1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 52 int tcp_orphan_count_sum(void); 53 54 void tcp_time_wait(struct sock *sk, int state, int timeo); 55 56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 57 #define MAX_TCP_OPTION_SPACE 40 58 #define TCP_MIN_SND_MSS 48 59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 60 61 /* 62 * Never offer a window over 32767 without using window scaling. Some 63 * poor stacks do signed 16bit maths! 64 */ 65 #define MAX_TCP_WINDOW 32767U 66 67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 68 #define TCP_MIN_MSS 88U 69 70 /* The initial MTU to use for probing */ 71 #define TCP_BASE_MSS 1024 72 73 /* probing interval, default to 10 minutes as per RFC4821 */ 74 #define TCP_PROBE_INTERVAL 600 75 76 /* Specify interval when tcp mtu probing will stop */ 77 #define TCP_PROBE_THRESHOLD 8 78 79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 80 #define TCP_FASTRETRANS_THRESH 3 81 82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 83 #define TCP_MAX_QUICKACKS 16U 84 85 /* Maximal number of window scale according to RFC1323 */ 86 #define TCP_MAX_WSCALE 14U 87 88 /* urg_data states */ 89 #define TCP_URG_VALID 0x0100 90 #define TCP_URG_NOTYET 0x0200 91 #define TCP_URG_READ 0x0400 92 93 #define TCP_RETR1 3 /* 94 * This is how many retries it does before it 95 * tries to figure out if the gateway is 96 * down. Minimal RFC value is 3; it corresponds 97 * to ~3sec-8min depending on RTO. 98 */ 99 100 #define TCP_RETR2 15 /* 101 * This should take at least 102 * 90 minutes to time out. 103 * RFC1122 says that the limit is 100 sec. 104 * 15 is ~13-30min depending on RTO. 105 */ 106 107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 108 * when active opening a connection. 109 * RFC1122 says the minimum retry MUST 110 * be at least 180secs. Nevertheless 111 * this value is corresponding to 112 * 63secs of retransmission with the 113 * current initial RTO. 114 */ 115 116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 117 * when passive opening a connection. 118 * This is corresponding to 31secs of 119 * retransmission with the current 120 * initial RTO. 121 */ 122 123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 124 * state, about 60 seconds */ 125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 126 /* BSD style FIN_WAIT2 deadlock breaker. 127 * It used to be 3min, new value is 60sec, 128 * to combine FIN-WAIT-2 timeout with 129 * TIME-WAIT timer. 130 */ 131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 132 133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 134 #if HZ >= 100 135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 136 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 137 #else 138 #define TCP_DELACK_MIN 4U 139 #define TCP_ATO_MIN 4U 140 #endif 141 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 142 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 146 * used as a fallback RTO for the 147 * initial data transmission if no 148 * valid RTT sample has been acquired, 149 * most likely due to retrans in 3WHS. 150 */ 151 152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 153 * for local resources. 154 */ 155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 157 #define TCP_KEEPALIVE_INTVL (75*HZ) 158 159 #define MAX_TCP_KEEPIDLE 32767 160 #define MAX_TCP_KEEPINTVL 32767 161 #define MAX_TCP_KEEPCNT 127 162 #define MAX_TCP_SYNCNT 127 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 255 256 extern struct percpu_counter tcp_sockets_allocated; 257 extern unsigned long tcp_memory_pressure; 258 259 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 260 static inline bool tcp_under_memory_pressure(const struct sock *sk) 261 { 262 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 263 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 264 return true; 265 266 return READ_ONCE(tcp_memory_pressure); 267 } 268 /* 269 * The next routines deal with comparing 32 bit unsigned ints 270 * and worry about wraparound (automatic with unsigned arithmetic). 271 */ 272 273 static inline bool before(__u32 seq1, __u32 seq2) 274 { 275 return (__s32)(seq1-seq2) < 0; 276 } 277 #define after(seq2, seq1) before(seq1, seq2) 278 279 /* is s2<=s1<=s3 ? */ 280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 281 { 282 return seq3 - seq2 >= seq1 - seq2; 283 } 284 285 static inline bool tcp_out_of_memory(struct sock *sk) 286 { 287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 289 return true; 290 return false; 291 } 292 293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 294 { 295 sk_wmem_queued_add(sk, -skb->truesize); 296 if (!skb_zcopy_pure(skb)) 297 sk_mem_uncharge(sk, skb->truesize); 298 else 299 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 300 __kfree_skb(skb); 301 } 302 303 void sk_forced_mem_schedule(struct sock *sk, int size); 304 305 bool tcp_check_oom(struct sock *sk, int shift); 306 307 308 extern struct proto tcp_prot; 309 310 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 311 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 314 315 void tcp_tasklet_init(void); 316 317 int tcp_v4_err(struct sk_buff *skb, u32); 318 319 void tcp_shutdown(struct sock *sk, int how); 320 321 int tcp_v4_early_demux(struct sk_buff *skb); 322 int tcp_v4_rcv(struct sk_buff *skb); 323 324 void tcp_remove_empty_skb(struct sock *sk); 325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 329 size_t size, struct ubuf_info *uarg); 330 void tcp_splice_eof(struct socket *sock); 331 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 332 int flags); 333 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 334 size_t size, int flags); 335 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 336 int tcp_wmem_schedule(struct sock *sk, int copy); 337 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 338 int size_goal); 339 void tcp_release_cb(struct sock *sk); 340 void tcp_wfree(struct sk_buff *skb); 341 void tcp_write_timer_handler(struct sock *sk); 342 void tcp_delack_timer_handler(struct sock *sk); 343 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 344 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 345 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_space_adjust(struct sock *sk); 347 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 348 void tcp_twsk_destructor(struct sock *sk); 349 void tcp_twsk_purge(struct list_head *net_exit_list, int family); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 354 bool force_schedule); 355 356 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 357 static inline void tcp_dec_quickack_mode(struct sock *sk, 358 const unsigned int pkts) 359 { 360 struct inet_connection_sock *icsk = inet_csk(sk); 361 362 if (icsk->icsk_ack.quick) { 363 if (pkts >= icsk->icsk_ack.quick) { 364 icsk->icsk_ack.quick = 0; 365 /* Leaving quickack mode we deflate ATO. */ 366 icsk->icsk_ack.ato = TCP_ATO_MIN; 367 } else 368 icsk->icsk_ack.quick -= pkts; 369 } 370 } 371 372 #define TCP_ECN_OK 1 373 #define TCP_ECN_QUEUE_CWR 2 374 #define TCP_ECN_DEMAND_CWR 4 375 #define TCP_ECN_SEEN 8 376 377 enum tcp_tw_status { 378 TCP_TW_SUCCESS = 0, 379 TCP_TW_RST = 1, 380 TCP_TW_ACK = 2, 381 TCP_TW_SYN = 3 382 }; 383 384 385 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 386 struct sk_buff *skb, 387 const struct tcphdr *th); 388 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 389 struct request_sock *req, bool fastopen, 390 bool *lost_race); 391 int tcp_child_process(struct sock *parent, struct sock *child, 392 struct sk_buff *skb); 393 void tcp_enter_loss(struct sock *sk); 394 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 395 void tcp_clear_retrans(struct tcp_sock *tp); 396 void tcp_update_metrics(struct sock *sk); 397 void tcp_init_metrics(struct sock *sk); 398 void tcp_metrics_init(void); 399 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 400 void __tcp_close(struct sock *sk, long timeout); 401 void tcp_close(struct sock *sk, long timeout); 402 void tcp_init_sock(struct sock *sk); 403 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 404 __poll_t tcp_poll(struct file *file, struct socket *sock, 405 struct poll_table_struct *wait); 406 int do_tcp_getsockopt(struct sock *sk, int level, 407 int optname, sockptr_t optval, sockptr_t optlen); 408 int tcp_getsockopt(struct sock *sk, int level, int optname, 409 char __user *optval, int __user *optlen); 410 bool tcp_bpf_bypass_getsockopt(int level, int optname); 411 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 412 sockptr_t optval, unsigned int optlen); 413 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 414 unsigned int optlen); 415 void tcp_set_keepalive(struct sock *sk, int val); 416 void tcp_syn_ack_timeout(const struct request_sock *req); 417 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 418 int flags, int *addr_len); 419 int tcp_set_rcvlowat(struct sock *sk, int val); 420 int tcp_set_window_clamp(struct sock *sk, int val); 421 void tcp_update_recv_tstamps(struct sk_buff *skb, 422 struct scm_timestamping_internal *tss); 423 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 424 struct scm_timestamping_internal *tss); 425 void tcp_data_ready(struct sock *sk); 426 #ifdef CONFIG_MMU 427 int tcp_mmap(struct file *file, struct socket *sock, 428 struct vm_area_struct *vma); 429 #endif 430 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 431 struct tcp_options_received *opt_rx, 432 int estab, struct tcp_fastopen_cookie *foc); 433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 434 435 /* 436 * BPF SKB-less helpers 437 */ 438 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 439 struct tcphdr *th, u32 *cookie); 440 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 441 struct tcphdr *th, u32 *cookie); 442 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 443 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 444 const struct tcp_request_sock_ops *af_ops, 445 struct sock *sk, struct tcphdr *th); 446 /* 447 * TCP v4 functions exported for the inet6 API 448 */ 449 450 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 451 void tcp_v4_mtu_reduced(struct sock *sk); 452 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 453 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 454 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 455 struct sock *tcp_create_openreq_child(const struct sock *sk, 456 struct request_sock *req, 457 struct sk_buff *skb); 458 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 459 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 460 struct request_sock *req, 461 struct dst_entry *dst, 462 struct request_sock *req_unhash, 463 bool *own_req); 464 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 465 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 466 int tcp_connect(struct sock *sk); 467 enum tcp_synack_type { 468 TCP_SYNACK_NORMAL, 469 TCP_SYNACK_FASTOPEN, 470 TCP_SYNACK_COOKIE, 471 }; 472 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 473 struct request_sock *req, 474 struct tcp_fastopen_cookie *foc, 475 enum tcp_synack_type synack_type, 476 struct sk_buff *syn_skb); 477 int tcp_disconnect(struct sock *sk, int flags); 478 479 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 480 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 481 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 482 483 /* From syncookies.c */ 484 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 485 struct request_sock *req, 486 struct dst_entry *dst, u32 tsoff); 487 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 488 u32 cookie); 489 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 490 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 491 const struct tcp_request_sock_ops *af_ops, 492 struct sock *sk, struct sk_buff *skb); 493 #ifdef CONFIG_SYN_COOKIES 494 495 /* Syncookies use a monotonic timer which increments every 60 seconds. 496 * This counter is used both as a hash input and partially encoded into 497 * the cookie value. A cookie is only validated further if the delta 498 * between the current counter value and the encoded one is less than this, 499 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 500 * the counter advances immediately after a cookie is generated). 501 */ 502 #define MAX_SYNCOOKIE_AGE 2 503 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 504 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 505 506 /* syncookies: remember time of last synqueue overflow 507 * But do not dirty this field too often (once per second is enough) 508 * It is racy as we do not hold a lock, but race is very minor. 509 */ 510 static inline void tcp_synq_overflow(const struct sock *sk) 511 { 512 unsigned int last_overflow; 513 unsigned int now = jiffies; 514 515 if (sk->sk_reuseport) { 516 struct sock_reuseport *reuse; 517 518 reuse = rcu_dereference(sk->sk_reuseport_cb); 519 if (likely(reuse)) { 520 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 521 if (!time_between32(now, last_overflow, 522 last_overflow + HZ)) 523 WRITE_ONCE(reuse->synq_overflow_ts, now); 524 return; 525 } 526 } 527 528 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 529 if (!time_between32(now, last_overflow, last_overflow + HZ)) 530 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 531 } 532 533 /* syncookies: no recent synqueue overflow on this listening socket? */ 534 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 535 { 536 unsigned int last_overflow; 537 unsigned int now = jiffies; 538 539 if (sk->sk_reuseport) { 540 struct sock_reuseport *reuse; 541 542 reuse = rcu_dereference(sk->sk_reuseport_cb); 543 if (likely(reuse)) { 544 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 545 return !time_between32(now, last_overflow - HZ, 546 last_overflow + 547 TCP_SYNCOOKIE_VALID); 548 } 549 } 550 551 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 552 553 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 554 * then we're under synflood. However, we have to use 555 * 'last_overflow - HZ' as lower bound. That's because a concurrent 556 * tcp_synq_overflow() could update .ts_recent_stamp after we read 557 * jiffies but before we store .ts_recent_stamp into last_overflow, 558 * which could lead to rejecting a valid syncookie. 559 */ 560 return !time_between32(now, last_overflow - HZ, 561 last_overflow + TCP_SYNCOOKIE_VALID); 562 } 563 564 static inline u32 tcp_cookie_time(void) 565 { 566 u64 val = get_jiffies_64(); 567 568 do_div(val, TCP_SYNCOOKIE_PERIOD); 569 return val; 570 } 571 572 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 573 u16 *mssp); 574 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 575 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 576 bool cookie_timestamp_decode(const struct net *net, 577 struct tcp_options_received *opt); 578 bool cookie_ecn_ok(const struct tcp_options_received *opt, 579 const struct net *net, const struct dst_entry *dst); 580 581 /* From net/ipv6/syncookies.c */ 582 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 583 u32 cookie); 584 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 585 586 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 587 const struct tcphdr *th, u16 *mssp); 588 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 589 #endif 590 /* tcp_output.c */ 591 592 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 593 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 594 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 595 int nonagle); 596 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 597 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 598 void tcp_retransmit_timer(struct sock *sk); 599 void tcp_xmit_retransmit_queue(struct sock *); 600 void tcp_simple_retransmit(struct sock *); 601 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 602 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 603 enum tcp_queue { 604 TCP_FRAG_IN_WRITE_QUEUE, 605 TCP_FRAG_IN_RTX_QUEUE, 606 }; 607 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 608 struct sk_buff *skb, u32 len, 609 unsigned int mss_now, gfp_t gfp); 610 611 void tcp_send_probe0(struct sock *); 612 void tcp_send_partial(struct sock *); 613 int tcp_write_wakeup(struct sock *, int mib); 614 void tcp_send_fin(struct sock *sk); 615 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 616 int tcp_send_synack(struct sock *); 617 void tcp_push_one(struct sock *, unsigned int mss_now); 618 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 619 void tcp_send_ack(struct sock *sk); 620 void tcp_send_delayed_ack(struct sock *sk); 621 void tcp_send_loss_probe(struct sock *sk); 622 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 623 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 624 const struct sk_buff *next_skb); 625 626 /* tcp_input.c */ 627 void tcp_rearm_rto(struct sock *sk); 628 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 629 void tcp_reset(struct sock *sk, struct sk_buff *skb); 630 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 631 void tcp_fin(struct sock *sk); 632 void tcp_check_space(struct sock *sk); 633 void tcp_sack_compress_send_ack(struct sock *sk); 634 635 /* tcp_timer.c */ 636 void tcp_init_xmit_timers(struct sock *); 637 static inline void tcp_clear_xmit_timers(struct sock *sk) 638 { 639 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 640 __sock_put(sk); 641 642 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 643 __sock_put(sk); 644 645 inet_csk_clear_xmit_timers(sk); 646 } 647 648 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 649 unsigned int tcp_current_mss(struct sock *sk); 650 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 651 652 /* Bound MSS / TSO packet size with the half of the window */ 653 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 654 { 655 int cutoff; 656 657 /* When peer uses tiny windows, there is no use in packetizing 658 * to sub-MSS pieces for the sake of SWS or making sure there 659 * are enough packets in the pipe for fast recovery. 660 * 661 * On the other hand, for extremely large MSS devices, handling 662 * smaller than MSS windows in this way does make sense. 663 */ 664 if (tp->max_window > TCP_MSS_DEFAULT) 665 cutoff = (tp->max_window >> 1); 666 else 667 cutoff = tp->max_window; 668 669 if (cutoff && pktsize > cutoff) 670 return max_t(int, cutoff, 68U - tp->tcp_header_len); 671 else 672 return pktsize; 673 } 674 675 /* tcp.c */ 676 void tcp_get_info(struct sock *, struct tcp_info *); 677 678 /* Read 'sendfile()'-style from a TCP socket */ 679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 680 sk_read_actor_t recv_actor); 681 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 682 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 683 void tcp_read_done(struct sock *sk, size_t len); 684 685 void tcp_initialize_rcv_mss(struct sock *sk); 686 687 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 688 int tcp_mss_to_mtu(struct sock *sk, int mss); 689 void tcp_mtup_init(struct sock *sk); 690 691 static inline void tcp_bound_rto(const struct sock *sk) 692 { 693 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 694 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 695 } 696 697 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 698 { 699 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 700 } 701 702 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 703 { 704 /* mptcp hooks are only on the slow path */ 705 if (sk_is_mptcp((struct sock *)tp)) 706 return; 707 708 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 709 ntohl(TCP_FLAG_ACK) | 710 snd_wnd); 711 } 712 713 static inline void tcp_fast_path_on(struct tcp_sock *tp) 714 { 715 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 716 } 717 718 static inline void tcp_fast_path_check(struct sock *sk) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 722 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 723 tp->rcv_wnd && 724 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 725 !tp->urg_data) 726 tcp_fast_path_on(tp); 727 } 728 729 /* Compute the actual rto_min value */ 730 static inline u32 tcp_rto_min(struct sock *sk) 731 { 732 const struct dst_entry *dst = __sk_dst_get(sk); 733 u32 rto_min = inet_csk(sk)->icsk_rto_min; 734 735 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 736 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 737 return rto_min; 738 } 739 740 static inline u32 tcp_rto_min_us(struct sock *sk) 741 { 742 return jiffies_to_usecs(tcp_rto_min(sk)); 743 } 744 745 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 746 { 747 return dst_metric_locked(dst, RTAX_CC_ALGO); 748 } 749 750 /* Minimum RTT in usec. ~0 means not available. */ 751 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 752 { 753 return minmax_get(&tp->rtt_min); 754 } 755 756 /* Compute the actual receive window we are currently advertising. 757 * Rcv_nxt can be after the window if our peer push more data 758 * than the offered window. 759 */ 760 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 761 { 762 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 763 764 if (win < 0) 765 win = 0; 766 return (u32) win; 767 } 768 769 /* Choose a new window, without checks for shrinking, and without 770 * scaling applied to the result. The caller does these things 771 * if necessary. This is a "raw" window selection. 772 */ 773 u32 __tcp_select_window(struct sock *sk); 774 775 void tcp_send_window_probe(struct sock *sk); 776 777 /* TCP uses 32bit jiffies to save some space. 778 * Note that this is different from tcp_time_stamp, which 779 * historically has been the same until linux-4.13. 780 */ 781 #define tcp_jiffies32 ((u32)jiffies) 782 783 /* 784 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 785 * It is no longer tied to jiffies, but to 1 ms clock. 786 * Note: double check if you want to use tcp_jiffies32 instead of this. 787 */ 788 #define TCP_TS_HZ 1000 789 790 static inline u64 tcp_clock_ns(void) 791 { 792 return ktime_get_ns(); 793 } 794 795 static inline u64 tcp_clock_us(void) 796 { 797 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 798 } 799 800 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 801 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 802 { 803 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 804 } 805 806 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 807 static inline u32 tcp_ns_to_ts(u64 ns) 808 { 809 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 810 } 811 812 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 813 static inline u32 tcp_time_stamp_raw(void) 814 { 815 return tcp_ns_to_ts(tcp_clock_ns()); 816 } 817 818 void tcp_mstamp_refresh(struct tcp_sock *tp); 819 820 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 821 { 822 return max_t(s64, t1 - t0, 0); 823 } 824 825 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 826 { 827 return tcp_ns_to_ts(skb->skb_mstamp_ns); 828 } 829 830 /* provide the departure time in us unit */ 831 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 832 { 833 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 834 } 835 836 837 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 838 839 #define TCPHDR_FIN 0x01 840 #define TCPHDR_SYN 0x02 841 #define TCPHDR_RST 0x04 842 #define TCPHDR_PSH 0x08 843 #define TCPHDR_ACK 0x10 844 #define TCPHDR_URG 0x20 845 #define TCPHDR_ECE 0x40 846 #define TCPHDR_CWR 0x80 847 848 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 849 850 /* This is what the send packet queuing engine uses to pass 851 * TCP per-packet control information to the transmission code. 852 * We also store the host-order sequence numbers in here too. 853 * This is 44 bytes if IPV6 is enabled. 854 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 855 */ 856 struct tcp_skb_cb { 857 __u32 seq; /* Starting sequence number */ 858 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 859 union { 860 /* Note : tcp_tw_isn is used in input path only 861 * (isn chosen by tcp_timewait_state_process()) 862 * 863 * tcp_gso_segs/size are used in write queue only, 864 * cf tcp_skb_pcount()/tcp_skb_mss() 865 */ 866 __u32 tcp_tw_isn; 867 struct { 868 u16 tcp_gso_segs; 869 u16 tcp_gso_size; 870 }; 871 }; 872 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 873 874 __u8 sacked; /* State flags for SACK. */ 875 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 876 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 877 #define TCPCB_LOST 0x04 /* SKB is lost */ 878 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 879 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 880 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 881 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 882 TCPCB_REPAIRED) 883 884 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 885 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 886 eor:1, /* Is skb MSG_EOR marked? */ 887 has_rxtstamp:1, /* SKB has a RX timestamp */ 888 unused:5; 889 __u32 ack_seq; /* Sequence number ACK'd */ 890 union { 891 struct { 892 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 893 /* There is space for up to 24 bytes */ 894 __u32 is_app_limited:1, /* cwnd not fully used? */ 895 delivered_ce:20, 896 unused:11; 897 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 898 __u32 delivered; 899 /* start of send pipeline phase */ 900 u64 first_tx_mstamp; 901 /* when we reached the "delivered" count */ 902 u64 delivered_mstamp; 903 } tx; /* only used for outgoing skbs */ 904 union { 905 struct inet_skb_parm h4; 906 #if IS_ENABLED(CONFIG_IPV6) 907 struct inet6_skb_parm h6; 908 #endif 909 } header; /* For incoming skbs */ 910 }; 911 }; 912 913 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 914 915 extern const struct inet_connection_sock_af_ops ipv4_specific; 916 917 #if IS_ENABLED(CONFIG_IPV6) 918 /* This is the variant of inet6_iif() that must be used by TCP, 919 * as TCP moves IP6CB into a different location in skb->cb[] 920 */ 921 static inline int tcp_v6_iif(const struct sk_buff *skb) 922 { 923 return TCP_SKB_CB(skb)->header.h6.iif; 924 } 925 926 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 927 { 928 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 929 930 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 931 } 932 933 /* TCP_SKB_CB reference means this can not be used from early demux */ 934 static inline int tcp_v6_sdif(const struct sk_buff *skb) 935 { 936 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 937 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 938 return TCP_SKB_CB(skb)->header.h6.iif; 939 #endif 940 return 0; 941 } 942 943 extern const struct inet_connection_sock_af_ops ipv6_specific; 944 945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 946 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 947 void tcp_v6_early_demux(struct sk_buff *skb); 948 949 #endif 950 951 /* TCP_SKB_CB reference means this can not be used from early demux */ 952 static inline int tcp_v4_sdif(struct sk_buff *skb) 953 { 954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 955 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 956 return TCP_SKB_CB(skb)->header.h4.iif; 957 #endif 958 return 0; 959 } 960 961 /* Due to TSO, an SKB can be composed of multiple actual 962 * packets. To keep these tracked properly, we use this. 963 */ 964 static inline int tcp_skb_pcount(const struct sk_buff *skb) 965 { 966 return TCP_SKB_CB(skb)->tcp_gso_segs; 967 } 968 969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 970 { 971 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 972 } 973 974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 975 { 976 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 977 } 978 979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 980 static inline int tcp_skb_mss(const struct sk_buff *skb) 981 { 982 return TCP_SKB_CB(skb)->tcp_gso_size; 983 } 984 985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 986 { 987 return likely(!TCP_SKB_CB(skb)->eor); 988 } 989 990 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 991 const struct sk_buff *from) 992 { 993 return likely(tcp_skb_can_collapse_to(to) && 994 mptcp_skb_can_collapse(to, from) && 995 skb_pure_zcopy_same(to, from)); 996 } 997 998 /* Events passed to congestion control interface */ 999 enum tcp_ca_event { 1000 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1001 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1002 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1003 CA_EVENT_LOSS, /* loss timeout */ 1004 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1005 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1006 }; 1007 1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1009 enum tcp_ca_ack_event_flags { 1010 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1011 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1012 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1013 }; 1014 1015 /* 1016 * Interface for adding new TCP congestion control handlers 1017 */ 1018 #define TCP_CA_NAME_MAX 16 1019 #define TCP_CA_MAX 128 1020 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1021 1022 #define TCP_CA_UNSPEC 0 1023 1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1025 #define TCP_CONG_NON_RESTRICTED 0x1 1026 /* Requires ECN/ECT set on all packets */ 1027 #define TCP_CONG_NEEDS_ECN 0x2 1028 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1029 1030 union tcp_cc_info; 1031 1032 struct ack_sample { 1033 u32 pkts_acked; 1034 s32 rtt_us; 1035 u32 in_flight; 1036 }; 1037 1038 /* A rate sample measures the number of (original/retransmitted) data 1039 * packets delivered "delivered" over an interval of time "interval_us". 1040 * The tcp_rate.c code fills in the rate sample, and congestion 1041 * control modules that define a cong_control function to run at the end 1042 * of ACK processing can optionally chose to consult this sample when 1043 * setting cwnd and pacing rate. 1044 * A sample is invalid if "delivered" or "interval_us" is negative. 1045 */ 1046 struct rate_sample { 1047 u64 prior_mstamp; /* starting timestamp for interval */ 1048 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1049 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1050 s32 delivered; /* number of packets delivered over interval */ 1051 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1052 long interval_us; /* time for tp->delivered to incr "delivered" */ 1053 u32 snd_interval_us; /* snd interval for delivered packets */ 1054 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1055 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1056 int losses; /* number of packets marked lost upon ACK */ 1057 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1058 u32 prior_in_flight; /* in flight before this ACK */ 1059 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1060 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1061 bool is_retrans; /* is sample from retransmission? */ 1062 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1063 }; 1064 1065 struct tcp_congestion_ops { 1066 /* fast path fields are put first to fill one cache line */ 1067 1068 /* return slow start threshold (required) */ 1069 u32 (*ssthresh)(struct sock *sk); 1070 1071 /* do new cwnd calculation (required) */ 1072 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1073 1074 /* call before changing ca_state (optional) */ 1075 void (*set_state)(struct sock *sk, u8 new_state); 1076 1077 /* call when cwnd event occurs (optional) */ 1078 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1079 1080 /* call when ack arrives (optional) */ 1081 void (*in_ack_event)(struct sock *sk, u32 flags); 1082 1083 /* hook for packet ack accounting (optional) */ 1084 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1085 1086 /* override sysctl_tcp_min_tso_segs */ 1087 u32 (*min_tso_segs)(struct sock *sk); 1088 1089 /* call when packets are delivered to update cwnd and pacing rate, 1090 * after all the ca_state processing. (optional) 1091 */ 1092 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1093 1094 1095 /* new value of cwnd after loss (required) */ 1096 u32 (*undo_cwnd)(struct sock *sk); 1097 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1098 u32 (*sndbuf_expand)(struct sock *sk); 1099 1100 /* control/slow paths put last */ 1101 /* get info for inet_diag (optional) */ 1102 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1103 union tcp_cc_info *info); 1104 1105 char name[TCP_CA_NAME_MAX]; 1106 struct module *owner; 1107 struct list_head list; 1108 u32 key; 1109 u32 flags; 1110 1111 /* initialize private data (optional) */ 1112 void (*init)(struct sock *sk); 1113 /* cleanup private data (optional) */ 1114 void (*release)(struct sock *sk); 1115 } ____cacheline_aligned_in_smp; 1116 1117 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1118 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1119 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1120 struct tcp_congestion_ops *old_type); 1121 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1122 1123 void tcp_assign_congestion_control(struct sock *sk); 1124 void tcp_init_congestion_control(struct sock *sk); 1125 void tcp_cleanup_congestion_control(struct sock *sk); 1126 int tcp_set_default_congestion_control(struct net *net, const char *name); 1127 void tcp_get_default_congestion_control(struct net *net, char *name); 1128 void tcp_get_available_congestion_control(char *buf, size_t len); 1129 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1130 int tcp_set_allowed_congestion_control(char *allowed); 1131 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1132 bool cap_net_admin); 1133 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1134 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1135 1136 u32 tcp_reno_ssthresh(struct sock *sk); 1137 u32 tcp_reno_undo_cwnd(struct sock *sk); 1138 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1139 extern struct tcp_congestion_ops tcp_reno; 1140 1141 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1142 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1143 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1144 #ifdef CONFIG_INET 1145 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1146 #else 1147 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1148 { 1149 return NULL; 1150 } 1151 #endif 1152 1153 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1154 { 1155 const struct inet_connection_sock *icsk = inet_csk(sk); 1156 1157 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1158 } 1159 1160 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1161 { 1162 const struct inet_connection_sock *icsk = inet_csk(sk); 1163 1164 if (icsk->icsk_ca_ops->cwnd_event) 1165 icsk->icsk_ca_ops->cwnd_event(sk, event); 1166 } 1167 1168 /* From tcp_cong.c */ 1169 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1170 1171 /* From tcp_rate.c */ 1172 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1173 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1174 struct rate_sample *rs); 1175 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1176 bool is_sack_reneg, struct rate_sample *rs); 1177 void tcp_rate_check_app_limited(struct sock *sk); 1178 1179 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1180 { 1181 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1182 } 1183 1184 /* These functions determine how the current flow behaves in respect of SACK 1185 * handling. SACK is negotiated with the peer, and therefore it can vary 1186 * between different flows. 1187 * 1188 * tcp_is_sack - SACK enabled 1189 * tcp_is_reno - No SACK 1190 */ 1191 static inline int tcp_is_sack(const struct tcp_sock *tp) 1192 { 1193 return likely(tp->rx_opt.sack_ok); 1194 } 1195 1196 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1197 { 1198 return !tcp_is_sack(tp); 1199 } 1200 1201 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1202 { 1203 return tp->sacked_out + tp->lost_out; 1204 } 1205 1206 /* This determines how many packets are "in the network" to the best 1207 * of our knowledge. In many cases it is conservative, but where 1208 * detailed information is available from the receiver (via SACK 1209 * blocks etc.) we can make more aggressive calculations. 1210 * 1211 * Use this for decisions involving congestion control, use just 1212 * tp->packets_out to determine if the send queue is empty or not. 1213 * 1214 * Read this equation as: 1215 * 1216 * "Packets sent once on transmission queue" MINUS 1217 * "Packets left network, but not honestly ACKed yet" PLUS 1218 * "Packets fast retransmitted" 1219 */ 1220 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1221 { 1222 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1223 } 1224 1225 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1226 1227 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1228 { 1229 return tp->snd_cwnd; 1230 } 1231 1232 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1233 { 1234 WARN_ON_ONCE((int)val <= 0); 1235 tp->snd_cwnd = val; 1236 } 1237 1238 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1239 { 1240 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1241 } 1242 1243 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1244 { 1245 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1246 } 1247 1248 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1249 { 1250 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1251 (1 << inet_csk(sk)->icsk_ca_state); 1252 } 1253 1254 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1255 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1256 * ssthresh. 1257 */ 1258 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1259 { 1260 const struct tcp_sock *tp = tcp_sk(sk); 1261 1262 if (tcp_in_cwnd_reduction(sk)) 1263 return tp->snd_ssthresh; 1264 else 1265 return max(tp->snd_ssthresh, 1266 ((tcp_snd_cwnd(tp) >> 1) + 1267 (tcp_snd_cwnd(tp) >> 2))); 1268 } 1269 1270 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1271 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1272 1273 void tcp_enter_cwr(struct sock *sk); 1274 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1275 1276 /* The maximum number of MSS of available cwnd for which TSO defers 1277 * sending if not using sysctl_tcp_tso_win_divisor. 1278 */ 1279 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1280 { 1281 return 3; 1282 } 1283 1284 /* Returns end sequence number of the receiver's advertised window */ 1285 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1286 { 1287 return tp->snd_una + tp->snd_wnd; 1288 } 1289 1290 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1291 * flexible approach. The RFC suggests cwnd should not be raised unless 1292 * it was fully used previously. And that's exactly what we do in 1293 * congestion avoidance mode. But in slow start we allow cwnd to grow 1294 * as long as the application has used half the cwnd. 1295 * Example : 1296 * cwnd is 10 (IW10), but application sends 9 frames. 1297 * We allow cwnd to reach 18 when all frames are ACKed. 1298 * This check is safe because it's as aggressive as slow start which already 1299 * risks 100% overshoot. The advantage is that we discourage application to 1300 * either send more filler packets or data to artificially blow up the cwnd 1301 * usage, and allow application-limited process to probe bw more aggressively. 1302 */ 1303 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1304 { 1305 const struct tcp_sock *tp = tcp_sk(sk); 1306 1307 if (tp->is_cwnd_limited) 1308 return true; 1309 1310 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1311 if (tcp_in_slow_start(tp)) 1312 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1313 1314 return false; 1315 } 1316 1317 /* BBR congestion control needs pacing. 1318 * Same remark for SO_MAX_PACING_RATE. 1319 * sch_fq packet scheduler is efficiently handling pacing, 1320 * but is not always installed/used. 1321 * Return true if TCP stack should pace packets itself. 1322 */ 1323 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1324 { 1325 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1326 } 1327 1328 /* Estimates in how many jiffies next packet for this flow can be sent. 1329 * Scheduling a retransmit timer too early would be silly. 1330 */ 1331 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1332 { 1333 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1334 1335 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1336 } 1337 1338 static inline void tcp_reset_xmit_timer(struct sock *sk, 1339 const int what, 1340 unsigned long when, 1341 const unsigned long max_when) 1342 { 1343 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1344 max_when); 1345 } 1346 1347 /* Something is really bad, we could not queue an additional packet, 1348 * because qdisc is full or receiver sent a 0 window, or we are paced. 1349 * We do not want to add fuel to the fire, or abort too early, 1350 * so make sure the timer we arm now is at least 200ms in the future, 1351 * regardless of current icsk_rto value (as it could be ~2ms) 1352 */ 1353 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1354 { 1355 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1356 } 1357 1358 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1359 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1360 unsigned long max_when) 1361 { 1362 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1363 inet_csk(sk)->icsk_backoff); 1364 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1365 1366 return (unsigned long)min_t(u64, when, max_when); 1367 } 1368 1369 static inline void tcp_check_probe_timer(struct sock *sk) 1370 { 1371 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1372 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1373 tcp_probe0_base(sk), TCP_RTO_MAX); 1374 } 1375 1376 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1377 { 1378 tp->snd_wl1 = seq; 1379 } 1380 1381 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1382 { 1383 tp->snd_wl1 = seq; 1384 } 1385 1386 /* 1387 * Calculate(/check) TCP checksum 1388 */ 1389 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1390 __be32 daddr, __wsum base) 1391 { 1392 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1393 } 1394 1395 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1396 { 1397 return !skb_csum_unnecessary(skb) && 1398 __skb_checksum_complete(skb); 1399 } 1400 1401 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1402 enum skb_drop_reason *reason); 1403 1404 1405 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1406 void tcp_set_state(struct sock *sk, int state); 1407 void tcp_done(struct sock *sk); 1408 int tcp_abort(struct sock *sk, int err); 1409 1410 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1411 { 1412 rx_opt->dsack = 0; 1413 rx_opt->num_sacks = 0; 1414 } 1415 1416 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1417 1418 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1419 { 1420 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1421 struct tcp_sock *tp = tcp_sk(sk); 1422 s32 delta; 1423 1424 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1425 tp->packets_out || ca_ops->cong_control) 1426 return; 1427 delta = tcp_jiffies32 - tp->lsndtime; 1428 if (delta > inet_csk(sk)->icsk_rto) 1429 tcp_cwnd_restart(sk, delta); 1430 } 1431 1432 /* Determine a window scaling and initial window to offer. */ 1433 void tcp_select_initial_window(const struct sock *sk, int __space, 1434 __u32 mss, __u32 *rcv_wnd, 1435 __u32 *window_clamp, int wscale_ok, 1436 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1437 1438 static inline int tcp_win_from_space(const struct sock *sk, int space) 1439 { 1440 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale); 1441 1442 return tcp_adv_win_scale <= 0 ? 1443 (space>>(-tcp_adv_win_scale)) : 1444 space - (space>>tcp_adv_win_scale); 1445 } 1446 1447 /* Note: caller must be prepared to deal with negative returns */ 1448 static inline int tcp_space(const struct sock *sk) 1449 { 1450 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1451 READ_ONCE(sk->sk_backlog.len) - 1452 atomic_read(&sk->sk_rmem_alloc)); 1453 } 1454 1455 static inline int tcp_full_space(const struct sock *sk) 1456 { 1457 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1458 } 1459 1460 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1461 { 1462 int unused_mem = sk_unused_reserved_mem(sk); 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 1465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 1466 if (unused_mem) 1467 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1468 tcp_win_from_space(sk, unused_mem)); 1469 } 1470 1471 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1472 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1473 1474 1475 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1476 * If 87.5 % (7/8) of the space has been consumed, we want to override 1477 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1478 * len/truesize ratio. 1479 */ 1480 static inline bool tcp_rmem_pressure(const struct sock *sk) 1481 { 1482 int rcvbuf, threshold; 1483 1484 if (tcp_under_memory_pressure(sk)) 1485 return true; 1486 1487 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1488 threshold = rcvbuf - (rcvbuf >> 3); 1489 1490 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1491 } 1492 1493 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1494 { 1495 const struct tcp_sock *tp = tcp_sk(sk); 1496 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1497 1498 if (avail <= 0) 1499 return false; 1500 1501 return (avail >= target) || tcp_rmem_pressure(sk) || 1502 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1503 } 1504 1505 extern void tcp_openreq_init_rwin(struct request_sock *req, 1506 const struct sock *sk_listener, 1507 const struct dst_entry *dst); 1508 1509 void tcp_enter_memory_pressure(struct sock *sk); 1510 void tcp_leave_memory_pressure(struct sock *sk); 1511 1512 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1513 { 1514 struct net *net = sock_net((struct sock *)tp); 1515 1516 return tp->keepalive_intvl ? : 1517 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1518 } 1519 1520 static inline int keepalive_time_when(const struct tcp_sock *tp) 1521 { 1522 struct net *net = sock_net((struct sock *)tp); 1523 1524 return tp->keepalive_time ? : 1525 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1526 } 1527 1528 static inline int keepalive_probes(const struct tcp_sock *tp) 1529 { 1530 struct net *net = sock_net((struct sock *)tp); 1531 1532 return tp->keepalive_probes ? : 1533 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1534 } 1535 1536 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1537 { 1538 const struct inet_connection_sock *icsk = &tp->inet_conn; 1539 1540 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1541 tcp_jiffies32 - tp->rcv_tstamp); 1542 } 1543 1544 static inline int tcp_fin_time(const struct sock *sk) 1545 { 1546 int fin_timeout = tcp_sk(sk)->linger2 ? : 1547 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1548 const int rto = inet_csk(sk)->icsk_rto; 1549 1550 if (fin_timeout < (rto << 2) - (rto >> 1)) 1551 fin_timeout = (rto << 2) - (rto >> 1); 1552 1553 return fin_timeout; 1554 } 1555 1556 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1557 int paws_win) 1558 { 1559 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1560 return true; 1561 if (unlikely(!time_before32(ktime_get_seconds(), 1562 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1563 return true; 1564 /* 1565 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1566 * then following tcp messages have valid values. Ignore 0 value, 1567 * or else 'negative' tsval might forbid us to accept their packets. 1568 */ 1569 if (!rx_opt->ts_recent) 1570 return true; 1571 return false; 1572 } 1573 1574 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1575 int rst) 1576 { 1577 if (tcp_paws_check(rx_opt, 0)) 1578 return false; 1579 1580 /* RST segments are not recommended to carry timestamp, 1581 and, if they do, it is recommended to ignore PAWS because 1582 "their cleanup function should take precedence over timestamps." 1583 Certainly, it is mistake. It is necessary to understand the reasons 1584 of this constraint to relax it: if peer reboots, clock may go 1585 out-of-sync and half-open connections will not be reset. 1586 Actually, the problem would be not existing if all 1587 the implementations followed draft about maintaining clock 1588 via reboots. Linux-2.2 DOES NOT! 1589 1590 However, we can relax time bounds for RST segments to MSL. 1591 */ 1592 if (rst && !time_before32(ktime_get_seconds(), 1593 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1594 return false; 1595 return true; 1596 } 1597 1598 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1599 int mib_idx, u32 *last_oow_ack_time); 1600 1601 static inline void tcp_mib_init(struct net *net) 1602 { 1603 /* See RFC 2012 */ 1604 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1605 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1606 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1607 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1608 } 1609 1610 /* from STCP */ 1611 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1612 { 1613 tp->lost_skb_hint = NULL; 1614 } 1615 1616 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1617 { 1618 tcp_clear_retrans_hints_partial(tp); 1619 tp->retransmit_skb_hint = NULL; 1620 } 1621 1622 union tcp_md5_addr { 1623 struct in_addr a4; 1624 #if IS_ENABLED(CONFIG_IPV6) 1625 struct in6_addr a6; 1626 #endif 1627 }; 1628 1629 /* - key database */ 1630 struct tcp_md5sig_key { 1631 struct hlist_node node; 1632 u8 keylen; 1633 u8 family; /* AF_INET or AF_INET6 */ 1634 u8 prefixlen; 1635 u8 flags; 1636 union tcp_md5_addr addr; 1637 int l3index; /* set if key added with L3 scope */ 1638 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1639 struct rcu_head rcu; 1640 }; 1641 1642 /* - sock block */ 1643 struct tcp_md5sig_info { 1644 struct hlist_head head; 1645 struct rcu_head rcu; 1646 }; 1647 1648 /* - pseudo header */ 1649 struct tcp4_pseudohdr { 1650 __be32 saddr; 1651 __be32 daddr; 1652 __u8 pad; 1653 __u8 protocol; 1654 __be16 len; 1655 }; 1656 1657 struct tcp6_pseudohdr { 1658 struct in6_addr saddr; 1659 struct in6_addr daddr; 1660 __be32 len; 1661 __be32 protocol; /* including padding */ 1662 }; 1663 1664 union tcp_md5sum_block { 1665 struct tcp4_pseudohdr ip4; 1666 #if IS_ENABLED(CONFIG_IPV6) 1667 struct tcp6_pseudohdr ip6; 1668 #endif 1669 }; 1670 1671 /* - pool: digest algorithm, hash description and scratch buffer */ 1672 struct tcp_md5sig_pool { 1673 struct ahash_request *md5_req; 1674 void *scratch; 1675 }; 1676 1677 /* - functions */ 1678 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1679 const struct sock *sk, const struct sk_buff *skb); 1680 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1681 int family, u8 prefixlen, int l3index, u8 flags, 1682 const u8 *newkey, u8 newkeylen); 1683 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1684 int family, u8 prefixlen, int l3index, 1685 struct tcp_md5sig_key *key); 1686 1687 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1688 int family, u8 prefixlen, int l3index, u8 flags); 1689 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1690 const struct sock *addr_sk); 1691 1692 #ifdef CONFIG_TCP_MD5SIG 1693 #include <linux/jump_label.h> 1694 extern struct static_key_false_deferred tcp_md5_needed; 1695 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1696 const union tcp_md5_addr *addr, 1697 int family); 1698 static inline struct tcp_md5sig_key * 1699 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1700 const union tcp_md5_addr *addr, int family) 1701 { 1702 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1703 return NULL; 1704 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1705 } 1706 1707 enum skb_drop_reason 1708 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1709 const void *saddr, const void *daddr, 1710 int family, int dif, int sdif); 1711 1712 1713 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1714 #else 1715 static inline struct tcp_md5sig_key * 1716 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1717 const union tcp_md5_addr *addr, int family) 1718 { 1719 return NULL; 1720 } 1721 1722 static inline enum skb_drop_reason 1723 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1724 const void *saddr, const void *daddr, 1725 int family, int dif, int sdif) 1726 { 1727 return SKB_NOT_DROPPED_YET; 1728 } 1729 #define tcp_twsk_md5_key(twsk) NULL 1730 #endif 1731 1732 bool tcp_alloc_md5sig_pool(void); 1733 1734 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1735 static inline void tcp_put_md5sig_pool(void) 1736 { 1737 local_bh_enable(); 1738 } 1739 1740 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1741 unsigned int header_len); 1742 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1743 const struct tcp_md5sig_key *key); 1744 1745 /* From tcp_fastopen.c */ 1746 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1747 struct tcp_fastopen_cookie *cookie); 1748 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1749 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1750 u16 try_exp); 1751 struct tcp_fastopen_request { 1752 /* Fast Open cookie. Size 0 means a cookie request */ 1753 struct tcp_fastopen_cookie cookie; 1754 struct msghdr *data; /* data in MSG_FASTOPEN */ 1755 size_t size; 1756 int copied; /* queued in tcp_connect() */ 1757 struct ubuf_info *uarg; 1758 }; 1759 void tcp_free_fastopen_req(struct tcp_sock *tp); 1760 void tcp_fastopen_destroy_cipher(struct sock *sk); 1761 void tcp_fastopen_ctx_destroy(struct net *net); 1762 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1763 void *primary_key, void *backup_key); 1764 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1765 u64 *key); 1766 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1767 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1768 struct request_sock *req, 1769 struct tcp_fastopen_cookie *foc, 1770 const struct dst_entry *dst); 1771 void tcp_fastopen_init_key_once(struct net *net); 1772 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1773 struct tcp_fastopen_cookie *cookie); 1774 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1775 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1776 #define TCP_FASTOPEN_KEY_MAX 2 1777 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1778 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1779 1780 /* Fastopen key context */ 1781 struct tcp_fastopen_context { 1782 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1783 int num; 1784 struct rcu_head rcu; 1785 }; 1786 1787 void tcp_fastopen_active_disable(struct sock *sk); 1788 bool tcp_fastopen_active_should_disable(struct sock *sk); 1789 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1790 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1791 1792 /* Caller needs to wrap with rcu_read_(un)lock() */ 1793 static inline 1794 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1795 { 1796 struct tcp_fastopen_context *ctx; 1797 1798 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1799 if (!ctx) 1800 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1801 return ctx; 1802 } 1803 1804 static inline 1805 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1806 const struct tcp_fastopen_cookie *orig) 1807 { 1808 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1809 orig->len == foc->len && 1810 !memcmp(orig->val, foc->val, foc->len)) 1811 return true; 1812 return false; 1813 } 1814 1815 static inline 1816 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1817 { 1818 return ctx->num; 1819 } 1820 1821 /* Latencies incurred by various limits for a sender. They are 1822 * chronograph-like stats that are mutually exclusive. 1823 */ 1824 enum tcp_chrono { 1825 TCP_CHRONO_UNSPEC, 1826 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1827 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1828 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1829 __TCP_CHRONO_MAX, 1830 }; 1831 1832 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1833 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1834 1835 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1836 * the same memory storage than skb->destructor/_skb_refdst 1837 */ 1838 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1839 { 1840 skb->destructor = NULL; 1841 skb->_skb_refdst = 0UL; 1842 } 1843 1844 #define tcp_skb_tsorted_save(skb) { \ 1845 unsigned long _save = skb->_skb_refdst; \ 1846 skb->_skb_refdst = 0UL; 1847 1848 #define tcp_skb_tsorted_restore(skb) \ 1849 skb->_skb_refdst = _save; \ 1850 } 1851 1852 void tcp_write_queue_purge(struct sock *sk); 1853 1854 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1855 { 1856 return skb_rb_first(&sk->tcp_rtx_queue); 1857 } 1858 1859 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1860 { 1861 return skb_rb_last(&sk->tcp_rtx_queue); 1862 } 1863 1864 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1865 { 1866 return skb_peek_tail(&sk->sk_write_queue); 1867 } 1868 1869 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1870 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1871 1872 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1873 { 1874 return skb_peek(&sk->sk_write_queue); 1875 } 1876 1877 static inline bool tcp_skb_is_last(const struct sock *sk, 1878 const struct sk_buff *skb) 1879 { 1880 return skb_queue_is_last(&sk->sk_write_queue, skb); 1881 } 1882 1883 /** 1884 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1885 * @sk: socket 1886 * 1887 * Since the write queue can have a temporary empty skb in it, 1888 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1889 */ 1890 static inline bool tcp_write_queue_empty(const struct sock *sk) 1891 { 1892 const struct tcp_sock *tp = tcp_sk(sk); 1893 1894 return tp->write_seq == tp->snd_nxt; 1895 } 1896 1897 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1898 { 1899 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1900 } 1901 1902 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1903 { 1904 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1905 } 1906 1907 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1908 { 1909 __skb_queue_tail(&sk->sk_write_queue, skb); 1910 1911 /* Queue it, remembering where we must start sending. */ 1912 if (sk->sk_write_queue.next == skb) 1913 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1914 } 1915 1916 /* Insert new before skb on the write queue of sk. */ 1917 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1918 struct sk_buff *skb, 1919 struct sock *sk) 1920 { 1921 __skb_queue_before(&sk->sk_write_queue, skb, new); 1922 } 1923 1924 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1925 { 1926 tcp_skb_tsorted_anchor_cleanup(skb); 1927 __skb_unlink(skb, &sk->sk_write_queue); 1928 } 1929 1930 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1931 1932 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1933 { 1934 tcp_skb_tsorted_anchor_cleanup(skb); 1935 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1936 } 1937 1938 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1939 { 1940 list_del(&skb->tcp_tsorted_anchor); 1941 tcp_rtx_queue_unlink(skb, sk); 1942 tcp_wmem_free_skb(sk, skb); 1943 } 1944 1945 static inline void tcp_push_pending_frames(struct sock *sk) 1946 { 1947 if (tcp_send_head(sk)) { 1948 struct tcp_sock *tp = tcp_sk(sk); 1949 1950 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1951 } 1952 } 1953 1954 /* Start sequence of the skb just after the highest skb with SACKed 1955 * bit, valid only if sacked_out > 0 or when the caller has ensured 1956 * validity by itself. 1957 */ 1958 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1959 { 1960 if (!tp->sacked_out) 1961 return tp->snd_una; 1962 1963 if (tp->highest_sack == NULL) 1964 return tp->snd_nxt; 1965 1966 return TCP_SKB_CB(tp->highest_sack)->seq; 1967 } 1968 1969 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1970 { 1971 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1972 } 1973 1974 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1975 { 1976 return tcp_sk(sk)->highest_sack; 1977 } 1978 1979 static inline void tcp_highest_sack_reset(struct sock *sk) 1980 { 1981 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1982 } 1983 1984 /* Called when old skb is about to be deleted and replaced by new skb */ 1985 static inline void tcp_highest_sack_replace(struct sock *sk, 1986 struct sk_buff *old, 1987 struct sk_buff *new) 1988 { 1989 if (old == tcp_highest_sack(sk)) 1990 tcp_sk(sk)->highest_sack = new; 1991 } 1992 1993 /* This helper checks if socket has IP_TRANSPARENT set */ 1994 static inline bool inet_sk_transparent(const struct sock *sk) 1995 { 1996 switch (sk->sk_state) { 1997 case TCP_TIME_WAIT: 1998 return inet_twsk(sk)->tw_transparent; 1999 case TCP_NEW_SYN_RECV: 2000 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2001 } 2002 return inet_sk(sk)->transparent; 2003 } 2004 2005 /* Determines whether this is a thin stream (which may suffer from 2006 * increased latency). Used to trigger latency-reducing mechanisms. 2007 */ 2008 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2009 { 2010 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2011 } 2012 2013 /* /proc */ 2014 enum tcp_seq_states { 2015 TCP_SEQ_STATE_LISTENING, 2016 TCP_SEQ_STATE_ESTABLISHED, 2017 }; 2018 2019 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2020 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2021 void tcp_seq_stop(struct seq_file *seq, void *v); 2022 2023 struct tcp_seq_afinfo { 2024 sa_family_t family; 2025 }; 2026 2027 struct tcp_iter_state { 2028 struct seq_net_private p; 2029 enum tcp_seq_states state; 2030 struct sock *syn_wait_sk; 2031 int bucket, offset, sbucket, num; 2032 loff_t last_pos; 2033 }; 2034 2035 extern struct request_sock_ops tcp_request_sock_ops; 2036 extern struct request_sock_ops tcp6_request_sock_ops; 2037 2038 void tcp_v4_destroy_sock(struct sock *sk); 2039 2040 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2041 netdev_features_t features); 2042 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 2043 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2044 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2045 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2046 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2047 void tcp_gro_complete(struct sk_buff *skb); 2048 2049 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2050 2051 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2052 { 2053 struct net *net = sock_net((struct sock *)tp); 2054 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2055 } 2056 2057 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2058 2059 #ifdef CONFIG_PROC_FS 2060 int tcp4_proc_init(void); 2061 void tcp4_proc_exit(void); 2062 #endif 2063 2064 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2065 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2066 const struct tcp_request_sock_ops *af_ops, 2067 struct sock *sk, struct sk_buff *skb); 2068 2069 /* TCP af-specific functions */ 2070 struct tcp_sock_af_ops { 2071 #ifdef CONFIG_TCP_MD5SIG 2072 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2073 const struct sock *addr_sk); 2074 int (*calc_md5_hash)(char *location, 2075 const struct tcp_md5sig_key *md5, 2076 const struct sock *sk, 2077 const struct sk_buff *skb); 2078 int (*md5_parse)(struct sock *sk, 2079 int optname, 2080 sockptr_t optval, 2081 int optlen); 2082 #endif 2083 }; 2084 2085 struct tcp_request_sock_ops { 2086 u16 mss_clamp; 2087 #ifdef CONFIG_TCP_MD5SIG 2088 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2089 const struct sock *addr_sk); 2090 int (*calc_md5_hash) (char *location, 2091 const struct tcp_md5sig_key *md5, 2092 const struct sock *sk, 2093 const struct sk_buff *skb); 2094 #endif 2095 #ifdef CONFIG_SYN_COOKIES 2096 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2097 __u16 *mss); 2098 #endif 2099 struct dst_entry *(*route_req)(const struct sock *sk, 2100 struct sk_buff *skb, 2101 struct flowi *fl, 2102 struct request_sock *req); 2103 u32 (*init_seq)(const struct sk_buff *skb); 2104 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2105 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2106 struct flowi *fl, struct request_sock *req, 2107 struct tcp_fastopen_cookie *foc, 2108 enum tcp_synack_type synack_type, 2109 struct sk_buff *syn_skb); 2110 }; 2111 2112 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2113 #if IS_ENABLED(CONFIG_IPV6) 2114 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2115 #endif 2116 2117 #ifdef CONFIG_SYN_COOKIES 2118 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2119 const struct sock *sk, struct sk_buff *skb, 2120 __u16 *mss) 2121 { 2122 tcp_synq_overflow(sk); 2123 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2124 return ops->cookie_init_seq(skb, mss); 2125 } 2126 #else 2127 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2128 const struct sock *sk, struct sk_buff *skb, 2129 __u16 *mss) 2130 { 2131 return 0; 2132 } 2133 #endif 2134 2135 int tcpv4_offload_init(void); 2136 2137 void tcp_v4_init(void); 2138 void tcp_init(void); 2139 2140 /* tcp_recovery.c */ 2141 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2142 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2143 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2144 u32 reo_wnd); 2145 extern bool tcp_rack_mark_lost(struct sock *sk); 2146 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2147 u64 xmit_time); 2148 extern void tcp_rack_reo_timeout(struct sock *sk); 2149 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2150 2151 /* tcp_plb.c */ 2152 2153 /* 2154 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2155 * expects cong_ratio which represents fraction of traffic that experienced 2156 * congestion over a single RTT. In order to avoid floating point operations, 2157 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2158 */ 2159 #define TCP_PLB_SCALE 8 2160 2161 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2162 struct tcp_plb_state { 2163 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2164 unused:3; 2165 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2166 }; 2167 2168 static inline void tcp_plb_init(const struct sock *sk, 2169 struct tcp_plb_state *plb) 2170 { 2171 plb->consec_cong_rounds = 0; 2172 plb->pause_until = 0; 2173 } 2174 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2175 const int cong_ratio); 2176 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2177 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2178 2179 /* At how many usecs into the future should the RTO fire? */ 2180 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2181 { 2182 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2183 u32 rto = inet_csk(sk)->icsk_rto; 2184 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2185 2186 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2187 } 2188 2189 /* 2190 * Save and compile IPv4 options, return a pointer to it 2191 */ 2192 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2193 struct sk_buff *skb) 2194 { 2195 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2196 struct ip_options_rcu *dopt = NULL; 2197 2198 if (opt->optlen) { 2199 int opt_size = sizeof(*dopt) + opt->optlen; 2200 2201 dopt = kmalloc(opt_size, GFP_ATOMIC); 2202 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2203 kfree(dopt); 2204 dopt = NULL; 2205 } 2206 } 2207 return dopt; 2208 } 2209 2210 /* locally generated TCP pure ACKs have skb->truesize == 2 2211 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2212 * This is much faster than dissecting the packet to find out. 2213 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2214 */ 2215 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2216 { 2217 return skb->truesize == 2; 2218 } 2219 2220 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2221 { 2222 skb->truesize = 2; 2223 } 2224 2225 static inline int tcp_inq(struct sock *sk) 2226 { 2227 struct tcp_sock *tp = tcp_sk(sk); 2228 int answ; 2229 2230 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2231 answ = 0; 2232 } else if (sock_flag(sk, SOCK_URGINLINE) || 2233 !tp->urg_data || 2234 before(tp->urg_seq, tp->copied_seq) || 2235 !before(tp->urg_seq, tp->rcv_nxt)) { 2236 2237 answ = tp->rcv_nxt - tp->copied_seq; 2238 2239 /* Subtract 1, if FIN was received */ 2240 if (answ && sock_flag(sk, SOCK_DONE)) 2241 answ--; 2242 } else { 2243 answ = tp->urg_seq - tp->copied_seq; 2244 } 2245 2246 return answ; 2247 } 2248 2249 int tcp_peek_len(struct socket *sock); 2250 2251 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2252 { 2253 u16 segs_in; 2254 2255 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2256 2257 /* We update these fields while other threads might 2258 * read them from tcp_get_info() 2259 */ 2260 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2261 if (skb->len > tcp_hdrlen(skb)) 2262 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2263 } 2264 2265 /* 2266 * TCP listen path runs lockless. 2267 * We forced "struct sock" to be const qualified to make sure 2268 * we don't modify one of its field by mistake. 2269 * Here, we increment sk_drops which is an atomic_t, so we can safely 2270 * make sock writable again. 2271 */ 2272 static inline void tcp_listendrop(const struct sock *sk) 2273 { 2274 atomic_inc(&((struct sock *)sk)->sk_drops); 2275 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2276 } 2277 2278 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2279 2280 /* 2281 * Interface for adding Upper Level Protocols over TCP 2282 */ 2283 2284 #define TCP_ULP_NAME_MAX 16 2285 #define TCP_ULP_MAX 128 2286 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2287 2288 struct tcp_ulp_ops { 2289 struct list_head list; 2290 2291 /* initialize ulp */ 2292 int (*init)(struct sock *sk); 2293 /* update ulp */ 2294 void (*update)(struct sock *sk, struct proto *p, 2295 void (*write_space)(struct sock *sk)); 2296 /* cleanup ulp */ 2297 void (*release)(struct sock *sk); 2298 /* diagnostic */ 2299 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2300 size_t (*get_info_size)(const struct sock *sk); 2301 /* clone ulp */ 2302 void (*clone)(const struct request_sock *req, struct sock *newsk, 2303 const gfp_t priority); 2304 2305 char name[TCP_ULP_NAME_MAX]; 2306 struct module *owner; 2307 }; 2308 int tcp_register_ulp(struct tcp_ulp_ops *type); 2309 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2310 int tcp_set_ulp(struct sock *sk, const char *name); 2311 void tcp_get_available_ulp(char *buf, size_t len); 2312 void tcp_cleanup_ulp(struct sock *sk); 2313 void tcp_update_ulp(struct sock *sk, struct proto *p, 2314 void (*write_space)(struct sock *sk)); 2315 2316 #define MODULE_ALIAS_TCP_ULP(name) \ 2317 __MODULE_INFO(alias, alias_userspace, name); \ 2318 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2319 2320 #ifdef CONFIG_NET_SOCK_MSG 2321 struct sk_msg; 2322 struct sk_psock; 2323 2324 #ifdef CONFIG_BPF_SYSCALL 2325 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2326 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2327 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2328 #endif /* CONFIG_BPF_SYSCALL */ 2329 2330 #ifdef CONFIG_INET 2331 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2332 #else 2333 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2334 { 2335 } 2336 #endif 2337 2338 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2339 struct sk_msg *msg, u32 bytes, int flags); 2340 #endif /* CONFIG_NET_SOCK_MSG */ 2341 2342 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2343 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2344 { 2345 } 2346 #endif 2347 2348 #ifdef CONFIG_CGROUP_BPF 2349 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2350 struct sk_buff *skb, 2351 unsigned int end_offset) 2352 { 2353 skops->skb = skb; 2354 skops->skb_data_end = skb->data + end_offset; 2355 } 2356 #else 2357 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2358 struct sk_buff *skb, 2359 unsigned int end_offset) 2360 { 2361 } 2362 #endif 2363 2364 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2365 * is < 0, then the BPF op failed (for example if the loaded BPF 2366 * program does not support the chosen operation or there is no BPF 2367 * program loaded). 2368 */ 2369 #ifdef CONFIG_BPF 2370 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2371 { 2372 struct bpf_sock_ops_kern sock_ops; 2373 int ret; 2374 2375 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2376 if (sk_fullsock(sk)) { 2377 sock_ops.is_fullsock = 1; 2378 sock_owned_by_me(sk); 2379 } 2380 2381 sock_ops.sk = sk; 2382 sock_ops.op = op; 2383 if (nargs > 0) 2384 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2385 2386 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2387 if (ret == 0) 2388 ret = sock_ops.reply; 2389 else 2390 ret = -1; 2391 return ret; 2392 } 2393 2394 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2395 { 2396 u32 args[2] = {arg1, arg2}; 2397 2398 return tcp_call_bpf(sk, op, 2, args); 2399 } 2400 2401 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2402 u32 arg3) 2403 { 2404 u32 args[3] = {arg1, arg2, arg3}; 2405 2406 return tcp_call_bpf(sk, op, 3, args); 2407 } 2408 2409 #else 2410 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2411 { 2412 return -EPERM; 2413 } 2414 2415 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2416 { 2417 return -EPERM; 2418 } 2419 2420 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2421 u32 arg3) 2422 { 2423 return -EPERM; 2424 } 2425 2426 #endif 2427 2428 static inline u32 tcp_timeout_init(struct sock *sk) 2429 { 2430 int timeout; 2431 2432 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2433 2434 if (timeout <= 0) 2435 timeout = TCP_TIMEOUT_INIT; 2436 return min_t(int, timeout, TCP_RTO_MAX); 2437 } 2438 2439 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2440 { 2441 int rwnd; 2442 2443 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2444 2445 if (rwnd < 0) 2446 rwnd = 0; 2447 return rwnd; 2448 } 2449 2450 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2451 { 2452 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2453 } 2454 2455 static inline void tcp_bpf_rtt(struct sock *sk) 2456 { 2457 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2458 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2459 } 2460 2461 #if IS_ENABLED(CONFIG_SMC) 2462 extern struct static_key_false tcp_have_smc; 2463 #endif 2464 2465 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2466 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2467 void (*cad)(struct sock *sk, u32 ack_seq)); 2468 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2469 void clean_acked_data_flush(void); 2470 #endif 2471 2472 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2473 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2474 const struct tcp_sock *tp) 2475 { 2476 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2477 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2478 } 2479 2480 /* Compute Earliest Departure Time for some control packets 2481 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2482 */ 2483 static inline u64 tcp_transmit_time(const struct sock *sk) 2484 { 2485 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2486 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2487 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2488 2489 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2490 } 2491 return 0; 2492 } 2493 2494 #endif /* _TCP_H */ 2495