xref: /openbmc/linux/include/net/tcp.h (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 
145 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146 
147 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149 						 * used as a fallback RTO for the
150 						 * initial data transmission if no
151 						 * valid RTT sample has been acquired,
152 						 * most likely due to retrans in 3WHS.
153 						 */
154 
155 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156 					                 * for local resources.
157 					                 */
158 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160 #define TCP_KEEPALIVE_INTVL	(75*HZ)
161 
162 #define MAX_TCP_KEEPIDLE	32767
163 #define MAX_TCP_KEEPINTVL	32767
164 #define MAX_TCP_KEEPCNT		127
165 #define MAX_TCP_SYNCNT		127
166 
167 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
168 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
169 					 * after this time. It should be equal
170 					 * (or greater than) TCP_TIMEWAIT_LEN
171 					 * to provide reliability equal to one
172 					 * provided by timewait state.
173 					 */
174 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
175 					 * timestamps. It must be less than
176 					 * minimal timewait lifetime.
177 					 */
178 /*
179  *	TCP option
180  */
181 
182 #define TCPOPT_NOP		1	/* Padding */
183 #define TCPOPT_EOL		0	/* End of options */
184 #define TCPOPT_MSS		2	/* Segment size negotiating */
185 #define TCPOPT_WINDOW		3	/* Window scaling */
186 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
187 #define TCPOPT_SACK             5       /* SACK Block */
188 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
189 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
190 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
191 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
192 #define TCPOPT_EXP		254	/* Experimental */
193 /* Magic number to be after the option value for sharing TCP
194  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
195  */
196 #define TCPOPT_FASTOPEN_MAGIC	0xF989
197 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
198 
199 /*
200  *     TCP option lengths
201  */
202 
203 #define TCPOLEN_MSS            4
204 #define TCPOLEN_WINDOW         3
205 #define TCPOLEN_SACK_PERM      2
206 #define TCPOLEN_TIMESTAMP      10
207 #define TCPOLEN_MD5SIG         18
208 #define TCPOLEN_FASTOPEN_BASE  2
209 #define TCPOLEN_EXP_FASTOPEN_BASE  4
210 #define TCPOLEN_EXP_SMC_BASE   6
211 
212 /* But this is what stacks really send out. */
213 #define TCPOLEN_TSTAMP_ALIGNED		12
214 #define TCPOLEN_WSCALE_ALIGNED		4
215 #define TCPOLEN_SACKPERM_ALIGNED	4
216 #define TCPOLEN_SACK_BASE		2
217 #define TCPOLEN_SACK_BASE_ALIGNED	4
218 #define TCPOLEN_SACK_PERBLOCK		8
219 #define TCPOLEN_MD5SIG_ALIGNED		20
220 #define TCPOLEN_MSS_ALIGNED		4
221 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
222 
223 /* Flags in tp->nonagle */
224 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
225 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
226 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
227 
228 /* TCP thin-stream limits */
229 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
230 
231 /* TCP initial congestion window as per rfc6928 */
232 #define TCP_INIT_CWND		10
233 
234 /* Bit Flags for sysctl_tcp_fastopen */
235 #define	TFO_CLIENT_ENABLE	1
236 #define	TFO_SERVER_ENABLE	2
237 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
238 
239 /* Accept SYN data w/o any cookie option */
240 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
241 
242 /* Force enable TFO on all listeners, i.e., not requiring the
243  * TCP_FASTOPEN socket option.
244  */
245 #define	TFO_SERVER_WO_SOCKOPT1	0x400
246 
247 
248 /* sysctl variables for tcp */
249 extern int sysctl_tcp_max_orphans;
250 extern long sysctl_tcp_mem[3];
251 
252 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
253 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
254 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
255 
256 extern atomic_long_t tcp_memory_allocated;
257 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
258 
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern unsigned long tcp_memory_pressure;
261 
262 /* optimized version of sk_under_memory_pressure() for TCP sockets */
263 static inline bool tcp_under_memory_pressure(const struct sock *sk)
264 {
265 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267 		return true;
268 
269 	return READ_ONCE(tcp_memory_pressure);
270 }
271 /*
272  * The next routines deal with comparing 32 bit unsigned ints
273  * and worry about wraparound (automatic with unsigned arithmetic).
274  */
275 
276 static inline bool before(__u32 seq1, __u32 seq2)
277 {
278         return (__s32)(seq1-seq2) < 0;
279 }
280 #define after(seq2, seq1) 	before(seq1, seq2)
281 
282 /* is s2<=s1<=s3 ? */
283 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284 {
285 	return seq3 - seq2 >= seq1 - seq2;
286 }
287 
288 static inline bool tcp_out_of_memory(struct sock *sk)
289 {
290 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292 		return true;
293 	return false;
294 }
295 
296 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
297 {
298 	sk_wmem_queued_add(sk, -skb->truesize);
299 	if (!skb_zcopy_pure(skb))
300 		sk_mem_uncharge(sk, skb->truesize);
301 	else
302 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
303 	__kfree_skb(skb);
304 }
305 
306 void sk_forced_mem_schedule(struct sock *sk, int size);
307 
308 bool tcp_check_oom(struct sock *sk, int shift);
309 
310 
311 extern struct proto tcp_prot;
312 
313 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
317 
318 void tcp_tasklet_init(void);
319 
320 int tcp_v4_err(struct sk_buff *skb, u32);
321 
322 void tcp_shutdown(struct sock *sk, int how);
323 
324 int tcp_v4_early_demux(struct sk_buff *skb);
325 int tcp_v4_rcv(struct sk_buff *skb);
326 
327 void tcp_remove_empty_skb(struct sock *sk);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331 			 size_t size, struct ubuf_info *uarg);
332 void tcp_splice_eof(struct socket *sock);
333 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334 int tcp_wmem_schedule(struct sock *sk, int copy);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349 			struct pipe_inode_info *pipe, size_t len,
350 			unsigned int flags);
351 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
352 				     bool force_schedule);
353 
354 static inline void tcp_dec_quickack_mode(struct sock *sk)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	if (icsk->icsk_ack.quick) {
359 		/* How many ACKs S/ACKing new data have we sent? */
360 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
361 
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int do_tcp_getsockopt(struct sock *sk, int level,
406 		      int optname, sockptr_t optval, sockptr_t optlen);
407 int tcp_getsockopt(struct sock *sk, int level, int optname,
408 		   char __user *optval, int __user *optlen);
409 bool tcp_bpf_bypass_getsockopt(int level, int optname);
410 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
411 		      sockptr_t optval, unsigned int optlen);
412 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
413 		   unsigned int optlen);
414 void tcp_set_keepalive(struct sock *sk, int val);
415 void tcp_syn_ack_timeout(const struct request_sock *req);
416 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
417 		int flags, int *addr_len);
418 int tcp_set_rcvlowat(struct sock *sk, int val);
419 int tcp_set_window_clamp(struct sock *sk, int val);
420 void tcp_update_recv_tstamps(struct sk_buff *skb,
421 			     struct scm_timestamping_internal *tss);
422 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
423 			struct scm_timestamping_internal *tss);
424 void tcp_data_ready(struct sock *sk);
425 #ifdef CONFIG_MMU
426 int tcp_mmap(struct file *file, struct socket *sock,
427 	     struct vm_area_struct *vma);
428 #endif
429 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	BPF SKB-less helpers
436  */
437 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
438 			 struct tcphdr *th, u32 *cookie);
439 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
440 			 struct tcphdr *th, u32 *cookie);
441 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
442 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
443 			  const struct tcp_request_sock_ops *af_ops,
444 			  struct sock *sk, struct tcphdr *th);
445 /*
446  *	TCP v4 functions exported for the inet6 API
447  */
448 
449 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
450 void tcp_v4_mtu_reduced(struct sock *sk);
451 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
452 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(const struct sock *sk,
455 				      struct request_sock *req,
456 				      struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459 				  struct request_sock *req,
460 				  struct dst_entry *dst,
461 				  struct request_sock *req_unhash,
462 				  bool *own_req);
463 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465 int tcp_connect(struct sock *sk);
466 enum tcp_synack_type {
467 	TCP_SYNACK_NORMAL,
468 	TCP_SYNACK_FASTOPEN,
469 	TCP_SYNACK_COOKIE,
470 };
471 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
472 				struct request_sock *req,
473 				struct tcp_fastopen_cookie *foc,
474 				enum tcp_synack_type synack_type,
475 				struct sk_buff *syn_skb);
476 int tcp_disconnect(struct sock *sk, int flags);
477 
478 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
479 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
480 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
481 
482 /* From syncookies.c */
483 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
484 				 struct request_sock *req,
485 				 struct dst_entry *dst, u32 tsoff);
486 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
487 		      u32 cookie);
488 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
489 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
490 					    const struct tcp_request_sock_ops *af_ops,
491 					    struct sock *sk, struct sk_buff *skb);
492 #ifdef CONFIG_SYN_COOKIES
493 
494 /* Syncookies use a monotonic timer which increments every 60 seconds.
495  * This counter is used both as a hash input and partially encoded into
496  * the cookie value.  A cookie is only validated further if the delta
497  * between the current counter value and the encoded one is less than this,
498  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
499  * the counter advances immediately after a cookie is generated).
500  */
501 #define MAX_SYNCOOKIE_AGE	2
502 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
503 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
504 
505 /* syncookies: remember time of last synqueue overflow
506  * But do not dirty this field too often (once per second is enough)
507  * It is racy as we do not hold a lock, but race is very minor.
508  */
509 static inline void tcp_synq_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			if (!time_between32(now, last_overflow,
521 					    last_overflow + HZ))
522 				WRITE_ONCE(reuse->synq_overflow_ts, now);
523 			return;
524 		}
525 	}
526 
527 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528 	if (!time_between32(now, last_overflow, last_overflow + HZ))
529 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
530 }
531 
532 /* syncookies: no recent synqueue overflow on this listening socket? */
533 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
534 {
535 	unsigned int last_overflow;
536 	unsigned int now = jiffies;
537 
538 	if (sk->sk_reuseport) {
539 		struct sock_reuseport *reuse;
540 
541 		reuse = rcu_dereference(sk->sk_reuseport_cb);
542 		if (likely(reuse)) {
543 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
544 			return !time_between32(now, last_overflow - HZ,
545 					       last_overflow +
546 					       TCP_SYNCOOKIE_VALID);
547 		}
548 	}
549 
550 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551 
552 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
553 	 * then we're under synflood. However, we have to use
554 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
555 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
556 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
557 	 * which could lead to rejecting a valid syncookie.
558 	 */
559 	return !time_between32(now, last_overflow - HZ,
560 			       last_overflow + TCP_SYNCOOKIE_VALID);
561 }
562 
563 static inline u32 tcp_cookie_time(void)
564 {
565 	u64 val = get_jiffies_64();
566 
567 	do_div(val, TCP_SYNCOOKIE_PERIOD);
568 	return val;
569 }
570 
571 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
572 			      u16 *mssp);
573 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
574 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
575 bool cookie_timestamp_decode(const struct net *net,
576 			     struct tcp_options_received *opt);
577 bool cookie_ecn_ok(const struct tcp_options_received *opt,
578 		   const struct net *net, const struct dst_entry *dst);
579 
580 /* From net/ipv6/syncookies.c */
581 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
582 		      u32 cookie);
583 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
584 
585 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
586 			      const struct tcphdr *th, u16 *mssp);
587 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
588 #endif
589 /* tcp_output.c */
590 
591 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
592 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
593 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
594 			       int nonagle);
595 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 void tcp_retransmit_timer(struct sock *sk);
598 void tcp_xmit_retransmit_queue(struct sock *);
599 void tcp_simple_retransmit(struct sock *);
600 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
601 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
602 enum tcp_queue {
603 	TCP_FRAG_IN_WRITE_QUEUE,
604 	TCP_FRAG_IN_RTX_QUEUE,
605 };
606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
607 		 struct sk_buff *skb, u32 len,
608 		 unsigned int mss_now, gfp_t gfp);
609 
610 void tcp_send_probe0(struct sock *);
611 int tcp_write_wakeup(struct sock *, int mib);
612 void tcp_send_fin(struct sock *sk);
613 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
614 int tcp_send_synack(struct sock *);
615 void tcp_push_one(struct sock *, unsigned int mss_now);
616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
617 void tcp_send_ack(struct sock *sk);
618 void tcp_send_delayed_ack(struct sock *sk);
619 void tcp_send_loss_probe(struct sock *sk);
620 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
621 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
622 			     const struct sk_buff *next_skb);
623 
624 /* tcp_input.c */
625 void tcp_rearm_rto(struct sock *sk);
626 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
627 void tcp_reset(struct sock *sk, struct sk_buff *skb);
628 void tcp_fin(struct sock *sk);
629 void tcp_check_space(struct sock *sk);
630 void tcp_sack_compress_send_ack(struct sock *sk);
631 
632 /* tcp_timer.c */
633 void tcp_init_xmit_timers(struct sock *);
634 static inline void tcp_clear_xmit_timers(struct sock *sk)
635 {
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
637 		__sock_put(sk);
638 
639 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
640 		__sock_put(sk);
641 
642 	inet_csk_clear_xmit_timers(sk);
643 }
644 
645 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
646 unsigned int tcp_current_mss(struct sock *sk);
647 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
648 
649 /* Bound MSS / TSO packet size with the half of the window */
650 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
651 {
652 	int cutoff;
653 
654 	/* When peer uses tiny windows, there is no use in packetizing
655 	 * to sub-MSS pieces for the sake of SWS or making sure there
656 	 * are enough packets in the pipe for fast recovery.
657 	 *
658 	 * On the other hand, for extremely large MSS devices, handling
659 	 * smaller than MSS windows in this way does make sense.
660 	 */
661 	if (tp->max_window > TCP_MSS_DEFAULT)
662 		cutoff = (tp->max_window >> 1);
663 	else
664 		cutoff = tp->max_window;
665 
666 	if (cutoff && pktsize > cutoff)
667 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
668 	else
669 		return pktsize;
670 }
671 
672 /* tcp.c */
673 void tcp_get_info(struct sock *, struct tcp_info *);
674 
675 /* Read 'sendfile()'-style from a TCP socket */
676 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
677 		  sk_read_actor_t recv_actor);
678 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
679 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
680 void tcp_read_done(struct sock *sk, size_t len);
681 
682 void tcp_initialize_rcv_mss(struct sock *sk);
683 
684 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
685 int tcp_mss_to_mtu(struct sock *sk, int mss);
686 void tcp_mtup_init(struct sock *sk);
687 
688 static inline void tcp_bound_rto(const struct sock *sk)
689 {
690 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
691 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
692 }
693 
694 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
695 {
696 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
697 }
698 
699 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
700 {
701 	/* mptcp hooks are only on the slow path */
702 	if (sk_is_mptcp((struct sock *)tp))
703 		return;
704 
705 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
706 			       ntohl(TCP_FLAG_ACK) |
707 			       snd_wnd);
708 }
709 
710 static inline void tcp_fast_path_on(struct tcp_sock *tp)
711 {
712 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
713 }
714 
715 static inline void tcp_fast_path_check(struct sock *sk)
716 {
717 	struct tcp_sock *tp = tcp_sk(sk);
718 
719 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
720 	    tp->rcv_wnd &&
721 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
722 	    !tp->urg_data)
723 		tcp_fast_path_on(tp);
724 }
725 
726 u32 tcp_delack_max(const struct sock *sk);
727 
728 /* Compute the actual rto_min value */
729 static inline u32 tcp_rto_min(struct sock *sk)
730 {
731 	const struct dst_entry *dst = __sk_dst_get(sk);
732 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
733 
734 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
735 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
736 	return rto_min;
737 }
738 
739 static inline u32 tcp_rto_min_us(struct sock *sk)
740 {
741 	return jiffies_to_usecs(tcp_rto_min(sk));
742 }
743 
744 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
745 {
746 	return dst_metric_locked(dst, RTAX_CC_ALGO);
747 }
748 
749 /* Minimum RTT in usec. ~0 means not available. */
750 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
751 {
752 	return minmax_get(&tp->rtt_min);
753 }
754 
755 /* Compute the actual receive window we are currently advertising.
756  * Rcv_nxt can be after the window if our peer push more data
757  * than the offered window.
758  */
759 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
760 {
761 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
762 
763 	if (win < 0)
764 		win = 0;
765 	return (u32) win;
766 }
767 
768 /* Choose a new window, without checks for shrinking, and without
769  * scaling applied to the result.  The caller does these things
770  * if necessary.  This is a "raw" window selection.
771  */
772 u32 __tcp_select_window(struct sock *sk);
773 
774 void tcp_send_window_probe(struct sock *sk);
775 
776 /* TCP uses 32bit jiffies to save some space.
777  * Note that this is different from tcp_time_stamp, which
778  * historically has been the same until linux-4.13.
779  */
780 #define tcp_jiffies32 ((u32)jiffies)
781 
782 /*
783  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
784  * It is no longer tied to jiffies, but to 1 ms clock.
785  * Note: double check if you want to use tcp_jiffies32 instead of this.
786  */
787 #define TCP_TS_HZ	1000
788 
789 static inline u64 tcp_clock_ns(void)
790 {
791 	return ktime_get_ns();
792 }
793 
794 static inline u64 tcp_clock_us(void)
795 {
796 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
797 }
798 
799 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
800 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
801 {
802 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
803 }
804 
805 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
806 static inline u64 tcp_ns_to_ts(u64 ns)
807 {
808 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
809 }
810 
811 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
812 static inline u32 tcp_time_stamp_raw(void)
813 {
814 	return tcp_ns_to_ts(tcp_clock_ns());
815 }
816 
817 void tcp_mstamp_refresh(struct tcp_sock *tp);
818 
819 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
820 {
821 	return max_t(s64, t1 - t0, 0);
822 }
823 
824 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
825 {
826 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
827 }
828 
829 /* provide the departure time in us unit */
830 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
831 {
832 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
833 }
834 
835 
836 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
837 
838 #define TCPHDR_FIN 0x01
839 #define TCPHDR_SYN 0x02
840 #define TCPHDR_RST 0x04
841 #define TCPHDR_PSH 0x08
842 #define TCPHDR_ACK 0x10
843 #define TCPHDR_URG 0x20
844 #define TCPHDR_ECE 0x40
845 #define TCPHDR_CWR 0x80
846 
847 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
848 
849 /* This is what the send packet queuing engine uses to pass
850  * TCP per-packet control information to the transmission code.
851  * We also store the host-order sequence numbers in here too.
852  * This is 44 bytes if IPV6 is enabled.
853  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
854  */
855 struct tcp_skb_cb {
856 	__u32		seq;		/* Starting sequence number	*/
857 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
858 	union {
859 		/* Note : tcp_tw_isn is used in input path only
860 		 *	  (isn chosen by tcp_timewait_state_process())
861 		 *
862 		 * 	  tcp_gso_segs/size are used in write queue only,
863 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
864 		 */
865 		__u32		tcp_tw_isn;
866 		struct {
867 			u16	tcp_gso_segs;
868 			u16	tcp_gso_size;
869 		};
870 	};
871 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
872 
873 	__u8		sacked;		/* State flags for SACK.	*/
874 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
875 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
876 #define TCPCB_LOST		0x04	/* SKB is lost			*/
877 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
878 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
879 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
880 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
881 				TCPCB_REPAIRED)
882 
883 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
884 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
885 			eor:1,		/* Is skb MSG_EOR marked? */
886 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
887 			unused:5;
888 	__u32		ack_seq;	/* Sequence number ACK'd	*/
889 	union {
890 		struct {
891 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
892 			/* There is space for up to 24 bytes */
893 			__u32 is_app_limited:1, /* cwnd not fully used? */
894 			      delivered_ce:20,
895 			      unused:11;
896 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
897 			__u32 delivered;
898 			/* start of send pipeline phase */
899 			u64 first_tx_mstamp;
900 			/* when we reached the "delivered" count */
901 			u64 delivered_mstamp;
902 		} tx;   /* only used for outgoing skbs */
903 		union {
904 			struct inet_skb_parm	h4;
905 #if IS_ENABLED(CONFIG_IPV6)
906 			struct inet6_skb_parm	h6;
907 #endif
908 		} header;	/* For incoming skbs */
909 	};
910 };
911 
912 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
913 
914 extern const struct inet_connection_sock_af_ops ipv4_specific;
915 
916 #if IS_ENABLED(CONFIG_IPV6)
917 /* This is the variant of inet6_iif() that must be used by TCP,
918  * as TCP moves IP6CB into a different location in skb->cb[]
919  */
920 static inline int tcp_v6_iif(const struct sk_buff *skb)
921 {
922 	return TCP_SKB_CB(skb)->header.h6.iif;
923 }
924 
925 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
926 {
927 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
928 
929 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
930 }
931 
932 /* TCP_SKB_CB reference means this can not be used from early demux */
933 static inline int tcp_v6_sdif(const struct sk_buff *skb)
934 {
935 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
937 		return TCP_SKB_CB(skb)->header.h6.iif;
938 #endif
939 	return 0;
940 }
941 
942 extern const struct inet_connection_sock_af_ops ipv6_specific;
943 
944 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
945 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
946 void tcp_v6_early_demux(struct sk_buff *skb);
947 
948 #endif
949 
950 /* TCP_SKB_CB reference means this can not be used from early demux */
951 static inline int tcp_v4_sdif(struct sk_buff *skb)
952 {
953 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
955 		return TCP_SKB_CB(skb)->header.h4.iif;
956 #endif
957 	return 0;
958 }
959 
960 /* Due to TSO, an SKB can be composed of multiple actual
961  * packets.  To keep these tracked properly, we use this.
962  */
963 static inline int tcp_skb_pcount(const struct sk_buff *skb)
964 {
965 	return TCP_SKB_CB(skb)->tcp_gso_segs;
966 }
967 
968 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
971 }
972 
973 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
974 {
975 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
976 }
977 
978 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
979 static inline int tcp_skb_mss(const struct sk_buff *skb)
980 {
981 	return TCP_SKB_CB(skb)->tcp_gso_size;
982 }
983 
984 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
985 {
986 	return likely(!TCP_SKB_CB(skb)->eor);
987 }
988 
989 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
990 					const struct sk_buff *from)
991 {
992 	return likely(tcp_skb_can_collapse_to(to) &&
993 		      mptcp_skb_can_collapse(to, from) &&
994 		      skb_pure_zcopy_same(to, from));
995 }
996 
997 /* Events passed to congestion control interface */
998 enum tcp_ca_event {
999 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1000 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1001 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1002 	CA_EVENT_LOSS,		/* loss timeout */
1003 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1004 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1005 };
1006 
1007 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1008 enum tcp_ca_ack_event_flags {
1009 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1010 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1011 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1012 };
1013 
1014 /*
1015  * Interface for adding new TCP congestion control handlers
1016  */
1017 #define TCP_CA_NAME_MAX	16
1018 #define TCP_CA_MAX	128
1019 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1020 
1021 #define TCP_CA_UNSPEC	0
1022 
1023 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1024 #define TCP_CONG_NON_RESTRICTED 0x1
1025 /* Requires ECN/ECT set on all packets */
1026 #define TCP_CONG_NEEDS_ECN	0x2
1027 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1028 
1029 union tcp_cc_info;
1030 
1031 struct ack_sample {
1032 	u32 pkts_acked;
1033 	s32 rtt_us;
1034 	u32 in_flight;
1035 };
1036 
1037 /* A rate sample measures the number of (original/retransmitted) data
1038  * packets delivered "delivered" over an interval of time "interval_us".
1039  * The tcp_rate.c code fills in the rate sample, and congestion
1040  * control modules that define a cong_control function to run at the end
1041  * of ACK processing can optionally chose to consult this sample when
1042  * setting cwnd and pacing rate.
1043  * A sample is invalid if "delivered" or "interval_us" is negative.
1044  */
1045 struct rate_sample {
1046 	u64  prior_mstamp; /* starting timestamp for interval */
1047 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1048 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1049 	s32  delivered;		/* number of packets delivered over interval */
1050 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1051 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1052 	u32 snd_interval_us;	/* snd interval for delivered packets */
1053 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1054 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1055 	int  losses;		/* number of packets marked lost upon ACK */
1056 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1057 	u32  prior_in_flight;	/* in flight before this ACK */
1058 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1059 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1060 	bool is_retrans;	/* is sample from retransmission? */
1061 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1062 };
1063 
1064 struct tcp_congestion_ops {
1065 /* fast path fields are put first to fill one cache line */
1066 
1067 	/* return slow start threshold (required) */
1068 	u32 (*ssthresh)(struct sock *sk);
1069 
1070 	/* do new cwnd calculation (required) */
1071 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1072 
1073 	/* call before changing ca_state (optional) */
1074 	void (*set_state)(struct sock *sk, u8 new_state);
1075 
1076 	/* call when cwnd event occurs (optional) */
1077 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1078 
1079 	/* call when ack arrives (optional) */
1080 	void (*in_ack_event)(struct sock *sk, u32 flags);
1081 
1082 	/* hook for packet ack accounting (optional) */
1083 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1084 
1085 	/* override sysctl_tcp_min_tso_segs */
1086 	u32 (*min_tso_segs)(struct sock *sk);
1087 
1088 	/* call when packets are delivered to update cwnd and pacing rate,
1089 	 * after all the ca_state processing. (optional)
1090 	 */
1091 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1092 
1093 
1094 	/* new value of cwnd after loss (required) */
1095 	u32  (*undo_cwnd)(struct sock *sk);
1096 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1097 	u32 (*sndbuf_expand)(struct sock *sk);
1098 
1099 /* control/slow paths put last */
1100 	/* get info for inet_diag (optional) */
1101 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1102 			   union tcp_cc_info *info);
1103 
1104 	char 			name[TCP_CA_NAME_MAX];
1105 	struct module		*owner;
1106 	struct list_head	list;
1107 	u32			key;
1108 	u32			flags;
1109 
1110 	/* initialize private data (optional) */
1111 	void (*init)(struct sock *sk);
1112 	/* cleanup private data  (optional) */
1113 	void (*release)(struct sock *sk);
1114 } ____cacheline_aligned_in_smp;
1115 
1116 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1117 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1118 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1119 				  struct tcp_congestion_ops *old_type);
1120 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1121 
1122 void tcp_assign_congestion_control(struct sock *sk);
1123 void tcp_init_congestion_control(struct sock *sk);
1124 void tcp_cleanup_congestion_control(struct sock *sk);
1125 int tcp_set_default_congestion_control(struct net *net, const char *name);
1126 void tcp_get_default_congestion_control(struct net *net, char *name);
1127 void tcp_get_available_congestion_control(char *buf, size_t len);
1128 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1129 int tcp_set_allowed_congestion_control(char *allowed);
1130 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1131 			       bool cap_net_admin);
1132 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1133 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1134 
1135 u32 tcp_reno_ssthresh(struct sock *sk);
1136 u32 tcp_reno_undo_cwnd(struct sock *sk);
1137 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1138 extern struct tcp_congestion_ops tcp_reno;
1139 
1140 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1141 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1142 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1143 #ifdef CONFIG_INET
1144 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1145 #else
1146 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1147 {
1148 	return NULL;
1149 }
1150 #endif
1151 
1152 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1153 {
1154 	const struct inet_connection_sock *icsk = inet_csk(sk);
1155 
1156 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1157 }
1158 
1159 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1160 {
1161 	const struct inet_connection_sock *icsk = inet_csk(sk);
1162 
1163 	if (icsk->icsk_ca_ops->cwnd_event)
1164 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1165 }
1166 
1167 /* From tcp_cong.c */
1168 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1169 
1170 /* From tcp_rate.c */
1171 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1172 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1173 			    struct rate_sample *rs);
1174 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1175 		  bool is_sack_reneg, struct rate_sample *rs);
1176 void tcp_rate_check_app_limited(struct sock *sk);
1177 
1178 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1179 {
1180 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1181 }
1182 
1183 /* These functions determine how the current flow behaves in respect of SACK
1184  * handling. SACK is negotiated with the peer, and therefore it can vary
1185  * between different flows.
1186  *
1187  * tcp_is_sack - SACK enabled
1188  * tcp_is_reno - No SACK
1189  */
1190 static inline int tcp_is_sack(const struct tcp_sock *tp)
1191 {
1192 	return likely(tp->rx_opt.sack_ok);
1193 }
1194 
1195 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1196 {
1197 	return !tcp_is_sack(tp);
1198 }
1199 
1200 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1201 {
1202 	return tp->sacked_out + tp->lost_out;
1203 }
1204 
1205 /* This determines how many packets are "in the network" to the best
1206  * of our knowledge.  In many cases it is conservative, but where
1207  * detailed information is available from the receiver (via SACK
1208  * blocks etc.) we can make more aggressive calculations.
1209  *
1210  * Use this for decisions involving congestion control, use just
1211  * tp->packets_out to determine if the send queue is empty or not.
1212  *
1213  * Read this equation as:
1214  *
1215  *	"Packets sent once on transmission queue" MINUS
1216  *	"Packets left network, but not honestly ACKed yet" PLUS
1217  *	"Packets fast retransmitted"
1218  */
1219 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1220 {
1221 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1222 }
1223 
1224 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1225 
1226 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1227 {
1228 	return tp->snd_cwnd;
1229 }
1230 
1231 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1232 {
1233 	WARN_ON_ONCE((int)val <= 0);
1234 	tp->snd_cwnd = val;
1235 }
1236 
1237 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1238 {
1239 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1240 }
1241 
1242 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1243 {
1244 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1245 }
1246 
1247 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1248 {
1249 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1250 	       (1 << inet_csk(sk)->icsk_ca_state);
1251 }
1252 
1253 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1254  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1255  * ssthresh.
1256  */
1257 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1258 {
1259 	const struct tcp_sock *tp = tcp_sk(sk);
1260 
1261 	if (tcp_in_cwnd_reduction(sk))
1262 		return tp->snd_ssthresh;
1263 	else
1264 		return max(tp->snd_ssthresh,
1265 			   ((tcp_snd_cwnd(tp) >> 1) +
1266 			    (tcp_snd_cwnd(tp) >> 2)));
1267 }
1268 
1269 /* Use define here intentionally to get WARN_ON location shown at the caller */
1270 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1271 
1272 void tcp_enter_cwr(struct sock *sk);
1273 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1274 
1275 /* The maximum number of MSS of available cwnd for which TSO defers
1276  * sending if not using sysctl_tcp_tso_win_divisor.
1277  */
1278 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1279 {
1280 	return 3;
1281 }
1282 
1283 /* Returns end sequence number of the receiver's advertised window */
1284 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1285 {
1286 	return tp->snd_una + tp->snd_wnd;
1287 }
1288 
1289 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1290  * flexible approach. The RFC suggests cwnd should not be raised unless
1291  * it was fully used previously. And that's exactly what we do in
1292  * congestion avoidance mode. But in slow start we allow cwnd to grow
1293  * as long as the application has used half the cwnd.
1294  * Example :
1295  *    cwnd is 10 (IW10), but application sends 9 frames.
1296  *    We allow cwnd to reach 18 when all frames are ACKed.
1297  * This check is safe because it's as aggressive as slow start which already
1298  * risks 100% overshoot. The advantage is that we discourage application to
1299  * either send more filler packets or data to artificially blow up the cwnd
1300  * usage, and allow application-limited process to probe bw more aggressively.
1301  */
1302 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1303 {
1304 	const struct tcp_sock *tp = tcp_sk(sk);
1305 
1306 	if (tp->is_cwnd_limited)
1307 		return true;
1308 
1309 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1310 	if (tcp_in_slow_start(tp))
1311 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1312 
1313 	return false;
1314 }
1315 
1316 /* BBR congestion control needs pacing.
1317  * Same remark for SO_MAX_PACING_RATE.
1318  * sch_fq packet scheduler is efficiently handling pacing,
1319  * but is not always installed/used.
1320  * Return true if TCP stack should pace packets itself.
1321  */
1322 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1323 {
1324 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1325 }
1326 
1327 /* Estimates in how many jiffies next packet for this flow can be sent.
1328  * Scheduling a retransmit timer too early would be silly.
1329  */
1330 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1331 {
1332 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1333 
1334 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1335 }
1336 
1337 static inline void tcp_reset_xmit_timer(struct sock *sk,
1338 					const int what,
1339 					unsigned long when,
1340 					const unsigned long max_when)
1341 {
1342 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1343 				  max_when);
1344 }
1345 
1346 /* Something is really bad, we could not queue an additional packet,
1347  * because qdisc is full or receiver sent a 0 window, or we are paced.
1348  * We do not want to add fuel to the fire, or abort too early,
1349  * so make sure the timer we arm now is at least 200ms in the future,
1350  * regardless of current icsk_rto value (as it could be ~2ms)
1351  */
1352 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1353 {
1354 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1355 }
1356 
1357 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1358 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1359 					    unsigned long max_when)
1360 {
1361 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1362 			   inet_csk(sk)->icsk_backoff);
1363 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1364 
1365 	return (unsigned long)min_t(u64, when, max_when);
1366 }
1367 
1368 static inline void tcp_check_probe_timer(struct sock *sk)
1369 {
1370 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1371 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1372 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1373 }
1374 
1375 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1376 {
1377 	tp->snd_wl1 = seq;
1378 }
1379 
1380 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1381 {
1382 	tp->snd_wl1 = seq;
1383 }
1384 
1385 /*
1386  * Calculate(/check) TCP checksum
1387  */
1388 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1389 				   __be32 daddr, __wsum base)
1390 {
1391 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1392 }
1393 
1394 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1395 {
1396 	return !skb_csum_unnecessary(skb) &&
1397 		__skb_checksum_complete(skb);
1398 }
1399 
1400 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1401 		     enum skb_drop_reason *reason);
1402 
1403 
1404 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1405 void tcp_set_state(struct sock *sk, int state);
1406 void tcp_done(struct sock *sk);
1407 int tcp_abort(struct sock *sk, int err);
1408 
1409 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1410 {
1411 	rx_opt->dsack = 0;
1412 	rx_opt->num_sacks = 0;
1413 }
1414 
1415 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1416 
1417 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1418 {
1419 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1420 	struct tcp_sock *tp = tcp_sk(sk);
1421 	s32 delta;
1422 
1423 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1424 	    tp->packets_out || ca_ops->cong_control)
1425 		return;
1426 	delta = tcp_jiffies32 - tp->lsndtime;
1427 	if (delta > inet_csk(sk)->icsk_rto)
1428 		tcp_cwnd_restart(sk, delta);
1429 }
1430 
1431 /* Determine a window scaling and initial window to offer. */
1432 void tcp_select_initial_window(const struct sock *sk, int __space,
1433 			       __u32 mss, __u32 *rcv_wnd,
1434 			       __u32 *window_clamp, int wscale_ok,
1435 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1436 
1437 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1438 {
1439 	s64 scaled_space = (s64)space * scaling_ratio;
1440 
1441 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1442 }
1443 
1444 static inline int tcp_win_from_space(const struct sock *sk, int space)
1445 {
1446 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1447 }
1448 
1449 /* inverse of __tcp_win_from_space() */
1450 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1451 {
1452 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1453 
1454 	do_div(val, scaling_ratio);
1455 	return val;
1456 }
1457 
1458 static inline int tcp_space_from_win(const struct sock *sk, int win)
1459 {
1460 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1461 }
1462 
1463 static inline void tcp_scaling_ratio_init(struct sock *sk)
1464 {
1465 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1466 	 * This may be adjusted later in tcp_measure_rcv_mss().
1467 	 */
1468 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1469 				    SKB_TRUESIZE(4096);
1470 }
1471 
1472 /* Note: caller must be prepared to deal with negative returns */
1473 static inline int tcp_space(const struct sock *sk)
1474 {
1475 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1476 				  READ_ONCE(sk->sk_backlog.len) -
1477 				  atomic_read(&sk->sk_rmem_alloc));
1478 }
1479 
1480 static inline int tcp_full_space(const struct sock *sk)
1481 {
1482 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1483 }
1484 
1485 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1486 {
1487 	int unused_mem = sk_unused_reserved_mem(sk);
1488 	struct tcp_sock *tp = tcp_sk(sk);
1489 
1490 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1491 	if (unused_mem)
1492 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1493 					 tcp_win_from_space(sk, unused_mem));
1494 }
1495 
1496 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1497 {
1498 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1499 }
1500 
1501 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1502 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1503 
1504 
1505 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1506  * If 87.5 % (7/8) of the space has been consumed, we want to override
1507  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1508  * len/truesize ratio.
1509  */
1510 static inline bool tcp_rmem_pressure(const struct sock *sk)
1511 {
1512 	int rcvbuf, threshold;
1513 
1514 	if (tcp_under_memory_pressure(sk))
1515 		return true;
1516 
1517 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1518 	threshold = rcvbuf - (rcvbuf >> 3);
1519 
1520 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1521 }
1522 
1523 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1524 {
1525 	const struct tcp_sock *tp = tcp_sk(sk);
1526 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1527 
1528 	if (avail <= 0)
1529 		return false;
1530 
1531 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1532 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1533 }
1534 
1535 extern void tcp_openreq_init_rwin(struct request_sock *req,
1536 				  const struct sock *sk_listener,
1537 				  const struct dst_entry *dst);
1538 
1539 void tcp_enter_memory_pressure(struct sock *sk);
1540 void tcp_leave_memory_pressure(struct sock *sk);
1541 
1542 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1543 {
1544 	struct net *net = sock_net((struct sock *)tp);
1545 	int val;
1546 
1547 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1548 	 * and do_tcp_setsockopt().
1549 	 */
1550 	val = READ_ONCE(tp->keepalive_intvl);
1551 
1552 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1553 }
1554 
1555 static inline int keepalive_time_when(const struct tcp_sock *tp)
1556 {
1557 	struct net *net = sock_net((struct sock *)tp);
1558 	int val;
1559 
1560 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1561 	val = READ_ONCE(tp->keepalive_time);
1562 
1563 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1564 }
1565 
1566 static inline int keepalive_probes(const struct tcp_sock *tp)
1567 {
1568 	struct net *net = sock_net((struct sock *)tp);
1569 	int val;
1570 
1571 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1572 	 * and do_tcp_setsockopt().
1573 	 */
1574 	val = READ_ONCE(tp->keepalive_probes);
1575 
1576 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1577 }
1578 
1579 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1580 {
1581 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1582 
1583 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1584 			  tcp_jiffies32 - tp->rcv_tstamp);
1585 }
1586 
1587 static inline int tcp_fin_time(const struct sock *sk)
1588 {
1589 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1590 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1591 	const int rto = inet_csk(sk)->icsk_rto;
1592 
1593 	if (fin_timeout < (rto << 2) - (rto >> 1))
1594 		fin_timeout = (rto << 2) - (rto >> 1);
1595 
1596 	return fin_timeout;
1597 }
1598 
1599 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1600 				  int paws_win)
1601 {
1602 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1603 		return true;
1604 	if (unlikely(!time_before32(ktime_get_seconds(),
1605 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1606 		return true;
1607 	/*
1608 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1609 	 * then following tcp messages have valid values. Ignore 0 value,
1610 	 * or else 'negative' tsval might forbid us to accept their packets.
1611 	 */
1612 	if (!rx_opt->ts_recent)
1613 		return true;
1614 	return false;
1615 }
1616 
1617 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1618 				   int rst)
1619 {
1620 	if (tcp_paws_check(rx_opt, 0))
1621 		return false;
1622 
1623 	/* RST segments are not recommended to carry timestamp,
1624 	   and, if they do, it is recommended to ignore PAWS because
1625 	   "their cleanup function should take precedence over timestamps."
1626 	   Certainly, it is mistake. It is necessary to understand the reasons
1627 	   of this constraint to relax it: if peer reboots, clock may go
1628 	   out-of-sync and half-open connections will not be reset.
1629 	   Actually, the problem would be not existing if all
1630 	   the implementations followed draft about maintaining clock
1631 	   via reboots. Linux-2.2 DOES NOT!
1632 
1633 	   However, we can relax time bounds for RST segments to MSL.
1634 	 */
1635 	if (rst && !time_before32(ktime_get_seconds(),
1636 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1637 		return false;
1638 	return true;
1639 }
1640 
1641 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1642 			  int mib_idx, u32 *last_oow_ack_time);
1643 
1644 static inline void tcp_mib_init(struct net *net)
1645 {
1646 	/* See RFC 2012 */
1647 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1648 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1649 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1650 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1651 }
1652 
1653 /* from STCP */
1654 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1655 {
1656 	tp->lost_skb_hint = NULL;
1657 }
1658 
1659 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1660 {
1661 	tcp_clear_retrans_hints_partial(tp);
1662 	tp->retransmit_skb_hint = NULL;
1663 }
1664 
1665 union tcp_md5_addr {
1666 	struct in_addr  a4;
1667 #if IS_ENABLED(CONFIG_IPV6)
1668 	struct in6_addr	a6;
1669 #endif
1670 };
1671 
1672 /* - key database */
1673 struct tcp_md5sig_key {
1674 	struct hlist_node	node;
1675 	u8			keylen;
1676 	u8			family; /* AF_INET or AF_INET6 */
1677 	u8			prefixlen;
1678 	u8			flags;
1679 	union tcp_md5_addr	addr;
1680 	int			l3index; /* set if key added with L3 scope */
1681 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1682 	struct rcu_head		rcu;
1683 };
1684 
1685 /* - sock block */
1686 struct tcp_md5sig_info {
1687 	struct hlist_head	head;
1688 	struct rcu_head		rcu;
1689 };
1690 
1691 /* - pseudo header */
1692 struct tcp4_pseudohdr {
1693 	__be32		saddr;
1694 	__be32		daddr;
1695 	__u8		pad;
1696 	__u8		protocol;
1697 	__be16		len;
1698 };
1699 
1700 struct tcp6_pseudohdr {
1701 	struct in6_addr	saddr;
1702 	struct in6_addr daddr;
1703 	__be32		len;
1704 	__be32		protocol;	/* including padding */
1705 };
1706 
1707 union tcp_md5sum_block {
1708 	struct tcp4_pseudohdr ip4;
1709 #if IS_ENABLED(CONFIG_IPV6)
1710 	struct tcp6_pseudohdr ip6;
1711 #endif
1712 };
1713 
1714 /* - pool: digest algorithm, hash description and scratch buffer */
1715 struct tcp_md5sig_pool {
1716 	struct ahash_request	*md5_req;
1717 	void			*scratch;
1718 };
1719 
1720 /* - functions */
1721 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1722 			const struct sock *sk, const struct sk_buff *skb);
1723 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1724 		   int family, u8 prefixlen, int l3index, u8 flags,
1725 		   const u8 *newkey, u8 newkeylen);
1726 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1727 		     int family, u8 prefixlen, int l3index,
1728 		     struct tcp_md5sig_key *key);
1729 
1730 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1731 		   int family, u8 prefixlen, int l3index, u8 flags);
1732 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1733 					 const struct sock *addr_sk);
1734 
1735 #ifdef CONFIG_TCP_MD5SIG
1736 #include <linux/jump_label.h>
1737 extern struct static_key_false_deferred tcp_md5_needed;
1738 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1739 					   const union tcp_md5_addr *addr,
1740 					   int family);
1741 static inline struct tcp_md5sig_key *
1742 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1743 		  const union tcp_md5_addr *addr, int family)
1744 {
1745 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1746 		return NULL;
1747 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1748 }
1749 
1750 enum skb_drop_reason
1751 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1752 		     const void *saddr, const void *daddr,
1753 		     int family, int dif, int sdif);
1754 
1755 
1756 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1757 #else
1758 static inline struct tcp_md5sig_key *
1759 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1760 		  const union tcp_md5_addr *addr, int family)
1761 {
1762 	return NULL;
1763 }
1764 
1765 static inline enum skb_drop_reason
1766 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1767 		     const void *saddr, const void *daddr,
1768 		     int family, int dif, int sdif)
1769 {
1770 	return SKB_NOT_DROPPED_YET;
1771 }
1772 #define tcp_twsk_md5_key(twsk)	NULL
1773 #endif
1774 
1775 bool tcp_alloc_md5sig_pool(void);
1776 
1777 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1778 static inline void tcp_put_md5sig_pool(void)
1779 {
1780 	local_bh_enable();
1781 }
1782 
1783 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1784 			  unsigned int header_len);
1785 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1786 		     const struct tcp_md5sig_key *key);
1787 
1788 /* From tcp_fastopen.c */
1789 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1790 			    struct tcp_fastopen_cookie *cookie);
1791 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1792 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1793 			    u16 try_exp);
1794 struct tcp_fastopen_request {
1795 	/* Fast Open cookie. Size 0 means a cookie request */
1796 	struct tcp_fastopen_cookie	cookie;
1797 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1798 	size_t				size;
1799 	int				copied;	/* queued in tcp_connect() */
1800 	struct ubuf_info		*uarg;
1801 };
1802 void tcp_free_fastopen_req(struct tcp_sock *tp);
1803 void tcp_fastopen_destroy_cipher(struct sock *sk);
1804 void tcp_fastopen_ctx_destroy(struct net *net);
1805 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1806 			      void *primary_key, void *backup_key);
1807 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1808 			    u64 *key);
1809 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1810 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1811 			      struct request_sock *req,
1812 			      struct tcp_fastopen_cookie *foc,
1813 			      const struct dst_entry *dst);
1814 void tcp_fastopen_init_key_once(struct net *net);
1815 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1816 			     struct tcp_fastopen_cookie *cookie);
1817 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1818 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1819 #define TCP_FASTOPEN_KEY_MAX 2
1820 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1821 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1822 
1823 /* Fastopen key context */
1824 struct tcp_fastopen_context {
1825 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1826 	int		num;
1827 	struct rcu_head	rcu;
1828 };
1829 
1830 void tcp_fastopen_active_disable(struct sock *sk);
1831 bool tcp_fastopen_active_should_disable(struct sock *sk);
1832 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1833 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1834 
1835 /* Caller needs to wrap with rcu_read_(un)lock() */
1836 static inline
1837 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1838 {
1839 	struct tcp_fastopen_context *ctx;
1840 
1841 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1842 	if (!ctx)
1843 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1844 	return ctx;
1845 }
1846 
1847 static inline
1848 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1849 			       const struct tcp_fastopen_cookie *orig)
1850 {
1851 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1852 	    orig->len == foc->len &&
1853 	    !memcmp(orig->val, foc->val, foc->len))
1854 		return true;
1855 	return false;
1856 }
1857 
1858 static inline
1859 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1860 {
1861 	return ctx->num;
1862 }
1863 
1864 /* Latencies incurred by various limits for a sender. They are
1865  * chronograph-like stats that are mutually exclusive.
1866  */
1867 enum tcp_chrono {
1868 	TCP_CHRONO_UNSPEC,
1869 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1870 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1871 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1872 	__TCP_CHRONO_MAX,
1873 };
1874 
1875 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1876 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1877 
1878 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1879  * the same memory storage than skb->destructor/_skb_refdst
1880  */
1881 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1882 {
1883 	skb->destructor = NULL;
1884 	skb->_skb_refdst = 0UL;
1885 }
1886 
1887 #define tcp_skb_tsorted_save(skb) {		\
1888 	unsigned long _save = skb->_skb_refdst;	\
1889 	skb->_skb_refdst = 0UL;
1890 
1891 #define tcp_skb_tsorted_restore(skb)		\
1892 	skb->_skb_refdst = _save;		\
1893 }
1894 
1895 void tcp_write_queue_purge(struct sock *sk);
1896 
1897 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1898 {
1899 	return skb_rb_first(&sk->tcp_rtx_queue);
1900 }
1901 
1902 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1903 {
1904 	return skb_rb_last(&sk->tcp_rtx_queue);
1905 }
1906 
1907 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1908 {
1909 	return skb_peek_tail(&sk->sk_write_queue);
1910 }
1911 
1912 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1913 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1914 
1915 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1916 {
1917 	return skb_peek(&sk->sk_write_queue);
1918 }
1919 
1920 static inline bool tcp_skb_is_last(const struct sock *sk,
1921 				   const struct sk_buff *skb)
1922 {
1923 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1924 }
1925 
1926 /**
1927  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1928  * @sk: socket
1929  *
1930  * Since the write queue can have a temporary empty skb in it,
1931  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1932  */
1933 static inline bool tcp_write_queue_empty(const struct sock *sk)
1934 {
1935 	const struct tcp_sock *tp = tcp_sk(sk);
1936 
1937 	return tp->write_seq == tp->snd_nxt;
1938 }
1939 
1940 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1941 {
1942 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1943 }
1944 
1945 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1946 {
1947 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1948 }
1949 
1950 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1951 {
1952 	__skb_queue_tail(&sk->sk_write_queue, skb);
1953 
1954 	/* Queue it, remembering where we must start sending. */
1955 	if (sk->sk_write_queue.next == skb)
1956 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1957 }
1958 
1959 /* Insert new before skb on the write queue of sk.  */
1960 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1961 						  struct sk_buff *skb,
1962 						  struct sock *sk)
1963 {
1964 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1965 }
1966 
1967 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1968 {
1969 	tcp_skb_tsorted_anchor_cleanup(skb);
1970 	__skb_unlink(skb, &sk->sk_write_queue);
1971 }
1972 
1973 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1974 
1975 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1976 {
1977 	tcp_skb_tsorted_anchor_cleanup(skb);
1978 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1979 }
1980 
1981 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1982 {
1983 	list_del(&skb->tcp_tsorted_anchor);
1984 	tcp_rtx_queue_unlink(skb, sk);
1985 	tcp_wmem_free_skb(sk, skb);
1986 }
1987 
1988 static inline void tcp_push_pending_frames(struct sock *sk)
1989 {
1990 	if (tcp_send_head(sk)) {
1991 		struct tcp_sock *tp = tcp_sk(sk);
1992 
1993 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1994 	}
1995 }
1996 
1997 /* Start sequence of the skb just after the highest skb with SACKed
1998  * bit, valid only if sacked_out > 0 or when the caller has ensured
1999  * validity by itself.
2000  */
2001 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2002 {
2003 	if (!tp->sacked_out)
2004 		return tp->snd_una;
2005 
2006 	if (tp->highest_sack == NULL)
2007 		return tp->snd_nxt;
2008 
2009 	return TCP_SKB_CB(tp->highest_sack)->seq;
2010 }
2011 
2012 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2013 {
2014 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2015 }
2016 
2017 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2018 {
2019 	return tcp_sk(sk)->highest_sack;
2020 }
2021 
2022 static inline void tcp_highest_sack_reset(struct sock *sk)
2023 {
2024 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2025 }
2026 
2027 /* Called when old skb is about to be deleted and replaced by new skb */
2028 static inline void tcp_highest_sack_replace(struct sock *sk,
2029 					    struct sk_buff *old,
2030 					    struct sk_buff *new)
2031 {
2032 	if (old == tcp_highest_sack(sk))
2033 		tcp_sk(sk)->highest_sack = new;
2034 }
2035 
2036 /* This helper checks if socket has IP_TRANSPARENT set */
2037 static inline bool inet_sk_transparent(const struct sock *sk)
2038 {
2039 	switch (sk->sk_state) {
2040 	case TCP_TIME_WAIT:
2041 		return inet_twsk(sk)->tw_transparent;
2042 	case TCP_NEW_SYN_RECV:
2043 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2044 	}
2045 	return inet_test_bit(TRANSPARENT, sk);
2046 }
2047 
2048 /* Determines whether this is a thin stream (which may suffer from
2049  * increased latency). Used to trigger latency-reducing mechanisms.
2050  */
2051 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2052 {
2053 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2054 }
2055 
2056 /* /proc */
2057 enum tcp_seq_states {
2058 	TCP_SEQ_STATE_LISTENING,
2059 	TCP_SEQ_STATE_ESTABLISHED,
2060 };
2061 
2062 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2063 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2064 void tcp_seq_stop(struct seq_file *seq, void *v);
2065 
2066 struct tcp_seq_afinfo {
2067 	sa_family_t			family;
2068 };
2069 
2070 struct tcp_iter_state {
2071 	struct seq_net_private	p;
2072 	enum tcp_seq_states	state;
2073 	struct sock		*syn_wait_sk;
2074 	int			bucket, offset, sbucket, num;
2075 	loff_t			last_pos;
2076 };
2077 
2078 extern struct request_sock_ops tcp_request_sock_ops;
2079 extern struct request_sock_ops tcp6_request_sock_ops;
2080 
2081 void tcp_v4_destroy_sock(struct sock *sk);
2082 
2083 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2084 				netdev_features_t features);
2085 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2086 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2087 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2088 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2089 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2090 void tcp_gro_complete(struct sk_buff *skb);
2091 
2092 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2093 
2094 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2095 {
2096 	struct net *net = sock_net((struct sock *)tp);
2097 	u32 val;
2098 
2099 	val = READ_ONCE(tp->notsent_lowat);
2100 
2101 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2102 }
2103 
2104 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2105 
2106 #ifdef CONFIG_PROC_FS
2107 int tcp4_proc_init(void);
2108 void tcp4_proc_exit(void);
2109 #endif
2110 
2111 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2112 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2113 		     const struct tcp_request_sock_ops *af_ops,
2114 		     struct sock *sk, struct sk_buff *skb);
2115 
2116 /* TCP af-specific functions */
2117 struct tcp_sock_af_ops {
2118 #ifdef CONFIG_TCP_MD5SIG
2119 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2120 						const struct sock *addr_sk);
2121 	int		(*calc_md5_hash)(char *location,
2122 					 const struct tcp_md5sig_key *md5,
2123 					 const struct sock *sk,
2124 					 const struct sk_buff *skb);
2125 	int		(*md5_parse)(struct sock *sk,
2126 				     int optname,
2127 				     sockptr_t optval,
2128 				     int optlen);
2129 #endif
2130 };
2131 
2132 struct tcp_request_sock_ops {
2133 	u16 mss_clamp;
2134 #ifdef CONFIG_TCP_MD5SIG
2135 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2136 						 const struct sock *addr_sk);
2137 	int		(*calc_md5_hash) (char *location,
2138 					  const struct tcp_md5sig_key *md5,
2139 					  const struct sock *sk,
2140 					  const struct sk_buff *skb);
2141 #endif
2142 #ifdef CONFIG_SYN_COOKIES
2143 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2144 				 __u16 *mss);
2145 #endif
2146 	struct dst_entry *(*route_req)(const struct sock *sk,
2147 				       struct sk_buff *skb,
2148 				       struct flowi *fl,
2149 				       struct request_sock *req);
2150 	u32 (*init_seq)(const struct sk_buff *skb);
2151 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2152 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2153 			   struct flowi *fl, struct request_sock *req,
2154 			   struct tcp_fastopen_cookie *foc,
2155 			   enum tcp_synack_type synack_type,
2156 			   struct sk_buff *syn_skb);
2157 };
2158 
2159 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2160 #if IS_ENABLED(CONFIG_IPV6)
2161 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2162 #endif
2163 
2164 #ifdef CONFIG_SYN_COOKIES
2165 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2166 					 const struct sock *sk, struct sk_buff *skb,
2167 					 __u16 *mss)
2168 {
2169 	tcp_synq_overflow(sk);
2170 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2171 	return ops->cookie_init_seq(skb, mss);
2172 }
2173 #else
2174 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2175 					 const struct sock *sk, struct sk_buff *skb,
2176 					 __u16 *mss)
2177 {
2178 	return 0;
2179 }
2180 #endif
2181 
2182 int tcpv4_offload_init(void);
2183 
2184 void tcp_v4_init(void);
2185 void tcp_init(void);
2186 
2187 /* tcp_recovery.c */
2188 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2189 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2190 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2191 				u32 reo_wnd);
2192 extern bool tcp_rack_mark_lost(struct sock *sk);
2193 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2194 			     u64 xmit_time);
2195 extern void tcp_rack_reo_timeout(struct sock *sk);
2196 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2197 
2198 /* tcp_plb.c */
2199 
2200 /*
2201  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2202  * expects cong_ratio which represents fraction of traffic that experienced
2203  * congestion over a single RTT. In order to avoid floating point operations,
2204  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2205  */
2206 #define TCP_PLB_SCALE 8
2207 
2208 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2209 struct tcp_plb_state {
2210 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2211 		unused:3;
2212 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2213 };
2214 
2215 static inline void tcp_plb_init(const struct sock *sk,
2216 				struct tcp_plb_state *plb)
2217 {
2218 	plb->consec_cong_rounds = 0;
2219 	plb->pause_until = 0;
2220 }
2221 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2222 			  const int cong_ratio);
2223 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2224 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2225 
2226 /* At how many usecs into the future should the RTO fire? */
2227 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2228 {
2229 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2230 	u32 rto = inet_csk(sk)->icsk_rto;
2231 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2232 
2233 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2234 }
2235 
2236 /*
2237  * Save and compile IPv4 options, return a pointer to it
2238  */
2239 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2240 							 struct sk_buff *skb)
2241 {
2242 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2243 	struct ip_options_rcu *dopt = NULL;
2244 
2245 	if (opt->optlen) {
2246 		int opt_size = sizeof(*dopt) + opt->optlen;
2247 
2248 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2249 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2250 			kfree(dopt);
2251 			dopt = NULL;
2252 		}
2253 	}
2254 	return dopt;
2255 }
2256 
2257 /* locally generated TCP pure ACKs have skb->truesize == 2
2258  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2259  * This is much faster than dissecting the packet to find out.
2260  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2261  */
2262 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2263 {
2264 	return skb->truesize == 2;
2265 }
2266 
2267 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2268 {
2269 	skb->truesize = 2;
2270 }
2271 
2272 static inline int tcp_inq(struct sock *sk)
2273 {
2274 	struct tcp_sock *tp = tcp_sk(sk);
2275 	int answ;
2276 
2277 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2278 		answ = 0;
2279 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2280 		   !tp->urg_data ||
2281 		   before(tp->urg_seq, tp->copied_seq) ||
2282 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2283 
2284 		answ = tp->rcv_nxt - tp->copied_seq;
2285 
2286 		/* Subtract 1, if FIN was received */
2287 		if (answ && sock_flag(sk, SOCK_DONE))
2288 			answ--;
2289 	} else {
2290 		answ = tp->urg_seq - tp->copied_seq;
2291 	}
2292 
2293 	return answ;
2294 }
2295 
2296 int tcp_peek_len(struct socket *sock);
2297 
2298 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2299 {
2300 	u16 segs_in;
2301 
2302 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2303 
2304 	/* We update these fields while other threads might
2305 	 * read them from tcp_get_info()
2306 	 */
2307 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2308 	if (skb->len > tcp_hdrlen(skb))
2309 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2310 }
2311 
2312 /*
2313  * TCP listen path runs lockless.
2314  * We forced "struct sock" to be const qualified to make sure
2315  * we don't modify one of its field by mistake.
2316  * Here, we increment sk_drops which is an atomic_t, so we can safely
2317  * make sock writable again.
2318  */
2319 static inline void tcp_listendrop(const struct sock *sk)
2320 {
2321 	atomic_inc(&((struct sock *)sk)->sk_drops);
2322 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2323 }
2324 
2325 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2326 
2327 /*
2328  * Interface for adding Upper Level Protocols over TCP
2329  */
2330 
2331 #define TCP_ULP_NAME_MAX	16
2332 #define TCP_ULP_MAX		128
2333 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2334 
2335 struct tcp_ulp_ops {
2336 	struct list_head	list;
2337 
2338 	/* initialize ulp */
2339 	int (*init)(struct sock *sk);
2340 	/* update ulp */
2341 	void (*update)(struct sock *sk, struct proto *p,
2342 		       void (*write_space)(struct sock *sk));
2343 	/* cleanup ulp */
2344 	void (*release)(struct sock *sk);
2345 	/* diagnostic */
2346 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2347 	size_t (*get_info_size)(const struct sock *sk);
2348 	/* clone ulp */
2349 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2350 		      const gfp_t priority);
2351 
2352 	char		name[TCP_ULP_NAME_MAX];
2353 	struct module	*owner;
2354 };
2355 int tcp_register_ulp(struct tcp_ulp_ops *type);
2356 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2357 int tcp_set_ulp(struct sock *sk, const char *name);
2358 void tcp_get_available_ulp(char *buf, size_t len);
2359 void tcp_cleanup_ulp(struct sock *sk);
2360 void tcp_update_ulp(struct sock *sk, struct proto *p,
2361 		    void (*write_space)(struct sock *sk));
2362 
2363 #define MODULE_ALIAS_TCP_ULP(name)				\
2364 	__MODULE_INFO(alias, alias_userspace, name);		\
2365 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2366 
2367 #ifdef CONFIG_NET_SOCK_MSG
2368 struct sk_msg;
2369 struct sk_psock;
2370 
2371 #ifdef CONFIG_BPF_SYSCALL
2372 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2373 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2374 #endif /* CONFIG_BPF_SYSCALL */
2375 
2376 #ifdef CONFIG_INET
2377 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2378 #else
2379 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2380 {
2381 }
2382 #endif
2383 
2384 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2385 			  struct sk_msg *msg, u32 bytes, int flags);
2386 #endif /* CONFIG_NET_SOCK_MSG */
2387 
2388 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2389 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2390 {
2391 }
2392 #endif
2393 
2394 #ifdef CONFIG_CGROUP_BPF
2395 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2396 				      struct sk_buff *skb,
2397 				      unsigned int end_offset)
2398 {
2399 	skops->skb = skb;
2400 	skops->skb_data_end = skb->data + end_offset;
2401 }
2402 #else
2403 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2404 				      struct sk_buff *skb,
2405 				      unsigned int end_offset)
2406 {
2407 }
2408 #endif
2409 
2410 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2411  * is < 0, then the BPF op failed (for example if the loaded BPF
2412  * program does not support the chosen operation or there is no BPF
2413  * program loaded).
2414  */
2415 #ifdef CONFIG_BPF
2416 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2417 {
2418 	struct bpf_sock_ops_kern sock_ops;
2419 	int ret;
2420 
2421 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2422 	if (sk_fullsock(sk)) {
2423 		sock_ops.is_fullsock = 1;
2424 		sock_owned_by_me(sk);
2425 	}
2426 
2427 	sock_ops.sk = sk;
2428 	sock_ops.op = op;
2429 	if (nargs > 0)
2430 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2431 
2432 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2433 	if (ret == 0)
2434 		ret = sock_ops.reply;
2435 	else
2436 		ret = -1;
2437 	return ret;
2438 }
2439 
2440 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2441 {
2442 	u32 args[2] = {arg1, arg2};
2443 
2444 	return tcp_call_bpf(sk, op, 2, args);
2445 }
2446 
2447 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2448 				    u32 arg3)
2449 {
2450 	u32 args[3] = {arg1, arg2, arg3};
2451 
2452 	return tcp_call_bpf(sk, op, 3, args);
2453 }
2454 
2455 #else
2456 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2457 {
2458 	return -EPERM;
2459 }
2460 
2461 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2462 {
2463 	return -EPERM;
2464 }
2465 
2466 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2467 				    u32 arg3)
2468 {
2469 	return -EPERM;
2470 }
2471 
2472 #endif
2473 
2474 static inline u32 tcp_timeout_init(struct sock *sk)
2475 {
2476 	int timeout;
2477 
2478 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2479 
2480 	if (timeout <= 0)
2481 		timeout = TCP_TIMEOUT_INIT;
2482 	return min_t(int, timeout, TCP_RTO_MAX);
2483 }
2484 
2485 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2486 {
2487 	int rwnd;
2488 
2489 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2490 
2491 	if (rwnd < 0)
2492 		rwnd = 0;
2493 	return rwnd;
2494 }
2495 
2496 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2497 {
2498 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2499 }
2500 
2501 static inline void tcp_bpf_rtt(struct sock *sk)
2502 {
2503 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2504 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2505 }
2506 
2507 #if IS_ENABLED(CONFIG_SMC)
2508 extern struct static_key_false tcp_have_smc;
2509 #endif
2510 
2511 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2512 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2513 			     void (*cad)(struct sock *sk, u32 ack_seq));
2514 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2515 void clean_acked_data_flush(void);
2516 #endif
2517 
2518 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2519 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2520 				    const struct tcp_sock *tp)
2521 {
2522 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2523 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2524 }
2525 
2526 /* Compute Earliest Departure Time for some control packets
2527  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2528  */
2529 static inline u64 tcp_transmit_time(const struct sock *sk)
2530 {
2531 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2532 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2533 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2534 
2535 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2536 	}
2537 	return 0;
2538 }
2539 
2540 #endif	/* _TCP_H */
2541