xref: /openbmc/linux/include/net/tcp.h (revision 0d07cf5e)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 int tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 		       struct tcp_options_received *opt_rx,
414 		       int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416 
417 /*
418  *	TCP v4 functions exported for the inet6 API
419  */
420 
421 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
422 void tcp_v4_mtu_reduced(struct sock *sk);
423 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
424 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
425 struct sock *tcp_create_openreq_child(const struct sock *sk,
426 				      struct request_sock *req,
427 				      struct sk_buff *skb);
428 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
429 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
430 				  struct request_sock *req,
431 				  struct dst_entry *dst,
432 				  struct request_sock *req_unhash,
433 				  bool *own_req);
434 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
435 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
436 int tcp_connect(struct sock *sk);
437 enum tcp_synack_type {
438 	TCP_SYNACK_NORMAL,
439 	TCP_SYNACK_FASTOPEN,
440 	TCP_SYNACK_COOKIE,
441 };
442 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
443 				struct request_sock *req,
444 				struct tcp_fastopen_cookie *foc,
445 				enum tcp_synack_type synack_type);
446 int tcp_disconnect(struct sock *sk, int flags);
447 
448 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
449 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
450 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
451 
452 /* From syncookies.c */
453 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
454 				 struct request_sock *req,
455 				 struct dst_entry *dst, u32 tsoff);
456 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
457 		      u32 cookie);
458 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
459 #ifdef CONFIG_SYN_COOKIES
460 
461 /* Syncookies use a monotonic timer which increments every 60 seconds.
462  * This counter is used both as a hash input and partially encoded into
463  * the cookie value.  A cookie is only validated further if the delta
464  * between the current counter value and the encoded one is less than this,
465  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
466  * the counter advances immediately after a cookie is generated).
467  */
468 #define MAX_SYNCOOKIE_AGE	2
469 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
470 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
471 
472 /* syncookies: remember time of last synqueue overflow
473  * But do not dirty this field too often (once per second is enough)
474  * It is racy as we do not hold a lock, but race is very minor.
475  */
476 static inline void tcp_synq_overflow(const struct sock *sk)
477 {
478 	unsigned int last_overflow;
479 	unsigned int now = jiffies;
480 
481 	if (sk->sk_reuseport) {
482 		struct sock_reuseport *reuse;
483 
484 		reuse = rcu_dereference(sk->sk_reuseport_cb);
485 		if (likely(reuse)) {
486 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
487 			if (time_after32(now, last_overflow + HZ))
488 				WRITE_ONCE(reuse->synq_overflow_ts, now);
489 			return;
490 		}
491 	}
492 
493 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
494 	if (time_after32(now, last_overflow + HZ))
495 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
496 }
497 
498 /* syncookies: no recent synqueue overflow on this listening socket? */
499 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
500 {
501 	unsigned int last_overflow;
502 	unsigned int now = jiffies;
503 
504 	if (sk->sk_reuseport) {
505 		struct sock_reuseport *reuse;
506 
507 		reuse = rcu_dereference(sk->sk_reuseport_cb);
508 		if (likely(reuse)) {
509 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
510 			return time_after32(now, last_overflow +
511 					    TCP_SYNCOOKIE_VALID);
512 		}
513 	}
514 
515 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
516 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
517 }
518 
519 static inline u32 tcp_cookie_time(void)
520 {
521 	u64 val = get_jiffies_64();
522 
523 	do_div(val, TCP_SYNCOOKIE_PERIOD);
524 	return val;
525 }
526 
527 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
528 			      u16 *mssp);
529 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
530 u64 cookie_init_timestamp(struct request_sock *req);
531 bool cookie_timestamp_decode(const struct net *net,
532 			     struct tcp_options_received *opt);
533 bool cookie_ecn_ok(const struct tcp_options_received *opt,
534 		   const struct net *net, const struct dst_entry *dst);
535 
536 /* From net/ipv6/syncookies.c */
537 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
538 		      u32 cookie);
539 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
540 
541 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
542 			      const struct tcphdr *th, u16 *mssp);
543 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
544 #endif
545 /* tcp_output.c */
546 
547 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
548 			       int nonagle);
549 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
550 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
551 void tcp_retransmit_timer(struct sock *sk);
552 void tcp_xmit_retransmit_queue(struct sock *);
553 void tcp_simple_retransmit(struct sock *);
554 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
555 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
556 enum tcp_queue {
557 	TCP_FRAG_IN_WRITE_QUEUE,
558 	TCP_FRAG_IN_RTX_QUEUE,
559 };
560 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
561 		 struct sk_buff *skb, u32 len,
562 		 unsigned int mss_now, gfp_t gfp);
563 
564 void tcp_send_probe0(struct sock *);
565 void tcp_send_partial(struct sock *);
566 int tcp_write_wakeup(struct sock *, int mib);
567 void tcp_send_fin(struct sock *sk);
568 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
569 int tcp_send_synack(struct sock *);
570 void tcp_push_one(struct sock *, unsigned int mss_now);
571 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
572 void tcp_send_ack(struct sock *sk);
573 void tcp_send_delayed_ack(struct sock *sk);
574 void tcp_send_loss_probe(struct sock *sk);
575 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
576 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
577 			     const struct sk_buff *next_skb);
578 
579 /* tcp_input.c */
580 void tcp_rearm_rto(struct sock *sk);
581 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
582 void tcp_reset(struct sock *sk);
583 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
584 void tcp_fin(struct sock *sk);
585 
586 /* tcp_timer.c */
587 void tcp_init_xmit_timers(struct sock *);
588 static inline void tcp_clear_xmit_timers(struct sock *sk)
589 {
590 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
591 		__sock_put(sk);
592 
593 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
594 		__sock_put(sk);
595 
596 	inet_csk_clear_xmit_timers(sk);
597 }
598 
599 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
600 unsigned int tcp_current_mss(struct sock *sk);
601 
602 /* Bound MSS / TSO packet size with the half of the window */
603 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
604 {
605 	int cutoff;
606 
607 	/* When peer uses tiny windows, there is no use in packetizing
608 	 * to sub-MSS pieces for the sake of SWS or making sure there
609 	 * are enough packets in the pipe for fast recovery.
610 	 *
611 	 * On the other hand, for extremely large MSS devices, handling
612 	 * smaller than MSS windows in this way does make sense.
613 	 */
614 	if (tp->max_window > TCP_MSS_DEFAULT)
615 		cutoff = (tp->max_window >> 1);
616 	else
617 		cutoff = tp->max_window;
618 
619 	if (cutoff && pktsize > cutoff)
620 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
621 	else
622 		return pktsize;
623 }
624 
625 /* tcp.c */
626 void tcp_get_info(struct sock *, struct tcp_info *);
627 
628 /* Read 'sendfile()'-style from a TCP socket */
629 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
630 		  sk_read_actor_t recv_actor);
631 
632 void tcp_initialize_rcv_mss(struct sock *sk);
633 
634 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
635 int tcp_mss_to_mtu(struct sock *sk, int mss);
636 void tcp_mtup_init(struct sock *sk);
637 void tcp_init_buffer_space(struct sock *sk);
638 
639 static inline void tcp_bound_rto(const struct sock *sk)
640 {
641 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
642 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
643 }
644 
645 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
646 {
647 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
648 }
649 
650 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
651 {
652 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
653 			       ntohl(TCP_FLAG_ACK) |
654 			       snd_wnd);
655 }
656 
657 static inline void tcp_fast_path_on(struct tcp_sock *tp)
658 {
659 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
660 }
661 
662 static inline void tcp_fast_path_check(struct sock *sk)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 
666 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
667 	    tp->rcv_wnd &&
668 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
669 	    !tp->urg_data)
670 		tcp_fast_path_on(tp);
671 }
672 
673 /* Compute the actual rto_min value */
674 static inline u32 tcp_rto_min(struct sock *sk)
675 {
676 	const struct dst_entry *dst = __sk_dst_get(sk);
677 	u32 rto_min = TCP_RTO_MIN;
678 
679 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
680 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
681 	return rto_min;
682 }
683 
684 static inline u32 tcp_rto_min_us(struct sock *sk)
685 {
686 	return jiffies_to_usecs(tcp_rto_min(sk));
687 }
688 
689 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
690 {
691 	return dst_metric_locked(dst, RTAX_CC_ALGO);
692 }
693 
694 /* Minimum RTT in usec. ~0 means not available. */
695 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
696 {
697 	return minmax_get(&tp->rtt_min);
698 }
699 
700 /* Compute the actual receive window we are currently advertising.
701  * Rcv_nxt can be after the window if our peer push more data
702  * than the offered window.
703  */
704 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
705 {
706 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
707 
708 	if (win < 0)
709 		win = 0;
710 	return (u32) win;
711 }
712 
713 /* Choose a new window, without checks for shrinking, and without
714  * scaling applied to the result.  The caller does these things
715  * if necessary.  This is a "raw" window selection.
716  */
717 u32 __tcp_select_window(struct sock *sk);
718 
719 void tcp_send_window_probe(struct sock *sk);
720 
721 /* TCP uses 32bit jiffies to save some space.
722  * Note that this is different from tcp_time_stamp, which
723  * historically has been the same until linux-4.13.
724  */
725 #define tcp_jiffies32 ((u32)jiffies)
726 
727 /*
728  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
729  * It is no longer tied to jiffies, but to 1 ms clock.
730  * Note: double check if you want to use tcp_jiffies32 instead of this.
731  */
732 #define TCP_TS_HZ	1000
733 
734 static inline u64 tcp_clock_ns(void)
735 {
736 	return ktime_get_ns();
737 }
738 
739 static inline u64 tcp_clock_us(void)
740 {
741 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
742 }
743 
744 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
745 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
746 {
747 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
748 }
749 
750 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
751 static inline u32 tcp_time_stamp_raw(void)
752 {
753 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
754 }
755 
756 void tcp_mstamp_refresh(struct tcp_sock *tp);
757 
758 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
759 {
760 	return max_t(s64, t1 - t0, 0);
761 }
762 
763 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
764 {
765 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
766 }
767 
768 /* provide the departure time in us unit */
769 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
770 {
771 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
772 }
773 
774 
775 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
776 
777 #define TCPHDR_FIN 0x01
778 #define TCPHDR_SYN 0x02
779 #define TCPHDR_RST 0x04
780 #define TCPHDR_PSH 0x08
781 #define TCPHDR_ACK 0x10
782 #define TCPHDR_URG 0x20
783 #define TCPHDR_ECE 0x40
784 #define TCPHDR_CWR 0x80
785 
786 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
787 
788 /* This is what the send packet queuing engine uses to pass
789  * TCP per-packet control information to the transmission code.
790  * We also store the host-order sequence numbers in here too.
791  * This is 44 bytes if IPV6 is enabled.
792  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
793  */
794 struct tcp_skb_cb {
795 	__u32		seq;		/* Starting sequence number	*/
796 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
797 	union {
798 		/* Note : tcp_tw_isn is used in input path only
799 		 *	  (isn chosen by tcp_timewait_state_process())
800 		 *
801 		 * 	  tcp_gso_segs/size are used in write queue only,
802 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
803 		 */
804 		__u32		tcp_tw_isn;
805 		struct {
806 			u16	tcp_gso_segs;
807 			u16	tcp_gso_size;
808 		};
809 	};
810 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
811 
812 	__u8		sacked;		/* State flags for SACK.	*/
813 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
814 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
815 #define TCPCB_LOST		0x04	/* SKB is lost			*/
816 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
817 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
818 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
819 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
820 				TCPCB_REPAIRED)
821 
822 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
823 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
824 			eor:1,		/* Is skb MSG_EOR marked? */
825 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
826 			unused:5;
827 	__u32		ack_seq;	/* Sequence number ACK'd	*/
828 	union {
829 		struct {
830 			/* There is space for up to 24 bytes */
831 			__u32 in_flight:30,/* Bytes in flight at transmit */
832 			      is_app_limited:1, /* cwnd not fully used? */
833 			      unused:1;
834 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
835 			__u32 delivered;
836 			/* start of send pipeline phase */
837 			u64 first_tx_mstamp;
838 			/* when we reached the "delivered" count */
839 			u64 delivered_mstamp;
840 		} tx;   /* only used for outgoing skbs */
841 		union {
842 			struct inet_skb_parm	h4;
843 #if IS_ENABLED(CONFIG_IPV6)
844 			struct inet6_skb_parm	h6;
845 #endif
846 		} header;	/* For incoming skbs */
847 		struct {
848 			__u32 flags;
849 			struct sock *sk_redir;
850 			void *data_end;
851 		} bpf;
852 	};
853 };
854 
855 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
856 
857 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
858 {
859 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
860 }
861 
862 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
863 {
864 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
865 }
866 
867 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
868 {
869 	return TCP_SKB_CB(skb)->bpf.sk_redir;
870 }
871 
872 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
873 {
874 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
875 }
876 
877 #if IS_ENABLED(CONFIG_IPV6)
878 /* This is the variant of inet6_iif() that must be used by TCP,
879  * as TCP moves IP6CB into a different location in skb->cb[]
880  */
881 static inline int tcp_v6_iif(const struct sk_buff *skb)
882 {
883 	return TCP_SKB_CB(skb)->header.h6.iif;
884 }
885 
886 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
887 {
888 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
889 
890 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
891 }
892 
893 /* TCP_SKB_CB reference means this can not be used from early demux */
894 static inline int tcp_v6_sdif(const struct sk_buff *skb)
895 {
896 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
897 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
898 		return TCP_SKB_CB(skb)->header.h6.iif;
899 #endif
900 	return 0;
901 }
902 #endif
903 
904 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
905 {
906 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
907 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
908 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
909 		return true;
910 #endif
911 	return false;
912 }
913 
914 /* TCP_SKB_CB reference means this can not be used from early demux */
915 static inline int tcp_v4_sdif(struct sk_buff *skb)
916 {
917 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
918 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
919 		return TCP_SKB_CB(skb)->header.h4.iif;
920 #endif
921 	return 0;
922 }
923 
924 /* Due to TSO, an SKB can be composed of multiple actual
925  * packets.  To keep these tracked properly, we use this.
926  */
927 static inline int tcp_skb_pcount(const struct sk_buff *skb)
928 {
929 	return TCP_SKB_CB(skb)->tcp_gso_segs;
930 }
931 
932 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
933 {
934 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
935 }
936 
937 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
938 {
939 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
940 }
941 
942 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
943 static inline int tcp_skb_mss(const struct sk_buff *skb)
944 {
945 	return TCP_SKB_CB(skb)->tcp_gso_size;
946 }
947 
948 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
949 {
950 	return likely(!TCP_SKB_CB(skb)->eor);
951 }
952 
953 /* Events passed to congestion control interface */
954 enum tcp_ca_event {
955 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
956 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
957 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
958 	CA_EVENT_LOSS,		/* loss timeout */
959 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
960 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
961 };
962 
963 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
964 enum tcp_ca_ack_event_flags {
965 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
966 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
967 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
968 };
969 
970 /*
971  * Interface for adding new TCP congestion control handlers
972  */
973 #define TCP_CA_NAME_MAX	16
974 #define TCP_CA_MAX	128
975 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
976 
977 #define TCP_CA_UNSPEC	0
978 
979 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
980 #define TCP_CONG_NON_RESTRICTED 0x1
981 /* Requires ECN/ECT set on all packets */
982 #define TCP_CONG_NEEDS_ECN	0x2
983 
984 union tcp_cc_info;
985 
986 struct ack_sample {
987 	u32 pkts_acked;
988 	s32 rtt_us;
989 	u32 in_flight;
990 };
991 
992 /* A rate sample measures the number of (original/retransmitted) data
993  * packets delivered "delivered" over an interval of time "interval_us".
994  * The tcp_rate.c code fills in the rate sample, and congestion
995  * control modules that define a cong_control function to run at the end
996  * of ACK processing can optionally chose to consult this sample when
997  * setting cwnd and pacing rate.
998  * A sample is invalid if "delivered" or "interval_us" is negative.
999  */
1000 struct rate_sample {
1001 	u64  prior_mstamp; /* starting timestamp for interval */
1002 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1003 	s32  delivered;		/* number of packets delivered over interval */
1004 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1005 	u32 snd_interval_us;	/* snd interval for delivered packets */
1006 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1007 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1008 	int  losses;		/* number of packets marked lost upon ACK */
1009 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1010 	u32  prior_in_flight;	/* in flight before this ACK */
1011 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1012 	bool is_retrans;	/* is sample from retransmission? */
1013 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1014 };
1015 
1016 struct tcp_congestion_ops {
1017 	struct list_head	list;
1018 	u32 key;
1019 	u32 flags;
1020 
1021 	/* initialize private data (optional) */
1022 	void (*init)(struct sock *sk);
1023 	/* cleanup private data  (optional) */
1024 	void (*release)(struct sock *sk);
1025 
1026 	/* return slow start threshold (required) */
1027 	u32 (*ssthresh)(struct sock *sk);
1028 	/* do new cwnd calculation (required) */
1029 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1030 	/* call before changing ca_state (optional) */
1031 	void (*set_state)(struct sock *sk, u8 new_state);
1032 	/* call when cwnd event occurs (optional) */
1033 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1034 	/* call when ack arrives (optional) */
1035 	void (*in_ack_event)(struct sock *sk, u32 flags);
1036 	/* new value of cwnd after loss (required) */
1037 	u32  (*undo_cwnd)(struct sock *sk);
1038 	/* hook for packet ack accounting (optional) */
1039 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1040 	/* override sysctl_tcp_min_tso_segs */
1041 	u32 (*min_tso_segs)(struct sock *sk);
1042 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1043 	u32 (*sndbuf_expand)(struct sock *sk);
1044 	/* call when packets are delivered to update cwnd and pacing rate,
1045 	 * after all the ca_state processing. (optional)
1046 	 */
1047 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1048 	/* get info for inet_diag (optional) */
1049 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1050 			   union tcp_cc_info *info);
1051 
1052 	char 		name[TCP_CA_NAME_MAX];
1053 	struct module 	*owner;
1054 };
1055 
1056 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1057 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1058 
1059 void tcp_assign_congestion_control(struct sock *sk);
1060 void tcp_init_congestion_control(struct sock *sk);
1061 void tcp_cleanup_congestion_control(struct sock *sk);
1062 int tcp_set_default_congestion_control(struct net *net, const char *name);
1063 void tcp_get_default_congestion_control(struct net *net, char *name);
1064 void tcp_get_available_congestion_control(char *buf, size_t len);
1065 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1066 int tcp_set_allowed_congestion_control(char *allowed);
1067 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1068 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1069 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1070 
1071 u32 tcp_reno_ssthresh(struct sock *sk);
1072 u32 tcp_reno_undo_cwnd(struct sock *sk);
1073 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1074 extern struct tcp_congestion_ops tcp_reno;
1075 
1076 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1077 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1078 #ifdef CONFIG_INET
1079 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1080 #else
1081 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1082 {
1083 	return NULL;
1084 }
1085 #endif
1086 
1087 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1088 {
1089 	const struct inet_connection_sock *icsk = inet_csk(sk);
1090 
1091 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1092 }
1093 
1094 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1095 {
1096 	struct inet_connection_sock *icsk = inet_csk(sk);
1097 
1098 	if (icsk->icsk_ca_ops->set_state)
1099 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1100 	icsk->icsk_ca_state = ca_state;
1101 }
1102 
1103 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1104 {
1105 	const struct inet_connection_sock *icsk = inet_csk(sk);
1106 
1107 	if (icsk->icsk_ca_ops->cwnd_event)
1108 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1109 }
1110 
1111 /* From tcp_rate.c */
1112 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1113 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1114 			    struct rate_sample *rs);
1115 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1116 		  bool is_sack_reneg, struct rate_sample *rs);
1117 void tcp_rate_check_app_limited(struct sock *sk);
1118 
1119 /* These functions determine how the current flow behaves in respect of SACK
1120  * handling. SACK is negotiated with the peer, and therefore it can vary
1121  * between different flows.
1122  *
1123  * tcp_is_sack - SACK enabled
1124  * tcp_is_reno - No SACK
1125  */
1126 static inline int tcp_is_sack(const struct tcp_sock *tp)
1127 {
1128 	return likely(tp->rx_opt.sack_ok);
1129 }
1130 
1131 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1132 {
1133 	return !tcp_is_sack(tp);
1134 }
1135 
1136 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1137 {
1138 	return tp->sacked_out + tp->lost_out;
1139 }
1140 
1141 /* This determines how many packets are "in the network" to the best
1142  * of our knowledge.  In many cases it is conservative, but where
1143  * detailed information is available from the receiver (via SACK
1144  * blocks etc.) we can make more aggressive calculations.
1145  *
1146  * Use this for decisions involving congestion control, use just
1147  * tp->packets_out to determine if the send queue is empty or not.
1148  *
1149  * Read this equation as:
1150  *
1151  *	"Packets sent once on transmission queue" MINUS
1152  *	"Packets left network, but not honestly ACKed yet" PLUS
1153  *	"Packets fast retransmitted"
1154  */
1155 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1156 {
1157 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1158 }
1159 
1160 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1161 
1162 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1163 {
1164 	return tp->snd_cwnd < tp->snd_ssthresh;
1165 }
1166 
1167 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1168 {
1169 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1170 }
1171 
1172 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1173 {
1174 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1175 	       (1 << inet_csk(sk)->icsk_ca_state);
1176 }
1177 
1178 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1179  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1180  * ssthresh.
1181  */
1182 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1183 {
1184 	const struct tcp_sock *tp = tcp_sk(sk);
1185 
1186 	if (tcp_in_cwnd_reduction(sk))
1187 		return tp->snd_ssthresh;
1188 	else
1189 		return max(tp->snd_ssthresh,
1190 			   ((tp->snd_cwnd >> 1) +
1191 			    (tp->snd_cwnd >> 2)));
1192 }
1193 
1194 /* Use define here intentionally to get WARN_ON location shown at the caller */
1195 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1196 
1197 void tcp_enter_cwr(struct sock *sk);
1198 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1199 
1200 /* The maximum number of MSS of available cwnd for which TSO defers
1201  * sending if not using sysctl_tcp_tso_win_divisor.
1202  */
1203 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1204 {
1205 	return 3;
1206 }
1207 
1208 /* Returns end sequence number of the receiver's advertised window */
1209 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1210 {
1211 	return tp->snd_una + tp->snd_wnd;
1212 }
1213 
1214 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1215  * flexible approach. The RFC suggests cwnd should not be raised unless
1216  * it was fully used previously. And that's exactly what we do in
1217  * congestion avoidance mode. But in slow start we allow cwnd to grow
1218  * as long as the application has used half the cwnd.
1219  * Example :
1220  *    cwnd is 10 (IW10), but application sends 9 frames.
1221  *    We allow cwnd to reach 18 when all frames are ACKed.
1222  * This check is safe because it's as aggressive as slow start which already
1223  * risks 100% overshoot. The advantage is that we discourage application to
1224  * either send more filler packets or data to artificially blow up the cwnd
1225  * usage, and allow application-limited process to probe bw more aggressively.
1226  */
1227 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1228 {
1229 	const struct tcp_sock *tp = tcp_sk(sk);
1230 
1231 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1232 	if (tcp_in_slow_start(tp))
1233 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1234 
1235 	return tp->is_cwnd_limited;
1236 }
1237 
1238 /* BBR congestion control needs pacing.
1239  * Same remark for SO_MAX_PACING_RATE.
1240  * sch_fq packet scheduler is efficiently handling pacing,
1241  * but is not always installed/used.
1242  * Return true if TCP stack should pace packets itself.
1243  */
1244 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1245 {
1246 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1247 }
1248 
1249 /* Return in jiffies the delay before one skb is sent.
1250  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1251  */
1252 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1253 					     const struct sk_buff *skb)
1254 {
1255 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1256 
1257 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1258 
1259 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1260 }
1261 
1262 static inline void tcp_reset_xmit_timer(struct sock *sk,
1263 					const int what,
1264 					unsigned long when,
1265 					const unsigned long max_when,
1266 					const struct sk_buff *skb)
1267 {
1268 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1269 				  max_when);
1270 }
1271 
1272 /* Something is really bad, we could not queue an additional packet,
1273  * because qdisc is full or receiver sent a 0 window, or we are paced.
1274  * We do not want to add fuel to the fire, or abort too early,
1275  * so make sure the timer we arm now is at least 200ms in the future,
1276  * regardless of current icsk_rto value (as it could be ~2ms)
1277  */
1278 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1279 {
1280 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1281 }
1282 
1283 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1284 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1285 					    unsigned long max_when)
1286 {
1287 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1288 
1289 	return (unsigned long)min_t(u64, when, max_when);
1290 }
1291 
1292 static inline void tcp_check_probe_timer(struct sock *sk)
1293 {
1294 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1295 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1296 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1297 				     NULL);
1298 }
1299 
1300 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1301 {
1302 	tp->snd_wl1 = seq;
1303 }
1304 
1305 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1306 {
1307 	tp->snd_wl1 = seq;
1308 }
1309 
1310 /*
1311  * Calculate(/check) TCP checksum
1312  */
1313 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1314 				   __be32 daddr, __wsum base)
1315 {
1316 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1317 }
1318 
1319 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1320 {
1321 	return !skb_csum_unnecessary(skb) &&
1322 		__skb_checksum_complete(skb);
1323 }
1324 
1325 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1326 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1327 void tcp_set_state(struct sock *sk, int state);
1328 void tcp_done(struct sock *sk);
1329 int tcp_abort(struct sock *sk, int err);
1330 
1331 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1332 {
1333 	rx_opt->dsack = 0;
1334 	rx_opt->num_sacks = 0;
1335 }
1336 
1337 u32 tcp_default_init_rwnd(u32 mss);
1338 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1339 
1340 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1341 {
1342 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1343 	struct tcp_sock *tp = tcp_sk(sk);
1344 	s32 delta;
1345 
1346 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1347 	    ca_ops->cong_control)
1348 		return;
1349 	delta = tcp_jiffies32 - tp->lsndtime;
1350 	if (delta > inet_csk(sk)->icsk_rto)
1351 		tcp_cwnd_restart(sk, delta);
1352 }
1353 
1354 /* Determine a window scaling and initial window to offer. */
1355 void tcp_select_initial_window(const struct sock *sk, int __space,
1356 			       __u32 mss, __u32 *rcv_wnd,
1357 			       __u32 *window_clamp, int wscale_ok,
1358 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1359 
1360 static inline int tcp_win_from_space(const struct sock *sk, int space)
1361 {
1362 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1363 
1364 	return tcp_adv_win_scale <= 0 ?
1365 		(space>>(-tcp_adv_win_scale)) :
1366 		space - (space>>tcp_adv_win_scale);
1367 }
1368 
1369 /* Note: caller must be prepared to deal with negative returns */
1370 static inline int tcp_space(const struct sock *sk)
1371 {
1372 	return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1373 				  atomic_read(&sk->sk_rmem_alloc));
1374 }
1375 
1376 static inline int tcp_full_space(const struct sock *sk)
1377 {
1378 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1379 }
1380 
1381 extern void tcp_openreq_init_rwin(struct request_sock *req,
1382 				  const struct sock *sk_listener,
1383 				  const struct dst_entry *dst);
1384 
1385 void tcp_enter_memory_pressure(struct sock *sk);
1386 void tcp_leave_memory_pressure(struct sock *sk);
1387 
1388 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1389 {
1390 	struct net *net = sock_net((struct sock *)tp);
1391 
1392 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1393 }
1394 
1395 static inline int keepalive_time_when(const struct tcp_sock *tp)
1396 {
1397 	struct net *net = sock_net((struct sock *)tp);
1398 
1399 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1400 }
1401 
1402 static inline int keepalive_probes(const struct tcp_sock *tp)
1403 {
1404 	struct net *net = sock_net((struct sock *)tp);
1405 
1406 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1407 }
1408 
1409 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1410 {
1411 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1412 
1413 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1414 			  tcp_jiffies32 - tp->rcv_tstamp);
1415 }
1416 
1417 static inline int tcp_fin_time(const struct sock *sk)
1418 {
1419 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1420 	const int rto = inet_csk(sk)->icsk_rto;
1421 
1422 	if (fin_timeout < (rto << 2) - (rto >> 1))
1423 		fin_timeout = (rto << 2) - (rto >> 1);
1424 
1425 	return fin_timeout;
1426 }
1427 
1428 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1429 				  int paws_win)
1430 {
1431 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1432 		return true;
1433 	if (unlikely(!time_before32(ktime_get_seconds(),
1434 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1435 		return true;
1436 	/*
1437 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1438 	 * then following tcp messages have valid values. Ignore 0 value,
1439 	 * or else 'negative' tsval might forbid us to accept their packets.
1440 	 */
1441 	if (!rx_opt->ts_recent)
1442 		return true;
1443 	return false;
1444 }
1445 
1446 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1447 				   int rst)
1448 {
1449 	if (tcp_paws_check(rx_opt, 0))
1450 		return false;
1451 
1452 	/* RST segments are not recommended to carry timestamp,
1453 	   and, if they do, it is recommended to ignore PAWS because
1454 	   "their cleanup function should take precedence over timestamps."
1455 	   Certainly, it is mistake. It is necessary to understand the reasons
1456 	   of this constraint to relax it: if peer reboots, clock may go
1457 	   out-of-sync and half-open connections will not be reset.
1458 	   Actually, the problem would be not existing if all
1459 	   the implementations followed draft about maintaining clock
1460 	   via reboots. Linux-2.2 DOES NOT!
1461 
1462 	   However, we can relax time bounds for RST segments to MSL.
1463 	 */
1464 	if (rst && !time_before32(ktime_get_seconds(),
1465 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1466 		return false;
1467 	return true;
1468 }
1469 
1470 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1471 			  int mib_idx, u32 *last_oow_ack_time);
1472 
1473 static inline void tcp_mib_init(struct net *net)
1474 {
1475 	/* See RFC 2012 */
1476 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1477 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1478 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1479 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1480 }
1481 
1482 /* from STCP */
1483 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1484 {
1485 	tp->lost_skb_hint = NULL;
1486 }
1487 
1488 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1489 {
1490 	tcp_clear_retrans_hints_partial(tp);
1491 	tp->retransmit_skb_hint = NULL;
1492 }
1493 
1494 union tcp_md5_addr {
1495 	struct in_addr  a4;
1496 #if IS_ENABLED(CONFIG_IPV6)
1497 	struct in6_addr	a6;
1498 #endif
1499 };
1500 
1501 /* - key database */
1502 struct tcp_md5sig_key {
1503 	struct hlist_node	node;
1504 	u8			keylen;
1505 	u8			family; /* AF_INET or AF_INET6 */
1506 	union tcp_md5_addr	addr;
1507 	u8			prefixlen;
1508 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1509 	struct rcu_head		rcu;
1510 };
1511 
1512 /* - sock block */
1513 struct tcp_md5sig_info {
1514 	struct hlist_head	head;
1515 	struct rcu_head		rcu;
1516 };
1517 
1518 /* - pseudo header */
1519 struct tcp4_pseudohdr {
1520 	__be32		saddr;
1521 	__be32		daddr;
1522 	__u8		pad;
1523 	__u8		protocol;
1524 	__be16		len;
1525 };
1526 
1527 struct tcp6_pseudohdr {
1528 	struct in6_addr	saddr;
1529 	struct in6_addr daddr;
1530 	__be32		len;
1531 	__be32		protocol;	/* including padding */
1532 };
1533 
1534 union tcp_md5sum_block {
1535 	struct tcp4_pseudohdr ip4;
1536 #if IS_ENABLED(CONFIG_IPV6)
1537 	struct tcp6_pseudohdr ip6;
1538 #endif
1539 };
1540 
1541 /* - pool: digest algorithm, hash description and scratch buffer */
1542 struct tcp_md5sig_pool {
1543 	struct ahash_request	*md5_req;
1544 	void			*scratch;
1545 };
1546 
1547 /* - functions */
1548 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1549 			const struct sock *sk, const struct sk_buff *skb);
1550 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1551 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1552 		   gfp_t gfp);
1553 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1554 		   int family, u8 prefixlen);
1555 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1556 					 const struct sock *addr_sk);
1557 
1558 #ifdef CONFIG_TCP_MD5SIG
1559 #include <linux/jump_label.h>
1560 extern struct static_key_false tcp_md5_needed;
1561 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1562 					   const union tcp_md5_addr *addr,
1563 					   int family);
1564 static inline struct tcp_md5sig_key *
1565 tcp_md5_do_lookup(const struct sock *sk,
1566 		  const union tcp_md5_addr *addr,
1567 		  int family)
1568 {
1569 	if (!static_branch_unlikely(&tcp_md5_needed))
1570 		return NULL;
1571 	return __tcp_md5_do_lookup(sk, addr, family);
1572 }
1573 
1574 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1575 #else
1576 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1577 					 const union tcp_md5_addr *addr,
1578 					 int family)
1579 {
1580 	return NULL;
1581 }
1582 #define tcp_twsk_md5_key(twsk)	NULL
1583 #endif
1584 
1585 bool tcp_alloc_md5sig_pool(void);
1586 
1587 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1588 static inline void tcp_put_md5sig_pool(void)
1589 {
1590 	local_bh_enable();
1591 }
1592 
1593 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1594 			  unsigned int header_len);
1595 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1596 		     const struct tcp_md5sig_key *key);
1597 
1598 /* From tcp_fastopen.c */
1599 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1600 			    struct tcp_fastopen_cookie *cookie);
1601 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1602 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1603 			    u16 try_exp);
1604 struct tcp_fastopen_request {
1605 	/* Fast Open cookie. Size 0 means a cookie request */
1606 	struct tcp_fastopen_cookie	cookie;
1607 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1608 	size_t				size;
1609 	int				copied;	/* queued in tcp_connect() */
1610 	struct ubuf_info		*uarg;
1611 };
1612 void tcp_free_fastopen_req(struct tcp_sock *tp);
1613 void tcp_fastopen_destroy_cipher(struct sock *sk);
1614 void tcp_fastopen_ctx_destroy(struct net *net);
1615 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1616 			      void *primary_key, void *backup_key);
1617 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1618 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1619 			      struct request_sock *req,
1620 			      struct tcp_fastopen_cookie *foc,
1621 			      const struct dst_entry *dst);
1622 void tcp_fastopen_init_key_once(struct net *net);
1623 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1624 			     struct tcp_fastopen_cookie *cookie);
1625 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1626 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1627 #define TCP_FASTOPEN_KEY_MAX 2
1628 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1629 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1630 
1631 /* Fastopen key context */
1632 struct tcp_fastopen_context {
1633 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1634 	int		num;
1635 	struct rcu_head	rcu;
1636 };
1637 
1638 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1639 void tcp_fastopen_active_disable(struct sock *sk);
1640 bool tcp_fastopen_active_should_disable(struct sock *sk);
1641 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1642 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1643 
1644 /* Caller needs to wrap with rcu_read_(un)lock() */
1645 static inline
1646 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1647 {
1648 	struct tcp_fastopen_context *ctx;
1649 
1650 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1651 	if (!ctx)
1652 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1653 	return ctx;
1654 }
1655 
1656 static inline
1657 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1658 			       const struct tcp_fastopen_cookie *orig)
1659 {
1660 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1661 	    orig->len == foc->len &&
1662 	    !memcmp(orig->val, foc->val, foc->len))
1663 		return true;
1664 	return false;
1665 }
1666 
1667 static inline
1668 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1669 {
1670 	return ctx->num;
1671 }
1672 
1673 /* Latencies incurred by various limits for a sender. They are
1674  * chronograph-like stats that are mutually exclusive.
1675  */
1676 enum tcp_chrono {
1677 	TCP_CHRONO_UNSPEC,
1678 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1679 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1680 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1681 	__TCP_CHRONO_MAX,
1682 };
1683 
1684 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1685 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1686 
1687 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1688  * the same memory storage than skb->destructor/_skb_refdst
1689  */
1690 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1691 {
1692 	skb->destructor = NULL;
1693 	skb->_skb_refdst = 0UL;
1694 }
1695 
1696 #define tcp_skb_tsorted_save(skb) {		\
1697 	unsigned long _save = skb->_skb_refdst;	\
1698 	skb->_skb_refdst = 0UL;
1699 
1700 #define tcp_skb_tsorted_restore(skb)		\
1701 	skb->_skb_refdst = _save;		\
1702 }
1703 
1704 void tcp_write_queue_purge(struct sock *sk);
1705 
1706 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1707 {
1708 	return skb_rb_first(&sk->tcp_rtx_queue);
1709 }
1710 
1711 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1712 {
1713 	return skb_peek(&sk->sk_write_queue);
1714 }
1715 
1716 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1717 {
1718 	return skb_peek_tail(&sk->sk_write_queue);
1719 }
1720 
1721 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1722 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1723 
1724 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1725 {
1726 	return skb_peek(&sk->sk_write_queue);
1727 }
1728 
1729 static inline bool tcp_skb_is_last(const struct sock *sk,
1730 				   const struct sk_buff *skb)
1731 {
1732 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1733 }
1734 
1735 static inline bool tcp_write_queue_empty(const struct sock *sk)
1736 {
1737 	return skb_queue_empty(&sk->sk_write_queue);
1738 }
1739 
1740 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1741 {
1742 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1743 }
1744 
1745 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1746 {
1747 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1748 }
1749 
1750 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1751 {
1752 	__skb_queue_tail(&sk->sk_write_queue, skb);
1753 
1754 	/* Queue it, remembering where we must start sending. */
1755 	if (sk->sk_write_queue.next == skb)
1756 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1757 }
1758 
1759 /* Insert new before skb on the write queue of sk.  */
1760 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1761 						  struct sk_buff *skb,
1762 						  struct sock *sk)
1763 {
1764 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1765 }
1766 
1767 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1768 {
1769 	tcp_skb_tsorted_anchor_cleanup(skb);
1770 	__skb_unlink(skb, &sk->sk_write_queue);
1771 }
1772 
1773 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1774 
1775 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1776 {
1777 	tcp_skb_tsorted_anchor_cleanup(skb);
1778 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1779 }
1780 
1781 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1782 {
1783 	list_del(&skb->tcp_tsorted_anchor);
1784 	tcp_rtx_queue_unlink(skb, sk);
1785 	sk_wmem_free_skb(sk, skb);
1786 }
1787 
1788 static inline void tcp_push_pending_frames(struct sock *sk)
1789 {
1790 	if (tcp_send_head(sk)) {
1791 		struct tcp_sock *tp = tcp_sk(sk);
1792 
1793 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1794 	}
1795 }
1796 
1797 /* Start sequence of the skb just after the highest skb with SACKed
1798  * bit, valid only if sacked_out > 0 or when the caller has ensured
1799  * validity by itself.
1800  */
1801 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1802 {
1803 	if (!tp->sacked_out)
1804 		return tp->snd_una;
1805 
1806 	if (tp->highest_sack == NULL)
1807 		return tp->snd_nxt;
1808 
1809 	return TCP_SKB_CB(tp->highest_sack)->seq;
1810 }
1811 
1812 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1813 {
1814 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1815 }
1816 
1817 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1818 {
1819 	return tcp_sk(sk)->highest_sack;
1820 }
1821 
1822 static inline void tcp_highest_sack_reset(struct sock *sk)
1823 {
1824 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1825 }
1826 
1827 /* Called when old skb is about to be deleted and replaced by new skb */
1828 static inline void tcp_highest_sack_replace(struct sock *sk,
1829 					    struct sk_buff *old,
1830 					    struct sk_buff *new)
1831 {
1832 	if (old == tcp_highest_sack(sk))
1833 		tcp_sk(sk)->highest_sack = new;
1834 }
1835 
1836 /* This helper checks if socket has IP_TRANSPARENT set */
1837 static inline bool inet_sk_transparent(const struct sock *sk)
1838 {
1839 	switch (sk->sk_state) {
1840 	case TCP_TIME_WAIT:
1841 		return inet_twsk(sk)->tw_transparent;
1842 	case TCP_NEW_SYN_RECV:
1843 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1844 	}
1845 	return inet_sk(sk)->transparent;
1846 }
1847 
1848 /* Determines whether this is a thin stream (which may suffer from
1849  * increased latency). Used to trigger latency-reducing mechanisms.
1850  */
1851 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1852 {
1853 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1854 }
1855 
1856 /* /proc */
1857 enum tcp_seq_states {
1858 	TCP_SEQ_STATE_LISTENING,
1859 	TCP_SEQ_STATE_ESTABLISHED,
1860 };
1861 
1862 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1863 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1864 void tcp_seq_stop(struct seq_file *seq, void *v);
1865 
1866 struct tcp_seq_afinfo {
1867 	sa_family_t			family;
1868 };
1869 
1870 struct tcp_iter_state {
1871 	struct seq_net_private	p;
1872 	enum tcp_seq_states	state;
1873 	struct sock		*syn_wait_sk;
1874 	int			bucket, offset, sbucket, num;
1875 	loff_t			last_pos;
1876 };
1877 
1878 extern struct request_sock_ops tcp_request_sock_ops;
1879 extern struct request_sock_ops tcp6_request_sock_ops;
1880 
1881 void tcp_v4_destroy_sock(struct sock *sk);
1882 
1883 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1884 				netdev_features_t features);
1885 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1886 int tcp_gro_complete(struct sk_buff *skb);
1887 
1888 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1889 
1890 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1891 {
1892 	struct net *net = sock_net((struct sock *)tp);
1893 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1894 }
1895 
1896 /* @wake is one when sk_stream_write_space() calls us.
1897  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1898  * This mimics the strategy used in sock_def_write_space().
1899  */
1900 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1901 {
1902 	const struct tcp_sock *tp = tcp_sk(sk);
1903 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1904 
1905 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1906 }
1907 
1908 #ifdef CONFIG_PROC_FS
1909 int tcp4_proc_init(void);
1910 void tcp4_proc_exit(void);
1911 #endif
1912 
1913 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1914 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1915 		     const struct tcp_request_sock_ops *af_ops,
1916 		     struct sock *sk, struct sk_buff *skb);
1917 
1918 /* TCP af-specific functions */
1919 struct tcp_sock_af_ops {
1920 #ifdef CONFIG_TCP_MD5SIG
1921 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1922 						const struct sock *addr_sk);
1923 	int		(*calc_md5_hash)(char *location,
1924 					 const struct tcp_md5sig_key *md5,
1925 					 const struct sock *sk,
1926 					 const struct sk_buff *skb);
1927 	int		(*md5_parse)(struct sock *sk,
1928 				     int optname,
1929 				     char __user *optval,
1930 				     int optlen);
1931 #endif
1932 };
1933 
1934 struct tcp_request_sock_ops {
1935 	u16 mss_clamp;
1936 #ifdef CONFIG_TCP_MD5SIG
1937 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1938 						 const struct sock *addr_sk);
1939 	int		(*calc_md5_hash) (char *location,
1940 					  const struct tcp_md5sig_key *md5,
1941 					  const struct sock *sk,
1942 					  const struct sk_buff *skb);
1943 #endif
1944 	void (*init_req)(struct request_sock *req,
1945 			 const struct sock *sk_listener,
1946 			 struct sk_buff *skb);
1947 #ifdef CONFIG_SYN_COOKIES
1948 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1949 				 __u16 *mss);
1950 #endif
1951 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1952 				       const struct request_sock *req);
1953 	u32 (*init_seq)(const struct sk_buff *skb);
1954 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1955 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1956 			   struct flowi *fl, struct request_sock *req,
1957 			   struct tcp_fastopen_cookie *foc,
1958 			   enum tcp_synack_type synack_type);
1959 };
1960 
1961 #ifdef CONFIG_SYN_COOKIES
1962 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1963 					 const struct sock *sk, struct sk_buff *skb,
1964 					 __u16 *mss)
1965 {
1966 	tcp_synq_overflow(sk);
1967 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1968 	return ops->cookie_init_seq(skb, mss);
1969 }
1970 #else
1971 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1972 					 const struct sock *sk, struct sk_buff *skb,
1973 					 __u16 *mss)
1974 {
1975 	return 0;
1976 }
1977 #endif
1978 
1979 int tcpv4_offload_init(void);
1980 
1981 void tcp_v4_init(void);
1982 void tcp_init(void);
1983 
1984 /* tcp_recovery.c */
1985 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1986 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1987 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1988 				u32 reo_wnd);
1989 extern void tcp_rack_mark_lost(struct sock *sk);
1990 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1991 			     u64 xmit_time);
1992 extern void tcp_rack_reo_timeout(struct sock *sk);
1993 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1994 
1995 /* At how many usecs into the future should the RTO fire? */
1996 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1997 {
1998 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1999 	u32 rto = inet_csk(sk)->icsk_rto;
2000 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2001 
2002 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2003 }
2004 
2005 /*
2006  * Save and compile IPv4 options, return a pointer to it
2007  */
2008 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2009 							 struct sk_buff *skb)
2010 {
2011 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2012 	struct ip_options_rcu *dopt = NULL;
2013 
2014 	if (opt->optlen) {
2015 		int opt_size = sizeof(*dopt) + opt->optlen;
2016 
2017 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2018 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2019 			kfree(dopt);
2020 			dopt = NULL;
2021 		}
2022 	}
2023 	return dopt;
2024 }
2025 
2026 /* locally generated TCP pure ACKs have skb->truesize == 2
2027  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2028  * This is much faster than dissecting the packet to find out.
2029  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2030  */
2031 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2032 {
2033 	return skb->truesize == 2;
2034 }
2035 
2036 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2037 {
2038 	skb->truesize = 2;
2039 }
2040 
2041 static inline int tcp_inq(struct sock *sk)
2042 {
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 	int answ;
2045 
2046 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2047 		answ = 0;
2048 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2049 		   !tp->urg_data ||
2050 		   before(tp->urg_seq, tp->copied_seq) ||
2051 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2052 
2053 		answ = tp->rcv_nxt - tp->copied_seq;
2054 
2055 		/* Subtract 1, if FIN was received */
2056 		if (answ && sock_flag(sk, SOCK_DONE))
2057 			answ--;
2058 	} else {
2059 		answ = tp->urg_seq - tp->copied_seq;
2060 	}
2061 
2062 	return answ;
2063 }
2064 
2065 int tcp_peek_len(struct socket *sock);
2066 
2067 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2068 {
2069 	u16 segs_in;
2070 
2071 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2072 	tp->segs_in += segs_in;
2073 	if (skb->len > tcp_hdrlen(skb))
2074 		tp->data_segs_in += segs_in;
2075 }
2076 
2077 /*
2078  * TCP listen path runs lockless.
2079  * We forced "struct sock" to be const qualified to make sure
2080  * we don't modify one of its field by mistake.
2081  * Here, we increment sk_drops which is an atomic_t, so we can safely
2082  * make sock writable again.
2083  */
2084 static inline void tcp_listendrop(const struct sock *sk)
2085 {
2086 	atomic_inc(&((struct sock *)sk)->sk_drops);
2087 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2088 }
2089 
2090 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2091 
2092 /*
2093  * Interface for adding Upper Level Protocols over TCP
2094  */
2095 
2096 #define TCP_ULP_NAME_MAX	16
2097 #define TCP_ULP_MAX		128
2098 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2099 
2100 struct tcp_ulp_ops {
2101 	struct list_head	list;
2102 
2103 	/* initialize ulp */
2104 	int (*init)(struct sock *sk);
2105 	/* cleanup ulp */
2106 	void (*release)(struct sock *sk);
2107 
2108 	char		name[TCP_ULP_NAME_MAX];
2109 	struct module	*owner;
2110 };
2111 int tcp_register_ulp(struct tcp_ulp_ops *type);
2112 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2113 int tcp_set_ulp(struct sock *sk, const char *name);
2114 void tcp_get_available_ulp(char *buf, size_t len);
2115 void tcp_cleanup_ulp(struct sock *sk);
2116 
2117 #define MODULE_ALIAS_TCP_ULP(name)				\
2118 	__MODULE_INFO(alias, alias_userspace, name);		\
2119 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2120 
2121 struct sk_msg;
2122 struct sk_psock;
2123 
2124 int tcp_bpf_init(struct sock *sk);
2125 void tcp_bpf_reinit(struct sock *sk);
2126 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2127 			  int flags);
2128 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2129 		    int nonblock, int flags, int *addr_len);
2130 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2131 		      struct msghdr *msg, int len, int flags);
2132 
2133 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2134  * is < 0, then the BPF op failed (for example if the loaded BPF
2135  * program does not support the chosen operation or there is no BPF
2136  * program loaded).
2137  */
2138 #ifdef CONFIG_BPF
2139 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2140 {
2141 	struct bpf_sock_ops_kern sock_ops;
2142 	int ret;
2143 
2144 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2145 	if (sk_fullsock(sk)) {
2146 		sock_ops.is_fullsock = 1;
2147 		sock_owned_by_me(sk);
2148 	}
2149 
2150 	sock_ops.sk = sk;
2151 	sock_ops.op = op;
2152 	if (nargs > 0)
2153 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2154 
2155 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2156 	if (ret == 0)
2157 		ret = sock_ops.reply;
2158 	else
2159 		ret = -1;
2160 	return ret;
2161 }
2162 
2163 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2164 {
2165 	u32 args[2] = {arg1, arg2};
2166 
2167 	return tcp_call_bpf(sk, op, 2, args);
2168 }
2169 
2170 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2171 				    u32 arg3)
2172 {
2173 	u32 args[3] = {arg1, arg2, arg3};
2174 
2175 	return tcp_call_bpf(sk, op, 3, args);
2176 }
2177 
2178 #else
2179 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2180 {
2181 	return -EPERM;
2182 }
2183 
2184 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2185 {
2186 	return -EPERM;
2187 }
2188 
2189 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2190 				    u32 arg3)
2191 {
2192 	return -EPERM;
2193 }
2194 
2195 #endif
2196 
2197 static inline u32 tcp_timeout_init(struct sock *sk)
2198 {
2199 	int timeout;
2200 
2201 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2202 
2203 	if (timeout <= 0)
2204 		timeout = TCP_TIMEOUT_INIT;
2205 	return timeout;
2206 }
2207 
2208 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2209 {
2210 	int rwnd;
2211 
2212 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2213 
2214 	if (rwnd < 0)
2215 		rwnd = 0;
2216 	return rwnd;
2217 }
2218 
2219 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2220 {
2221 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2222 }
2223 
2224 static inline void tcp_bpf_rtt(struct sock *sk)
2225 {
2226 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2227 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2228 }
2229 
2230 #if IS_ENABLED(CONFIG_SMC)
2231 extern struct static_key_false tcp_have_smc;
2232 #endif
2233 
2234 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2235 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2236 			     void (*cad)(struct sock *sk, u32 ack_seq));
2237 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2238 void clean_acked_data_flush(void);
2239 #endif
2240 
2241 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2242 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2243 				    const struct tcp_sock *tp)
2244 {
2245 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2246 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2247 }
2248 
2249 /* Compute Earliest Departure Time for some control packets
2250  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2251  */
2252 static inline u64 tcp_transmit_time(const struct sock *sk)
2253 {
2254 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2255 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2256 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2257 
2258 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2259 	}
2260 	return 0;
2261 }
2262 
2263 #endif	/* _TCP_H */
2264