xref: /openbmc/linux/include/net/tcp.h (revision 151f4e2b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock_reuseport.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 extern struct percpu_counter tcp_orphan_count;
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The least MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 
130 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN	((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN	4U
136 #define TCP_ATO_MIN	4U
137 #endif
138 #define TCP_RTO_MAX	((unsigned)(120*HZ))
139 #define TCP_RTO_MIN	((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
141 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
142 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
143 						 * used as a fallback RTO for the
144 						 * initial data transmission if no
145 						 * valid RTT sample has been acquired,
146 						 * most likely due to retrans in 3WHS.
147 						 */
148 
149 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
150 					                 * for local resources.
151 					                 */
152 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
153 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
154 #define TCP_KEEPALIVE_INTVL	(75*HZ)
155 
156 #define MAX_TCP_KEEPIDLE	32767
157 #define MAX_TCP_KEEPINTVL	32767
158 #define MAX_TCP_KEEPCNT		127
159 #define MAX_TCP_SYNCNT		127
160 
161 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
162 
163 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
164 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
165 					 * after this time. It should be equal
166 					 * (or greater than) TCP_TIMEWAIT_LEN
167 					 * to provide reliability equal to one
168 					 * provided by timewait state.
169 					 */
170 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
171 					 * timestamps. It must be less than
172 					 * minimal timewait lifetime.
173 					 */
174 /*
175  *	TCP option
176  */
177 
178 #define TCPOPT_NOP		1	/* Padding */
179 #define TCPOPT_EOL		0	/* End of options */
180 #define TCPOPT_MSS		2	/* Segment size negotiating */
181 #define TCPOPT_WINDOW		3	/* Window scaling */
182 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
183 #define TCPOPT_SACK             5       /* SACK Block */
184 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
185 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return tcp_memory_pressure;
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 int tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 void tcp_release_cb(struct sock *sk);
333 void tcp_wfree(struct sk_buff *skb);
334 void tcp_write_timer_handler(struct sock *sk);
335 void tcp_delack_timer_handler(struct sock *sk);
336 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
337 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
339 void tcp_rcv_space_adjust(struct sock *sk);
340 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
341 void tcp_twsk_destructor(struct sock *sk);
342 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
343 			struct pipe_inode_info *pipe, size_t len,
344 			unsigned int flags);
345 
346 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
347 static inline void tcp_dec_quickack_mode(struct sock *sk,
348 					 const unsigned int pkts)
349 {
350 	struct inet_connection_sock *icsk = inet_csk(sk);
351 
352 	if (icsk->icsk_ack.quick) {
353 		if (pkts >= icsk->icsk_ack.quick) {
354 			icsk->icsk_ack.quick = 0;
355 			/* Leaving quickack mode we deflate ATO. */
356 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357 		} else
358 			icsk->icsk_ack.quick -= pkts;
359 	}
360 }
361 
362 #define	TCP_ECN_OK		1
363 #define	TCP_ECN_QUEUE_CWR	2
364 #define	TCP_ECN_DEMAND_CWR	4
365 #define	TCP_ECN_SEEN		8
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 					      struct sk_buff *skb,
377 					      const struct tcphdr *th);
378 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379 			   struct request_sock *req, bool fastopen,
380 			   bool *lost_race);
381 int tcp_child_process(struct sock *parent, struct sock *child,
382 		      struct sk_buff *skb);
383 void tcp_enter_loss(struct sock *sk);
384 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385 void tcp_clear_retrans(struct tcp_sock *tp);
386 void tcp_update_metrics(struct sock *sk);
387 void tcp_init_metrics(struct sock *sk);
388 void tcp_metrics_init(void);
389 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390 void tcp_close(struct sock *sk, long timeout);
391 void tcp_init_sock(struct sock *sk);
392 void tcp_init_transfer(struct sock *sk, int bpf_op);
393 __poll_t tcp_poll(struct file *file, struct socket *sock,
394 		      struct poll_table_struct *wait);
395 int tcp_getsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, int __user *optlen);
397 int tcp_setsockopt(struct sock *sk, int level, int optname,
398 		   char __user *optval, unsigned int optlen);
399 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, int __user *optlen);
401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
402 			  char __user *optval, unsigned int optlen);
403 void tcp_set_keepalive(struct sock *sk, int val);
404 void tcp_syn_ack_timeout(const struct request_sock *req);
405 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
406 		int flags, int *addr_len);
407 int tcp_set_rcvlowat(struct sock *sk, int val);
408 void tcp_data_ready(struct sock *sk);
409 #ifdef CONFIG_MMU
410 int tcp_mmap(struct file *file, struct socket *sock,
411 	     struct vm_area_struct *vma);
412 #endif
413 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
414 		       struct tcp_options_received *opt_rx,
415 		       int estab, struct tcp_fastopen_cookie *foc);
416 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
417 
418 /*
419  *	TCP v4 functions exported for the inet6 API
420  */
421 
422 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
423 void tcp_v4_mtu_reduced(struct sock *sk);
424 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
425 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
426 struct sock *tcp_create_openreq_child(const struct sock *sk,
427 				      struct request_sock *req,
428 				      struct sk_buff *skb);
429 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
430 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
431 				  struct request_sock *req,
432 				  struct dst_entry *dst,
433 				  struct request_sock *req_unhash,
434 				  bool *own_req);
435 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
436 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
437 int tcp_connect(struct sock *sk);
438 enum tcp_synack_type {
439 	TCP_SYNACK_NORMAL,
440 	TCP_SYNACK_FASTOPEN,
441 	TCP_SYNACK_COOKIE,
442 };
443 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
444 				struct request_sock *req,
445 				struct tcp_fastopen_cookie *foc,
446 				enum tcp_synack_type synack_type);
447 int tcp_disconnect(struct sock *sk, int flags);
448 
449 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
450 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
451 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
452 
453 /* From syncookies.c */
454 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
455 				 struct request_sock *req,
456 				 struct dst_entry *dst, u32 tsoff);
457 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
458 		      u32 cookie);
459 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
460 #ifdef CONFIG_SYN_COOKIES
461 
462 /* Syncookies use a monotonic timer which increments every 60 seconds.
463  * This counter is used both as a hash input and partially encoded into
464  * the cookie value.  A cookie is only validated further if the delta
465  * between the current counter value and the encoded one is less than this,
466  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
467  * the counter advances immediately after a cookie is generated).
468  */
469 #define MAX_SYNCOOKIE_AGE	2
470 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
471 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
472 
473 /* syncookies: remember time of last synqueue overflow
474  * But do not dirty this field too often (once per second is enough)
475  * It is racy as we do not hold a lock, but race is very minor.
476  */
477 static inline void tcp_synq_overflow(const struct sock *sk)
478 {
479 	unsigned int last_overflow;
480 	unsigned int now = jiffies;
481 
482 	if (sk->sk_reuseport) {
483 		struct sock_reuseport *reuse;
484 
485 		reuse = rcu_dereference(sk->sk_reuseport_cb);
486 		if (likely(reuse)) {
487 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
488 			if (time_after32(now, last_overflow + HZ))
489 				WRITE_ONCE(reuse->synq_overflow_ts, now);
490 			return;
491 		}
492 	}
493 
494 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
495 	if (time_after32(now, last_overflow + HZ))
496 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
497 }
498 
499 /* syncookies: no recent synqueue overflow on this listening socket? */
500 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
501 {
502 	unsigned int last_overflow;
503 	unsigned int now = jiffies;
504 
505 	if (sk->sk_reuseport) {
506 		struct sock_reuseport *reuse;
507 
508 		reuse = rcu_dereference(sk->sk_reuseport_cb);
509 		if (likely(reuse)) {
510 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
511 			return time_after32(now, last_overflow +
512 					    TCP_SYNCOOKIE_VALID);
513 		}
514 	}
515 
516 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
517 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
518 }
519 
520 static inline u32 tcp_cookie_time(void)
521 {
522 	u64 val = get_jiffies_64();
523 
524 	do_div(val, TCP_SYNCOOKIE_PERIOD);
525 	return val;
526 }
527 
528 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
529 			      u16 *mssp);
530 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
531 u64 cookie_init_timestamp(struct request_sock *req);
532 bool cookie_timestamp_decode(const struct net *net,
533 			     struct tcp_options_received *opt);
534 bool cookie_ecn_ok(const struct tcp_options_received *opt,
535 		   const struct net *net, const struct dst_entry *dst);
536 
537 /* From net/ipv6/syncookies.c */
538 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
539 		      u32 cookie);
540 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
541 
542 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
543 			      const struct tcphdr *th, u16 *mssp);
544 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
545 #endif
546 /* tcp_output.c */
547 
548 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
549 			       int nonagle);
550 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
551 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
552 void tcp_retransmit_timer(struct sock *sk);
553 void tcp_xmit_retransmit_queue(struct sock *);
554 void tcp_simple_retransmit(struct sock *);
555 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
556 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
557 enum tcp_queue {
558 	TCP_FRAG_IN_WRITE_QUEUE,
559 	TCP_FRAG_IN_RTX_QUEUE,
560 };
561 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
562 		 struct sk_buff *skb, u32 len,
563 		 unsigned int mss_now, gfp_t gfp);
564 
565 void tcp_send_probe0(struct sock *);
566 void tcp_send_partial(struct sock *);
567 int tcp_write_wakeup(struct sock *, int mib);
568 void tcp_send_fin(struct sock *sk);
569 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
570 int tcp_send_synack(struct sock *);
571 void tcp_push_one(struct sock *, unsigned int mss_now);
572 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
573 void tcp_send_ack(struct sock *sk);
574 void tcp_send_delayed_ack(struct sock *sk);
575 void tcp_send_loss_probe(struct sock *sk);
576 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
577 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
578 			     const struct sk_buff *next_skb);
579 
580 /* tcp_input.c */
581 void tcp_rearm_rto(struct sock *sk);
582 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
583 void tcp_reset(struct sock *sk);
584 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
585 void tcp_fin(struct sock *sk);
586 
587 /* tcp_timer.c */
588 void tcp_init_xmit_timers(struct sock *);
589 static inline void tcp_clear_xmit_timers(struct sock *sk)
590 {
591 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
592 		__sock_put(sk);
593 
594 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
595 		__sock_put(sk);
596 
597 	inet_csk_clear_xmit_timers(sk);
598 }
599 
600 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
601 unsigned int tcp_current_mss(struct sock *sk);
602 
603 /* Bound MSS / TSO packet size with the half of the window */
604 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
605 {
606 	int cutoff;
607 
608 	/* When peer uses tiny windows, there is no use in packetizing
609 	 * to sub-MSS pieces for the sake of SWS or making sure there
610 	 * are enough packets in the pipe for fast recovery.
611 	 *
612 	 * On the other hand, for extremely large MSS devices, handling
613 	 * smaller than MSS windows in this way does make sense.
614 	 */
615 	if (tp->max_window > TCP_MSS_DEFAULT)
616 		cutoff = (tp->max_window >> 1);
617 	else
618 		cutoff = tp->max_window;
619 
620 	if (cutoff && pktsize > cutoff)
621 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
622 	else
623 		return pktsize;
624 }
625 
626 /* tcp.c */
627 void tcp_get_info(struct sock *, struct tcp_info *);
628 
629 /* Read 'sendfile()'-style from a TCP socket */
630 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
631 		  sk_read_actor_t recv_actor);
632 
633 void tcp_initialize_rcv_mss(struct sock *sk);
634 
635 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
636 int tcp_mss_to_mtu(struct sock *sk, int mss);
637 void tcp_mtup_init(struct sock *sk);
638 void tcp_init_buffer_space(struct sock *sk);
639 
640 static inline void tcp_bound_rto(const struct sock *sk)
641 {
642 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
643 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
644 }
645 
646 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
647 {
648 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
649 }
650 
651 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
652 {
653 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
654 			       ntohl(TCP_FLAG_ACK) |
655 			       snd_wnd);
656 }
657 
658 static inline void tcp_fast_path_on(struct tcp_sock *tp)
659 {
660 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
661 }
662 
663 static inline void tcp_fast_path_check(struct sock *sk)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 
667 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
668 	    tp->rcv_wnd &&
669 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
670 	    !tp->urg_data)
671 		tcp_fast_path_on(tp);
672 }
673 
674 /* Compute the actual rto_min value */
675 static inline u32 tcp_rto_min(struct sock *sk)
676 {
677 	const struct dst_entry *dst = __sk_dst_get(sk);
678 	u32 rto_min = TCP_RTO_MIN;
679 
680 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
681 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
682 	return rto_min;
683 }
684 
685 static inline u32 tcp_rto_min_us(struct sock *sk)
686 {
687 	return jiffies_to_usecs(tcp_rto_min(sk));
688 }
689 
690 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
691 {
692 	return dst_metric_locked(dst, RTAX_CC_ALGO);
693 }
694 
695 /* Minimum RTT in usec. ~0 means not available. */
696 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
697 {
698 	return minmax_get(&tp->rtt_min);
699 }
700 
701 /* Compute the actual receive window we are currently advertising.
702  * Rcv_nxt can be after the window if our peer push more data
703  * than the offered window.
704  */
705 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
706 {
707 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
708 
709 	if (win < 0)
710 		win = 0;
711 	return (u32) win;
712 }
713 
714 /* Choose a new window, without checks for shrinking, and without
715  * scaling applied to the result.  The caller does these things
716  * if necessary.  This is a "raw" window selection.
717  */
718 u32 __tcp_select_window(struct sock *sk);
719 
720 void tcp_send_window_probe(struct sock *sk);
721 
722 /* TCP uses 32bit jiffies to save some space.
723  * Note that this is different from tcp_time_stamp, which
724  * historically has been the same until linux-4.13.
725  */
726 #define tcp_jiffies32 ((u32)jiffies)
727 
728 /*
729  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
730  * It is no longer tied to jiffies, but to 1 ms clock.
731  * Note: double check if you want to use tcp_jiffies32 instead of this.
732  */
733 #define TCP_TS_HZ	1000
734 
735 static inline u64 tcp_clock_ns(void)
736 {
737 	return ktime_get_ns();
738 }
739 
740 static inline u64 tcp_clock_us(void)
741 {
742 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
743 }
744 
745 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
746 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
747 {
748 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
749 }
750 
751 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
752 static inline u32 tcp_time_stamp_raw(void)
753 {
754 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
755 }
756 
757 void tcp_mstamp_refresh(struct tcp_sock *tp);
758 
759 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
760 {
761 	return max_t(s64, t1 - t0, 0);
762 }
763 
764 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
765 {
766 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
767 }
768 
769 /* provide the departure time in us unit */
770 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
771 {
772 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
773 }
774 
775 
776 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
777 
778 #define TCPHDR_FIN 0x01
779 #define TCPHDR_SYN 0x02
780 #define TCPHDR_RST 0x04
781 #define TCPHDR_PSH 0x08
782 #define TCPHDR_ACK 0x10
783 #define TCPHDR_URG 0x20
784 #define TCPHDR_ECE 0x40
785 #define TCPHDR_CWR 0x80
786 
787 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
788 
789 /* This is what the send packet queuing engine uses to pass
790  * TCP per-packet control information to the transmission code.
791  * We also store the host-order sequence numbers in here too.
792  * This is 44 bytes if IPV6 is enabled.
793  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
794  */
795 struct tcp_skb_cb {
796 	__u32		seq;		/* Starting sequence number	*/
797 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
798 	union {
799 		/* Note : tcp_tw_isn is used in input path only
800 		 *	  (isn chosen by tcp_timewait_state_process())
801 		 *
802 		 * 	  tcp_gso_segs/size are used in write queue only,
803 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
804 		 */
805 		__u32		tcp_tw_isn;
806 		struct {
807 			u16	tcp_gso_segs;
808 			u16	tcp_gso_size;
809 		};
810 	};
811 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
812 
813 	__u8		sacked;		/* State flags for SACK.	*/
814 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
815 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
816 #define TCPCB_LOST		0x04	/* SKB is lost			*/
817 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
818 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
819 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
820 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
821 				TCPCB_REPAIRED)
822 
823 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
824 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
825 			eor:1,		/* Is skb MSG_EOR marked? */
826 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
827 			unused:5;
828 	__u32		ack_seq;	/* Sequence number ACK'd	*/
829 	union {
830 		struct {
831 			/* There is space for up to 24 bytes */
832 			__u32 in_flight:30,/* Bytes in flight at transmit */
833 			      is_app_limited:1, /* cwnd not fully used? */
834 			      unused:1;
835 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
836 			__u32 delivered;
837 			/* start of send pipeline phase */
838 			u64 first_tx_mstamp;
839 			/* when we reached the "delivered" count */
840 			u64 delivered_mstamp;
841 		} tx;   /* only used for outgoing skbs */
842 		union {
843 			struct inet_skb_parm	h4;
844 #if IS_ENABLED(CONFIG_IPV6)
845 			struct inet6_skb_parm	h6;
846 #endif
847 		} header;	/* For incoming skbs */
848 		struct {
849 			__u32 flags;
850 			struct sock *sk_redir;
851 			void *data_end;
852 		} bpf;
853 	};
854 };
855 
856 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
857 
858 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
859 {
860 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
861 }
862 
863 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
864 {
865 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
866 }
867 
868 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
869 {
870 	return TCP_SKB_CB(skb)->bpf.sk_redir;
871 }
872 
873 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
874 {
875 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
876 }
877 
878 #if IS_ENABLED(CONFIG_IPV6)
879 /* This is the variant of inet6_iif() that must be used by TCP,
880  * as TCP moves IP6CB into a different location in skb->cb[]
881  */
882 static inline int tcp_v6_iif(const struct sk_buff *skb)
883 {
884 	return TCP_SKB_CB(skb)->header.h6.iif;
885 }
886 
887 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
888 {
889 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
890 
891 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
892 }
893 
894 /* TCP_SKB_CB reference means this can not be used from early demux */
895 static inline int tcp_v6_sdif(const struct sk_buff *skb)
896 {
897 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
898 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
899 		return TCP_SKB_CB(skb)->header.h6.iif;
900 #endif
901 	return 0;
902 }
903 #endif
904 
905 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
906 {
907 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
908 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
909 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
910 		return true;
911 #endif
912 	return false;
913 }
914 
915 /* TCP_SKB_CB reference means this can not be used from early demux */
916 static inline int tcp_v4_sdif(struct sk_buff *skb)
917 {
918 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
919 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
920 		return TCP_SKB_CB(skb)->header.h4.iif;
921 #endif
922 	return 0;
923 }
924 
925 /* Due to TSO, an SKB can be composed of multiple actual
926  * packets.  To keep these tracked properly, we use this.
927  */
928 static inline int tcp_skb_pcount(const struct sk_buff *skb)
929 {
930 	return TCP_SKB_CB(skb)->tcp_gso_segs;
931 }
932 
933 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
934 {
935 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
936 }
937 
938 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
939 {
940 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
941 }
942 
943 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
944 static inline int tcp_skb_mss(const struct sk_buff *skb)
945 {
946 	return TCP_SKB_CB(skb)->tcp_gso_size;
947 }
948 
949 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
950 {
951 	return likely(!TCP_SKB_CB(skb)->eor);
952 }
953 
954 /* Events passed to congestion control interface */
955 enum tcp_ca_event {
956 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
957 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
958 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
959 	CA_EVENT_LOSS,		/* loss timeout */
960 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
961 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
962 };
963 
964 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
965 enum tcp_ca_ack_event_flags {
966 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
967 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
968 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
969 };
970 
971 /*
972  * Interface for adding new TCP congestion control handlers
973  */
974 #define TCP_CA_NAME_MAX	16
975 #define TCP_CA_MAX	128
976 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
977 
978 #define TCP_CA_UNSPEC	0
979 
980 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
981 #define TCP_CONG_NON_RESTRICTED 0x1
982 /* Requires ECN/ECT set on all packets */
983 #define TCP_CONG_NEEDS_ECN	0x2
984 
985 union tcp_cc_info;
986 
987 struct ack_sample {
988 	u32 pkts_acked;
989 	s32 rtt_us;
990 	u32 in_flight;
991 };
992 
993 /* A rate sample measures the number of (original/retransmitted) data
994  * packets delivered "delivered" over an interval of time "interval_us".
995  * The tcp_rate.c code fills in the rate sample, and congestion
996  * control modules that define a cong_control function to run at the end
997  * of ACK processing can optionally chose to consult this sample when
998  * setting cwnd and pacing rate.
999  * A sample is invalid if "delivered" or "interval_us" is negative.
1000  */
1001 struct rate_sample {
1002 	u64  prior_mstamp; /* starting timestamp for interval */
1003 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1004 	s32  delivered;		/* number of packets delivered over interval */
1005 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1006 	u32 snd_interval_us;	/* snd interval for delivered packets */
1007 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1008 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1009 	int  losses;		/* number of packets marked lost upon ACK */
1010 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1011 	u32  prior_in_flight;	/* in flight before this ACK */
1012 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1013 	bool is_retrans;	/* is sample from retransmission? */
1014 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1015 };
1016 
1017 struct tcp_congestion_ops {
1018 	struct list_head	list;
1019 	u32 key;
1020 	u32 flags;
1021 
1022 	/* initialize private data (optional) */
1023 	void (*init)(struct sock *sk);
1024 	/* cleanup private data  (optional) */
1025 	void (*release)(struct sock *sk);
1026 
1027 	/* return slow start threshold (required) */
1028 	u32 (*ssthresh)(struct sock *sk);
1029 	/* do new cwnd calculation (required) */
1030 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1031 	/* call before changing ca_state (optional) */
1032 	void (*set_state)(struct sock *sk, u8 new_state);
1033 	/* call when cwnd event occurs (optional) */
1034 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1035 	/* call when ack arrives (optional) */
1036 	void (*in_ack_event)(struct sock *sk, u32 flags);
1037 	/* new value of cwnd after loss (required) */
1038 	u32  (*undo_cwnd)(struct sock *sk);
1039 	/* hook for packet ack accounting (optional) */
1040 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1041 	/* override sysctl_tcp_min_tso_segs */
1042 	u32 (*min_tso_segs)(struct sock *sk);
1043 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1044 	u32 (*sndbuf_expand)(struct sock *sk);
1045 	/* call when packets are delivered to update cwnd and pacing rate,
1046 	 * after all the ca_state processing. (optional)
1047 	 */
1048 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1049 	/* get info for inet_diag (optional) */
1050 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1051 			   union tcp_cc_info *info);
1052 
1053 	char 		name[TCP_CA_NAME_MAX];
1054 	struct module 	*owner;
1055 };
1056 
1057 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1058 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1059 
1060 void tcp_assign_congestion_control(struct sock *sk);
1061 void tcp_init_congestion_control(struct sock *sk);
1062 void tcp_cleanup_congestion_control(struct sock *sk);
1063 int tcp_set_default_congestion_control(struct net *net, const char *name);
1064 void tcp_get_default_congestion_control(struct net *net, char *name);
1065 void tcp_get_available_congestion_control(char *buf, size_t len);
1066 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1067 int tcp_set_allowed_congestion_control(char *allowed);
1068 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1069 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1070 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1071 
1072 u32 tcp_reno_ssthresh(struct sock *sk);
1073 u32 tcp_reno_undo_cwnd(struct sock *sk);
1074 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1075 extern struct tcp_congestion_ops tcp_reno;
1076 
1077 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1078 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1079 #ifdef CONFIG_INET
1080 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1081 #else
1082 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1083 {
1084 	return NULL;
1085 }
1086 #endif
1087 
1088 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1089 {
1090 	const struct inet_connection_sock *icsk = inet_csk(sk);
1091 
1092 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1093 }
1094 
1095 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1096 {
1097 	struct inet_connection_sock *icsk = inet_csk(sk);
1098 
1099 	if (icsk->icsk_ca_ops->set_state)
1100 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1101 	icsk->icsk_ca_state = ca_state;
1102 }
1103 
1104 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1105 {
1106 	const struct inet_connection_sock *icsk = inet_csk(sk);
1107 
1108 	if (icsk->icsk_ca_ops->cwnd_event)
1109 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1110 }
1111 
1112 /* From tcp_rate.c */
1113 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1114 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1115 			    struct rate_sample *rs);
1116 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1117 		  bool is_sack_reneg, struct rate_sample *rs);
1118 void tcp_rate_check_app_limited(struct sock *sk);
1119 
1120 /* These functions determine how the current flow behaves in respect of SACK
1121  * handling. SACK is negotiated with the peer, and therefore it can vary
1122  * between different flows.
1123  *
1124  * tcp_is_sack - SACK enabled
1125  * tcp_is_reno - No SACK
1126  */
1127 static inline int tcp_is_sack(const struct tcp_sock *tp)
1128 {
1129 	return likely(tp->rx_opt.sack_ok);
1130 }
1131 
1132 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1133 {
1134 	return !tcp_is_sack(tp);
1135 }
1136 
1137 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1138 {
1139 	return tp->sacked_out + tp->lost_out;
1140 }
1141 
1142 /* This determines how many packets are "in the network" to the best
1143  * of our knowledge.  In many cases it is conservative, but where
1144  * detailed information is available from the receiver (via SACK
1145  * blocks etc.) we can make more aggressive calculations.
1146  *
1147  * Use this for decisions involving congestion control, use just
1148  * tp->packets_out to determine if the send queue is empty or not.
1149  *
1150  * Read this equation as:
1151  *
1152  *	"Packets sent once on transmission queue" MINUS
1153  *	"Packets left network, but not honestly ACKed yet" PLUS
1154  *	"Packets fast retransmitted"
1155  */
1156 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1157 {
1158 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1159 }
1160 
1161 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1162 
1163 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1164 {
1165 	return tp->snd_cwnd < tp->snd_ssthresh;
1166 }
1167 
1168 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1169 {
1170 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1171 }
1172 
1173 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1174 {
1175 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1176 	       (1 << inet_csk(sk)->icsk_ca_state);
1177 }
1178 
1179 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1180  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1181  * ssthresh.
1182  */
1183 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1184 {
1185 	const struct tcp_sock *tp = tcp_sk(sk);
1186 
1187 	if (tcp_in_cwnd_reduction(sk))
1188 		return tp->snd_ssthresh;
1189 	else
1190 		return max(tp->snd_ssthresh,
1191 			   ((tp->snd_cwnd >> 1) +
1192 			    (tp->snd_cwnd >> 2)));
1193 }
1194 
1195 /* Use define here intentionally to get WARN_ON location shown at the caller */
1196 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1197 
1198 void tcp_enter_cwr(struct sock *sk);
1199 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1200 
1201 /* The maximum number of MSS of available cwnd for which TSO defers
1202  * sending if not using sysctl_tcp_tso_win_divisor.
1203  */
1204 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1205 {
1206 	return 3;
1207 }
1208 
1209 /* Returns end sequence number of the receiver's advertised window */
1210 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_una + tp->snd_wnd;
1213 }
1214 
1215 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1216  * flexible approach. The RFC suggests cwnd should not be raised unless
1217  * it was fully used previously. And that's exactly what we do in
1218  * congestion avoidance mode. But in slow start we allow cwnd to grow
1219  * as long as the application has used half the cwnd.
1220  * Example :
1221  *    cwnd is 10 (IW10), but application sends 9 frames.
1222  *    We allow cwnd to reach 18 when all frames are ACKed.
1223  * This check is safe because it's as aggressive as slow start which already
1224  * risks 100% overshoot. The advantage is that we discourage application to
1225  * either send more filler packets or data to artificially blow up the cwnd
1226  * usage, and allow application-limited process to probe bw more aggressively.
1227  */
1228 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1229 {
1230 	const struct tcp_sock *tp = tcp_sk(sk);
1231 
1232 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1233 	if (tcp_in_slow_start(tp))
1234 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1235 
1236 	return tp->is_cwnd_limited;
1237 }
1238 
1239 /* BBR congestion control needs pacing.
1240  * Same remark for SO_MAX_PACING_RATE.
1241  * sch_fq packet scheduler is efficiently handling pacing,
1242  * but is not always installed/used.
1243  * Return true if TCP stack should pace packets itself.
1244  */
1245 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1246 {
1247 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1248 }
1249 
1250 /* Return in jiffies the delay before one skb is sent.
1251  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1252  */
1253 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1254 					     const struct sk_buff *skb)
1255 {
1256 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1257 
1258 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1259 
1260 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1261 }
1262 
1263 static inline void tcp_reset_xmit_timer(struct sock *sk,
1264 					const int what,
1265 					unsigned long when,
1266 					const unsigned long max_when,
1267 					const struct sk_buff *skb)
1268 {
1269 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1270 				  max_when);
1271 }
1272 
1273 /* Something is really bad, we could not queue an additional packet,
1274  * because qdisc is full or receiver sent a 0 window, or we are paced.
1275  * We do not want to add fuel to the fire, or abort too early,
1276  * so make sure the timer we arm now is at least 200ms in the future,
1277  * regardless of current icsk_rto value (as it could be ~2ms)
1278  */
1279 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1280 {
1281 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1282 }
1283 
1284 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1285 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1286 					    unsigned long max_when)
1287 {
1288 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1289 
1290 	return (unsigned long)min_t(u64, when, max_when);
1291 }
1292 
1293 static inline void tcp_check_probe_timer(struct sock *sk)
1294 {
1295 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1296 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1297 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1298 				     NULL);
1299 }
1300 
1301 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1302 {
1303 	tp->snd_wl1 = seq;
1304 }
1305 
1306 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1307 {
1308 	tp->snd_wl1 = seq;
1309 }
1310 
1311 /*
1312  * Calculate(/check) TCP checksum
1313  */
1314 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1315 				   __be32 daddr, __wsum base)
1316 {
1317 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1318 }
1319 
1320 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1321 {
1322 	return !skb_csum_unnecessary(skb) &&
1323 		__skb_checksum_complete(skb);
1324 }
1325 
1326 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1327 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1328 void tcp_set_state(struct sock *sk, int state);
1329 void tcp_done(struct sock *sk);
1330 int tcp_abort(struct sock *sk, int err);
1331 
1332 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1333 {
1334 	rx_opt->dsack = 0;
1335 	rx_opt->num_sacks = 0;
1336 }
1337 
1338 u32 tcp_default_init_rwnd(u32 mss);
1339 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1340 
1341 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1342 {
1343 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 	s32 delta;
1346 
1347 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1348 	    ca_ops->cong_control)
1349 		return;
1350 	delta = tcp_jiffies32 - tp->lsndtime;
1351 	if (delta > inet_csk(sk)->icsk_rto)
1352 		tcp_cwnd_restart(sk, delta);
1353 }
1354 
1355 /* Determine a window scaling and initial window to offer. */
1356 void tcp_select_initial_window(const struct sock *sk, int __space,
1357 			       __u32 mss, __u32 *rcv_wnd,
1358 			       __u32 *window_clamp, int wscale_ok,
1359 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1360 
1361 static inline int tcp_win_from_space(const struct sock *sk, int space)
1362 {
1363 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1364 
1365 	return tcp_adv_win_scale <= 0 ?
1366 		(space>>(-tcp_adv_win_scale)) :
1367 		space - (space>>tcp_adv_win_scale);
1368 }
1369 
1370 /* Note: caller must be prepared to deal with negative returns */
1371 static inline int tcp_space(const struct sock *sk)
1372 {
1373 	return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1374 				  atomic_read(&sk->sk_rmem_alloc));
1375 }
1376 
1377 static inline int tcp_full_space(const struct sock *sk)
1378 {
1379 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1380 }
1381 
1382 extern void tcp_openreq_init_rwin(struct request_sock *req,
1383 				  const struct sock *sk_listener,
1384 				  const struct dst_entry *dst);
1385 
1386 void tcp_enter_memory_pressure(struct sock *sk);
1387 void tcp_leave_memory_pressure(struct sock *sk);
1388 
1389 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1390 {
1391 	struct net *net = sock_net((struct sock *)tp);
1392 
1393 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1394 }
1395 
1396 static inline int keepalive_time_when(const struct tcp_sock *tp)
1397 {
1398 	struct net *net = sock_net((struct sock *)tp);
1399 
1400 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1401 }
1402 
1403 static inline int keepalive_probes(const struct tcp_sock *tp)
1404 {
1405 	struct net *net = sock_net((struct sock *)tp);
1406 
1407 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1408 }
1409 
1410 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1411 {
1412 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1413 
1414 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1415 			  tcp_jiffies32 - tp->rcv_tstamp);
1416 }
1417 
1418 static inline int tcp_fin_time(const struct sock *sk)
1419 {
1420 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1421 	const int rto = inet_csk(sk)->icsk_rto;
1422 
1423 	if (fin_timeout < (rto << 2) - (rto >> 1))
1424 		fin_timeout = (rto << 2) - (rto >> 1);
1425 
1426 	return fin_timeout;
1427 }
1428 
1429 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1430 				  int paws_win)
1431 {
1432 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1433 		return true;
1434 	if (unlikely(!time_before32(ktime_get_seconds(),
1435 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1436 		return true;
1437 	/*
1438 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1439 	 * then following tcp messages have valid values. Ignore 0 value,
1440 	 * or else 'negative' tsval might forbid us to accept their packets.
1441 	 */
1442 	if (!rx_opt->ts_recent)
1443 		return true;
1444 	return false;
1445 }
1446 
1447 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1448 				   int rst)
1449 {
1450 	if (tcp_paws_check(rx_opt, 0))
1451 		return false;
1452 
1453 	/* RST segments are not recommended to carry timestamp,
1454 	   and, if they do, it is recommended to ignore PAWS because
1455 	   "their cleanup function should take precedence over timestamps."
1456 	   Certainly, it is mistake. It is necessary to understand the reasons
1457 	   of this constraint to relax it: if peer reboots, clock may go
1458 	   out-of-sync and half-open connections will not be reset.
1459 	   Actually, the problem would be not existing if all
1460 	   the implementations followed draft about maintaining clock
1461 	   via reboots. Linux-2.2 DOES NOT!
1462 
1463 	   However, we can relax time bounds for RST segments to MSL.
1464 	 */
1465 	if (rst && !time_before32(ktime_get_seconds(),
1466 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1467 		return false;
1468 	return true;
1469 }
1470 
1471 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1472 			  int mib_idx, u32 *last_oow_ack_time);
1473 
1474 static inline void tcp_mib_init(struct net *net)
1475 {
1476 	/* See RFC 2012 */
1477 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1478 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1479 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1480 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1481 }
1482 
1483 /* from STCP */
1484 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1485 {
1486 	tp->lost_skb_hint = NULL;
1487 }
1488 
1489 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1490 {
1491 	tcp_clear_retrans_hints_partial(tp);
1492 	tp->retransmit_skb_hint = NULL;
1493 }
1494 
1495 union tcp_md5_addr {
1496 	struct in_addr  a4;
1497 #if IS_ENABLED(CONFIG_IPV6)
1498 	struct in6_addr	a6;
1499 #endif
1500 };
1501 
1502 /* - key database */
1503 struct tcp_md5sig_key {
1504 	struct hlist_node	node;
1505 	u8			keylen;
1506 	u8			family; /* AF_INET or AF_INET6 */
1507 	union tcp_md5_addr	addr;
1508 	u8			prefixlen;
1509 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1510 	struct rcu_head		rcu;
1511 };
1512 
1513 /* - sock block */
1514 struct tcp_md5sig_info {
1515 	struct hlist_head	head;
1516 	struct rcu_head		rcu;
1517 };
1518 
1519 /* - pseudo header */
1520 struct tcp4_pseudohdr {
1521 	__be32		saddr;
1522 	__be32		daddr;
1523 	__u8		pad;
1524 	__u8		protocol;
1525 	__be16		len;
1526 };
1527 
1528 struct tcp6_pseudohdr {
1529 	struct in6_addr	saddr;
1530 	struct in6_addr daddr;
1531 	__be32		len;
1532 	__be32		protocol;	/* including padding */
1533 };
1534 
1535 union tcp_md5sum_block {
1536 	struct tcp4_pseudohdr ip4;
1537 #if IS_ENABLED(CONFIG_IPV6)
1538 	struct tcp6_pseudohdr ip6;
1539 #endif
1540 };
1541 
1542 /* - pool: digest algorithm, hash description and scratch buffer */
1543 struct tcp_md5sig_pool {
1544 	struct ahash_request	*md5_req;
1545 	void			*scratch;
1546 };
1547 
1548 /* - functions */
1549 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1550 			const struct sock *sk, const struct sk_buff *skb);
1551 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1552 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1553 		   gfp_t gfp);
1554 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1555 		   int family, u8 prefixlen);
1556 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1557 					 const struct sock *addr_sk);
1558 
1559 #ifdef CONFIG_TCP_MD5SIG
1560 #include <linux/jump_label.h>
1561 extern struct static_key_false tcp_md5_needed;
1562 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1563 					   const union tcp_md5_addr *addr,
1564 					   int family);
1565 static inline struct tcp_md5sig_key *
1566 tcp_md5_do_lookup(const struct sock *sk,
1567 		  const union tcp_md5_addr *addr,
1568 		  int family)
1569 {
1570 	if (!static_branch_unlikely(&tcp_md5_needed))
1571 		return NULL;
1572 	return __tcp_md5_do_lookup(sk, addr, family);
1573 }
1574 
1575 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1576 #else
1577 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1578 					 const union tcp_md5_addr *addr,
1579 					 int family)
1580 {
1581 	return NULL;
1582 }
1583 #define tcp_twsk_md5_key(twsk)	NULL
1584 #endif
1585 
1586 bool tcp_alloc_md5sig_pool(void);
1587 
1588 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1589 static inline void tcp_put_md5sig_pool(void)
1590 {
1591 	local_bh_enable();
1592 }
1593 
1594 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1595 			  unsigned int header_len);
1596 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1597 		     const struct tcp_md5sig_key *key);
1598 
1599 /* From tcp_fastopen.c */
1600 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1601 			    struct tcp_fastopen_cookie *cookie);
1602 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1603 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1604 			    u16 try_exp);
1605 struct tcp_fastopen_request {
1606 	/* Fast Open cookie. Size 0 means a cookie request */
1607 	struct tcp_fastopen_cookie	cookie;
1608 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1609 	size_t				size;
1610 	int				copied;	/* queued in tcp_connect() */
1611 	struct ubuf_info		*uarg;
1612 };
1613 void tcp_free_fastopen_req(struct tcp_sock *tp);
1614 void tcp_fastopen_destroy_cipher(struct sock *sk);
1615 void tcp_fastopen_ctx_destroy(struct net *net);
1616 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1617 			      void *key, unsigned int len);
1618 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1619 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1620 			      struct request_sock *req,
1621 			      struct tcp_fastopen_cookie *foc,
1622 			      const struct dst_entry *dst);
1623 void tcp_fastopen_init_key_once(struct net *net);
1624 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1625 			     struct tcp_fastopen_cookie *cookie);
1626 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1627 #define TCP_FASTOPEN_KEY_LENGTH 16
1628 
1629 /* Fastopen key context */
1630 struct tcp_fastopen_context {
1631 	struct crypto_cipher	*tfm;
1632 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1633 	struct rcu_head		rcu;
1634 };
1635 
1636 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1637 void tcp_fastopen_active_disable(struct sock *sk);
1638 bool tcp_fastopen_active_should_disable(struct sock *sk);
1639 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1640 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1641 
1642 /* Latencies incurred by various limits for a sender. They are
1643  * chronograph-like stats that are mutually exclusive.
1644  */
1645 enum tcp_chrono {
1646 	TCP_CHRONO_UNSPEC,
1647 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1648 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1649 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1650 	__TCP_CHRONO_MAX,
1651 };
1652 
1653 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1654 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1655 
1656 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1657  * the same memory storage than skb->destructor/_skb_refdst
1658  */
1659 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1660 {
1661 	skb->destructor = NULL;
1662 	skb->_skb_refdst = 0UL;
1663 }
1664 
1665 #define tcp_skb_tsorted_save(skb) {		\
1666 	unsigned long _save = skb->_skb_refdst;	\
1667 	skb->_skb_refdst = 0UL;
1668 
1669 #define tcp_skb_tsorted_restore(skb)		\
1670 	skb->_skb_refdst = _save;		\
1671 }
1672 
1673 void tcp_write_queue_purge(struct sock *sk);
1674 
1675 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1676 {
1677 	return skb_rb_first(&sk->tcp_rtx_queue);
1678 }
1679 
1680 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1681 {
1682 	return skb_peek(&sk->sk_write_queue);
1683 }
1684 
1685 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1686 {
1687 	return skb_peek_tail(&sk->sk_write_queue);
1688 }
1689 
1690 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1691 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1692 
1693 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1694 {
1695 	return skb_peek(&sk->sk_write_queue);
1696 }
1697 
1698 static inline bool tcp_skb_is_last(const struct sock *sk,
1699 				   const struct sk_buff *skb)
1700 {
1701 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1702 }
1703 
1704 static inline bool tcp_write_queue_empty(const struct sock *sk)
1705 {
1706 	return skb_queue_empty(&sk->sk_write_queue);
1707 }
1708 
1709 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1710 {
1711 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1712 }
1713 
1714 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1715 {
1716 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1717 }
1718 
1719 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1720 {
1721 	__skb_queue_tail(&sk->sk_write_queue, skb);
1722 
1723 	/* Queue it, remembering where we must start sending. */
1724 	if (sk->sk_write_queue.next == skb)
1725 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1726 }
1727 
1728 /* Insert new before skb on the write queue of sk.  */
1729 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1730 						  struct sk_buff *skb,
1731 						  struct sock *sk)
1732 {
1733 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1734 }
1735 
1736 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1737 {
1738 	tcp_skb_tsorted_anchor_cleanup(skb);
1739 	__skb_unlink(skb, &sk->sk_write_queue);
1740 }
1741 
1742 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1743 
1744 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1745 {
1746 	tcp_skb_tsorted_anchor_cleanup(skb);
1747 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1748 }
1749 
1750 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1751 {
1752 	list_del(&skb->tcp_tsorted_anchor);
1753 	tcp_rtx_queue_unlink(skb, sk);
1754 	sk_wmem_free_skb(sk, skb);
1755 }
1756 
1757 static inline void tcp_push_pending_frames(struct sock *sk)
1758 {
1759 	if (tcp_send_head(sk)) {
1760 		struct tcp_sock *tp = tcp_sk(sk);
1761 
1762 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1763 	}
1764 }
1765 
1766 /* Start sequence of the skb just after the highest skb with SACKed
1767  * bit, valid only if sacked_out > 0 or when the caller has ensured
1768  * validity by itself.
1769  */
1770 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1771 {
1772 	if (!tp->sacked_out)
1773 		return tp->snd_una;
1774 
1775 	if (tp->highest_sack == NULL)
1776 		return tp->snd_nxt;
1777 
1778 	return TCP_SKB_CB(tp->highest_sack)->seq;
1779 }
1780 
1781 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1782 {
1783 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1784 }
1785 
1786 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1787 {
1788 	return tcp_sk(sk)->highest_sack;
1789 }
1790 
1791 static inline void tcp_highest_sack_reset(struct sock *sk)
1792 {
1793 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1794 }
1795 
1796 /* Called when old skb is about to be deleted and replaced by new skb */
1797 static inline void tcp_highest_sack_replace(struct sock *sk,
1798 					    struct sk_buff *old,
1799 					    struct sk_buff *new)
1800 {
1801 	if (old == tcp_highest_sack(sk))
1802 		tcp_sk(sk)->highest_sack = new;
1803 }
1804 
1805 /* This helper checks if socket has IP_TRANSPARENT set */
1806 static inline bool inet_sk_transparent(const struct sock *sk)
1807 {
1808 	switch (sk->sk_state) {
1809 	case TCP_TIME_WAIT:
1810 		return inet_twsk(sk)->tw_transparent;
1811 	case TCP_NEW_SYN_RECV:
1812 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1813 	}
1814 	return inet_sk(sk)->transparent;
1815 }
1816 
1817 /* Determines whether this is a thin stream (which may suffer from
1818  * increased latency). Used to trigger latency-reducing mechanisms.
1819  */
1820 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1821 {
1822 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1823 }
1824 
1825 /* /proc */
1826 enum tcp_seq_states {
1827 	TCP_SEQ_STATE_LISTENING,
1828 	TCP_SEQ_STATE_ESTABLISHED,
1829 };
1830 
1831 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1832 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1833 void tcp_seq_stop(struct seq_file *seq, void *v);
1834 
1835 struct tcp_seq_afinfo {
1836 	sa_family_t			family;
1837 };
1838 
1839 struct tcp_iter_state {
1840 	struct seq_net_private	p;
1841 	enum tcp_seq_states	state;
1842 	struct sock		*syn_wait_sk;
1843 	int			bucket, offset, sbucket, num;
1844 	loff_t			last_pos;
1845 };
1846 
1847 extern struct request_sock_ops tcp_request_sock_ops;
1848 extern struct request_sock_ops tcp6_request_sock_ops;
1849 
1850 void tcp_v4_destroy_sock(struct sock *sk);
1851 
1852 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1853 				netdev_features_t features);
1854 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1855 int tcp_gro_complete(struct sk_buff *skb);
1856 
1857 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1858 
1859 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1860 {
1861 	struct net *net = sock_net((struct sock *)tp);
1862 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1863 }
1864 
1865 /* @wake is one when sk_stream_write_space() calls us.
1866  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1867  * This mimics the strategy used in sock_def_write_space().
1868  */
1869 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1870 {
1871 	const struct tcp_sock *tp = tcp_sk(sk);
1872 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1873 
1874 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1875 }
1876 
1877 #ifdef CONFIG_PROC_FS
1878 int tcp4_proc_init(void);
1879 void tcp4_proc_exit(void);
1880 #endif
1881 
1882 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1883 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1884 		     const struct tcp_request_sock_ops *af_ops,
1885 		     struct sock *sk, struct sk_buff *skb);
1886 
1887 /* TCP af-specific functions */
1888 struct tcp_sock_af_ops {
1889 #ifdef CONFIG_TCP_MD5SIG
1890 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1891 						const struct sock *addr_sk);
1892 	int		(*calc_md5_hash)(char *location,
1893 					 const struct tcp_md5sig_key *md5,
1894 					 const struct sock *sk,
1895 					 const struct sk_buff *skb);
1896 	int		(*md5_parse)(struct sock *sk,
1897 				     int optname,
1898 				     char __user *optval,
1899 				     int optlen);
1900 #endif
1901 };
1902 
1903 struct tcp_request_sock_ops {
1904 	u16 mss_clamp;
1905 #ifdef CONFIG_TCP_MD5SIG
1906 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1907 						 const struct sock *addr_sk);
1908 	int		(*calc_md5_hash) (char *location,
1909 					  const struct tcp_md5sig_key *md5,
1910 					  const struct sock *sk,
1911 					  const struct sk_buff *skb);
1912 #endif
1913 	void (*init_req)(struct request_sock *req,
1914 			 const struct sock *sk_listener,
1915 			 struct sk_buff *skb);
1916 #ifdef CONFIG_SYN_COOKIES
1917 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1918 				 __u16 *mss);
1919 #endif
1920 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1921 				       const struct request_sock *req);
1922 	u32 (*init_seq)(const struct sk_buff *skb);
1923 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1924 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1925 			   struct flowi *fl, struct request_sock *req,
1926 			   struct tcp_fastopen_cookie *foc,
1927 			   enum tcp_synack_type synack_type);
1928 };
1929 
1930 #ifdef CONFIG_SYN_COOKIES
1931 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1932 					 const struct sock *sk, struct sk_buff *skb,
1933 					 __u16 *mss)
1934 {
1935 	tcp_synq_overflow(sk);
1936 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1937 	return ops->cookie_init_seq(skb, mss);
1938 }
1939 #else
1940 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1941 					 const struct sock *sk, struct sk_buff *skb,
1942 					 __u16 *mss)
1943 {
1944 	return 0;
1945 }
1946 #endif
1947 
1948 int tcpv4_offload_init(void);
1949 
1950 void tcp_v4_init(void);
1951 void tcp_init(void);
1952 
1953 /* tcp_recovery.c */
1954 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1955 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1956 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1957 				u32 reo_wnd);
1958 extern void tcp_rack_mark_lost(struct sock *sk);
1959 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1960 			     u64 xmit_time);
1961 extern void tcp_rack_reo_timeout(struct sock *sk);
1962 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1963 
1964 /* At how many usecs into the future should the RTO fire? */
1965 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1966 {
1967 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1968 	u32 rto = inet_csk(sk)->icsk_rto;
1969 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
1970 
1971 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1972 }
1973 
1974 /*
1975  * Save and compile IPv4 options, return a pointer to it
1976  */
1977 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1978 							 struct sk_buff *skb)
1979 {
1980 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1981 	struct ip_options_rcu *dopt = NULL;
1982 
1983 	if (opt->optlen) {
1984 		int opt_size = sizeof(*dopt) + opt->optlen;
1985 
1986 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1987 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1988 			kfree(dopt);
1989 			dopt = NULL;
1990 		}
1991 	}
1992 	return dopt;
1993 }
1994 
1995 /* locally generated TCP pure ACKs have skb->truesize == 2
1996  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1997  * This is much faster than dissecting the packet to find out.
1998  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1999  */
2000 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2001 {
2002 	return skb->truesize == 2;
2003 }
2004 
2005 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2006 {
2007 	skb->truesize = 2;
2008 }
2009 
2010 static inline int tcp_inq(struct sock *sk)
2011 {
2012 	struct tcp_sock *tp = tcp_sk(sk);
2013 	int answ;
2014 
2015 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2016 		answ = 0;
2017 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2018 		   !tp->urg_data ||
2019 		   before(tp->urg_seq, tp->copied_seq) ||
2020 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2021 
2022 		answ = tp->rcv_nxt - tp->copied_seq;
2023 
2024 		/* Subtract 1, if FIN was received */
2025 		if (answ && sock_flag(sk, SOCK_DONE))
2026 			answ--;
2027 	} else {
2028 		answ = tp->urg_seq - tp->copied_seq;
2029 	}
2030 
2031 	return answ;
2032 }
2033 
2034 int tcp_peek_len(struct socket *sock);
2035 
2036 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2037 {
2038 	u16 segs_in;
2039 
2040 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2041 	tp->segs_in += segs_in;
2042 	if (skb->len > tcp_hdrlen(skb))
2043 		tp->data_segs_in += segs_in;
2044 }
2045 
2046 /*
2047  * TCP listen path runs lockless.
2048  * We forced "struct sock" to be const qualified to make sure
2049  * we don't modify one of its field by mistake.
2050  * Here, we increment sk_drops which is an atomic_t, so we can safely
2051  * make sock writable again.
2052  */
2053 static inline void tcp_listendrop(const struct sock *sk)
2054 {
2055 	atomic_inc(&((struct sock *)sk)->sk_drops);
2056 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2057 }
2058 
2059 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2060 
2061 /*
2062  * Interface for adding Upper Level Protocols over TCP
2063  */
2064 
2065 #define TCP_ULP_NAME_MAX	16
2066 #define TCP_ULP_MAX		128
2067 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2068 
2069 struct tcp_ulp_ops {
2070 	struct list_head	list;
2071 
2072 	/* initialize ulp */
2073 	int (*init)(struct sock *sk);
2074 	/* cleanup ulp */
2075 	void (*release)(struct sock *sk);
2076 
2077 	char		name[TCP_ULP_NAME_MAX];
2078 	struct module	*owner;
2079 };
2080 int tcp_register_ulp(struct tcp_ulp_ops *type);
2081 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2082 int tcp_set_ulp(struct sock *sk, const char *name);
2083 void tcp_get_available_ulp(char *buf, size_t len);
2084 void tcp_cleanup_ulp(struct sock *sk);
2085 
2086 #define MODULE_ALIAS_TCP_ULP(name)				\
2087 	__MODULE_INFO(alias, alias_userspace, name);		\
2088 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2089 
2090 struct sk_msg;
2091 struct sk_psock;
2092 
2093 int tcp_bpf_init(struct sock *sk);
2094 void tcp_bpf_reinit(struct sock *sk);
2095 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2096 			  int flags);
2097 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2098 		    int nonblock, int flags, int *addr_len);
2099 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2100 		      struct msghdr *msg, int len, int flags);
2101 
2102 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2103  * is < 0, then the BPF op failed (for example if the loaded BPF
2104  * program does not support the chosen operation or there is no BPF
2105  * program loaded).
2106  */
2107 #ifdef CONFIG_BPF
2108 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2109 {
2110 	struct bpf_sock_ops_kern sock_ops;
2111 	int ret;
2112 
2113 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2114 	if (sk_fullsock(sk)) {
2115 		sock_ops.is_fullsock = 1;
2116 		sock_owned_by_me(sk);
2117 	}
2118 
2119 	sock_ops.sk = sk;
2120 	sock_ops.op = op;
2121 	if (nargs > 0)
2122 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2123 
2124 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2125 	if (ret == 0)
2126 		ret = sock_ops.reply;
2127 	else
2128 		ret = -1;
2129 	return ret;
2130 }
2131 
2132 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2133 {
2134 	u32 args[2] = {arg1, arg2};
2135 
2136 	return tcp_call_bpf(sk, op, 2, args);
2137 }
2138 
2139 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2140 				    u32 arg3)
2141 {
2142 	u32 args[3] = {arg1, arg2, arg3};
2143 
2144 	return tcp_call_bpf(sk, op, 3, args);
2145 }
2146 
2147 #else
2148 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2149 {
2150 	return -EPERM;
2151 }
2152 
2153 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2154 {
2155 	return -EPERM;
2156 }
2157 
2158 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2159 				    u32 arg3)
2160 {
2161 	return -EPERM;
2162 }
2163 
2164 #endif
2165 
2166 static inline u32 tcp_timeout_init(struct sock *sk)
2167 {
2168 	int timeout;
2169 
2170 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2171 
2172 	if (timeout <= 0)
2173 		timeout = TCP_TIMEOUT_INIT;
2174 	return timeout;
2175 }
2176 
2177 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2178 {
2179 	int rwnd;
2180 
2181 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2182 
2183 	if (rwnd < 0)
2184 		rwnd = 0;
2185 	return rwnd;
2186 }
2187 
2188 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2189 {
2190 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2191 }
2192 
2193 #if IS_ENABLED(CONFIG_SMC)
2194 extern struct static_key_false tcp_have_smc;
2195 #endif
2196 
2197 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2198 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2199 			     void (*cad)(struct sock *sk, u32 ack_seq));
2200 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2201 void clean_acked_data_flush(void);
2202 #endif
2203 
2204 #endif	/* _TCP_H */
2205