ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
1715 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1716 		else
1717 			*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1718 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1719 		*ptr++ = htonl(tstamp);		/* TSVAL */
1720 		*ptr++ = htonl(ts_recent);	/* TSECR */
1721 	} else if(sack)
1722 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1723 					  (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
1724 	if (offer_wscale)
1725 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
1726 }
1727 
1728 /* Determine a window scaling and initial window to offer. */
1729 extern void tcp_select_initial_window(int __space, __u32 mss,
1730 				      __u32 *rcv_wnd, __u32 *window_clamp,
1731 				      int wscale_ok, __u8 *rcv_wscale);
1732 
1733 static inline int tcp_win_from_space(int space)
1734 {
1735 	return sysctl_tcp_adv_win_scale<=0 ?
1736 		(space>>(-sysctl_tcp_adv_win_scale)) :
1737 		space - (space>>sysctl_tcp_adv_win_scale);
1738 }
1739 
1740 /* Note: caller must be prepared to deal with negative returns */
1741 static inline int tcp_space(const struct sock *sk)
1742 {
1743 	return tcp_win_from_space(sk->sk_rcvbuf -
1744 				  atomic_read(&sk->sk_rmem_alloc));
1745 }
1746 
1747 static inline int tcp_full_space(const struct sock *sk)
1748 {
1749 	return tcp_win_from_space(sk->sk_rcvbuf);
1750 }
1751 
1752 static inline void tcp_acceptq_queue(struct sock *sk, struct open_request *req,
1753 					 struct sock *child)
1754 {
1755 	struct tcp_sock *tp = tcp_sk(sk);
1756 
1757 	req->sk = child;
1758 	sk_acceptq_added(sk);
1759 
1760 	if (!tp->accept_queue_tail) {
1761 		tp->accept_queue = req;
1762 	} else {
1763 		tp->accept_queue_tail->dl_next = req;
1764 	}
1765 	tp->accept_queue_tail = req;
1766 	req->dl_next = NULL;
1767 }
1768 
1769 struct tcp_listen_opt
1770 {
1771 	u8			max_qlen_log;	/* log_2 of maximal queued SYNs */
1772 	int			qlen;
1773 	int			qlen_young;
1774 	int			clock_hand;
1775 	u32			hash_rnd;
1776 	struct open_request	*syn_table[TCP_SYNQ_HSIZE];
1777 };
1778 
1779 static inline void
1780 tcp_synq_removed(struct sock *sk, struct open_request *req)
1781 {
1782 	struct tcp_listen_opt *lopt = tcp_sk(sk)->listen_opt;
1783 
1784 	if (--lopt->qlen == 0)
1785 		tcp_delete_keepalive_timer(sk);
1786 	if (req->retrans == 0)
1787 		lopt->qlen_young--;
1788 }
1789 
1790 static inline void tcp_synq_added(struct sock *sk)
1791 {
1792 	struct tcp_listen_opt *lopt = tcp_sk(sk)->listen_opt;
1793 
1794 	if (lopt->qlen++ == 0)
1795 		tcp_reset_keepalive_timer(sk, TCP_TIMEOUT_INIT);
1796 	lopt->qlen_young++;
1797 }
1798 
1799 static inline int tcp_synq_len(struct sock *sk)
1800 {
1801 	return tcp_sk(sk)->listen_opt->qlen;
1802 }
1803 
1804 static inline int tcp_synq_young(struct sock *sk)
1805 {
1806 	return tcp_sk(sk)->listen_opt->qlen_young;
1807 }
1808 
1809 static inline int tcp_synq_is_full(struct sock *sk)
1810 {
1811 	return tcp_synq_len(sk) >> tcp_sk(sk)->listen_opt->max_qlen_log;
1812 }
1813 
1814 static inline void tcp_synq_unlink(struct tcp_sock *tp, struct open_request *req,
1815 				       struct open_request **prev)
1816 {
1817 	write_lock(&tp->syn_wait_lock);
1818 	*prev = req->dl_next;
1819 	write_unlock(&tp->syn_wait_lock);
1820 }
1821 
1822 static inline void tcp_synq_drop(struct sock *sk, struct open_request *req,
1823 				     struct open_request **prev)
1824 {
1825 	tcp_synq_unlink(tcp_sk(sk), req, prev);
1826 	tcp_synq_removed(sk, req);
1827 	tcp_openreq_free(req);
1828 }
1829 
1830 static __inline__ void tcp_openreq_init(struct open_request *req,
1831 					struct tcp_options_received *rx_opt,
1832 					struct sk_buff *skb)
1833 {
1834 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1835 	req->rcv_isn = TCP_SKB_CB(skb)->seq;
1836 	req->mss = rx_opt->mss_clamp;
1837 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1838 	req->tstamp_ok = rx_opt->tstamp_ok;
1839 	req->sack_ok = rx_opt->sack_ok;
1840 	req->snd_wscale = rx_opt->snd_wscale;
1841 	req->wscale_ok = rx_opt->wscale_ok;
1842 	req->acked = 0;
1843 	req->ecn_ok = 0;
1844 	req->rmt_port = skb->h.th->source;
1845 }
1846 
1847 extern void tcp_enter_memory_pressure(void);
1848 
1849 extern void tcp_listen_wlock(void);
1850 
1851 /* - We may sleep inside this lock.
1852  * - If sleeping is not required (or called from BH),
1853  *   use plain read_(un)lock(&tcp_lhash_lock).
1854  */
1855 
1856 static inline void tcp_listen_lock(void)
1857 {
1858 	/* read_lock synchronizes to candidates to writers */
1859 	read_lock(&tcp_lhash_lock);
1860 	atomic_inc(&tcp_lhash_users);
1861 	read_unlock(&tcp_lhash_lock);
1862 }
1863 
1864 static inline void tcp_listen_unlock(void)
1865 {
1866 	if (atomic_dec_and_test(&tcp_lhash_users))
1867 		wake_up(&tcp_lhash_wait);
1868 }
1869 
1870 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1871 {
1872 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1873 }
1874 
1875 static inline int keepalive_time_when(const struct tcp_sock *tp)
1876 {
1877 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1878 }
1879 
1880 static inline int tcp_fin_time(const struct tcp_sock *tp)
1881 {
1882 	int fin_timeout = tp->linger2 ? : sysctl_tcp_fin_timeout;
1883 
1884 	if (fin_timeout < (tp->rto<<2) - (tp->rto>>1))
1885 		fin_timeout = (tp->rto<<2) - (tp->rto>>1);
1886 
1887 	return fin_timeout;
1888 }
1889 
1890 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt, int rst)
1891 {
1892 	if ((s32)(rx_opt->rcv_tsval - rx_opt->ts_recent) >= 0)
1893 		return 0;
1894 	if (xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)
1895 		return 0;
1896 
1897 	/* RST segments are not recommended to carry timestamp,
1898 	   and, if they do, it is recommended to ignore PAWS because
1899 	   "their cleanup function should take precedence over timestamps."
1900 	   Certainly, it is mistake. It is necessary to understand the reasons
1901 	   of this constraint to relax it: if peer reboots, clock may go
1902 	   out-of-sync and half-open connections will not be reset.
1903 	   Actually, the problem would be not existing if all
1904 	   the implementations followed draft about maintaining clock
1905 	   via reboots. Linux-2.2 DOES NOT!
1906 
1907 	   However, we can relax time bounds for RST segments to MSL.
1908 	 */
1909 	if (rst && xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1910 		return 0;
1911 	return 1;
1912 }
1913 
1914 static inline void tcp_v4_setup_caps(struct sock *sk, struct dst_entry *dst)
1915 {
1916 	sk->sk_route_caps = dst->dev->features;
1917 	if (sk->sk_route_caps & NETIF_F_TSO) {
1918 		if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1919 			sk->sk_route_caps &= ~NETIF_F_TSO;
1920 	}
1921 }
1922 
1923 #define TCP_CHECK_TIMER(sk) do { } while (0)
1924 
1925 static inline int tcp_use_frto(const struct sock *sk)
1926 {
1927 	const struct tcp_sock *tp = tcp_sk(sk);
1928 
1929 	/* F-RTO must be activated in sysctl and there must be some
1930 	 * unsent new data, and the advertised window should allow
1931 	 * sending it.
1932 	 */
1933 	return (sysctl_tcp_frto && sk->sk_send_head &&
1934 		!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1935 		       tp->snd_una + tp->snd_wnd));
1936 }
1937 
1938 static inline void tcp_mib_init(void)
1939 {
1940 	/* See RFC 2012 */
1941 	TCP_ADD_STATS_USER(TCP_MIB_RTOALGORITHM, 1);
1942 	TCP_ADD_STATS_USER(TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1943 	TCP_ADD_STATS_USER(TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1944 	TCP_ADD_STATS_USER(TCP_MIB_MAXCONN, -1);
1945 }
1946 
1947 /* /proc */
1948 enum tcp_seq_states {
1949 	TCP_SEQ_STATE_LISTENING,
1950 	TCP_SEQ_STATE_OPENREQ,
1951 	TCP_SEQ_STATE_ESTABLISHED,
1952 	TCP_SEQ_STATE_TIME_WAIT,
1953 };
1954 
1955 struct tcp_seq_afinfo {
1956 	struct module		*owner;
1957 	char			*name;
1958 	sa_family_t		family;
1959 	int			(*seq_show) (struct seq_file *m, void *v);
1960 	struct file_operations	*seq_fops;
1961 };
1962 
1963 struct tcp_iter_state {
1964 	sa_family_t		family;
1965 	enum tcp_seq_states	state;
1966 	struct sock		*syn_wait_sk;
1967 	int			bucket, sbucket, num, uid;
1968 	struct seq_operations	seq_ops;
1969 };
1970 
1971 extern int tcp_proc_register(struct tcp_seq_afinfo *afinfo);
1972 extern void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo);
1973 
1974 /* TCP Westwood functions and constants */
1975 
1976 #define TCP_WESTWOOD_INIT_RTT  (20*HZ)           /* maybe too conservative?! */
1977 #define TCP_WESTWOOD_RTT_MIN   (HZ/20)           /* 50ms */
1978 
1979 static inline void tcp_westwood_update_rtt(struct tcp_sock *tp, __u32 rtt_seq)
1980 {
1981         if (tcp_is_westwood(tp))
1982                 tp->westwood.rtt = rtt_seq;
1983 }
1984 
1985 static inline __u32 __tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
1986 {
1987         return max((tp->westwood.bw_est) * (tp->westwood.rtt_min) /
1988 		   (__u32) (tp->mss_cache_std),
1989 		   2U);
1990 }
1991 
1992 static inline __u32 tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
1993 {
1994 	return tcp_is_westwood(tp) ? __tcp_westwood_bw_rttmin(tp) : 0;
1995 }
1996 
1997 static inline int tcp_westwood_ssthresh(struct tcp_sock *tp)
1998 {
1999 	__u32 ssthresh = 0;
2000 
2001 	if (tcp_is_westwood(tp)) {
2002 		ssthresh = __tcp_westwood_bw_rttmin(tp);
2003 		if (ssthresh)
2004 			tp->snd_ssthresh = ssthresh;
2005 	}
2006 
2007 	return (ssthresh != 0);
2008 }
2009 
2010 static inline int tcp_westwood_cwnd(struct tcp_sock *tp)
2011 {
2012 	__u32 cwnd = 0;
2013 
2014 	if (tcp_is_westwood(tp)) {
2015 		cwnd = __tcp_westwood_bw_rttmin(tp);
2016 		if (cwnd)
2017 			tp->snd_cwnd = cwnd;
2018 	}
2019 
2020 	return (cwnd != 0);
2021 }
2022 #endif	/* _TCP_H */
2023