xref: /openbmc/linux/include/net/tcp.h (revision 18da174d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
255 
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	if (!skb_zcopy_pure(skb))
297 		sk_mem_uncharge(sk, skb->truesize);
298 	else
299 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 	__kfree_skb(skb);
301 }
302 
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
329 			 size_t size, struct ubuf_info *uarg);
330 void tcp_splice_eof(struct socket *sock);
331 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
332 		 int flags);
333 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
334 			size_t size, int flags);
335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
336 int tcp_wmem_schedule(struct sock *sk, int copy);
337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
338 	      int size_goal);
339 void tcp_release_cb(struct sock *sk);
340 void tcp_wfree(struct sk_buff *skb);
341 void tcp_write_timer_handler(struct sock *sk);
342 void tcp_delack_timer_handler(struct sock *sk);
343 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_space_adjust(struct sock *sk);
347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
348 void tcp_twsk_destructor(struct sock *sk);
349 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 			struct pipe_inode_info *pipe, size_t len,
352 			unsigned int flags);
353 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
354 				     bool force_schedule);
355 
356 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
357 static inline void tcp_dec_quickack_mode(struct sock *sk,
358 					 const unsigned int pkts)
359 {
360 	struct inet_connection_sock *icsk = inet_csk(sk);
361 
362 	if (icsk->icsk_ack.quick) {
363 		if (pkts >= icsk->icsk_ack.quick) {
364 			icsk->icsk_ack.quick = 0;
365 			/* Leaving quickack mode we deflate ATO. */
366 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
367 		} else
368 			icsk->icsk_ack.quick -= pkts;
369 	}
370 }
371 
372 #define	TCP_ECN_OK		1
373 #define	TCP_ECN_QUEUE_CWR	2
374 #define	TCP_ECN_DEMAND_CWR	4
375 #define	TCP_ECN_SEEN		8
376 
377 enum tcp_tw_status {
378 	TCP_TW_SUCCESS = 0,
379 	TCP_TW_RST = 1,
380 	TCP_TW_ACK = 2,
381 	TCP_TW_SYN = 3
382 };
383 
384 
385 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
386 					      struct sk_buff *skb,
387 					      const struct tcphdr *th);
388 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
389 			   struct request_sock *req, bool fastopen,
390 			   bool *lost_race);
391 int tcp_child_process(struct sock *parent, struct sock *child,
392 		      struct sk_buff *skb);
393 void tcp_enter_loss(struct sock *sk);
394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
395 void tcp_clear_retrans(struct tcp_sock *tp);
396 void tcp_update_metrics(struct sock *sk);
397 void tcp_init_metrics(struct sock *sk);
398 void tcp_metrics_init(void);
399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
400 void __tcp_close(struct sock *sk, long timeout);
401 void tcp_close(struct sock *sk, long timeout);
402 void tcp_init_sock(struct sock *sk);
403 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
404 __poll_t tcp_poll(struct file *file, struct socket *sock,
405 		      struct poll_table_struct *wait);
406 int do_tcp_getsockopt(struct sock *sk, int level,
407 		      int optname, sockptr_t optval, sockptr_t optlen);
408 int tcp_getsockopt(struct sock *sk, int level, int optname,
409 		   char __user *optval, int __user *optlen);
410 bool tcp_bpf_bypass_getsockopt(int level, int optname);
411 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
412 		      sockptr_t optval, unsigned int optlen);
413 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
414 		   unsigned int optlen);
415 void tcp_set_keepalive(struct sock *sk, int val);
416 void tcp_syn_ack_timeout(const struct request_sock *req);
417 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
418 		int flags, int *addr_len);
419 int tcp_set_rcvlowat(struct sock *sk, int val);
420 int tcp_set_window_clamp(struct sock *sk, int val);
421 void tcp_update_recv_tstamps(struct sk_buff *skb,
422 			     struct scm_timestamping_internal *tss);
423 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
424 			struct scm_timestamping_internal *tss);
425 void tcp_data_ready(struct sock *sk);
426 #ifdef CONFIG_MMU
427 int tcp_mmap(struct file *file, struct socket *sock,
428 	     struct vm_area_struct *vma);
429 #endif
430 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
431 		       struct tcp_options_received *opt_rx,
432 		       int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434 
435 /*
436  *	BPF SKB-less helpers
437  */
438 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
439 			 struct tcphdr *th, u32 *cookie);
440 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
441 			 struct tcphdr *th, u32 *cookie);
442 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
443 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
444 			  const struct tcp_request_sock_ops *af_ops,
445 			  struct sock *sk, struct tcphdr *th);
446 /*
447  *	TCP v4 functions exported for the inet6 API
448  */
449 
450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
451 void tcp_v4_mtu_reduced(struct sock *sk);
452 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
453 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
454 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
455 struct sock *tcp_create_openreq_child(const struct sock *sk,
456 				      struct request_sock *req,
457 				      struct sk_buff *skb);
458 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
459 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
460 				  struct request_sock *req,
461 				  struct dst_entry *dst,
462 				  struct request_sock *req_unhash,
463 				  bool *own_req);
464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
466 int tcp_connect(struct sock *sk);
467 enum tcp_synack_type {
468 	TCP_SYNACK_NORMAL,
469 	TCP_SYNACK_FASTOPEN,
470 	TCP_SYNACK_COOKIE,
471 };
472 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
473 				struct request_sock *req,
474 				struct tcp_fastopen_cookie *foc,
475 				enum tcp_synack_type synack_type,
476 				struct sk_buff *syn_skb);
477 int tcp_disconnect(struct sock *sk, int flags);
478 
479 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
480 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
481 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
482 
483 /* From syncookies.c */
484 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
485 				 struct request_sock *req,
486 				 struct dst_entry *dst, u32 tsoff);
487 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
488 		      u32 cookie);
489 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
490 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
491 					    const struct tcp_request_sock_ops *af_ops,
492 					    struct sock *sk, struct sk_buff *skb);
493 #ifdef CONFIG_SYN_COOKIES
494 
495 /* Syncookies use a monotonic timer which increments every 60 seconds.
496  * This counter is used both as a hash input and partially encoded into
497  * the cookie value.  A cookie is only validated further if the delta
498  * between the current counter value and the encoded one is less than this,
499  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
500  * the counter advances immediately after a cookie is generated).
501  */
502 #define MAX_SYNCOOKIE_AGE	2
503 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
504 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
505 
506 /* syncookies: remember time of last synqueue overflow
507  * But do not dirty this field too often (once per second is enough)
508  * It is racy as we do not hold a lock, but race is very minor.
509  */
510 static inline void tcp_synq_overflow(const struct sock *sk)
511 {
512 	unsigned int last_overflow;
513 	unsigned int now = jiffies;
514 
515 	if (sk->sk_reuseport) {
516 		struct sock_reuseport *reuse;
517 
518 		reuse = rcu_dereference(sk->sk_reuseport_cb);
519 		if (likely(reuse)) {
520 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 			if (!time_between32(now, last_overflow,
522 					    last_overflow + HZ))
523 				WRITE_ONCE(reuse->synq_overflow_ts, now);
524 			return;
525 		}
526 	}
527 
528 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
529 	if (!time_between32(now, last_overflow, last_overflow + HZ))
530 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
531 }
532 
533 /* syncookies: no recent synqueue overflow on this listening socket? */
534 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
535 {
536 	unsigned int last_overflow;
537 	unsigned int now = jiffies;
538 
539 	if (sk->sk_reuseport) {
540 		struct sock_reuseport *reuse;
541 
542 		reuse = rcu_dereference(sk->sk_reuseport_cb);
543 		if (likely(reuse)) {
544 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545 			return !time_between32(now, last_overflow - HZ,
546 					       last_overflow +
547 					       TCP_SYNCOOKIE_VALID);
548 		}
549 	}
550 
551 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
552 
553 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
554 	 * then we're under synflood. However, we have to use
555 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
556 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
557 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
558 	 * which could lead to rejecting a valid syncookie.
559 	 */
560 	return !time_between32(now, last_overflow - HZ,
561 			       last_overflow + TCP_SYNCOOKIE_VALID);
562 }
563 
564 static inline u32 tcp_cookie_time(void)
565 {
566 	u64 val = get_jiffies_64();
567 
568 	do_div(val, TCP_SYNCOOKIE_PERIOD);
569 	return val;
570 }
571 
572 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
573 			      u16 *mssp);
574 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
575 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
576 bool cookie_timestamp_decode(const struct net *net,
577 			     struct tcp_options_received *opt);
578 bool cookie_ecn_ok(const struct tcp_options_received *opt,
579 		   const struct net *net, const struct dst_entry *dst);
580 
581 /* From net/ipv6/syncookies.c */
582 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
583 		      u32 cookie);
584 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
585 
586 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
587 			      const struct tcphdr *th, u16 *mssp);
588 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
589 #endif
590 /* tcp_output.c */
591 
592 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
593 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
594 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
595 			       int nonagle);
596 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
598 void tcp_retransmit_timer(struct sock *sk);
599 void tcp_xmit_retransmit_queue(struct sock *);
600 void tcp_simple_retransmit(struct sock *);
601 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
602 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
603 enum tcp_queue {
604 	TCP_FRAG_IN_WRITE_QUEUE,
605 	TCP_FRAG_IN_RTX_QUEUE,
606 };
607 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
608 		 struct sk_buff *skb, u32 len,
609 		 unsigned int mss_now, gfp_t gfp);
610 
611 void tcp_send_probe0(struct sock *);
612 void tcp_send_partial(struct sock *);
613 int tcp_write_wakeup(struct sock *, int mib);
614 void tcp_send_fin(struct sock *sk);
615 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
616 int tcp_send_synack(struct sock *);
617 void tcp_push_one(struct sock *, unsigned int mss_now);
618 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
619 void tcp_send_ack(struct sock *sk);
620 void tcp_send_delayed_ack(struct sock *sk);
621 void tcp_send_loss_probe(struct sock *sk);
622 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
623 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
624 			     const struct sk_buff *next_skb);
625 
626 /* tcp_input.c */
627 void tcp_rearm_rto(struct sock *sk);
628 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
629 void tcp_reset(struct sock *sk, struct sk_buff *skb);
630 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
631 void tcp_fin(struct sock *sk);
632 void tcp_check_space(struct sock *sk);
633 void tcp_sack_compress_send_ack(struct sock *sk);
634 
635 /* tcp_timer.c */
636 void tcp_init_xmit_timers(struct sock *);
637 static inline void tcp_clear_xmit_timers(struct sock *sk)
638 {
639 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
640 		__sock_put(sk);
641 
642 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
643 		__sock_put(sk);
644 
645 	inet_csk_clear_xmit_timers(sk);
646 }
647 
648 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
649 unsigned int tcp_current_mss(struct sock *sk);
650 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
651 
652 /* Bound MSS / TSO packet size with the half of the window */
653 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
654 {
655 	int cutoff;
656 
657 	/* When peer uses tiny windows, there is no use in packetizing
658 	 * to sub-MSS pieces for the sake of SWS or making sure there
659 	 * are enough packets in the pipe for fast recovery.
660 	 *
661 	 * On the other hand, for extremely large MSS devices, handling
662 	 * smaller than MSS windows in this way does make sense.
663 	 */
664 	if (tp->max_window > TCP_MSS_DEFAULT)
665 		cutoff = (tp->max_window >> 1);
666 	else
667 		cutoff = tp->max_window;
668 
669 	if (cutoff && pktsize > cutoff)
670 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
671 	else
672 		return pktsize;
673 }
674 
675 /* tcp.c */
676 void tcp_get_info(struct sock *, struct tcp_info *);
677 
678 /* Read 'sendfile()'-style from a TCP socket */
679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
680 		  sk_read_actor_t recv_actor);
681 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
682 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
683 void tcp_read_done(struct sock *sk, size_t len);
684 
685 void tcp_initialize_rcv_mss(struct sock *sk);
686 
687 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
688 int tcp_mss_to_mtu(struct sock *sk, int mss);
689 void tcp_mtup_init(struct sock *sk);
690 
691 static inline void tcp_bound_rto(const struct sock *sk)
692 {
693 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
694 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
695 }
696 
697 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
698 {
699 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
700 }
701 
702 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
703 {
704 	/* mptcp hooks are only on the slow path */
705 	if (sk_is_mptcp((struct sock *)tp))
706 		return;
707 
708 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
709 			       ntohl(TCP_FLAG_ACK) |
710 			       snd_wnd);
711 }
712 
713 static inline void tcp_fast_path_on(struct tcp_sock *tp)
714 {
715 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
716 }
717 
718 static inline void tcp_fast_path_check(struct sock *sk)
719 {
720 	struct tcp_sock *tp = tcp_sk(sk);
721 
722 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
723 	    tp->rcv_wnd &&
724 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
725 	    !tp->urg_data)
726 		tcp_fast_path_on(tp);
727 }
728 
729 /* Compute the actual rto_min value */
730 static inline u32 tcp_rto_min(struct sock *sk)
731 {
732 	const struct dst_entry *dst = __sk_dst_get(sk);
733 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
734 
735 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
736 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
737 	return rto_min;
738 }
739 
740 static inline u32 tcp_rto_min_us(struct sock *sk)
741 {
742 	return jiffies_to_usecs(tcp_rto_min(sk));
743 }
744 
745 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
746 {
747 	return dst_metric_locked(dst, RTAX_CC_ALGO);
748 }
749 
750 /* Minimum RTT in usec. ~0 means not available. */
751 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
752 {
753 	return minmax_get(&tp->rtt_min);
754 }
755 
756 /* Compute the actual receive window we are currently advertising.
757  * Rcv_nxt can be after the window if our peer push more data
758  * than the offered window.
759  */
760 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
761 {
762 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
763 
764 	if (win < 0)
765 		win = 0;
766 	return (u32) win;
767 }
768 
769 /* Choose a new window, without checks for shrinking, and without
770  * scaling applied to the result.  The caller does these things
771  * if necessary.  This is a "raw" window selection.
772  */
773 u32 __tcp_select_window(struct sock *sk);
774 
775 void tcp_send_window_probe(struct sock *sk);
776 
777 /* TCP uses 32bit jiffies to save some space.
778  * Note that this is different from tcp_time_stamp, which
779  * historically has been the same until linux-4.13.
780  */
781 #define tcp_jiffies32 ((u32)jiffies)
782 
783 /*
784  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
785  * It is no longer tied to jiffies, but to 1 ms clock.
786  * Note: double check if you want to use tcp_jiffies32 instead of this.
787  */
788 #define TCP_TS_HZ	1000
789 
790 static inline u64 tcp_clock_ns(void)
791 {
792 	return ktime_get_ns();
793 }
794 
795 static inline u64 tcp_clock_us(void)
796 {
797 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
798 }
799 
800 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
801 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
802 {
803 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
804 }
805 
806 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
807 static inline u32 tcp_ns_to_ts(u64 ns)
808 {
809 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
810 }
811 
812 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
813 static inline u32 tcp_time_stamp_raw(void)
814 {
815 	return tcp_ns_to_ts(tcp_clock_ns());
816 }
817 
818 void tcp_mstamp_refresh(struct tcp_sock *tp);
819 
820 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
821 {
822 	return max_t(s64, t1 - t0, 0);
823 }
824 
825 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
826 {
827 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
828 }
829 
830 /* provide the departure time in us unit */
831 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
832 {
833 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
834 }
835 
836 
837 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
838 
839 #define TCPHDR_FIN 0x01
840 #define TCPHDR_SYN 0x02
841 #define TCPHDR_RST 0x04
842 #define TCPHDR_PSH 0x08
843 #define TCPHDR_ACK 0x10
844 #define TCPHDR_URG 0x20
845 #define TCPHDR_ECE 0x40
846 #define TCPHDR_CWR 0x80
847 
848 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
849 
850 /* This is what the send packet queuing engine uses to pass
851  * TCP per-packet control information to the transmission code.
852  * We also store the host-order sequence numbers in here too.
853  * This is 44 bytes if IPV6 is enabled.
854  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
855  */
856 struct tcp_skb_cb {
857 	__u32		seq;		/* Starting sequence number	*/
858 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
859 	union {
860 		/* Note : tcp_tw_isn is used in input path only
861 		 *	  (isn chosen by tcp_timewait_state_process())
862 		 *
863 		 * 	  tcp_gso_segs/size are used in write queue only,
864 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
865 		 */
866 		__u32		tcp_tw_isn;
867 		struct {
868 			u16	tcp_gso_segs;
869 			u16	tcp_gso_size;
870 		};
871 	};
872 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
873 
874 	__u8		sacked;		/* State flags for SACK.	*/
875 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
876 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
877 #define TCPCB_LOST		0x04	/* SKB is lost			*/
878 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
879 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
880 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
881 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
882 				TCPCB_REPAIRED)
883 
884 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
885 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
886 			eor:1,		/* Is skb MSG_EOR marked? */
887 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
888 			unused:5;
889 	__u32		ack_seq;	/* Sequence number ACK'd	*/
890 	union {
891 		struct {
892 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
893 			/* There is space for up to 24 bytes */
894 			__u32 is_app_limited:1, /* cwnd not fully used? */
895 			      delivered_ce:20,
896 			      unused:11;
897 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
898 			__u32 delivered;
899 			/* start of send pipeline phase */
900 			u64 first_tx_mstamp;
901 			/* when we reached the "delivered" count */
902 			u64 delivered_mstamp;
903 		} tx;   /* only used for outgoing skbs */
904 		union {
905 			struct inet_skb_parm	h4;
906 #if IS_ENABLED(CONFIG_IPV6)
907 			struct inet6_skb_parm	h6;
908 #endif
909 		} header;	/* For incoming skbs */
910 	};
911 };
912 
913 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
914 
915 extern const struct inet_connection_sock_af_ops ipv4_specific;
916 
917 #if IS_ENABLED(CONFIG_IPV6)
918 /* This is the variant of inet6_iif() that must be used by TCP,
919  * as TCP moves IP6CB into a different location in skb->cb[]
920  */
921 static inline int tcp_v6_iif(const struct sk_buff *skb)
922 {
923 	return TCP_SKB_CB(skb)->header.h6.iif;
924 }
925 
926 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
927 {
928 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
929 
930 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
931 }
932 
933 /* TCP_SKB_CB reference means this can not be used from early demux */
934 static inline int tcp_v6_sdif(const struct sk_buff *skb)
935 {
936 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
937 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
938 		return TCP_SKB_CB(skb)->header.h6.iif;
939 #endif
940 	return 0;
941 }
942 
943 extern const struct inet_connection_sock_af_ops ipv6_specific;
944 
945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
946 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
947 void tcp_v6_early_demux(struct sk_buff *skb);
948 
949 #endif
950 
951 /* TCP_SKB_CB reference means this can not be used from early demux */
952 static inline int tcp_v4_sdif(struct sk_buff *skb)
953 {
954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
955 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
956 		return TCP_SKB_CB(skb)->header.h4.iif;
957 #endif
958 	return 0;
959 }
960 
961 /* Due to TSO, an SKB can be composed of multiple actual
962  * packets.  To keep these tracked properly, we use this.
963  */
964 static inline int tcp_skb_pcount(const struct sk_buff *skb)
965 {
966 	return TCP_SKB_CB(skb)->tcp_gso_segs;
967 }
968 
969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
970 {
971 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
972 }
973 
974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
975 {
976 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
977 }
978 
979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
980 static inline int tcp_skb_mss(const struct sk_buff *skb)
981 {
982 	return TCP_SKB_CB(skb)->tcp_gso_size;
983 }
984 
985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
986 {
987 	return likely(!TCP_SKB_CB(skb)->eor);
988 }
989 
990 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
991 					const struct sk_buff *from)
992 {
993 	return likely(tcp_skb_can_collapse_to(to) &&
994 		      mptcp_skb_can_collapse(to, from) &&
995 		      skb_pure_zcopy_same(to, from));
996 }
997 
998 /* Events passed to congestion control interface */
999 enum tcp_ca_event {
1000 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003 	CA_EVENT_LOSS,		/* loss timeout */
1004 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006 };
1007 
1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009 enum tcp_ca_ack_event_flags {
1010 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013 };
1014 
1015 /*
1016  * Interface for adding new TCP congestion control handlers
1017  */
1018 #define TCP_CA_NAME_MAX	16
1019 #define TCP_CA_MAX	128
1020 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021 
1022 #define TCP_CA_UNSPEC	0
1023 
1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025 #define TCP_CONG_NON_RESTRICTED 0x1
1026 /* Requires ECN/ECT set on all packets */
1027 #define TCP_CONG_NEEDS_ECN	0x2
1028 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029 
1030 union tcp_cc_info;
1031 
1032 struct ack_sample {
1033 	u32 pkts_acked;
1034 	s32 rtt_us;
1035 	u32 in_flight;
1036 };
1037 
1038 /* A rate sample measures the number of (original/retransmitted) data
1039  * packets delivered "delivered" over an interval of time "interval_us".
1040  * The tcp_rate.c code fills in the rate sample, and congestion
1041  * control modules that define a cong_control function to run at the end
1042  * of ACK processing can optionally chose to consult this sample when
1043  * setting cwnd and pacing rate.
1044  * A sample is invalid if "delivered" or "interval_us" is negative.
1045  */
1046 struct rate_sample {
1047 	u64  prior_mstamp; /* starting timestamp for interval */
1048 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1050 	s32  delivered;		/* number of packets delivered over interval */
1051 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1052 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1053 	u32 snd_interval_us;	/* snd interval for delivered packets */
1054 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1055 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1056 	int  losses;		/* number of packets marked lost upon ACK */
1057 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1058 	u32  prior_in_flight;	/* in flight before this ACK */
1059 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1060 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1061 	bool is_retrans;	/* is sample from retransmission? */
1062 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1063 };
1064 
1065 struct tcp_congestion_ops {
1066 /* fast path fields are put first to fill one cache line */
1067 
1068 	/* return slow start threshold (required) */
1069 	u32 (*ssthresh)(struct sock *sk);
1070 
1071 	/* do new cwnd calculation (required) */
1072 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1073 
1074 	/* call before changing ca_state (optional) */
1075 	void (*set_state)(struct sock *sk, u8 new_state);
1076 
1077 	/* call when cwnd event occurs (optional) */
1078 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1079 
1080 	/* call when ack arrives (optional) */
1081 	void (*in_ack_event)(struct sock *sk, u32 flags);
1082 
1083 	/* hook for packet ack accounting (optional) */
1084 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1085 
1086 	/* override sysctl_tcp_min_tso_segs */
1087 	u32 (*min_tso_segs)(struct sock *sk);
1088 
1089 	/* call when packets are delivered to update cwnd and pacing rate,
1090 	 * after all the ca_state processing. (optional)
1091 	 */
1092 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1093 
1094 
1095 	/* new value of cwnd after loss (required) */
1096 	u32  (*undo_cwnd)(struct sock *sk);
1097 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1098 	u32 (*sndbuf_expand)(struct sock *sk);
1099 
1100 /* control/slow paths put last */
1101 	/* get info for inet_diag (optional) */
1102 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1103 			   union tcp_cc_info *info);
1104 
1105 	char 			name[TCP_CA_NAME_MAX];
1106 	struct module		*owner;
1107 	struct list_head	list;
1108 	u32			key;
1109 	u32			flags;
1110 
1111 	/* initialize private data (optional) */
1112 	void (*init)(struct sock *sk);
1113 	/* cleanup private data  (optional) */
1114 	void (*release)(struct sock *sk);
1115 } ____cacheline_aligned_in_smp;
1116 
1117 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1118 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1119 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1120 				  struct tcp_congestion_ops *old_type);
1121 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1122 
1123 void tcp_assign_congestion_control(struct sock *sk);
1124 void tcp_init_congestion_control(struct sock *sk);
1125 void tcp_cleanup_congestion_control(struct sock *sk);
1126 int tcp_set_default_congestion_control(struct net *net, const char *name);
1127 void tcp_get_default_congestion_control(struct net *net, char *name);
1128 void tcp_get_available_congestion_control(char *buf, size_t len);
1129 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1130 int tcp_set_allowed_congestion_control(char *allowed);
1131 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1132 			       bool cap_net_admin);
1133 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1134 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1135 
1136 u32 tcp_reno_ssthresh(struct sock *sk);
1137 u32 tcp_reno_undo_cwnd(struct sock *sk);
1138 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1139 extern struct tcp_congestion_ops tcp_reno;
1140 
1141 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1142 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1143 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1144 #ifdef CONFIG_INET
1145 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1146 #else
1147 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1148 {
1149 	return NULL;
1150 }
1151 #endif
1152 
1153 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1154 {
1155 	const struct inet_connection_sock *icsk = inet_csk(sk);
1156 
1157 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1158 }
1159 
1160 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1161 {
1162 	const struct inet_connection_sock *icsk = inet_csk(sk);
1163 
1164 	if (icsk->icsk_ca_ops->cwnd_event)
1165 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1166 }
1167 
1168 /* From tcp_cong.c */
1169 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1170 
1171 /* From tcp_rate.c */
1172 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1173 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1174 			    struct rate_sample *rs);
1175 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1176 		  bool is_sack_reneg, struct rate_sample *rs);
1177 void tcp_rate_check_app_limited(struct sock *sk);
1178 
1179 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1180 {
1181 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1182 }
1183 
1184 /* These functions determine how the current flow behaves in respect of SACK
1185  * handling. SACK is negotiated with the peer, and therefore it can vary
1186  * between different flows.
1187  *
1188  * tcp_is_sack - SACK enabled
1189  * tcp_is_reno - No SACK
1190  */
1191 static inline int tcp_is_sack(const struct tcp_sock *tp)
1192 {
1193 	return likely(tp->rx_opt.sack_ok);
1194 }
1195 
1196 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1197 {
1198 	return !tcp_is_sack(tp);
1199 }
1200 
1201 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1202 {
1203 	return tp->sacked_out + tp->lost_out;
1204 }
1205 
1206 /* This determines how many packets are "in the network" to the best
1207  * of our knowledge.  In many cases it is conservative, but where
1208  * detailed information is available from the receiver (via SACK
1209  * blocks etc.) we can make more aggressive calculations.
1210  *
1211  * Use this for decisions involving congestion control, use just
1212  * tp->packets_out to determine if the send queue is empty or not.
1213  *
1214  * Read this equation as:
1215  *
1216  *	"Packets sent once on transmission queue" MINUS
1217  *	"Packets left network, but not honestly ACKed yet" PLUS
1218  *	"Packets fast retransmitted"
1219  */
1220 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1221 {
1222 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1223 }
1224 
1225 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1226 
1227 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1228 {
1229 	return tp->snd_cwnd;
1230 }
1231 
1232 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1233 {
1234 	WARN_ON_ONCE((int)val <= 0);
1235 	tp->snd_cwnd = val;
1236 }
1237 
1238 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1239 {
1240 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1241 }
1242 
1243 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1244 {
1245 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1246 }
1247 
1248 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1249 {
1250 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1251 	       (1 << inet_csk(sk)->icsk_ca_state);
1252 }
1253 
1254 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1255  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1256  * ssthresh.
1257  */
1258 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1259 {
1260 	const struct tcp_sock *tp = tcp_sk(sk);
1261 
1262 	if (tcp_in_cwnd_reduction(sk))
1263 		return tp->snd_ssthresh;
1264 	else
1265 		return max(tp->snd_ssthresh,
1266 			   ((tcp_snd_cwnd(tp) >> 1) +
1267 			    (tcp_snd_cwnd(tp) >> 2)));
1268 }
1269 
1270 /* Use define here intentionally to get WARN_ON location shown at the caller */
1271 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1272 
1273 void tcp_enter_cwr(struct sock *sk);
1274 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1275 
1276 /* The maximum number of MSS of available cwnd for which TSO defers
1277  * sending if not using sysctl_tcp_tso_win_divisor.
1278  */
1279 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1280 {
1281 	return 3;
1282 }
1283 
1284 /* Returns end sequence number of the receiver's advertised window */
1285 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1286 {
1287 	return tp->snd_una + tp->snd_wnd;
1288 }
1289 
1290 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1291  * flexible approach. The RFC suggests cwnd should not be raised unless
1292  * it was fully used previously. And that's exactly what we do in
1293  * congestion avoidance mode. But in slow start we allow cwnd to grow
1294  * as long as the application has used half the cwnd.
1295  * Example :
1296  *    cwnd is 10 (IW10), but application sends 9 frames.
1297  *    We allow cwnd to reach 18 when all frames are ACKed.
1298  * This check is safe because it's as aggressive as slow start which already
1299  * risks 100% overshoot. The advantage is that we discourage application to
1300  * either send more filler packets or data to artificially blow up the cwnd
1301  * usage, and allow application-limited process to probe bw more aggressively.
1302  */
1303 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1304 {
1305 	const struct tcp_sock *tp = tcp_sk(sk);
1306 
1307 	if (tp->is_cwnd_limited)
1308 		return true;
1309 
1310 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1311 	if (tcp_in_slow_start(tp))
1312 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1313 
1314 	return false;
1315 }
1316 
1317 /* BBR congestion control needs pacing.
1318  * Same remark for SO_MAX_PACING_RATE.
1319  * sch_fq packet scheduler is efficiently handling pacing,
1320  * but is not always installed/used.
1321  * Return true if TCP stack should pace packets itself.
1322  */
1323 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1324 {
1325 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1326 }
1327 
1328 /* Estimates in how many jiffies next packet for this flow can be sent.
1329  * Scheduling a retransmit timer too early would be silly.
1330  */
1331 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1332 {
1333 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1334 
1335 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1336 }
1337 
1338 static inline void tcp_reset_xmit_timer(struct sock *sk,
1339 					const int what,
1340 					unsigned long when,
1341 					const unsigned long max_when)
1342 {
1343 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1344 				  max_when);
1345 }
1346 
1347 /* Something is really bad, we could not queue an additional packet,
1348  * because qdisc is full or receiver sent a 0 window, or we are paced.
1349  * We do not want to add fuel to the fire, or abort too early,
1350  * so make sure the timer we arm now is at least 200ms in the future,
1351  * regardless of current icsk_rto value (as it could be ~2ms)
1352  */
1353 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1354 {
1355 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1356 }
1357 
1358 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1359 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1360 					    unsigned long max_when)
1361 {
1362 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1363 			   inet_csk(sk)->icsk_backoff);
1364 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1365 
1366 	return (unsigned long)min_t(u64, when, max_when);
1367 }
1368 
1369 static inline void tcp_check_probe_timer(struct sock *sk)
1370 {
1371 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1372 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1373 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1374 }
1375 
1376 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1377 {
1378 	tp->snd_wl1 = seq;
1379 }
1380 
1381 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1382 {
1383 	tp->snd_wl1 = seq;
1384 }
1385 
1386 /*
1387  * Calculate(/check) TCP checksum
1388  */
1389 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1390 				   __be32 daddr, __wsum base)
1391 {
1392 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1393 }
1394 
1395 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1396 {
1397 	return !skb_csum_unnecessary(skb) &&
1398 		__skb_checksum_complete(skb);
1399 }
1400 
1401 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1402 		     enum skb_drop_reason *reason);
1403 
1404 
1405 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1406 void tcp_set_state(struct sock *sk, int state);
1407 void tcp_done(struct sock *sk);
1408 int tcp_abort(struct sock *sk, int err);
1409 
1410 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1411 {
1412 	rx_opt->dsack = 0;
1413 	rx_opt->num_sacks = 0;
1414 }
1415 
1416 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1417 
1418 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1419 {
1420 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1421 	struct tcp_sock *tp = tcp_sk(sk);
1422 	s32 delta;
1423 
1424 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1425 	    tp->packets_out || ca_ops->cong_control)
1426 		return;
1427 	delta = tcp_jiffies32 - tp->lsndtime;
1428 	if (delta > inet_csk(sk)->icsk_rto)
1429 		tcp_cwnd_restart(sk, delta);
1430 }
1431 
1432 /* Determine a window scaling and initial window to offer. */
1433 void tcp_select_initial_window(const struct sock *sk, int __space,
1434 			       __u32 mss, __u32 *rcv_wnd,
1435 			       __u32 *window_clamp, int wscale_ok,
1436 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1437 
1438 static inline int tcp_win_from_space(const struct sock *sk, int space)
1439 {
1440 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1441 
1442 	return tcp_adv_win_scale <= 0 ?
1443 		(space>>(-tcp_adv_win_scale)) :
1444 		space - (space>>tcp_adv_win_scale);
1445 }
1446 
1447 /* Note: caller must be prepared to deal with negative returns */
1448 static inline int tcp_space(const struct sock *sk)
1449 {
1450 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1451 				  READ_ONCE(sk->sk_backlog.len) -
1452 				  atomic_read(&sk->sk_rmem_alloc));
1453 }
1454 
1455 static inline int tcp_full_space(const struct sock *sk)
1456 {
1457 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1458 }
1459 
1460 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1461 {
1462 	int unused_mem = sk_unused_reserved_mem(sk);
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 
1465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1466 	if (unused_mem)
1467 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1468 					 tcp_win_from_space(sk, unused_mem));
1469 }
1470 
1471 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1472 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1473 
1474 
1475 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1476  * If 87.5 % (7/8) of the space has been consumed, we want to override
1477  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1478  * len/truesize ratio.
1479  */
1480 static inline bool tcp_rmem_pressure(const struct sock *sk)
1481 {
1482 	int rcvbuf, threshold;
1483 
1484 	if (tcp_under_memory_pressure(sk))
1485 		return true;
1486 
1487 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1488 	threshold = rcvbuf - (rcvbuf >> 3);
1489 
1490 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1491 }
1492 
1493 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1494 {
1495 	const struct tcp_sock *tp = tcp_sk(sk);
1496 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1497 
1498 	if (avail <= 0)
1499 		return false;
1500 
1501 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1502 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1503 }
1504 
1505 extern void tcp_openreq_init_rwin(struct request_sock *req,
1506 				  const struct sock *sk_listener,
1507 				  const struct dst_entry *dst);
1508 
1509 void tcp_enter_memory_pressure(struct sock *sk);
1510 void tcp_leave_memory_pressure(struct sock *sk);
1511 
1512 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1513 {
1514 	struct net *net = sock_net((struct sock *)tp);
1515 
1516 	return tp->keepalive_intvl ? :
1517 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1518 }
1519 
1520 static inline int keepalive_time_when(const struct tcp_sock *tp)
1521 {
1522 	struct net *net = sock_net((struct sock *)tp);
1523 
1524 	return tp->keepalive_time ? :
1525 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1526 }
1527 
1528 static inline int keepalive_probes(const struct tcp_sock *tp)
1529 {
1530 	struct net *net = sock_net((struct sock *)tp);
1531 
1532 	return tp->keepalive_probes ? :
1533 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1534 }
1535 
1536 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1537 {
1538 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1539 
1540 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1541 			  tcp_jiffies32 - tp->rcv_tstamp);
1542 }
1543 
1544 static inline int tcp_fin_time(const struct sock *sk)
1545 {
1546 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1547 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1548 	const int rto = inet_csk(sk)->icsk_rto;
1549 
1550 	if (fin_timeout < (rto << 2) - (rto >> 1))
1551 		fin_timeout = (rto << 2) - (rto >> 1);
1552 
1553 	return fin_timeout;
1554 }
1555 
1556 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1557 				  int paws_win)
1558 {
1559 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1560 		return true;
1561 	if (unlikely(!time_before32(ktime_get_seconds(),
1562 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1563 		return true;
1564 	/*
1565 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1566 	 * then following tcp messages have valid values. Ignore 0 value,
1567 	 * or else 'negative' tsval might forbid us to accept their packets.
1568 	 */
1569 	if (!rx_opt->ts_recent)
1570 		return true;
1571 	return false;
1572 }
1573 
1574 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1575 				   int rst)
1576 {
1577 	if (tcp_paws_check(rx_opt, 0))
1578 		return false;
1579 
1580 	/* RST segments are not recommended to carry timestamp,
1581 	   and, if they do, it is recommended to ignore PAWS because
1582 	   "their cleanup function should take precedence over timestamps."
1583 	   Certainly, it is mistake. It is necessary to understand the reasons
1584 	   of this constraint to relax it: if peer reboots, clock may go
1585 	   out-of-sync and half-open connections will not be reset.
1586 	   Actually, the problem would be not existing if all
1587 	   the implementations followed draft about maintaining clock
1588 	   via reboots. Linux-2.2 DOES NOT!
1589 
1590 	   However, we can relax time bounds for RST segments to MSL.
1591 	 */
1592 	if (rst && !time_before32(ktime_get_seconds(),
1593 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1594 		return false;
1595 	return true;
1596 }
1597 
1598 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1599 			  int mib_idx, u32 *last_oow_ack_time);
1600 
1601 static inline void tcp_mib_init(struct net *net)
1602 {
1603 	/* See RFC 2012 */
1604 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1605 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1606 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1607 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1608 }
1609 
1610 /* from STCP */
1611 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1612 {
1613 	tp->lost_skb_hint = NULL;
1614 }
1615 
1616 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1617 {
1618 	tcp_clear_retrans_hints_partial(tp);
1619 	tp->retransmit_skb_hint = NULL;
1620 }
1621 
1622 union tcp_md5_addr {
1623 	struct in_addr  a4;
1624 #if IS_ENABLED(CONFIG_IPV6)
1625 	struct in6_addr	a6;
1626 #endif
1627 };
1628 
1629 /* - key database */
1630 struct tcp_md5sig_key {
1631 	struct hlist_node	node;
1632 	u8			keylen;
1633 	u8			family; /* AF_INET or AF_INET6 */
1634 	u8			prefixlen;
1635 	u8			flags;
1636 	union tcp_md5_addr	addr;
1637 	int			l3index; /* set if key added with L3 scope */
1638 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1639 	struct rcu_head		rcu;
1640 };
1641 
1642 /* - sock block */
1643 struct tcp_md5sig_info {
1644 	struct hlist_head	head;
1645 	struct rcu_head		rcu;
1646 };
1647 
1648 /* - pseudo header */
1649 struct tcp4_pseudohdr {
1650 	__be32		saddr;
1651 	__be32		daddr;
1652 	__u8		pad;
1653 	__u8		protocol;
1654 	__be16		len;
1655 };
1656 
1657 struct tcp6_pseudohdr {
1658 	struct in6_addr	saddr;
1659 	struct in6_addr daddr;
1660 	__be32		len;
1661 	__be32		protocol;	/* including padding */
1662 };
1663 
1664 union tcp_md5sum_block {
1665 	struct tcp4_pseudohdr ip4;
1666 #if IS_ENABLED(CONFIG_IPV6)
1667 	struct tcp6_pseudohdr ip6;
1668 #endif
1669 };
1670 
1671 /* - pool: digest algorithm, hash description and scratch buffer */
1672 struct tcp_md5sig_pool {
1673 	struct ahash_request	*md5_req;
1674 	void			*scratch;
1675 };
1676 
1677 /* - functions */
1678 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1679 			const struct sock *sk, const struct sk_buff *skb);
1680 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1681 		   int family, u8 prefixlen, int l3index, u8 flags,
1682 		   const u8 *newkey, u8 newkeylen);
1683 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1684 		     int family, u8 prefixlen, int l3index,
1685 		     struct tcp_md5sig_key *key);
1686 
1687 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1688 		   int family, u8 prefixlen, int l3index, u8 flags);
1689 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1690 					 const struct sock *addr_sk);
1691 
1692 #ifdef CONFIG_TCP_MD5SIG
1693 #include <linux/jump_label.h>
1694 extern struct static_key_false_deferred tcp_md5_needed;
1695 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1696 					   const union tcp_md5_addr *addr,
1697 					   int family);
1698 static inline struct tcp_md5sig_key *
1699 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1700 		  const union tcp_md5_addr *addr, int family)
1701 {
1702 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1703 		return NULL;
1704 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1705 }
1706 
1707 enum skb_drop_reason
1708 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1709 		     const void *saddr, const void *daddr,
1710 		     int family, int dif, int sdif);
1711 
1712 
1713 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1714 #else
1715 static inline struct tcp_md5sig_key *
1716 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1717 		  const union tcp_md5_addr *addr, int family)
1718 {
1719 	return NULL;
1720 }
1721 
1722 static inline enum skb_drop_reason
1723 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1724 		     const void *saddr, const void *daddr,
1725 		     int family, int dif, int sdif)
1726 {
1727 	return SKB_NOT_DROPPED_YET;
1728 }
1729 #define tcp_twsk_md5_key(twsk)	NULL
1730 #endif
1731 
1732 bool tcp_alloc_md5sig_pool(void);
1733 
1734 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1735 static inline void tcp_put_md5sig_pool(void)
1736 {
1737 	local_bh_enable();
1738 }
1739 
1740 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1741 			  unsigned int header_len);
1742 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1743 		     const struct tcp_md5sig_key *key);
1744 
1745 /* From tcp_fastopen.c */
1746 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1747 			    struct tcp_fastopen_cookie *cookie);
1748 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1749 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1750 			    u16 try_exp);
1751 struct tcp_fastopen_request {
1752 	/* Fast Open cookie. Size 0 means a cookie request */
1753 	struct tcp_fastopen_cookie	cookie;
1754 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1755 	size_t				size;
1756 	int				copied;	/* queued in tcp_connect() */
1757 	struct ubuf_info		*uarg;
1758 };
1759 void tcp_free_fastopen_req(struct tcp_sock *tp);
1760 void tcp_fastopen_destroy_cipher(struct sock *sk);
1761 void tcp_fastopen_ctx_destroy(struct net *net);
1762 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1763 			      void *primary_key, void *backup_key);
1764 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1765 			    u64 *key);
1766 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1767 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1768 			      struct request_sock *req,
1769 			      struct tcp_fastopen_cookie *foc,
1770 			      const struct dst_entry *dst);
1771 void tcp_fastopen_init_key_once(struct net *net);
1772 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1773 			     struct tcp_fastopen_cookie *cookie);
1774 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1775 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1776 #define TCP_FASTOPEN_KEY_MAX 2
1777 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1778 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1779 
1780 /* Fastopen key context */
1781 struct tcp_fastopen_context {
1782 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1783 	int		num;
1784 	struct rcu_head	rcu;
1785 };
1786 
1787 void tcp_fastopen_active_disable(struct sock *sk);
1788 bool tcp_fastopen_active_should_disable(struct sock *sk);
1789 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1790 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1791 
1792 /* Caller needs to wrap with rcu_read_(un)lock() */
1793 static inline
1794 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1795 {
1796 	struct tcp_fastopen_context *ctx;
1797 
1798 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1799 	if (!ctx)
1800 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1801 	return ctx;
1802 }
1803 
1804 static inline
1805 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1806 			       const struct tcp_fastopen_cookie *orig)
1807 {
1808 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1809 	    orig->len == foc->len &&
1810 	    !memcmp(orig->val, foc->val, foc->len))
1811 		return true;
1812 	return false;
1813 }
1814 
1815 static inline
1816 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1817 {
1818 	return ctx->num;
1819 }
1820 
1821 /* Latencies incurred by various limits for a sender. They are
1822  * chronograph-like stats that are mutually exclusive.
1823  */
1824 enum tcp_chrono {
1825 	TCP_CHRONO_UNSPEC,
1826 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1827 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1828 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1829 	__TCP_CHRONO_MAX,
1830 };
1831 
1832 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1833 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1834 
1835 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1836  * the same memory storage than skb->destructor/_skb_refdst
1837  */
1838 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1839 {
1840 	skb->destructor = NULL;
1841 	skb->_skb_refdst = 0UL;
1842 }
1843 
1844 #define tcp_skb_tsorted_save(skb) {		\
1845 	unsigned long _save = skb->_skb_refdst;	\
1846 	skb->_skb_refdst = 0UL;
1847 
1848 #define tcp_skb_tsorted_restore(skb)		\
1849 	skb->_skb_refdst = _save;		\
1850 }
1851 
1852 void tcp_write_queue_purge(struct sock *sk);
1853 
1854 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1855 {
1856 	return skb_rb_first(&sk->tcp_rtx_queue);
1857 }
1858 
1859 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1860 {
1861 	return skb_rb_last(&sk->tcp_rtx_queue);
1862 }
1863 
1864 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1865 {
1866 	return skb_peek_tail(&sk->sk_write_queue);
1867 }
1868 
1869 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1870 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1871 
1872 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1873 {
1874 	return skb_peek(&sk->sk_write_queue);
1875 }
1876 
1877 static inline bool tcp_skb_is_last(const struct sock *sk,
1878 				   const struct sk_buff *skb)
1879 {
1880 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1881 }
1882 
1883 /**
1884  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1885  * @sk: socket
1886  *
1887  * Since the write queue can have a temporary empty skb in it,
1888  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1889  */
1890 static inline bool tcp_write_queue_empty(const struct sock *sk)
1891 {
1892 	const struct tcp_sock *tp = tcp_sk(sk);
1893 
1894 	return tp->write_seq == tp->snd_nxt;
1895 }
1896 
1897 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1898 {
1899 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1900 }
1901 
1902 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1903 {
1904 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1905 }
1906 
1907 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1908 {
1909 	__skb_queue_tail(&sk->sk_write_queue, skb);
1910 
1911 	/* Queue it, remembering where we must start sending. */
1912 	if (sk->sk_write_queue.next == skb)
1913 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1914 }
1915 
1916 /* Insert new before skb on the write queue of sk.  */
1917 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1918 						  struct sk_buff *skb,
1919 						  struct sock *sk)
1920 {
1921 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1922 }
1923 
1924 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1925 {
1926 	tcp_skb_tsorted_anchor_cleanup(skb);
1927 	__skb_unlink(skb, &sk->sk_write_queue);
1928 }
1929 
1930 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1931 
1932 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1933 {
1934 	tcp_skb_tsorted_anchor_cleanup(skb);
1935 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1936 }
1937 
1938 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1939 {
1940 	list_del(&skb->tcp_tsorted_anchor);
1941 	tcp_rtx_queue_unlink(skb, sk);
1942 	tcp_wmem_free_skb(sk, skb);
1943 }
1944 
1945 static inline void tcp_push_pending_frames(struct sock *sk)
1946 {
1947 	if (tcp_send_head(sk)) {
1948 		struct tcp_sock *tp = tcp_sk(sk);
1949 
1950 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1951 	}
1952 }
1953 
1954 /* Start sequence of the skb just after the highest skb with SACKed
1955  * bit, valid only if sacked_out > 0 or when the caller has ensured
1956  * validity by itself.
1957  */
1958 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1959 {
1960 	if (!tp->sacked_out)
1961 		return tp->snd_una;
1962 
1963 	if (tp->highest_sack == NULL)
1964 		return tp->snd_nxt;
1965 
1966 	return TCP_SKB_CB(tp->highest_sack)->seq;
1967 }
1968 
1969 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1970 {
1971 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1972 }
1973 
1974 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1975 {
1976 	return tcp_sk(sk)->highest_sack;
1977 }
1978 
1979 static inline void tcp_highest_sack_reset(struct sock *sk)
1980 {
1981 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1982 }
1983 
1984 /* Called when old skb is about to be deleted and replaced by new skb */
1985 static inline void tcp_highest_sack_replace(struct sock *sk,
1986 					    struct sk_buff *old,
1987 					    struct sk_buff *new)
1988 {
1989 	if (old == tcp_highest_sack(sk))
1990 		tcp_sk(sk)->highest_sack = new;
1991 }
1992 
1993 /* This helper checks if socket has IP_TRANSPARENT set */
1994 static inline bool inet_sk_transparent(const struct sock *sk)
1995 {
1996 	switch (sk->sk_state) {
1997 	case TCP_TIME_WAIT:
1998 		return inet_twsk(sk)->tw_transparent;
1999 	case TCP_NEW_SYN_RECV:
2000 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2001 	}
2002 	return inet_sk(sk)->transparent;
2003 }
2004 
2005 /* Determines whether this is a thin stream (which may suffer from
2006  * increased latency). Used to trigger latency-reducing mechanisms.
2007  */
2008 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2009 {
2010 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2011 }
2012 
2013 /* /proc */
2014 enum tcp_seq_states {
2015 	TCP_SEQ_STATE_LISTENING,
2016 	TCP_SEQ_STATE_ESTABLISHED,
2017 };
2018 
2019 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2020 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2021 void tcp_seq_stop(struct seq_file *seq, void *v);
2022 
2023 struct tcp_seq_afinfo {
2024 	sa_family_t			family;
2025 };
2026 
2027 struct tcp_iter_state {
2028 	struct seq_net_private	p;
2029 	enum tcp_seq_states	state;
2030 	struct sock		*syn_wait_sk;
2031 	int			bucket, offset, sbucket, num;
2032 	loff_t			last_pos;
2033 };
2034 
2035 extern struct request_sock_ops tcp_request_sock_ops;
2036 extern struct request_sock_ops tcp6_request_sock_ops;
2037 
2038 void tcp_v4_destroy_sock(struct sock *sk);
2039 
2040 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2041 				netdev_features_t features);
2042 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2043 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2044 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2045 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2046 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2047 void tcp_gro_complete(struct sk_buff *skb);
2048 
2049 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2050 
2051 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2052 {
2053 	struct net *net = sock_net((struct sock *)tp);
2054 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2055 }
2056 
2057 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2058 
2059 #ifdef CONFIG_PROC_FS
2060 int tcp4_proc_init(void);
2061 void tcp4_proc_exit(void);
2062 #endif
2063 
2064 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2065 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2066 		     const struct tcp_request_sock_ops *af_ops,
2067 		     struct sock *sk, struct sk_buff *skb);
2068 
2069 /* TCP af-specific functions */
2070 struct tcp_sock_af_ops {
2071 #ifdef CONFIG_TCP_MD5SIG
2072 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2073 						const struct sock *addr_sk);
2074 	int		(*calc_md5_hash)(char *location,
2075 					 const struct tcp_md5sig_key *md5,
2076 					 const struct sock *sk,
2077 					 const struct sk_buff *skb);
2078 	int		(*md5_parse)(struct sock *sk,
2079 				     int optname,
2080 				     sockptr_t optval,
2081 				     int optlen);
2082 #endif
2083 };
2084 
2085 struct tcp_request_sock_ops {
2086 	u16 mss_clamp;
2087 #ifdef CONFIG_TCP_MD5SIG
2088 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2089 						 const struct sock *addr_sk);
2090 	int		(*calc_md5_hash) (char *location,
2091 					  const struct tcp_md5sig_key *md5,
2092 					  const struct sock *sk,
2093 					  const struct sk_buff *skb);
2094 #endif
2095 #ifdef CONFIG_SYN_COOKIES
2096 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2097 				 __u16 *mss);
2098 #endif
2099 	struct dst_entry *(*route_req)(const struct sock *sk,
2100 				       struct sk_buff *skb,
2101 				       struct flowi *fl,
2102 				       struct request_sock *req);
2103 	u32 (*init_seq)(const struct sk_buff *skb);
2104 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2105 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2106 			   struct flowi *fl, struct request_sock *req,
2107 			   struct tcp_fastopen_cookie *foc,
2108 			   enum tcp_synack_type synack_type,
2109 			   struct sk_buff *syn_skb);
2110 };
2111 
2112 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2113 #if IS_ENABLED(CONFIG_IPV6)
2114 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2115 #endif
2116 
2117 #ifdef CONFIG_SYN_COOKIES
2118 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2119 					 const struct sock *sk, struct sk_buff *skb,
2120 					 __u16 *mss)
2121 {
2122 	tcp_synq_overflow(sk);
2123 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2124 	return ops->cookie_init_seq(skb, mss);
2125 }
2126 #else
2127 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2128 					 const struct sock *sk, struct sk_buff *skb,
2129 					 __u16 *mss)
2130 {
2131 	return 0;
2132 }
2133 #endif
2134 
2135 int tcpv4_offload_init(void);
2136 
2137 void tcp_v4_init(void);
2138 void tcp_init(void);
2139 
2140 /* tcp_recovery.c */
2141 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2142 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2143 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2144 				u32 reo_wnd);
2145 extern bool tcp_rack_mark_lost(struct sock *sk);
2146 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2147 			     u64 xmit_time);
2148 extern void tcp_rack_reo_timeout(struct sock *sk);
2149 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2150 
2151 /* tcp_plb.c */
2152 
2153 /*
2154  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2155  * expects cong_ratio which represents fraction of traffic that experienced
2156  * congestion over a single RTT. In order to avoid floating point operations,
2157  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2158  */
2159 #define TCP_PLB_SCALE 8
2160 
2161 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2162 struct tcp_plb_state {
2163 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2164 		unused:3;
2165 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2166 };
2167 
2168 static inline void tcp_plb_init(const struct sock *sk,
2169 				struct tcp_plb_state *plb)
2170 {
2171 	plb->consec_cong_rounds = 0;
2172 	plb->pause_until = 0;
2173 }
2174 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2175 			  const int cong_ratio);
2176 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2177 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2178 
2179 /* At how many usecs into the future should the RTO fire? */
2180 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2181 {
2182 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2183 	u32 rto = inet_csk(sk)->icsk_rto;
2184 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2185 
2186 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2187 }
2188 
2189 /*
2190  * Save and compile IPv4 options, return a pointer to it
2191  */
2192 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2193 							 struct sk_buff *skb)
2194 {
2195 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2196 	struct ip_options_rcu *dopt = NULL;
2197 
2198 	if (opt->optlen) {
2199 		int opt_size = sizeof(*dopt) + opt->optlen;
2200 
2201 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2202 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2203 			kfree(dopt);
2204 			dopt = NULL;
2205 		}
2206 	}
2207 	return dopt;
2208 }
2209 
2210 /* locally generated TCP pure ACKs have skb->truesize == 2
2211  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2212  * This is much faster than dissecting the packet to find out.
2213  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2214  */
2215 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2216 {
2217 	return skb->truesize == 2;
2218 }
2219 
2220 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2221 {
2222 	skb->truesize = 2;
2223 }
2224 
2225 static inline int tcp_inq(struct sock *sk)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 	int answ;
2229 
2230 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2231 		answ = 0;
2232 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2233 		   !tp->urg_data ||
2234 		   before(tp->urg_seq, tp->copied_seq) ||
2235 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2236 
2237 		answ = tp->rcv_nxt - tp->copied_seq;
2238 
2239 		/* Subtract 1, if FIN was received */
2240 		if (answ && sock_flag(sk, SOCK_DONE))
2241 			answ--;
2242 	} else {
2243 		answ = tp->urg_seq - tp->copied_seq;
2244 	}
2245 
2246 	return answ;
2247 }
2248 
2249 int tcp_peek_len(struct socket *sock);
2250 
2251 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2252 {
2253 	u16 segs_in;
2254 
2255 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2256 
2257 	/* We update these fields while other threads might
2258 	 * read them from tcp_get_info()
2259 	 */
2260 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2261 	if (skb->len > tcp_hdrlen(skb))
2262 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2263 }
2264 
2265 /*
2266  * TCP listen path runs lockless.
2267  * We forced "struct sock" to be const qualified to make sure
2268  * we don't modify one of its field by mistake.
2269  * Here, we increment sk_drops which is an atomic_t, so we can safely
2270  * make sock writable again.
2271  */
2272 static inline void tcp_listendrop(const struct sock *sk)
2273 {
2274 	atomic_inc(&((struct sock *)sk)->sk_drops);
2275 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2276 }
2277 
2278 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2279 
2280 /*
2281  * Interface for adding Upper Level Protocols over TCP
2282  */
2283 
2284 #define TCP_ULP_NAME_MAX	16
2285 #define TCP_ULP_MAX		128
2286 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2287 
2288 struct tcp_ulp_ops {
2289 	struct list_head	list;
2290 
2291 	/* initialize ulp */
2292 	int (*init)(struct sock *sk);
2293 	/* update ulp */
2294 	void (*update)(struct sock *sk, struct proto *p,
2295 		       void (*write_space)(struct sock *sk));
2296 	/* cleanup ulp */
2297 	void (*release)(struct sock *sk);
2298 	/* diagnostic */
2299 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2300 	size_t (*get_info_size)(const struct sock *sk);
2301 	/* clone ulp */
2302 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2303 		      const gfp_t priority);
2304 
2305 	char		name[TCP_ULP_NAME_MAX];
2306 	struct module	*owner;
2307 };
2308 int tcp_register_ulp(struct tcp_ulp_ops *type);
2309 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2310 int tcp_set_ulp(struct sock *sk, const char *name);
2311 void tcp_get_available_ulp(char *buf, size_t len);
2312 void tcp_cleanup_ulp(struct sock *sk);
2313 void tcp_update_ulp(struct sock *sk, struct proto *p,
2314 		    void (*write_space)(struct sock *sk));
2315 
2316 #define MODULE_ALIAS_TCP_ULP(name)				\
2317 	__MODULE_INFO(alias, alias_userspace, name);		\
2318 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2319 
2320 #ifdef CONFIG_NET_SOCK_MSG
2321 struct sk_msg;
2322 struct sk_psock;
2323 
2324 #ifdef CONFIG_BPF_SYSCALL
2325 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2326 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2327 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2328 #endif /* CONFIG_BPF_SYSCALL */
2329 
2330 #ifdef CONFIG_INET
2331 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2332 #else
2333 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2334 {
2335 }
2336 #endif
2337 
2338 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2339 			  struct sk_msg *msg, u32 bytes, int flags);
2340 #endif /* CONFIG_NET_SOCK_MSG */
2341 
2342 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2343 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2344 {
2345 }
2346 #endif
2347 
2348 #ifdef CONFIG_CGROUP_BPF
2349 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2350 				      struct sk_buff *skb,
2351 				      unsigned int end_offset)
2352 {
2353 	skops->skb = skb;
2354 	skops->skb_data_end = skb->data + end_offset;
2355 }
2356 #else
2357 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2358 				      struct sk_buff *skb,
2359 				      unsigned int end_offset)
2360 {
2361 }
2362 #endif
2363 
2364 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2365  * is < 0, then the BPF op failed (for example if the loaded BPF
2366  * program does not support the chosen operation or there is no BPF
2367  * program loaded).
2368  */
2369 #ifdef CONFIG_BPF
2370 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2371 {
2372 	struct bpf_sock_ops_kern sock_ops;
2373 	int ret;
2374 
2375 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2376 	if (sk_fullsock(sk)) {
2377 		sock_ops.is_fullsock = 1;
2378 		sock_owned_by_me(sk);
2379 	}
2380 
2381 	sock_ops.sk = sk;
2382 	sock_ops.op = op;
2383 	if (nargs > 0)
2384 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2385 
2386 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2387 	if (ret == 0)
2388 		ret = sock_ops.reply;
2389 	else
2390 		ret = -1;
2391 	return ret;
2392 }
2393 
2394 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2395 {
2396 	u32 args[2] = {arg1, arg2};
2397 
2398 	return tcp_call_bpf(sk, op, 2, args);
2399 }
2400 
2401 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2402 				    u32 arg3)
2403 {
2404 	u32 args[3] = {arg1, arg2, arg3};
2405 
2406 	return tcp_call_bpf(sk, op, 3, args);
2407 }
2408 
2409 #else
2410 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2411 {
2412 	return -EPERM;
2413 }
2414 
2415 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2416 {
2417 	return -EPERM;
2418 }
2419 
2420 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2421 				    u32 arg3)
2422 {
2423 	return -EPERM;
2424 }
2425 
2426 #endif
2427 
2428 static inline u32 tcp_timeout_init(struct sock *sk)
2429 {
2430 	int timeout;
2431 
2432 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2433 
2434 	if (timeout <= 0)
2435 		timeout = TCP_TIMEOUT_INIT;
2436 	return min_t(int, timeout, TCP_RTO_MAX);
2437 }
2438 
2439 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2440 {
2441 	int rwnd;
2442 
2443 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2444 
2445 	if (rwnd < 0)
2446 		rwnd = 0;
2447 	return rwnd;
2448 }
2449 
2450 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2451 {
2452 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2453 }
2454 
2455 static inline void tcp_bpf_rtt(struct sock *sk)
2456 {
2457 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2458 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2459 }
2460 
2461 #if IS_ENABLED(CONFIG_SMC)
2462 extern struct static_key_false tcp_have_smc;
2463 #endif
2464 
2465 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2466 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2467 			     void (*cad)(struct sock *sk, u32 ack_seq));
2468 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2469 void clean_acked_data_flush(void);
2470 #endif
2471 
2472 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2473 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2474 				    const struct tcp_sock *tp)
2475 {
2476 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2477 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2478 }
2479 
2480 /* Compute Earliest Departure Time for some control packets
2481  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2482  */
2483 static inline u64 tcp_transmit_time(const struct sock *sk)
2484 {
2485 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2486 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2487 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2488 
2489 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2490 	}
2491 	return 0;
2492 }
2493 
2494 #endif	/* _TCP_H */
2495