xref: /openbmc/linux/include/net/tcp.h (revision 00c2ca84)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
255 
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	if (!skb_zcopy_pure(skb))
297 		sk_mem_uncharge(sk, skb->truesize);
298 	else
299 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 	__kfree_skb(skb);
301 }
302 
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304 
305 bool tcp_check_oom(struct sock *sk, int shift);
306 
307 
308 extern struct proto tcp_prot;
309 
310 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314 
315 void tcp_tasklet_init(void);
316 
317 int tcp_v4_err(struct sk_buff *skb, u32);
318 
319 void tcp_shutdown(struct sock *sk, int how);
320 
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323 
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
328 			 size_t size, struct ubuf_info *uarg);
329 void tcp_splice_eof(struct socket *sock);
330 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
331 int tcp_wmem_schedule(struct sock *sk, int copy);
332 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
333 	      int size_goal);
334 void tcp_release_cb(struct sock *sk);
335 void tcp_wfree(struct sk_buff *skb);
336 void tcp_write_timer_handler(struct sock *sk);
337 void tcp_delack_timer_handler(struct sock *sk);
338 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
339 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
340 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_space_adjust(struct sock *sk);
342 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343 void tcp_twsk_destructor(struct sock *sk);
344 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
345 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
346 			struct pipe_inode_info *pipe, size_t len,
347 			unsigned int flags);
348 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
349 				     bool force_schedule);
350 
351 static inline void tcp_dec_quickack_mode(struct sock *sk)
352 {
353 	struct inet_connection_sock *icsk = inet_csk(sk);
354 
355 	if (icsk->icsk_ack.quick) {
356 		/* How many ACKs S/ACKing new data have we sent? */
357 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
358 
359 		if (pkts >= icsk->icsk_ack.quick) {
360 			icsk->icsk_ack.quick = 0;
361 			/* Leaving quickack mode we deflate ATO. */
362 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
363 		} else
364 			icsk->icsk_ack.quick -= pkts;
365 	}
366 }
367 
368 #define	TCP_ECN_OK		1
369 #define	TCP_ECN_QUEUE_CWR	2
370 #define	TCP_ECN_DEMAND_CWR	4
371 #define	TCP_ECN_SEEN		8
372 
373 enum tcp_tw_status {
374 	TCP_TW_SUCCESS = 0,
375 	TCP_TW_RST = 1,
376 	TCP_TW_ACK = 2,
377 	TCP_TW_SYN = 3
378 };
379 
380 
381 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
382 					      struct sk_buff *skb,
383 					      const struct tcphdr *th);
384 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
385 			   struct request_sock *req, bool fastopen,
386 			   bool *lost_race);
387 int tcp_child_process(struct sock *parent, struct sock *child,
388 		      struct sk_buff *skb);
389 void tcp_enter_loss(struct sock *sk);
390 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
391 void tcp_clear_retrans(struct tcp_sock *tp);
392 void tcp_update_metrics(struct sock *sk);
393 void tcp_init_metrics(struct sock *sk);
394 void tcp_metrics_init(void);
395 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
396 void __tcp_close(struct sock *sk, long timeout);
397 void tcp_close(struct sock *sk, long timeout);
398 void tcp_init_sock(struct sock *sk);
399 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
400 __poll_t tcp_poll(struct file *file, struct socket *sock,
401 		      struct poll_table_struct *wait);
402 int do_tcp_getsockopt(struct sock *sk, int level,
403 		      int optname, sockptr_t optval, sockptr_t optlen);
404 int tcp_getsockopt(struct sock *sk, int level, int optname,
405 		   char __user *optval, int __user *optlen);
406 bool tcp_bpf_bypass_getsockopt(int level, int optname);
407 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
408 		      sockptr_t optval, unsigned int optlen);
409 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
410 		   unsigned int optlen);
411 void tcp_set_keepalive(struct sock *sk, int val);
412 void tcp_syn_ack_timeout(const struct request_sock *req);
413 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
414 		int flags, int *addr_len);
415 int tcp_set_rcvlowat(struct sock *sk, int val);
416 int tcp_set_window_clamp(struct sock *sk, int val);
417 void tcp_update_recv_tstamps(struct sk_buff *skb,
418 			     struct scm_timestamping_internal *tss);
419 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
420 			struct scm_timestamping_internal *tss);
421 void tcp_data_ready(struct sock *sk);
422 #ifdef CONFIG_MMU
423 int tcp_mmap(struct file *file, struct socket *sock,
424 	     struct vm_area_struct *vma);
425 #endif
426 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
427 		       struct tcp_options_received *opt_rx,
428 		       int estab, struct tcp_fastopen_cookie *foc);
429 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
430 
431 /*
432  *	BPF SKB-less helpers
433  */
434 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
435 			 struct tcphdr *th, u32 *cookie);
436 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
437 			 struct tcphdr *th, u32 *cookie);
438 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
439 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
440 			  const struct tcp_request_sock_ops *af_ops,
441 			  struct sock *sk, struct tcphdr *th);
442 /*
443  *	TCP v4 functions exported for the inet6 API
444  */
445 
446 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
447 void tcp_v4_mtu_reduced(struct sock *sk);
448 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
449 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
450 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451 struct sock *tcp_create_openreq_child(const struct sock *sk,
452 				      struct request_sock *req,
453 				      struct sk_buff *skb);
454 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
456 				  struct request_sock *req,
457 				  struct dst_entry *dst,
458 				  struct request_sock *req_unhash,
459 				  bool *own_req);
460 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
461 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
462 int tcp_connect(struct sock *sk);
463 enum tcp_synack_type {
464 	TCP_SYNACK_NORMAL,
465 	TCP_SYNACK_FASTOPEN,
466 	TCP_SYNACK_COOKIE,
467 };
468 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
469 				struct request_sock *req,
470 				struct tcp_fastopen_cookie *foc,
471 				enum tcp_synack_type synack_type,
472 				struct sk_buff *syn_skb);
473 int tcp_disconnect(struct sock *sk, int flags);
474 
475 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
476 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
477 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
478 
479 /* From syncookies.c */
480 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
481 				 struct request_sock *req,
482 				 struct dst_entry *dst, u32 tsoff);
483 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
484 		      u32 cookie);
485 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
486 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
487 					    const struct tcp_request_sock_ops *af_ops,
488 					    struct sock *sk, struct sk_buff *skb);
489 #ifdef CONFIG_SYN_COOKIES
490 
491 /* Syncookies use a monotonic timer which increments every 60 seconds.
492  * This counter is used both as a hash input and partially encoded into
493  * the cookie value.  A cookie is only validated further if the delta
494  * between the current counter value and the encoded one is less than this,
495  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
496  * the counter advances immediately after a cookie is generated).
497  */
498 #define MAX_SYNCOOKIE_AGE	2
499 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
500 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
501 
502 /* syncookies: remember time of last synqueue overflow
503  * But do not dirty this field too often (once per second is enough)
504  * It is racy as we do not hold a lock, but race is very minor.
505  */
506 static inline void tcp_synq_overflow(const struct sock *sk)
507 {
508 	unsigned int last_overflow;
509 	unsigned int now = jiffies;
510 
511 	if (sk->sk_reuseport) {
512 		struct sock_reuseport *reuse;
513 
514 		reuse = rcu_dereference(sk->sk_reuseport_cb);
515 		if (likely(reuse)) {
516 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
517 			if (!time_between32(now, last_overflow,
518 					    last_overflow + HZ))
519 				WRITE_ONCE(reuse->synq_overflow_ts, now);
520 			return;
521 		}
522 	}
523 
524 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
525 	if (!time_between32(now, last_overflow, last_overflow + HZ))
526 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
527 }
528 
529 /* syncookies: no recent synqueue overflow on this listening socket? */
530 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
531 {
532 	unsigned int last_overflow;
533 	unsigned int now = jiffies;
534 
535 	if (sk->sk_reuseport) {
536 		struct sock_reuseport *reuse;
537 
538 		reuse = rcu_dereference(sk->sk_reuseport_cb);
539 		if (likely(reuse)) {
540 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
541 			return !time_between32(now, last_overflow - HZ,
542 					       last_overflow +
543 					       TCP_SYNCOOKIE_VALID);
544 		}
545 	}
546 
547 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
548 
549 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
550 	 * then we're under synflood. However, we have to use
551 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
552 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
553 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
554 	 * which could lead to rejecting a valid syncookie.
555 	 */
556 	return !time_between32(now, last_overflow - HZ,
557 			       last_overflow + TCP_SYNCOOKIE_VALID);
558 }
559 
560 static inline u32 tcp_cookie_time(void)
561 {
562 	u64 val = get_jiffies_64();
563 
564 	do_div(val, TCP_SYNCOOKIE_PERIOD);
565 	return val;
566 }
567 
568 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
569 			      u16 *mssp);
570 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
572 bool cookie_timestamp_decode(const struct net *net,
573 			     struct tcp_options_received *opt);
574 bool cookie_ecn_ok(const struct tcp_options_received *opt,
575 		   const struct net *net, const struct dst_entry *dst);
576 
577 /* From net/ipv6/syncookies.c */
578 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
579 		      u32 cookie);
580 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
581 
582 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
583 			      const struct tcphdr *th, u16 *mssp);
584 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
585 #endif
586 /* tcp_output.c */
587 
588 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
589 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
590 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
591 			       int nonagle);
592 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
593 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
594 void tcp_retransmit_timer(struct sock *sk);
595 void tcp_xmit_retransmit_queue(struct sock *);
596 void tcp_simple_retransmit(struct sock *);
597 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
598 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
599 enum tcp_queue {
600 	TCP_FRAG_IN_WRITE_QUEUE,
601 	TCP_FRAG_IN_RTX_QUEUE,
602 };
603 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
604 		 struct sk_buff *skb, u32 len,
605 		 unsigned int mss_now, gfp_t gfp);
606 
607 void tcp_send_probe0(struct sock *);
608 int tcp_write_wakeup(struct sock *, int mib);
609 void tcp_send_fin(struct sock *sk);
610 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
611 int tcp_send_synack(struct sock *);
612 void tcp_push_one(struct sock *, unsigned int mss_now);
613 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
614 void tcp_send_ack(struct sock *sk);
615 void tcp_send_delayed_ack(struct sock *sk);
616 void tcp_send_loss_probe(struct sock *sk);
617 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
618 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
619 			     const struct sk_buff *next_skb);
620 
621 /* tcp_input.c */
622 void tcp_rearm_rto(struct sock *sk);
623 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
624 void tcp_reset(struct sock *sk, struct sk_buff *skb);
625 void tcp_fin(struct sock *sk);
626 void tcp_check_space(struct sock *sk);
627 void tcp_sack_compress_send_ack(struct sock *sk);
628 
629 /* tcp_timer.c */
630 void tcp_init_xmit_timers(struct sock *);
631 static inline void tcp_clear_xmit_timers(struct sock *sk)
632 {
633 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
634 		__sock_put(sk);
635 
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
637 		__sock_put(sk);
638 
639 	inet_csk_clear_xmit_timers(sk);
640 }
641 
642 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
643 unsigned int tcp_current_mss(struct sock *sk);
644 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
645 
646 /* Bound MSS / TSO packet size with the half of the window */
647 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
648 {
649 	int cutoff;
650 
651 	/* When peer uses tiny windows, there is no use in packetizing
652 	 * to sub-MSS pieces for the sake of SWS or making sure there
653 	 * are enough packets in the pipe for fast recovery.
654 	 *
655 	 * On the other hand, for extremely large MSS devices, handling
656 	 * smaller than MSS windows in this way does make sense.
657 	 */
658 	if (tp->max_window > TCP_MSS_DEFAULT)
659 		cutoff = (tp->max_window >> 1);
660 	else
661 		cutoff = tp->max_window;
662 
663 	if (cutoff && pktsize > cutoff)
664 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
665 	else
666 		return pktsize;
667 }
668 
669 /* tcp.c */
670 void tcp_get_info(struct sock *, struct tcp_info *);
671 
672 /* Read 'sendfile()'-style from a TCP socket */
673 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
674 		  sk_read_actor_t recv_actor);
675 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
676 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
677 void tcp_read_done(struct sock *sk, size_t len);
678 
679 void tcp_initialize_rcv_mss(struct sock *sk);
680 
681 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
682 int tcp_mss_to_mtu(struct sock *sk, int mss);
683 void tcp_mtup_init(struct sock *sk);
684 
685 static inline void tcp_bound_rto(const struct sock *sk)
686 {
687 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
688 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
689 }
690 
691 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
692 {
693 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
694 }
695 
696 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
697 {
698 	/* mptcp hooks are only on the slow path */
699 	if (sk_is_mptcp((struct sock *)tp))
700 		return;
701 
702 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
703 			       ntohl(TCP_FLAG_ACK) |
704 			       snd_wnd);
705 }
706 
707 static inline void tcp_fast_path_on(struct tcp_sock *tp)
708 {
709 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
710 }
711 
712 static inline void tcp_fast_path_check(struct sock *sk)
713 {
714 	struct tcp_sock *tp = tcp_sk(sk);
715 
716 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
717 	    tp->rcv_wnd &&
718 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
719 	    !tp->urg_data)
720 		tcp_fast_path_on(tp);
721 }
722 
723 /* Compute the actual rto_min value */
724 static inline u32 tcp_rto_min(struct sock *sk)
725 {
726 	const struct dst_entry *dst = __sk_dst_get(sk);
727 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
728 
729 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
730 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
731 	return rto_min;
732 }
733 
734 static inline u32 tcp_rto_min_us(struct sock *sk)
735 {
736 	return jiffies_to_usecs(tcp_rto_min(sk));
737 }
738 
739 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
740 {
741 	return dst_metric_locked(dst, RTAX_CC_ALGO);
742 }
743 
744 /* Minimum RTT in usec. ~0 means not available. */
745 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
746 {
747 	return minmax_get(&tp->rtt_min);
748 }
749 
750 /* Compute the actual receive window we are currently advertising.
751  * Rcv_nxt can be after the window if our peer push more data
752  * than the offered window.
753  */
754 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
755 {
756 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
757 
758 	if (win < 0)
759 		win = 0;
760 	return (u32) win;
761 }
762 
763 /* Choose a new window, without checks for shrinking, and without
764  * scaling applied to the result.  The caller does these things
765  * if necessary.  This is a "raw" window selection.
766  */
767 u32 __tcp_select_window(struct sock *sk);
768 
769 void tcp_send_window_probe(struct sock *sk);
770 
771 /* TCP uses 32bit jiffies to save some space.
772  * Note that this is different from tcp_time_stamp, which
773  * historically has been the same until linux-4.13.
774  */
775 #define tcp_jiffies32 ((u32)jiffies)
776 
777 /*
778  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
779  * It is no longer tied to jiffies, but to 1 ms clock.
780  * Note: double check if you want to use tcp_jiffies32 instead of this.
781  */
782 #define TCP_TS_HZ	1000
783 
784 static inline u64 tcp_clock_ns(void)
785 {
786 	return ktime_get_ns();
787 }
788 
789 static inline u64 tcp_clock_us(void)
790 {
791 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
792 }
793 
794 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
795 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
796 {
797 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
798 }
799 
800 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
801 static inline u32 tcp_ns_to_ts(u64 ns)
802 {
803 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
804 }
805 
806 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
807 static inline u32 tcp_time_stamp_raw(void)
808 {
809 	return tcp_ns_to_ts(tcp_clock_ns());
810 }
811 
812 void tcp_mstamp_refresh(struct tcp_sock *tp);
813 
814 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
815 {
816 	return max_t(s64, t1 - t0, 0);
817 }
818 
819 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
820 {
821 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
822 }
823 
824 /* provide the departure time in us unit */
825 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
826 {
827 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
828 }
829 
830 
831 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
832 
833 #define TCPHDR_FIN 0x01
834 #define TCPHDR_SYN 0x02
835 #define TCPHDR_RST 0x04
836 #define TCPHDR_PSH 0x08
837 #define TCPHDR_ACK 0x10
838 #define TCPHDR_URG 0x20
839 #define TCPHDR_ECE 0x40
840 #define TCPHDR_CWR 0x80
841 
842 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
843 
844 /* This is what the send packet queuing engine uses to pass
845  * TCP per-packet control information to the transmission code.
846  * We also store the host-order sequence numbers in here too.
847  * This is 44 bytes if IPV6 is enabled.
848  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
849  */
850 struct tcp_skb_cb {
851 	__u32		seq;		/* Starting sequence number	*/
852 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
853 	union {
854 		/* Note : tcp_tw_isn is used in input path only
855 		 *	  (isn chosen by tcp_timewait_state_process())
856 		 *
857 		 * 	  tcp_gso_segs/size are used in write queue only,
858 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
859 		 */
860 		__u32		tcp_tw_isn;
861 		struct {
862 			u16	tcp_gso_segs;
863 			u16	tcp_gso_size;
864 		};
865 	};
866 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
867 
868 	__u8		sacked;		/* State flags for SACK.	*/
869 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
870 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
871 #define TCPCB_LOST		0x04	/* SKB is lost			*/
872 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
873 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
874 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
875 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
876 				TCPCB_REPAIRED)
877 
878 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
879 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
880 			eor:1,		/* Is skb MSG_EOR marked? */
881 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
882 			unused:5;
883 	__u32		ack_seq;	/* Sequence number ACK'd	*/
884 	union {
885 		struct {
886 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
887 			/* There is space for up to 24 bytes */
888 			__u32 is_app_limited:1, /* cwnd not fully used? */
889 			      delivered_ce:20,
890 			      unused:11;
891 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
892 			__u32 delivered;
893 			/* start of send pipeline phase */
894 			u64 first_tx_mstamp;
895 			/* when we reached the "delivered" count */
896 			u64 delivered_mstamp;
897 		} tx;   /* only used for outgoing skbs */
898 		union {
899 			struct inet_skb_parm	h4;
900 #if IS_ENABLED(CONFIG_IPV6)
901 			struct inet6_skb_parm	h6;
902 #endif
903 		} header;	/* For incoming skbs */
904 	};
905 };
906 
907 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
908 
909 extern const struct inet_connection_sock_af_ops ipv4_specific;
910 
911 #if IS_ENABLED(CONFIG_IPV6)
912 /* This is the variant of inet6_iif() that must be used by TCP,
913  * as TCP moves IP6CB into a different location in skb->cb[]
914  */
915 static inline int tcp_v6_iif(const struct sk_buff *skb)
916 {
917 	return TCP_SKB_CB(skb)->header.h6.iif;
918 }
919 
920 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
921 {
922 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
923 
924 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
928 static inline int tcp_v6_sdif(const struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
932 		return TCP_SKB_CB(skb)->header.h6.iif;
933 #endif
934 	return 0;
935 }
936 
937 extern const struct inet_connection_sock_af_ops ipv6_specific;
938 
939 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
940 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
941 void tcp_v6_early_demux(struct sk_buff *skb);
942 
943 #endif
944 
945 /* TCP_SKB_CB reference means this can not be used from early demux */
946 static inline int tcp_v4_sdif(struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
950 		return TCP_SKB_CB(skb)->header.h4.iif;
951 #endif
952 	return 0;
953 }
954 
955 /* Due to TSO, an SKB can be composed of multiple actual
956  * packets.  To keep these tracked properly, we use this.
957  */
958 static inline int tcp_skb_pcount(const struct sk_buff *skb)
959 {
960 	return TCP_SKB_CB(skb)->tcp_gso_segs;
961 }
962 
963 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
964 {
965 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
966 }
967 
968 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
971 }
972 
973 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
974 static inline int tcp_skb_mss(const struct sk_buff *skb)
975 {
976 	return TCP_SKB_CB(skb)->tcp_gso_size;
977 }
978 
979 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
980 {
981 	return likely(!TCP_SKB_CB(skb)->eor);
982 }
983 
984 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
985 					const struct sk_buff *from)
986 {
987 	return likely(tcp_skb_can_collapse_to(to) &&
988 		      mptcp_skb_can_collapse(to, from) &&
989 		      skb_pure_zcopy_same(to, from));
990 }
991 
992 /* Events passed to congestion control interface */
993 enum tcp_ca_event {
994 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
995 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
996 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
997 	CA_EVENT_LOSS,		/* loss timeout */
998 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
999 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1000 };
1001 
1002 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1003 enum tcp_ca_ack_event_flags {
1004 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1005 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1006 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1007 };
1008 
1009 /*
1010  * Interface for adding new TCP congestion control handlers
1011  */
1012 #define TCP_CA_NAME_MAX	16
1013 #define TCP_CA_MAX	128
1014 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1015 
1016 #define TCP_CA_UNSPEC	0
1017 
1018 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1019 #define TCP_CONG_NON_RESTRICTED 0x1
1020 /* Requires ECN/ECT set on all packets */
1021 #define TCP_CONG_NEEDS_ECN	0x2
1022 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1023 
1024 union tcp_cc_info;
1025 
1026 struct ack_sample {
1027 	u32 pkts_acked;
1028 	s32 rtt_us;
1029 	u32 in_flight;
1030 };
1031 
1032 /* A rate sample measures the number of (original/retransmitted) data
1033  * packets delivered "delivered" over an interval of time "interval_us".
1034  * The tcp_rate.c code fills in the rate sample, and congestion
1035  * control modules that define a cong_control function to run at the end
1036  * of ACK processing can optionally chose to consult this sample when
1037  * setting cwnd and pacing rate.
1038  * A sample is invalid if "delivered" or "interval_us" is negative.
1039  */
1040 struct rate_sample {
1041 	u64  prior_mstamp; /* starting timestamp for interval */
1042 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1043 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1044 	s32  delivered;		/* number of packets delivered over interval */
1045 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1046 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1047 	u32 snd_interval_us;	/* snd interval for delivered packets */
1048 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1049 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1050 	int  losses;		/* number of packets marked lost upon ACK */
1051 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1052 	u32  prior_in_flight;	/* in flight before this ACK */
1053 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1054 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1055 	bool is_retrans;	/* is sample from retransmission? */
1056 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1057 };
1058 
1059 struct tcp_congestion_ops {
1060 /* fast path fields are put first to fill one cache line */
1061 
1062 	/* return slow start threshold (required) */
1063 	u32 (*ssthresh)(struct sock *sk);
1064 
1065 	/* do new cwnd calculation (required) */
1066 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1067 
1068 	/* call before changing ca_state (optional) */
1069 	void (*set_state)(struct sock *sk, u8 new_state);
1070 
1071 	/* call when cwnd event occurs (optional) */
1072 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073 
1074 	/* call when ack arrives (optional) */
1075 	void (*in_ack_event)(struct sock *sk, u32 flags);
1076 
1077 	/* hook for packet ack accounting (optional) */
1078 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079 
1080 	/* override sysctl_tcp_min_tso_segs */
1081 	u32 (*min_tso_segs)(struct sock *sk);
1082 
1083 	/* call when packets are delivered to update cwnd and pacing rate,
1084 	 * after all the ca_state processing. (optional)
1085 	 */
1086 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087 
1088 
1089 	/* new value of cwnd after loss (required) */
1090 	u32  (*undo_cwnd)(struct sock *sk);
1091 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1092 	u32 (*sndbuf_expand)(struct sock *sk);
1093 
1094 /* control/slow paths put last */
1095 	/* get info for inet_diag (optional) */
1096 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1097 			   union tcp_cc_info *info);
1098 
1099 	char 			name[TCP_CA_NAME_MAX];
1100 	struct module		*owner;
1101 	struct list_head	list;
1102 	u32			key;
1103 	u32			flags;
1104 
1105 	/* initialize private data (optional) */
1106 	void (*init)(struct sock *sk);
1107 	/* cleanup private data  (optional) */
1108 	void (*release)(struct sock *sk);
1109 } ____cacheline_aligned_in_smp;
1110 
1111 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1112 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1113 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1114 				  struct tcp_congestion_ops *old_type);
1115 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1116 
1117 void tcp_assign_congestion_control(struct sock *sk);
1118 void tcp_init_congestion_control(struct sock *sk);
1119 void tcp_cleanup_congestion_control(struct sock *sk);
1120 int tcp_set_default_congestion_control(struct net *net, const char *name);
1121 void tcp_get_default_congestion_control(struct net *net, char *name);
1122 void tcp_get_available_congestion_control(char *buf, size_t len);
1123 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1124 int tcp_set_allowed_congestion_control(char *allowed);
1125 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1126 			       bool cap_net_admin);
1127 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1128 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1129 
1130 u32 tcp_reno_ssthresh(struct sock *sk);
1131 u32 tcp_reno_undo_cwnd(struct sock *sk);
1132 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1133 extern struct tcp_congestion_ops tcp_reno;
1134 
1135 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1136 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1137 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1138 #ifdef CONFIG_INET
1139 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1140 #else
1141 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1142 {
1143 	return NULL;
1144 }
1145 #endif
1146 
1147 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1148 {
1149 	const struct inet_connection_sock *icsk = inet_csk(sk);
1150 
1151 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1152 }
1153 
1154 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1155 {
1156 	const struct inet_connection_sock *icsk = inet_csk(sk);
1157 
1158 	if (icsk->icsk_ca_ops->cwnd_event)
1159 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1160 }
1161 
1162 /* From tcp_cong.c */
1163 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1164 
1165 /* From tcp_rate.c */
1166 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1167 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1168 			    struct rate_sample *rs);
1169 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1170 		  bool is_sack_reneg, struct rate_sample *rs);
1171 void tcp_rate_check_app_limited(struct sock *sk);
1172 
1173 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1174 {
1175 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1176 }
1177 
1178 /* These functions determine how the current flow behaves in respect of SACK
1179  * handling. SACK is negotiated with the peer, and therefore it can vary
1180  * between different flows.
1181  *
1182  * tcp_is_sack - SACK enabled
1183  * tcp_is_reno - No SACK
1184  */
1185 static inline int tcp_is_sack(const struct tcp_sock *tp)
1186 {
1187 	return likely(tp->rx_opt.sack_ok);
1188 }
1189 
1190 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1191 {
1192 	return !tcp_is_sack(tp);
1193 }
1194 
1195 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1196 {
1197 	return tp->sacked_out + tp->lost_out;
1198 }
1199 
1200 /* This determines how many packets are "in the network" to the best
1201  * of our knowledge.  In many cases it is conservative, but where
1202  * detailed information is available from the receiver (via SACK
1203  * blocks etc.) we can make more aggressive calculations.
1204  *
1205  * Use this for decisions involving congestion control, use just
1206  * tp->packets_out to determine if the send queue is empty or not.
1207  *
1208  * Read this equation as:
1209  *
1210  *	"Packets sent once on transmission queue" MINUS
1211  *	"Packets left network, but not honestly ACKed yet" PLUS
1212  *	"Packets fast retransmitted"
1213  */
1214 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1215 {
1216 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1217 }
1218 
1219 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1220 
1221 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1222 {
1223 	return tp->snd_cwnd;
1224 }
1225 
1226 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1227 {
1228 	WARN_ON_ONCE((int)val <= 0);
1229 	tp->snd_cwnd = val;
1230 }
1231 
1232 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1233 {
1234 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1235 }
1236 
1237 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1238 {
1239 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1240 }
1241 
1242 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1243 {
1244 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1245 	       (1 << inet_csk(sk)->icsk_ca_state);
1246 }
1247 
1248 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1249  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1250  * ssthresh.
1251  */
1252 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1253 {
1254 	const struct tcp_sock *tp = tcp_sk(sk);
1255 
1256 	if (tcp_in_cwnd_reduction(sk))
1257 		return tp->snd_ssthresh;
1258 	else
1259 		return max(tp->snd_ssthresh,
1260 			   ((tcp_snd_cwnd(tp) >> 1) +
1261 			    (tcp_snd_cwnd(tp) >> 2)));
1262 }
1263 
1264 /* Use define here intentionally to get WARN_ON location shown at the caller */
1265 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1266 
1267 void tcp_enter_cwr(struct sock *sk);
1268 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1269 
1270 /* The maximum number of MSS of available cwnd for which TSO defers
1271  * sending if not using sysctl_tcp_tso_win_divisor.
1272  */
1273 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1274 {
1275 	return 3;
1276 }
1277 
1278 /* Returns end sequence number of the receiver's advertised window */
1279 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1280 {
1281 	return tp->snd_una + tp->snd_wnd;
1282 }
1283 
1284 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1285  * flexible approach. The RFC suggests cwnd should not be raised unless
1286  * it was fully used previously. And that's exactly what we do in
1287  * congestion avoidance mode. But in slow start we allow cwnd to grow
1288  * as long as the application has used half the cwnd.
1289  * Example :
1290  *    cwnd is 10 (IW10), but application sends 9 frames.
1291  *    We allow cwnd to reach 18 when all frames are ACKed.
1292  * This check is safe because it's as aggressive as slow start which already
1293  * risks 100% overshoot. The advantage is that we discourage application to
1294  * either send more filler packets or data to artificially blow up the cwnd
1295  * usage, and allow application-limited process to probe bw more aggressively.
1296  */
1297 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1298 {
1299 	const struct tcp_sock *tp = tcp_sk(sk);
1300 
1301 	if (tp->is_cwnd_limited)
1302 		return true;
1303 
1304 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1305 	if (tcp_in_slow_start(tp))
1306 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1307 
1308 	return false;
1309 }
1310 
1311 /* BBR congestion control needs pacing.
1312  * Same remark for SO_MAX_PACING_RATE.
1313  * sch_fq packet scheduler is efficiently handling pacing,
1314  * but is not always installed/used.
1315  * Return true if TCP stack should pace packets itself.
1316  */
1317 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1318 {
1319 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1320 }
1321 
1322 /* Estimates in how many jiffies next packet for this flow can be sent.
1323  * Scheduling a retransmit timer too early would be silly.
1324  */
1325 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1326 {
1327 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1328 
1329 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1330 }
1331 
1332 static inline void tcp_reset_xmit_timer(struct sock *sk,
1333 					const int what,
1334 					unsigned long when,
1335 					const unsigned long max_when)
1336 {
1337 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1338 				  max_when);
1339 }
1340 
1341 /* Something is really bad, we could not queue an additional packet,
1342  * because qdisc is full or receiver sent a 0 window, or we are paced.
1343  * We do not want to add fuel to the fire, or abort too early,
1344  * so make sure the timer we arm now is at least 200ms in the future,
1345  * regardless of current icsk_rto value (as it could be ~2ms)
1346  */
1347 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1348 {
1349 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1350 }
1351 
1352 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1353 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1354 					    unsigned long max_when)
1355 {
1356 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1357 			   inet_csk(sk)->icsk_backoff);
1358 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1359 
1360 	return (unsigned long)min_t(u64, when, max_when);
1361 }
1362 
1363 static inline void tcp_check_probe_timer(struct sock *sk)
1364 {
1365 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1366 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1367 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1368 }
1369 
1370 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1371 {
1372 	tp->snd_wl1 = seq;
1373 }
1374 
1375 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1376 {
1377 	tp->snd_wl1 = seq;
1378 }
1379 
1380 /*
1381  * Calculate(/check) TCP checksum
1382  */
1383 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1384 				   __be32 daddr, __wsum base)
1385 {
1386 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1387 }
1388 
1389 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1390 {
1391 	return !skb_csum_unnecessary(skb) &&
1392 		__skb_checksum_complete(skb);
1393 }
1394 
1395 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1396 		     enum skb_drop_reason *reason);
1397 
1398 
1399 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1400 void tcp_set_state(struct sock *sk, int state);
1401 void tcp_done(struct sock *sk);
1402 int tcp_abort(struct sock *sk, int err);
1403 
1404 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1405 {
1406 	rx_opt->dsack = 0;
1407 	rx_opt->num_sacks = 0;
1408 }
1409 
1410 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1411 
1412 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1413 {
1414 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1415 	struct tcp_sock *tp = tcp_sk(sk);
1416 	s32 delta;
1417 
1418 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1419 	    tp->packets_out || ca_ops->cong_control)
1420 		return;
1421 	delta = tcp_jiffies32 - tp->lsndtime;
1422 	if (delta > inet_csk(sk)->icsk_rto)
1423 		tcp_cwnd_restart(sk, delta);
1424 }
1425 
1426 /* Determine a window scaling and initial window to offer. */
1427 void tcp_select_initial_window(const struct sock *sk, int __space,
1428 			       __u32 mss, __u32 *rcv_wnd,
1429 			       __u32 *window_clamp, int wscale_ok,
1430 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1431 
1432 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1433 {
1434 	s64 scaled_space = (s64)space * scaling_ratio;
1435 
1436 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1437 }
1438 
1439 static inline int tcp_win_from_space(const struct sock *sk, int space)
1440 {
1441 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1442 }
1443 
1444 /* inverse of __tcp_win_from_space() */
1445 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1446 {
1447 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1448 
1449 	do_div(val, scaling_ratio);
1450 	return val;
1451 }
1452 
1453 static inline int tcp_space_from_win(const struct sock *sk, int win)
1454 {
1455 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1456 }
1457 
1458 static inline void tcp_scaling_ratio_init(struct sock *sk)
1459 {
1460 	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1461 	 * This may be adjusted later in tcp_measure_rcv_mss().
1462 	 */
1463 	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1464 				    SKB_TRUESIZE(4096);
1465 }
1466 
1467 /* Note: caller must be prepared to deal with negative returns */
1468 static inline int tcp_space(const struct sock *sk)
1469 {
1470 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1471 				  READ_ONCE(sk->sk_backlog.len) -
1472 				  atomic_read(&sk->sk_rmem_alloc));
1473 }
1474 
1475 static inline int tcp_full_space(const struct sock *sk)
1476 {
1477 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1478 }
1479 
1480 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1481 {
1482 	int unused_mem = sk_unused_reserved_mem(sk);
1483 	struct tcp_sock *tp = tcp_sk(sk);
1484 
1485 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1486 	if (unused_mem)
1487 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1488 					 tcp_win_from_space(sk, unused_mem));
1489 }
1490 
1491 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1492 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1493 
1494 
1495 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1496  * If 87.5 % (7/8) of the space has been consumed, we want to override
1497  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1498  * len/truesize ratio.
1499  */
1500 static inline bool tcp_rmem_pressure(const struct sock *sk)
1501 {
1502 	int rcvbuf, threshold;
1503 
1504 	if (tcp_under_memory_pressure(sk))
1505 		return true;
1506 
1507 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1508 	threshold = rcvbuf - (rcvbuf >> 3);
1509 
1510 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1511 }
1512 
1513 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1514 {
1515 	const struct tcp_sock *tp = tcp_sk(sk);
1516 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1517 
1518 	if (avail <= 0)
1519 		return false;
1520 
1521 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1522 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1523 }
1524 
1525 extern void tcp_openreq_init_rwin(struct request_sock *req,
1526 				  const struct sock *sk_listener,
1527 				  const struct dst_entry *dst);
1528 
1529 void tcp_enter_memory_pressure(struct sock *sk);
1530 void tcp_leave_memory_pressure(struct sock *sk);
1531 
1532 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1533 {
1534 	struct net *net = sock_net((struct sock *)tp);
1535 	int val;
1536 
1537 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1538 	 * and do_tcp_setsockopt().
1539 	 */
1540 	val = READ_ONCE(tp->keepalive_intvl);
1541 
1542 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1543 }
1544 
1545 static inline int keepalive_time_when(const struct tcp_sock *tp)
1546 {
1547 	struct net *net = sock_net((struct sock *)tp);
1548 	int val;
1549 
1550 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1551 	val = READ_ONCE(tp->keepalive_time);
1552 
1553 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1554 }
1555 
1556 static inline int keepalive_probes(const struct tcp_sock *tp)
1557 {
1558 	struct net *net = sock_net((struct sock *)tp);
1559 	int val;
1560 
1561 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1562 	 * and do_tcp_setsockopt().
1563 	 */
1564 	val = READ_ONCE(tp->keepalive_probes);
1565 
1566 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1567 }
1568 
1569 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1570 {
1571 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1572 
1573 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1574 			  tcp_jiffies32 - tp->rcv_tstamp);
1575 }
1576 
1577 static inline int tcp_fin_time(const struct sock *sk)
1578 {
1579 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1580 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1581 	const int rto = inet_csk(sk)->icsk_rto;
1582 
1583 	if (fin_timeout < (rto << 2) - (rto >> 1))
1584 		fin_timeout = (rto << 2) - (rto >> 1);
1585 
1586 	return fin_timeout;
1587 }
1588 
1589 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1590 				  int paws_win)
1591 {
1592 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1593 		return true;
1594 	if (unlikely(!time_before32(ktime_get_seconds(),
1595 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1596 		return true;
1597 	/*
1598 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1599 	 * then following tcp messages have valid values. Ignore 0 value,
1600 	 * or else 'negative' tsval might forbid us to accept their packets.
1601 	 */
1602 	if (!rx_opt->ts_recent)
1603 		return true;
1604 	return false;
1605 }
1606 
1607 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1608 				   int rst)
1609 {
1610 	if (tcp_paws_check(rx_opt, 0))
1611 		return false;
1612 
1613 	/* RST segments are not recommended to carry timestamp,
1614 	   and, if they do, it is recommended to ignore PAWS because
1615 	   "their cleanup function should take precedence over timestamps."
1616 	   Certainly, it is mistake. It is necessary to understand the reasons
1617 	   of this constraint to relax it: if peer reboots, clock may go
1618 	   out-of-sync and half-open connections will not be reset.
1619 	   Actually, the problem would be not existing if all
1620 	   the implementations followed draft about maintaining clock
1621 	   via reboots. Linux-2.2 DOES NOT!
1622 
1623 	   However, we can relax time bounds for RST segments to MSL.
1624 	 */
1625 	if (rst && !time_before32(ktime_get_seconds(),
1626 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1627 		return false;
1628 	return true;
1629 }
1630 
1631 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1632 			  int mib_idx, u32 *last_oow_ack_time);
1633 
1634 static inline void tcp_mib_init(struct net *net)
1635 {
1636 	/* See RFC 2012 */
1637 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1638 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1639 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1640 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1641 }
1642 
1643 /* from STCP */
1644 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1645 {
1646 	tp->lost_skb_hint = NULL;
1647 }
1648 
1649 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1650 {
1651 	tcp_clear_retrans_hints_partial(tp);
1652 	tp->retransmit_skb_hint = NULL;
1653 }
1654 
1655 union tcp_md5_addr {
1656 	struct in_addr  a4;
1657 #if IS_ENABLED(CONFIG_IPV6)
1658 	struct in6_addr	a6;
1659 #endif
1660 };
1661 
1662 /* - key database */
1663 struct tcp_md5sig_key {
1664 	struct hlist_node	node;
1665 	u8			keylen;
1666 	u8			family; /* AF_INET or AF_INET6 */
1667 	u8			prefixlen;
1668 	u8			flags;
1669 	union tcp_md5_addr	addr;
1670 	int			l3index; /* set if key added with L3 scope */
1671 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1672 	struct rcu_head		rcu;
1673 };
1674 
1675 /* - sock block */
1676 struct tcp_md5sig_info {
1677 	struct hlist_head	head;
1678 	struct rcu_head		rcu;
1679 };
1680 
1681 /* - pseudo header */
1682 struct tcp4_pseudohdr {
1683 	__be32		saddr;
1684 	__be32		daddr;
1685 	__u8		pad;
1686 	__u8		protocol;
1687 	__be16		len;
1688 };
1689 
1690 struct tcp6_pseudohdr {
1691 	struct in6_addr	saddr;
1692 	struct in6_addr daddr;
1693 	__be32		len;
1694 	__be32		protocol;	/* including padding */
1695 };
1696 
1697 union tcp_md5sum_block {
1698 	struct tcp4_pseudohdr ip4;
1699 #if IS_ENABLED(CONFIG_IPV6)
1700 	struct tcp6_pseudohdr ip6;
1701 #endif
1702 };
1703 
1704 /* - pool: digest algorithm, hash description and scratch buffer */
1705 struct tcp_md5sig_pool {
1706 	struct ahash_request	*md5_req;
1707 	void			*scratch;
1708 };
1709 
1710 /* - functions */
1711 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1712 			const struct sock *sk, const struct sk_buff *skb);
1713 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1714 		   int family, u8 prefixlen, int l3index, u8 flags,
1715 		   const u8 *newkey, u8 newkeylen);
1716 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1717 		     int family, u8 prefixlen, int l3index,
1718 		     struct tcp_md5sig_key *key);
1719 
1720 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1721 		   int family, u8 prefixlen, int l3index, u8 flags);
1722 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1723 					 const struct sock *addr_sk);
1724 
1725 #ifdef CONFIG_TCP_MD5SIG
1726 #include <linux/jump_label.h>
1727 extern struct static_key_false_deferred tcp_md5_needed;
1728 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1729 					   const union tcp_md5_addr *addr,
1730 					   int family);
1731 static inline struct tcp_md5sig_key *
1732 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1733 		  const union tcp_md5_addr *addr, int family)
1734 {
1735 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1736 		return NULL;
1737 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1738 }
1739 
1740 enum skb_drop_reason
1741 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1742 		     const void *saddr, const void *daddr,
1743 		     int family, int dif, int sdif);
1744 
1745 
1746 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1747 #else
1748 static inline struct tcp_md5sig_key *
1749 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1750 		  const union tcp_md5_addr *addr, int family)
1751 {
1752 	return NULL;
1753 }
1754 
1755 static inline enum skb_drop_reason
1756 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1757 		     const void *saddr, const void *daddr,
1758 		     int family, int dif, int sdif)
1759 {
1760 	return SKB_NOT_DROPPED_YET;
1761 }
1762 #define tcp_twsk_md5_key(twsk)	NULL
1763 #endif
1764 
1765 bool tcp_alloc_md5sig_pool(void);
1766 
1767 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1768 static inline void tcp_put_md5sig_pool(void)
1769 {
1770 	local_bh_enable();
1771 }
1772 
1773 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1774 			  unsigned int header_len);
1775 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1776 		     const struct tcp_md5sig_key *key);
1777 
1778 /* From tcp_fastopen.c */
1779 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1780 			    struct tcp_fastopen_cookie *cookie);
1781 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1782 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1783 			    u16 try_exp);
1784 struct tcp_fastopen_request {
1785 	/* Fast Open cookie. Size 0 means a cookie request */
1786 	struct tcp_fastopen_cookie	cookie;
1787 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1788 	size_t				size;
1789 	int				copied;	/* queued in tcp_connect() */
1790 	struct ubuf_info		*uarg;
1791 };
1792 void tcp_free_fastopen_req(struct tcp_sock *tp);
1793 void tcp_fastopen_destroy_cipher(struct sock *sk);
1794 void tcp_fastopen_ctx_destroy(struct net *net);
1795 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1796 			      void *primary_key, void *backup_key);
1797 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1798 			    u64 *key);
1799 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1800 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1801 			      struct request_sock *req,
1802 			      struct tcp_fastopen_cookie *foc,
1803 			      const struct dst_entry *dst);
1804 void tcp_fastopen_init_key_once(struct net *net);
1805 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1806 			     struct tcp_fastopen_cookie *cookie);
1807 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1808 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1809 #define TCP_FASTOPEN_KEY_MAX 2
1810 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1811 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1812 
1813 /* Fastopen key context */
1814 struct tcp_fastopen_context {
1815 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1816 	int		num;
1817 	struct rcu_head	rcu;
1818 };
1819 
1820 void tcp_fastopen_active_disable(struct sock *sk);
1821 bool tcp_fastopen_active_should_disable(struct sock *sk);
1822 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1823 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1824 
1825 /* Caller needs to wrap with rcu_read_(un)lock() */
1826 static inline
1827 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1828 {
1829 	struct tcp_fastopen_context *ctx;
1830 
1831 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1832 	if (!ctx)
1833 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1834 	return ctx;
1835 }
1836 
1837 static inline
1838 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1839 			       const struct tcp_fastopen_cookie *orig)
1840 {
1841 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1842 	    orig->len == foc->len &&
1843 	    !memcmp(orig->val, foc->val, foc->len))
1844 		return true;
1845 	return false;
1846 }
1847 
1848 static inline
1849 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1850 {
1851 	return ctx->num;
1852 }
1853 
1854 /* Latencies incurred by various limits for a sender. They are
1855  * chronograph-like stats that are mutually exclusive.
1856  */
1857 enum tcp_chrono {
1858 	TCP_CHRONO_UNSPEC,
1859 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1860 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1861 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1862 	__TCP_CHRONO_MAX,
1863 };
1864 
1865 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1866 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1867 
1868 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1869  * the same memory storage than skb->destructor/_skb_refdst
1870  */
1871 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1872 {
1873 	skb->destructor = NULL;
1874 	skb->_skb_refdst = 0UL;
1875 }
1876 
1877 #define tcp_skb_tsorted_save(skb) {		\
1878 	unsigned long _save = skb->_skb_refdst;	\
1879 	skb->_skb_refdst = 0UL;
1880 
1881 #define tcp_skb_tsorted_restore(skb)		\
1882 	skb->_skb_refdst = _save;		\
1883 }
1884 
1885 void tcp_write_queue_purge(struct sock *sk);
1886 
1887 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1888 {
1889 	return skb_rb_first(&sk->tcp_rtx_queue);
1890 }
1891 
1892 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1893 {
1894 	return skb_rb_last(&sk->tcp_rtx_queue);
1895 }
1896 
1897 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1898 {
1899 	return skb_peek_tail(&sk->sk_write_queue);
1900 }
1901 
1902 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1903 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1904 
1905 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1906 {
1907 	return skb_peek(&sk->sk_write_queue);
1908 }
1909 
1910 static inline bool tcp_skb_is_last(const struct sock *sk,
1911 				   const struct sk_buff *skb)
1912 {
1913 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1914 }
1915 
1916 /**
1917  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1918  * @sk: socket
1919  *
1920  * Since the write queue can have a temporary empty skb in it,
1921  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1922  */
1923 static inline bool tcp_write_queue_empty(const struct sock *sk)
1924 {
1925 	const struct tcp_sock *tp = tcp_sk(sk);
1926 
1927 	return tp->write_seq == tp->snd_nxt;
1928 }
1929 
1930 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1931 {
1932 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1933 }
1934 
1935 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1936 {
1937 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1938 }
1939 
1940 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1941 {
1942 	__skb_queue_tail(&sk->sk_write_queue, skb);
1943 
1944 	/* Queue it, remembering where we must start sending. */
1945 	if (sk->sk_write_queue.next == skb)
1946 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1947 }
1948 
1949 /* Insert new before skb on the write queue of sk.  */
1950 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1951 						  struct sk_buff *skb,
1952 						  struct sock *sk)
1953 {
1954 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1955 }
1956 
1957 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1958 {
1959 	tcp_skb_tsorted_anchor_cleanup(skb);
1960 	__skb_unlink(skb, &sk->sk_write_queue);
1961 }
1962 
1963 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1964 
1965 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1966 {
1967 	tcp_skb_tsorted_anchor_cleanup(skb);
1968 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1969 }
1970 
1971 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1972 {
1973 	list_del(&skb->tcp_tsorted_anchor);
1974 	tcp_rtx_queue_unlink(skb, sk);
1975 	tcp_wmem_free_skb(sk, skb);
1976 }
1977 
1978 static inline void tcp_push_pending_frames(struct sock *sk)
1979 {
1980 	if (tcp_send_head(sk)) {
1981 		struct tcp_sock *tp = tcp_sk(sk);
1982 
1983 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1984 	}
1985 }
1986 
1987 /* Start sequence of the skb just after the highest skb with SACKed
1988  * bit, valid only if sacked_out > 0 or when the caller has ensured
1989  * validity by itself.
1990  */
1991 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1992 {
1993 	if (!tp->sacked_out)
1994 		return tp->snd_una;
1995 
1996 	if (tp->highest_sack == NULL)
1997 		return tp->snd_nxt;
1998 
1999 	return TCP_SKB_CB(tp->highest_sack)->seq;
2000 }
2001 
2002 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2003 {
2004 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2005 }
2006 
2007 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2008 {
2009 	return tcp_sk(sk)->highest_sack;
2010 }
2011 
2012 static inline void tcp_highest_sack_reset(struct sock *sk)
2013 {
2014 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2015 }
2016 
2017 /* Called when old skb is about to be deleted and replaced by new skb */
2018 static inline void tcp_highest_sack_replace(struct sock *sk,
2019 					    struct sk_buff *old,
2020 					    struct sk_buff *new)
2021 {
2022 	if (old == tcp_highest_sack(sk))
2023 		tcp_sk(sk)->highest_sack = new;
2024 }
2025 
2026 /* This helper checks if socket has IP_TRANSPARENT set */
2027 static inline bool inet_sk_transparent(const struct sock *sk)
2028 {
2029 	switch (sk->sk_state) {
2030 	case TCP_TIME_WAIT:
2031 		return inet_twsk(sk)->tw_transparent;
2032 	case TCP_NEW_SYN_RECV:
2033 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2034 	}
2035 	return inet_test_bit(TRANSPARENT, sk);
2036 }
2037 
2038 /* Determines whether this is a thin stream (which may suffer from
2039  * increased latency). Used to trigger latency-reducing mechanisms.
2040  */
2041 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2042 {
2043 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2044 }
2045 
2046 /* /proc */
2047 enum tcp_seq_states {
2048 	TCP_SEQ_STATE_LISTENING,
2049 	TCP_SEQ_STATE_ESTABLISHED,
2050 };
2051 
2052 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2053 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2054 void tcp_seq_stop(struct seq_file *seq, void *v);
2055 
2056 struct tcp_seq_afinfo {
2057 	sa_family_t			family;
2058 };
2059 
2060 struct tcp_iter_state {
2061 	struct seq_net_private	p;
2062 	enum tcp_seq_states	state;
2063 	struct sock		*syn_wait_sk;
2064 	int			bucket, offset, sbucket, num;
2065 	loff_t			last_pos;
2066 };
2067 
2068 extern struct request_sock_ops tcp_request_sock_ops;
2069 extern struct request_sock_ops tcp6_request_sock_ops;
2070 
2071 void tcp_v4_destroy_sock(struct sock *sk);
2072 
2073 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2074 				netdev_features_t features);
2075 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2076 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2077 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2078 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2079 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2080 void tcp_gro_complete(struct sk_buff *skb);
2081 
2082 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2083 
2084 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2085 {
2086 	struct net *net = sock_net((struct sock *)tp);
2087 	u32 val;
2088 
2089 	val = READ_ONCE(tp->notsent_lowat);
2090 
2091 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2092 }
2093 
2094 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2095 
2096 #ifdef CONFIG_PROC_FS
2097 int tcp4_proc_init(void);
2098 void tcp4_proc_exit(void);
2099 #endif
2100 
2101 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2102 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2103 		     const struct tcp_request_sock_ops *af_ops,
2104 		     struct sock *sk, struct sk_buff *skb);
2105 
2106 /* TCP af-specific functions */
2107 struct tcp_sock_af_ops {
2108 #ifdef CONFIG_TCP_MD5SIG
2109 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2110 						const struct sock *addr_sk);
2111 	int		(*calc_md5_hash)(char *location,
2112 					 const struct tcp_md5sig_key *md5,
2113 					 const struct sock *sk,
2114 					 const struct sk_buff *skb);
2115 	int		(*md5_parse)(struct sock *sk,
2116 				     int optname,
2117 				     sockptr_t optval,
2118 				     int optlen);
2119 #endif
2120 };
2121 
2122 struct tcp_request_sock_ops {
2123 	u16 mss_clamp;
2124 #ifdef CONFIG_TCP_MD5SIG
2125 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2126 						 const struct sock *addr_sk);
2127 	int		(*calc_md5_hash) (char *location,
2128 					  const struct tcp_md5sig_key *md5,
2129 					  const struct sock *sk,
2130 					  const struct sk_buff *skb);
2131 #endif
2132 #ifdef CONFIG_SYN_COOKIES
2133 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2134 				 __u16 *mss);
2135 #endif
2136 	struct dst_entry *(*route_req)(const struct sock *sk,
2137 				       struct sk_buff *skb,
2138 				       struct flowi *fl,
2139 				       struct request_sock *req);
2140 	u32 (*init_seq)(const struct sk_buff *skb);
2141 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2142 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2143 			   struct flowi *fl, struct request_sock *req,
2144 			   struct tcp_fastopen_cookie *foc,
2145 			   enum tcp_synack_type synack_type,
2146 			   struct sk_buff *syn_skb);
2147 };
2148 
2149 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2150 #if IS_ENABLED(CONFIG_IPV6)
2151 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2152 #endif
2153 
2154 #ifdef CONFIG_SYN_COOKIES
2155 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2156 					 const struct sock *sk, struct sk_buff *skb,
2157 					 __u16 *mss)
2158 {
2159 	tcp_synq_overflow(sk);
2160 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2161 	return ops->cookie_init_seq(skb, mss);
2162 }
2163 #else
2164 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2165 					 const struct sock *sk, struct sk_buff *skb,
2166 					 __u16 *mss)
2167 {
2168 	return 0;
2169 }
2170 #endif
2171 
2172 int tcpv4_offload_init(void);
2173 
2174 void tcp_v4_init(void);
2175 void tcp_init(void);
2176 
2177 /* tcp_recovery.c */
2178 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2179 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2180 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2181 				u32 reo_wnd);
2182 extern bool tcp_rack_mark_lost(struct sock *sk);
2183 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2184 			     u64 xmit_time);
2185 extern void tcp_rack_reo_timeout(struct sock *sk);
2186 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2187 
2188 /* tcp_plb.c */
2189 
2190 /*
2191  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2192  * expects cong_ratio which represents fraction of traffic that experienced
2193  * congestion over a single RTT. In order to avoid floating point operations,
2194  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2195  */
2196 #define TCP_PLB_SCALE 8
2197 
2198 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2199 struct tcp_plb_state {
2200 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2201 		unused:3;
2202 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2203 };
2204 
2205 static inline void tcp_plb_init(const struct sock *sk,
2206 				struct tcp_plb_state *plb)
2207 {
2208 	plb->consec_cong_rounds = 0;
2209 	plb->pause_until = 0;
2210 }
2211 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2212 			  const int cong_ratio);
2213 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2214 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2215 
2216 /* At how many usecs into the future should the RTO fire? */
2217 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2218 {
2219 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2220 	u32 rto = inet_csk(sk)->icsk_rto;
2221 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2222 
2223 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2224 }
2225 
2226 /*
2227  * Save and compile IPv4 options, return a pointer to it
2228  */
2229 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2230 							 struct sk_buff *skb)
2231 {
2232 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2233 	struct ip_options_rcu *dopt = NULL;
2234 
2235 	if (opt->optlen) {
2236 		int opt_size = sizeof(*dopt) + opt->optlen;
2237 
2238 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2239 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2240 			kfree(dopt);
2241 			dopt = NULL;
2242 		}
2243 	}
2244 	return dopt;
2245 }
2246 
2247 /* locally generated TCP pure ACKs have skb->truesize == 2
2248  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2249  * This is much faster than dissecting the packet to find out.
2250  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2251  */
2252 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2253 {
2254 	return skb->truesize == 2;
2255 }
2256 
2257 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2258 {
2259 	skb->truesize = 2;
2260 }
2261 
2262 static inline int tcp_inq(struct sock *sk)
2263 {
2264 	struct tcp_sock *tp = tcp_sk(sk);
2265 	int answ;
2266 
2267 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2268 		answ = 0;
2269 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2270 		   !tp->urg_data ||
2271 		   before(tp->urg_seq, tp->copied_seq) ||
2272 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2273 
2274 		answ = tp->rcv_nxt - tp->copied_seq;
2275 
2276 		/* Subtract 1, if FIN was received */
2277 		if (answ && sock_flag(sk, SOCK_DONE))
2278 			answ--;
2279 	} else {
2280 		answ = tp->urg_seq - tp->copied_seq;
2281 	}
2282 
2283 	return answ;
2284 }
2285 
2286 int tcp_peek_len(struct socket *sock);
2287 
2288 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2289 {
2290 	u16 segs_in;
2291 
2292 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2293 
2294 	/* We update these fields while other threads might
2295 	 * read them from tcp_get_info()
2296 	 */
2297 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2298 	if (skb->len > tcp_hdrlen(skb))
2299 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2300 }
2301 
2302 /*
2303  * TCP listen path runs lockless.
2304  * We forced "struct sock" to be const qualified to make sure
2305  * we don't modify one of its field by mistake.
2306  * Here, we increment sk_drops which is an atomic_t, so we can safely
2307  * make sock writable again.
2308  */
2309 static inline void tcp_listendrop(const struct sock *sk)
2310 {
2311 	atomic_inc(&((struct sock *)sk)->sk_drops);
2312 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2313 }
2314 
2315 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2316 
2317 /*
2318  * Interface for adding Upper Level Protocols over TCP
2319  */
2320 
2321 #define TCP_ULP_NAME_MAX	16
2322 #define TCP_ULP_MAX		128
2323 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2324 
2325 struct tcp_ulp_ops {
2326 	struct list_head	list;
2327 
2328 	/* initialize ulp */
2329 	int (*init)(struct sock *sk);
2330 	/* update ulp */
2331 	void (*update)(struct sock *sk, struct proto *p,
2332 		       void (*write_space)(struct sock *sk));
2333 	/* cleanup ulp */
2334 	void (*release)(struct sock *sk);
2335 	/* diagnostic */
2336 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2337 	size_t (*get_info_size)(const struct sock *sk);
2338 	/* clone ulp */
2339 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2340 		      const gfp_t priority);
2341 
2342 	char		name[TCP_ULP_NAME_MAX];
2343 	struct module	*owner;
2344 };
2345 int tcp_register_ulp(struct tcp_ulp_ops *type);
2346 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2347 int tcp_set_ulp(struct sock *sk, const char *name);
2348 void tcp_get_available_ulp(char *buf, size_t len);
2349 void tcp_cleanup_ulp(struct sock *sk);
2350 void tcp_update_ulp(struct sock *sk, struct proto *p,
2351 		    void (*write_space)(struct sock *sk));
2352 
2353 #define MODULE_ALIAS_TCP_ULP(name)				\
2354 	__MODULE_INFO(alias, alias_userspace, name);		\
2355 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2356 
2357 #ifdef CONFIG_NET_SOCK_MSG
2358 struct sk_msg;
2359 struct sk_psock;
2360 
2361 #ifdef CONFIG_BPF_SYSCALL
2362 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2363 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2364 #endif /* CONFIG_BPF_SYSCALL */
2365 
2366 #ifdef CONFIG_INET
2367 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2368 #else
2369 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2370 {
2371 }
2372 #endif
2373 
2374 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2375 			  struct sk_msg *msg, u32 bytes, int flags);
2376 #endif /* CONFIG_NET_SOCK_MSG */
2377 
2378 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2379 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2380 {
2381 }
2382 #endif
2383 
2384 #ifdef CONFIG_CGROUP_BPF
2385 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2386 				      struct sk_buff *skb,
2387 				      unsigned int end_offset)
2388 {
2389 	skops->skb = skb;
2390 	skops->skb_data_end = skb->data + end_offset;
2391 }
2392 #else
2393 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2394 				      struct sk_buff *skb,
2395 				      unsigned int end_offset)
2396 {
2397 }
2398 #endif
2399 
2400 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2401  * is < 0, then the BPF op failed (for example if the loaded BPF
2402  * program does not support the chosen operation or there is no BPF
2403  * program loaded).
2404  */
2405 #ifdef CONFIG_BPF
2406 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2407 {
2408 	struct bpf_sock_ops_kern sock_ops;
2409 	int ret;
2410 
2411 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2412 	if (sk_fullsock(sk)) {
2413 		sock_ops.is_fullsock = 1;
2414 		sock_owned_by_me(sk);
2415 	}
2416 
2417 	sock_ops.sk = sk;
2418 	sock_ops.op = op;
2419 	if (nargs > 0)
2420 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2421 
2422 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2423 	if (ret == 0)
2424 		ret = sock_ops.reply;
2425 	else
2426 		ret = -1;
2427 	return ret;
2428 }
2429 
2430 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2431 {
2432 	u32 args[2] = {arg1, arg2};
2433 
2434 	return tcp_call_bpf(sk, op, 2, args);
2435 }
2436 
2437 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2438 				    u32 arg3)
2439 {
2440 	u32 args[3] = {arg1, arg2, arg3};
2441 
2442 	return tcp_call_bpf(sk, op, 3, args);
2443 }
2444 
2445 #else
2446 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2447 {
2448 	return -EPERM;
2449 }
2450 
2451 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2452 {
2453 	return -EPERM;
2454 }
2455 
2456 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2457 				    u32 arg3)
2458 {
2459 	return -EPERM;
2460 }
2461 
2462 #endif
2463 
2464 static inline u32 tcp_timeout_init(struct sock *sk)
2465 {
2466 	int timeout;
2467 
2468 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2469 
2470 	if (timeout <= 0)
2471 		timeout = TCP_TIMEOUT_INIT;
2472 	return min_t(int, timeout, TCP_RTO_MAX);
2473 }
2474 
2475 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2476 {
2477 	int rwnd;
2478 
2479 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2480 
2481 	if (rwnd < 0)
2482 		rwnd = 0;
2483 	return rwnd;
2484 }
2485 
2486 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2487 {
2488 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2489 }
2490 
2491 static inline void tcp_bpf_rtt(struct sock *sk)
2492 {
2493 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2494 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2495 }
2496 
2497 #if IS_ENABLED(CONFIG_SMC)
2498 extern struct static_key_false tcp_have_smc;
2499 #endif
2500 
2501 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2502 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2503 			     void (*cad)(struct sock *sk, u32 ack_seq));
2504 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2505 void clean_acked_data_flush(void);
2506 #endif
2507 
2508 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2509 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2510 				    const struct tcp_sock *tp)
2511 {
2512 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2513 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2514 }
2515 
2516 /* Compute Earliest Departure Time for some control packets
2517  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2518  */
2519 static inline u64 tcp_transmit_time(const struct sock *sk)
2520 {
2521 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2522 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2523 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2524 
2525 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2526 	}
2527 	return 0;
2528 }
2529 
2530 #endif	/* _TCP_H */
2531