xref: /openbmc/linux/include/net/tcp.h (revision 69f397e6)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 
145 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146 
147 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149 						 * used as a fallback RTO for the
150 						 * initial data transmission if no
151 						 * valid RTT sample has been acquired,
152 						 * most likely due to retrans in 3WHS.
153 						 */
154 
155 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156 					                 * for local resources.
157 					                 */
158 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160 #define TCP_KEEPALIVE_INTVL	(75*HZ)
161 
162 #define MAX_TCP_KEEPIDLE	32767
163 #define MAX_TCP_KEEPINTVL	32767
164 #define MAX_TCP_KEEPCNT		127
165 #define MAX_TCP_SYNCNT		127
166 
167 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
168 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
169 					 * after this time. It should be equal
170 					 * (or greater than) TCP_TIMEWAIT_LEN
171 					 * to provide reliability equal to one
172 					 * provided by timewait state.
173 					 */
174 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
175 					 * timestamps. It must be less than
176 					 * minimal timewait lifetime.
177 					 */
178 /*
179  *	TCP option
180  */
181 
182 #define TCPOPT_NOP		1	/* Padding */
183 #define TCPOPT_EOL		0	/* End of options */
184 #define TCPOPT_MSS		2	/* Segment size negotiating */
185 #define TCPOPT_WINDOW		3	/* Window scaling */
186 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
187 #define TCPOPT_SACK             5       /* SACK Block */
188 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
189 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
190 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
191 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
192 #define TCPOPT_EXP		254	/* Experimental */
193 /* Magic number to be after the option value for sharing TCP
194  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
195  */
196 #define TCPOPT_FASTOPEN_MAGIC	0xF989
197 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
198 
199 /*
200  *     TCP option lengths
201  */
202 
203 #define TCPOLEN_MSS            4
204 #define TCPOLEN_WINDOW         3
205 #define TCPOLEN_SACK_PERM      2
206 #define TCPOLEN_TIMESTAMP      10
207 #define TCPOLEN_MD5SIG         18
208 #define TCPOLEN_FASTOPEN_BASE  2
209 #define TCPOLEN_EXP_FASTOPEN_BASE  4
210 #define TCPOLEN_EXP_SMC_BASE   6
211 
212 /* But this is what stacks really send out. */
213 #define TCPOLEN_TSTAMP_ALIGNED		12
214 #define TCPOLEN_WSCALE_ALIGNED		4
215 #define TCPOLEN_SACKPERM_ALIGNED	4
216 #define TCPOLEN_SACK_BASE		2
217 #define TCPOLEN_SACK_BASE_ALIGNED	4
218 #define TCPOLEN_SACK_PERBLOCK		8
219 #define TCPOLEN_MD5SIG_ALIGNED		20
220 #define TCPOLEN_MSS_ALIGNED		4
221 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
222 
223 /* Flags in tp->nonagle */
224 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
225 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
226 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
227 
228 /* TCP thin-stream limits */
229 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
230 
231 /* TCP initial congestion window as per rfc6928 */
232 #define TCP_INIT_CWND		10
233 
234 /* Bit Flags for sysctl_tcp_fastopen */
235 #define	TFO_CLIENT_ENABLE	1
236 #define	TFO_SERVER_ENABLE	2
237 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
238 
239 /* Accept SYN data w/o any cookie option */
240 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
241 
242 /* Force enable TFO on all listeners, i.e., not requiring the
243  * TCP_FASTOPEN socket option.
244  */
245 #define	TFO_SERVER_WO_SOCKOPT1	0x400
246 
247 
248 /* sysctl variables for tcp */
249 extern int sysctl_tcp_max_orphans;
250 extern long sysctl_tcp_mem[3];
251 
252 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
253 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
254 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
255 
256 extern atomic_long_t tcp_memory_allocated;
257 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
258 
259 extern struct percpu_counter tcp_sockets_allocated;
260 extern unsigned long tcp_memory_pressure;
261 
262 /* optimized version of sk_under_memory_pressure() for TCP sockets */
263 static inline bool tcp_under_memory_pressure(const struct sock *sk)
264 {
265 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267 		return true;
268 
269 	return READ_ONCE(tcp_memory_pressure);
270 }
271 /*
272  * The next routines deal with comparing 32 bit unsigned ints
273  * and worry about wraparound (automatic with unsigned arithmetic).
274  */
275 
276 static inline bool before(__u32 seq1, __u32 seq2)
277 {
278         return (__s32)(seq1-seq2) < 0;
279 }
280 #define after(seq2, seq1) 	before(seq1, seq2)
281 
282 /* is s2<=s1<=s3 ? */
283 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284 {
285 	return seq3 - seq2 >= seq1 - seq2;
286 }
287 
288 static inline bool tcp_out_of_memory(struct sock *sk)
289 {
290 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292 		return true;
293 	return false;
294 }
295 
296 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
297 {
298 	sk_wmem_queued_add(sk, -skb->truesize);
299 	if (!skb_zcopy_pure(skb))
300 		sk_mem_uncharge(sk, skb->truesize);
301 	else
302 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
303 	__kfree_skb(skb);
304 }
305 
306 void sk_forced_mem_schedule(struct sock *sk, int size);
307 
308 bool tcp_check_oom(struct sock *sk, int shift);
309 
310 
311 extern struct proto tcp_prot;
312 
313 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
316 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
317 
318 void tcp_tasklet_init(void);
319 
320 int tcp_v4_err(struct sk_buff *skb, u32);
321 
322 void tcp_shutdown(struct sock *sk, int how);
323 
324 int tcp_v4_early_demux(struct sk_buff *skb);
325 int tcp_v4_rcv(struct sk_buff *skb);
326 
327 void tcp_remove_empty_skb(struct sock *sk);
328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331 			 size_t size, struct ubuf_info *uarg);
332 void tcp_splice_eof(struct socket *sock);
333 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334 int tcp_wmem_schedule(struct sock *sk, int copy);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 void tcp_twsk_purge(struct list_head *net_exit_list);
348 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349 			struct pipe_inode_info *pipe, size_t len,
350 			unsigned int flags);
351 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
352 				     bool force_schedule);
353 
354 static inline void tcp_dec_quickack_mode(struct sock *sk)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	if (icsk->icsk_ack.quick) {
359 		/* How many ACKs S/ACKing new data have we sent? */
360 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
361 
362 		if (pkts >= icsk->icsk_ack.quick) {
363 			icsk->icsk_ack.quick = 0;
364 			/* Leaving quickack mode we deflate ATO. */
365 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366 		} else
367 			icsk->icsk_ack.quick -= pkts;
368 	}
369 }
370 
371 #define	TCP_ECN_OK		1
372 #define	TCP_ECN_QUEUE_CWR	2
373 #define	TCP_ECN_DEMAND_CWR	4
374 #define	TCP_ECN_SEEN		8
375 
376 enum tcp_tw_status {
377 	TCP_TW_SUCCESS = 0,
378 	TCP_TW_RST = 1,
379 	TCP_TW_ACK = 2,
380 	TCP_TW_SYN = 3
381 };
382 
383 
384 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385 					      struct sk_buff *skb,
386 					      const struct tcphdr *th);
387 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388 			   struct request_sock *req, bool fastopen,
389 			   bool *lost_race);
390 int tcp_child_process(struct sock *parent, struct sock *child,
391 		      struct sk_buff *skb);
392 void tcp_enter_loss(struct sock *sk);
393 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394 void tcp_clear_retrans(struct tcp_sock *tp);
395 void tcp_update_metrics(struct sock *sk);
396 void tcp_init_metrics(struct sock *sk);
397 void tcp_metrics_init(void);
398 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399 void __tcp_close(struct sock *sk, long timeout);
400 void tcp_close(struct sock *sk, long timeout);
401 void tcp_init_sock(struct sock *sk);
402 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403 __poll_t tcp_poll(struct file *file, struct socket *sock,
404 		      struct poll_table_struct *wait);
405 int do_tcp_getsockopt(struct sock *sk, int level,
406 		      int optname, sockptr_t optval, sockptr_t optlen);
407 int tcp_getsockopt(struct sock *sk, int level, int optname,
408 		   char __user *optval, int __user *optlen);
409 bool tcp_bpf_bypass_getsockopt(int level, int optname);
410 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
411 		      sockptr_t optval, unsigned int optlen);
412 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
413 		   unsigned int optlen);
414 void tcp_set_keepalive(struct sock *sk, int val);
415 void tcp_syn_ack_timeout(const struct request_sock *req);
416 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
417 		int flags, int *addr_len);
418 int tcp_set_rcvlowat(struct sock *sk, int val);
419 int tcp_set_window_clamp(struct sock *sk, int val);
420 void tcp_update_recv_tstamps(struct sk_buff *skb,
421 			     struct scm_timestamping_internal *tss);
422 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
423 			struct scm_timestamping_internal *tss);
424 void tcp_data_ready(struct sock *sk);
425 #ifdef CONFIG_MMU
426 int tcp_mmap(struct file *file, struct socket *sock,
427 	     struct vm_area_struct *vma);
428 #endif
429 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	BPF SKB-less helpers
436  */
437 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
438 			 struct tcphdr *th, u32 *cookie);
439 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
440 			 struct tcphdr *th, u32 *cookie);
441 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
442 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
443 			  const struct tcp_request_sock_ops *af_ops,
444 			  struct sock *sk, struct tcphdr *th);
445 /*
446  *	TCP v4 functions exported for the inet6 API
447  */
448 
449 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
450 void tcp_v4_mtu_reduced(struct sock *sk);
451 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
452 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
453 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454 struct sock *tcp_create_openreq_child(const struct sock *sk,
455 				      struct request_sock *req,
456 				      struct sk_buff *skb);
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459 				  struct request_sock *req,
460 				  struct dst_entry *dst,
461 				  struct request_sock *req_unhash,
462 				  bool *own_req);
463 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465 int tcp_connect(struct sock *sk);
466 enum tcp_synack_type {
467 	TCP_SYNACK_NORMAL,
468 	TCP_SYNACK_FASTOPEN,
469 	TCP_SYNACK_COOKIE,
470 };
471 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
472 				struct request_sock *req,
473 				struct tcp_fastopen_cookie *foc,
474 				enum tcp_synack_type synack_type,
475 				struct sk_buff *syn_skb);
476 int tcp_disconnect(struct sock *sk, int flags);
477 
478 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
479 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
480 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
481 
482 /* From syncookies.c */
483 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
484 				 struct request_sock *req,
485 				 struct dst_entry *dst, u32 tsoff);
486 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
487 		      u32 cookie);
488 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
489 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
490 					    const struct tcp_request_sock_ops *af_ops,
491 					    struct sock *sk, struct sk_buff *skb);
492 #ifdef CONFIG_SYN_COOKIES
493 
494 /* Syncookies use a monotonic timer which increments every 60 seconds.
495  * This counter is used both as a hash input and partially encoded into
496  * the cookie value.  A cookie is only validated further if the delta
497  * between the current counter value and the encoded one is less than this,
498  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
499  * the counter advances immediately after a cookie is generated).
500  */
501 #define MAX_SYNCOOKIE_AGE	2
502 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
503 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
504 
505 /* syncookies: remember time of last synqueue overflow
506  * But do not dirty this field too often (once per second is enough)
507  * It is racy as we do not hold a lock, but race is very minor.
508  */
509 static inline void tcp_synq_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			if (!time_between32(now, last_overflow,
521 					    last_overflow + HZ))
522 				WRITE_ONCE(reuse->synq_overflow_ts, now);
523 			return;
524 		}
525 	}
526 
527 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528 	if (!time_between32(now, last_overflow, last_overflow + HZ))
529 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
530 }
531 
532 /* syncookies: no recent synqueue overflow on this listening socket? */
533 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
534 {
535 	unsigned int last_overflow;
536 	unsigned int now = jiffies;
537 
538 	if (sk->sk_reuseport) {
539 		struct sock_reuseport *reuse;
540 
541 		reuse = rcu_dereference(sk->sk_reuseport_cb);
542 		if (likely(reuse)) {
543 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
544 			return !time_between32(now, last_overflow - HZ,
545 					       last_overflow +
546 					       TCP_SYNCOOKIE_VALID);
547 		}
548 	}
549 
550 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551 
552 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
553 	 * then we're under synflood. However, we have to use
554 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
555 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
556 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
557 	 * which could lead to rejecting a valid syncookie.
558 	 */
559 	return !time_between32(now, last_overflow - HZ,
560 			       last_overflow + TCP_SYNCOOKIE_VALID);
561 }
562 
563 static inline u32 tcp_cookie_time(void)
564 {
565 	u64 val = get_jiffies_64();
566 
567 	do_div(val, TCP_SYNCOOKIE_PERIOD);
568 	return val;
569 }
570 
571 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
572 			      u16 *mssp);
573 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
574 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
575 bool cookie_timestamp_decode(const struct net *net,
576 			     struct tcp_options_received *opt);
577 bool cookie_ecn_ok(const struct tcp_options_received *opt,
578 		   const struct net *net, const struct dst_entry *dst);
579 
580 /* From net/ipv6/syncookies.c */
581 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
582 		      u32 cookie);
583 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
584 
585 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
586 			      const struct tcphdr *th, u16 *mssp);
587 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
588 #endif
589 /* tcp_output.c */
590 
591 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
592 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
593 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
594 			       int nonagle);
595 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597 void tcp_retransmit_timer(struct sock *sk);
598 void tcp_xmit_retransmit_queue(struct sock *);
599 void tcp_simple_retransmit(struct sock *);
600 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
601 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
602 enum tcp_queue {
603 	TCP_FRAG_IN_WRITE_QUEUE,
604 	TCP_FRAG_IN_RTX_QUEUE,
605 };
606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
607 		 struct sk_buff *skb, u32 len,
608 		 unsigned int mss_now, gfp_t gfp);
609 
610 void tcp_send_probe0(struct sock *);
611 int tcp_write_wakeup(struct sock *, int mib);
612 void tcp_send_fin(struct sock *sk);
613 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
614 int tcp_send_synack(struct sock *);
615 void tcp_push_one(struct sock *, unsigned int mss_now);
616 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
617 void tcp_send_ack(struct sock *sk);
618 void tcp_send_delayed_ack(struct sock *sk);
619 void tcp_send_loss_probe(struct sock *sk);
620 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
621 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
622 			     const struct sk_buff *next_skb);
623 
624 /* tcp_input.c */
625 void tcp_rearm_rto(struct sock *sk);
626 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
627 void tcp_done_with_error(struct sock *sk, int err);
628 void tcp_reset(struct sock *sk, struct sk_buff *skb);
629 void tcp_fin(struct sock *sk);
630 void tcp_check_space(struct sock *sk);
631 void tcp_sack_compress_send_ack(struct sock *sk);
632 
633 /* tcp_timer.c */
634 void tcp_init_xmit_timers(struct sock *);
635 static inline void tcp_clear_xmit_timers(struct sock *sk)
636 {
637 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
638 		__sock_put(sk);
639 
640 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
641 		__sock_put(sk);
642 
643 	inet_csk_clear_xmit_timers(sk);
644 }
645 
646 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
647 unsigned int tcp_current_mss(struct sock *sk);
648 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
649 
650 /* Bound MSS / TSO packet size with the half of the window */
651 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
652 {
653 	int cutoff;
654 
655 	/* When peer uses tiny windows, there is no use in packetizing
656 	 * to sub-MSS pieces for the sake of SWS or making sure there
657 	 * are enough packets in the pipe for fast recovery.
658 	 *
659 	 * On the other hand, for extremely large MSS devices, handling
660 	 * smaller than MSS windows in this way does make sense.
661 	 */
662 	if (tp->max_window > TCP_MSS_DEFAULT)
663 		cutoff = (tp->max_window >> 1);
664 	else
665 		cutoff = tp->max_window;
666 
667 	if (cutoff && pktsize > cutoff)
668 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
669 	else
670 		return pktsize;
671 }
672 
673 /* tcp.c */
674 void tcp_get_info(struct sock *, struct tcp_info *);
675 
676 /* Read 'sendfile()'-style from a TCP socket */
677 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
678 		  sk_read_actor_t recv_actor);
679 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
680 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
681 void tcp_read_done(struct sock *sk, size_t len);
682 
683 void tcp_initialize_rcv_mss(struct sock *sk);
684 
685 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
686 int tcp_mss_to_mtu(struct sock *sk, int mss);
687 void tcp_mtup_init(struct sock *sk);
688 
689 static inline void tcp_bound_rto(const struct sock *sk)
690 {
691 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
692 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
693 }
694 
695 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
696 {
697 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
698 }
699 
700 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
701 {
702 	/* mptcp hooks are only on the slow path */
703 	if (sk_is_mptcp((struct sock *)tp))
704 		return;
705 
706 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
707 			       ntohl(TCP_FLAG_ACK) |
708 			       snd_wnd);
709 }
710 
711 static inline void tcp_fast_path_on(struct tcp_sock *tp)
712 {
713 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
714 }
715 
716 static inline void tcp_fast_path_check(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 
720 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
721 	    tp->rcv_wnd &&
722 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
723 	    !tp->urg_data)
724 		tcp_fast_path_on(tp);
725 }
726 
727 u32 tcp_delack_max(const struct sock *sk);
728 
729 /* Compute the actual rto_min value */
730 static inline u32 tcp_rto_min(struct sock *sk)
731 {
732 	const struct dst_entry *dst = __sk_dst_get(sk);
733 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
734 
735 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
736 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
737 	return rto_min;
738 }
739 
740 static inline u32 tcp_rto_min_us(struct sock *sk)
741 {
742 	return jiffies_to_usecs(tcp_rto_min(sk));
743 }
744 
745 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
746 {
747 	return dst_metric_locked(dst, RTAX_CC_ALGO);
748 }
749 
750 /* Minimum RTT in usec. ~0 means not available. */
751 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
752 {
753 	return minmax_get(&tp->rtt_min);
754 }
755 
756 /* Compute the actual receive window we are currently advertising.
757  * Rcv_nxt can be after the window if our peer push more data
758  * than the offered window.
759  */
760 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
761 {
762 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
763 
764 	if (win < 0)
765 		win = 0;
766 	return (u32) win;
767 }
768 
769 /* Choose a new window, without checks for shrinking, and without
770  * scaling applied to the result.  The caller does these things
771  * if necessary.  This is a "raw" window selection.
772  */
773 u32 __tcp_select_window(struct sock *sk);
774 
775 void tcp_send_window_probe(struct sock *sk);
776 
777 /* TCP uses 32bit jiffies to save some space.
778  * Note that this is different from tcp_time_stamp, which
779  * historically has been the same until linux-4.13.
780  */
781 #define tcp_jiffies32 ((u32)jiffies)
782 
783 /*
784  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
785  * It is no longer tied to jiffies, but to 1 ms clock.
786  * Note: double check if you want to use tcp_jiffies32 instead of this.
787  */
788 #define TCP_TS_HZ	1000
789 
790 static inline u64 tcp_clock_ns(void)
791 {
792 	return ktime_get_ns();
793 }
794 
795 static inline u64 tcp_clock_us(void)
796 {
797 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
798 }
799 
800 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
801 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
802 {
803 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
804 }
805 
806 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
807 static inline u64 tcp_ns_to_ts(u64 ns)
808 {
809 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
810 }
811 
812 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
813 static inline u32 tcp_time_stamp_raw(void)
814 {
815 	return tcp_ns_to_ts(tcp_clock_ns());
816 }
817 
818 void tcp_mstamp_refresh(struct tcp_sock *tp);
819 
820 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
821 {
822 	return max_t(s64, t1 - t0, 0);
823 }
824 
825 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
826 {
827 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
828 }
829 
830 /* provide the departure time in us unit */
831 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
832 {
833 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
834 }
835 
836 
837 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
838 
839 #define TCPHDR_FIN 0x01
840 #define TCPHDR_SYN 0x02
841 #define TCPHDR_RST 0x04
842 #define TCPHDR_PSH 0x08
843 #define TCPHDR_ACK 0x10
844 #define TCPHDR_URG 0x20
845 #define TCPHDR_ECE 0x40
846 #define TCPHDR_CWR 0x80
847 
848 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
849 
850 /* This is what the send packet queuing engine uses to pass
851  * TCP per-packet control information to the transmission code.
852  * We also store the host-order sequence numbers in here too.
853  * This is 44 bytes if IPV6 is enabled.
854  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
855  */
856 struct tcp_skb_cb {
857 	__u32		seq;		/* Starting sequence number	*/
858 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
859 	union {
860 		/* Note : tcp_tw_isn is used in input path only
861 		 *	  (isn chosen by tcp_timewait_state_process())
862 		 *
863 		 * 	  tcp_gso_segs/size are used in write queue only,
864 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
865 		 */
866 		__u32		tcp_tw_isn;
867 		struct {
868 			u16	tcp_gso_segs;
869 			u16	tcp_gso_size;
870 		};
871 	};
872 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
873 
874 	__u8		sacked;		/* State flags for SACK.	*/
875 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
876 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
877 #define TCPCB_LOST		0x04	/* SKB is lost			*/
878 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
879 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
880 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
881 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
882 				TCPCB_REPAIRED)
883 
884 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
885 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
886 			eor:1,		/* Is skb MSG_EOR marked? */
887 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
888 			unused:5;
889 	__u32		ack_seq;	/* Sequence number ACK'd	*/
890 	union {
891 		struct {
892 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
893 			/* There is space for up to 24 bytes */
894 			__u32 is_app_limited:1, /* cwnd not fully used? */
895 			      delivered_ce:20,
896 			      unused:11;
897 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
898 			__u32 delivered;
899 			/* start of send pipeline phase */
900 			u64 first_tx_mstamp;
901 			/* when we reached the "delivered" count */
902 			u64 delivered_mstamp;
903 		} tx;   /* only used for outgoing skbs */
904 		union {
905 			struct inet_skb_parm	h4;
906 #if IS_ENABLED(CONFIG_IPV6)
907 			struct inet6_skb_parm	h6;
908 #endif
909 		} header;	/* For incoming skbs */
910 	};
911 };
912 
913 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
914 
915 extern const struct inet_connection_sock_af_ops ipv4_specific;
916 
917 #if IS_ENABLED(CONFIG_IPV6)
918 /* This is the variant of inet6_iif() that must be used by TCP,
919  * as TCP moves IP6CB into a different location in skb->cb[]
920  */
921 static inline int tcp_v6_iif(const struct sk_buff *skb)
922 {
923 	return TCP_SKB_CB(skb)->header.h6.iif;
924 }
925 
926 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
927 {
928 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
929 
930 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
931 }
932 
933 /* TCP_SKB_CB reference means this can not be used from early demux */
934 static inline int tcp_v6_sdif(const struct sk_buff *skb)
935 {
936 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
937 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
938 		return TCP_SKB_CB(skb)->header.h6.iif;
939 #endif
940 	return 0;
941 }
942 
943 extern const struct inet_connection_sock_af_ops ipv6_specific;
944 
945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
946 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
947 void tcp_v6_early_demux(struct sk_buff *skb);
948 
949 #endif
950 
951 /* TCP_SKB_CB reference means this can not be used from early demux */
952 static inline int tcp_v4_sdif(struct sk_buff *skb)
953 {
954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
955 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
956 		return TCP_SKB_CB(skb)->header.h4.iif;
957 #endif
958 	return 0;
959 }
960 
961 /* Due to TSO, an SKB can be composed of multiple actual
962  * packets.  To keep these tracked properly, we use this.
963  */
964 static inline int tcp_skb_pcount(const struct sk_buff *skb)
965 {
966 	return TCP_SKB_CB(skb)->tcp_gso_segs;
967 }
968 
969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
970 {
971 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
972 }
973 
974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
975 {
976 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
977 }
978 
979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
980 static inline int tcp_skb_mss(const struct sk_buff *skb)
981 {
982 	return TCP_SKB_CB(skb)->tcp_gso_size;
983 }
984 
985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
986 {
987 	return likely(!TCP_SKB_CB(skb)->eor);
988 }
989 
990 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
991 					const struct sk_buff *from)
992 {
993 	return likely(tcp_skb_can_collapse_to(to) &&
994 		      mptcp_skb_can_collapse(to, from) &&
995 		      skb_pure_zcopy_same(to, from));
996 }
997 
998 /* Events passed to congestion control interface */
999 enum tcp_ca_event {
1000 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003 	CA_EVENT_LOSS,		/* loss timeout */
1004 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006 };
1007 
1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009 enum tcp_ca_ack_event_flags {
1010 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013 };
1014 
1015 /*
1016  * Interface for adding new TCP congestion control handlers
1017  */
1018 #define TCP_CA_NAME_MAX	16
1019 #define TCP_CA_MAX	128
1020 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021 
1022 #define TCP_CA_UNSPEC	0
1023 
1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025 #define TCP_CONG_NON_RESTRICTED 0x1
1026 /* Requires ECN/ECT set on all packets */
1027 #define TCP_CONG_NEEDS_ECN	0x2
1028 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029 
1030 union tcp_cc_info;
1031 
1032 struct ack_sample {
1033 	u32 pkts_acked;
1034 	s32 rtt_us;
1035 	u32 in_flight;
1036 };
1037 
1038 /* A rate sample measures the number of (original/retransmitted) data
1039  * packets delivered "delivered" over an interval of time "interval_us".
1040  * The tcp_rate.c code fills in the rate sample, and congestion
1041  * control modules that define a cong_control function to run at the end
1042  * of ACK processing can optionally chose to consult this sample when
1043  * setting cwnd and pacing rate.
1044  * A sample is invalid if "delivered" or "interval_us" is negative.
1045  */
1046 struct rate_sample {
1047 	u64  prior_mstamp; /* starting timestamp for interval */
1048 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1050 	s32  delivered;		/* number of packets delivered over interval */
1051 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1052 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1053 	u32 snd_interval_us;	/* snd interval for delivered packets */
1054 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1055 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1056 	int  losses;		/* number of packets marked lost upon ACK */
1057 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1058 	u32  prior_in_flight;	/* in flight before this ACK */
1059 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1060 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1061 	bool is_retrans;	/* is sample from retransmission? */
1062 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1063 };
1064 
1065 struct tcp_congestion_ops {
1066 /* fast path fields are put first to fill one cache line */
1067 
1068 	/* return slow start threshold (required) */
1069 	u32 (*ssthresh)(struct sock *sk);
1070 
1071 	/* do new cwnd calculation (required) */
1072 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1073 
1074 	/* call before changing ca_state (optional) */
1075 	void (*set_state)(struct sock *sk, u8 new_state);
1076 
1077 	/* call when cwnd event occurs (optional) */
1078 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1079 
1080 	/* call when ack arrives (optional) */
1081 	void (*in_ack_event)(struct sock *sk, u32 flags);
1082 
1083 	/* hook for packet ack accounting (optional) */
1084 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1085 
1086 	/* override sysctl_tcp_min_tso_segs */
1087 	u32 (*min_tso_segs)(struct sock *sk);
1088 
1089 	/* call when packets are delivered to update cwnd and pacing rate,
1090 	 * after all the ca_state processing. (optional)
1091 	 */
1092 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1093 
1094 
1095 	/* new value of cwnd after loss (required) */
1096 	u32  (*undo_cwnd)(struct sock *sk);
1097 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1098 	u32 (*sndbuf_expand)(struct sock *sk);
1099 
1100 /* control/slow paths put last */
1101 	/* get info for inet_diag (optional) */
1102 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1103 			   union tcp_cc_info *info);
1104 
1105 	char 			name[TCP_CA_NAME_MAX];
1106 	struct module		*owner;
1107 	struct list_head	list;
1108 	u32			key;
1109 	u32			flags;
1110 
1111 	/* initialize private data (optional) */
1112 	void (*init)(struct sock *sk);
1113 	/* cleanup private data  (optional) */
1114 	void (*release)(struct sock *sk);
1115 } ____cacheline_aligned_in_smp;
1116 
1117 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1118 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1119 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1120 				  struct tcp_congestion_ops *old_type);
1121 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1122 
1123 void tcp_assign_congestion_control(struct sock *sk);
1124 void tcp_init_congestion_control(struct sock *sk);
1125 void tcp_cleanup_congestion_control(struct sock *sk);
1126 int tcp_set_default_congestion_control(struct net *net, const char *name);
1127 void tcp_get_default_congestion_control(struct net *net, char *name);
1128 void tcp_get_available_congestion_control(char *buf, size_t len);
1129 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1130 int tcp_set_allowed_congestion_control(char *allowed);
1131 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1132 			       bool cap_net_admin);
1133 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1134 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1135 
1136 u32 tcp_reno_ssthresh(struct sock *sk);
1137 u32 tcp_reno_undo_cwnd(struct sock *sk);
1138 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1139 extern struct tcp_congestion_ops tcp_reno;
1140 
1141 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1142 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1143 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1144 #ifdef CONFIG_INET
1145 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1146 #else
1147 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1148 {
1149 	return NULL;
1150 }
1151 #endif
1152 
1153 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1154 {
1155 	const struct inet_connection_sock *icsk = inet_csk(sk);
1156 
1157 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1158 }
1159 
1160 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1161 {
1162 	const struct inet_connection_sock *icsk = inet_csk(sk);
1163 
1164 	if (icsk->icsk_ca_ops->cwnd_event)
1165 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1166 }
1167 
1168 /* From tcp_cong.c */
1169 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1170 
1171 /* From tcp_rate.c */
1172 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1173 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1174 			    struct rate_sample *rs);
1175 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1176 		  bool is_sack_reneg, struct rate_sample *rs);
1177 void tcp_rate_check_app_limited(struct sock *sk);
1178 
1179 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1180 {
1181 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1182 }
1183 
1184 /* These functions determine how the current flow behaves in respect of SACK
1185  * handling. SACK is negotiated with the peer, and therefore it can vary
1186  * between different flows.
1187  *
1188  * tcp_is_sack - SACK enabled
1189  * tcp_is_reno - No SACK
1190  */
1191 static inline int tcp_is_sack(const struct tcp_sock *tp)
1192 {
1193 	return likely(tp->rx_opt.sack_ok);
1194 }
1195 
1196 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1197 {
1198 	return !tcp_is_sack(tp);
1199 }
1200 
1201 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1202 {
1203 	return tp->sacked_out + tp->lost_out;
1204 }
1205 
1206 /* This determines how many packets are "in the network" to the best
1207  * of our knowledge.  In many cases it is conservative, but where
1208  * detailed information is available from the receiver (via SACK
1209  * blocks etc.) we can make more aggressive calculations.
1210  *
1211  * Use this for decisions involving congestion control, use just
1212  * tp->packets_out to determine if the send queue is empty or not.
1213  *
1214  * Read this equation as:
1215  *
1216  *	"Packets sent once on transmission queue" MINUS
1217  *	"Packets left network, but not honestly ACKed yet" PLUS
1218  *	"Packets fast retransmitted"
1219  */
1220 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1221 {
1222 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1223 }
1224 
1225 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1226 
1227 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1228 {
1229 	return tp->snd_cwnd;
1230 }
1231 
1232 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1233 {
1234 	WARN_ON_ONCE((int)val <= 0);
1235 	tp->snd_cwnd = val;
1236 }
1237 
1238 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1239 {
1240 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1241 }
1242 
1243 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1244 {
1245 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1246 }
1247 
1248 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1249 {
1250 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1251 	       (1 << inet_csk(sk)->icsk_ca_state);
1252 }
1253 
1254 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1255  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1256  * ssthresh.
1257  */
1258 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1259 {
1260 	const struct tcp_sock *tp = tcp_sk(sk);
1261 
1262 	if (tcp_in_cwnd_reduction(sk))
1263 		return tp->snd_ssthresh;
1264 	else
1265 		return max(tp->snd_ssthresh,
1266 			   ((tcp_snd_cwnd(tp) >> 1) +
1267 			    (tcp_snd_cwnd(tp) >> 2)));
1268 }
1269 
1270 /* Use define here intentionally to get WARN_ON location shown at the caller */
1271 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1272 
1273 void tcp_enter_cwr(struct sock *sk);
1274 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1275 
1276 /* The maximum number of MSS of available cwnd for which TSO defers
1277  * sending if not using sysctl_tcp_tso_win_divisor.
1278  */
1279 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1280 {
1281 	return 3;
1282 }
1283 
1284 /* Returns end sequence number of the receiver's advertised window */
1285 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1286 {
1287 	return tp->snd_una + tp->snd_wnd;
1288 }
1289 
1290 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1291  * flexible approach. The RFC suggests cwnd should not be raised unless
1292  * it was fully used previously. And that's exactly what we do in
1293  * congestion avoidance mode. But in slow start we allow cwnd to grow
1294  * as long as the application has used half the cwnd.
1295  * Example :
1296  *    cwnd is 10 (IW10), but application sends 9 frames.
1297  *    We allow cwnd to reach 18 when all frames are ACKed.
1298  * This check is safe because it's as aggressive as slow start which already
1299  * risks 100% overshoot. The advantage is that we discourage application to
1300  * either send more filler packets or data to artificially blow up the cwnd
1301  * usage, and allow application-limited process to probe bw more aggressively.
1302  */
1303 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1304 {
1305 	const struct tcp_sock *tp = tcp_sk(sk);
1306 
1307 	if (tp->is_cwnd_limited)
1308 		return true;
1309 
1310 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1311 	if (tcp_in_slow_start(tp))
1312 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1313 
1314 	return false;
1315 }
1316 
1317 /* BBR congestion control needs pacing.
1318  * Same remark for SO_MAX_PACING_RATE.
1319  * sch_fq packet scheduler is efficiently handling pacing,
1320  * but is not always installed/used.
1321  * Return true if TCP stack should pace packets itself.
1322  */
1323 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1324 {
1325 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1326 }
1327 
1328 /* Estimates in how many jiffies next packet for this flow can be sent.
1329  * Scheduling a retransmit timer too early would be silly.
1330  */
1331 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1332 {
1333 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1334 
1335 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1336 }
1337 
1338 static inline void tcp_reset_xmit_timer(struct sock *sk,
1339 					const int what,
1340 					unsigned long when,
1341 					const unsigned long max_when)
1342 {
1343 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1344 				  max_when);
1345 }
1346 
1347 /* Something is really bad, we could not queue an additional packet,
1348  * because qdisc is full or receiver sent a 0 window, or we are paced.
1349  * We do not want to add fuel to the fire, or abort too early,
1350  * so make sure the timer we arm now is at least 200ms in the future,
1351  * regardless of current icsk_rto value (as it could be ~2ms)
1352  */
1353 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1354 {
1355 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1356 }
1357 
1358 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1359 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1360 					    unsigned long max_when)
1361 {
1362 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1363 			   inet_csk(sk)->icsk_backoff);
1364 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1365 
1366 	return (unsigned long)min_t(u64, when, max_when);
1367 }
1368 
1369 static inline void tcp_check_probe_timer(struct sock *sk)
1370 {
1371 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1372 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1373 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1374 }
1375 
1376 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1377 {
1378 	tp->snd_wl1 = seq;
1379 }
1380 
1381 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1382 {
1383 	tp->snd_wl1 = seq;
1384 }
1385 
1386 /*
1387  * Calculate(/check) TCP checksum
1388  */
1389 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1390 				   __be32 daddr, __wsum base)
1391 {
1392 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1393 }
1394 
1395 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1396 {
1397 	return !skb_csum_unnecessary(skb) &&
1398 		__skb_checksum_complete(skb);
1399 }
1400 
1401 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1402 		     enum skb_drop_reason *reason);
1403 
1404 
1405 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1406 void tcp_set_state(struct sock *sk, int state);
1407 void tcp_done(struct sock *sk);
1408 int tcp_abort(struct sock *sk, int err);
1409 
1410 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1411 {
1412 	rx_opt->dsack = 0;
1413 	rx_opt->num_sacks = 0;
1414 }
1415 
1416 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1417 
1418 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1419 {
1420 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1421 	struct tcp_sock *tp = tcp_sk(sk);
1422 	s32 delta;
1423 
1424 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1425 	    tp->packets_out || ca_ops->cong_control)
1426 		return;
1427 	delta = tcp_jiffies32 - tp->lsndtime;
1428 	if (delta > inet_csk(sk)->icsk_rto)
1429 		tcp_cwnd_restart(sk, delta);
1430 }
1431 
1432 /* Determine a window scaling and initial window to offer. */
1433 void tcp_select_initial_window(const struct sock *sk, int __space,
1434 			       __u32 mss, __u32 *rcv_wnd,
1435 			       __u32 *window_clamp, int wscale_ok,
1436 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1437 
1438 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1439 {
1440 	s64 scaled_space = (s64)space * scaling_ratio;
1441 
1442 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1443 }
1444 
1445 static inline int tcp_win_from_space(const struct sock *sk, int space)
1446 {
1447 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1448 }
1449 
1450 /* inverse of __tcp_win_from_space() */
1451 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1452 {
1453 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1454 
1455 	do_div(val, scaling_ratio);
1456 	return val;
1457 }
1458 
1459 static inline int tcp_space_from_win(const struct sock *sk, int win)
1460 {
1461 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1462 }
1463 
1464 /* Assume a 50% default for skb->len/skb->truesize ratio.
1465  * This may be adjusted later in tcp_measure_rcv_mss().
1466  */
1467 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1468 
1469 static inline void tcp_scaling_ratio_init(struct sock *sk)
1470 {
1471 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1472 }
1473 
1474 /* Note: caller must be prepared to deal with negative returns */
1475 static inline int tcp_space(const struct sock *sk)
1476 {
1477 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1478 				  READ_ONCE(sk->sk_backlog.len) -
1479 				  atomic_read(&sk->sk_rmem_alloc));
1480 }
1481 
1482 static inline int tcp_full_space(const struct sock *sk)
1483 {
1484 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1485 }
1486 
1487 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1488 {
1489 	int unused_mem = sk_unused_reserved_mem(sk);
1490 	struct tcp_sock *tp = tcp_sk(sk);
1491 
1492 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1493 	if (unused_mem)
1494 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1495 					 tcp_win_from_space(sk, unused_mem));
1496 }
1497 
1498 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1499 {
1500 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1501 }
1502 
1503 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1504 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1505 
1506 
1507 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1508  * If 87.5 % (7/8) of the space has been consumed, we want to override
1509  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1510  * len/truesize ratio.
1511  */
1512 static inline bool tcp_rmem_pressure(const struct sock *sk)
1513 {
1514 	int rcvbuf, threshold;
1515 
1516 	if (tcp_under_memory_pressure(sk))
1517 		return true;
1518 
1519 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1520 	threshold = rcvbuf - (rcvbuf >> 3);
1521 
1522 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1523 }
1524 
1525 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1526 {
1527 	const struct tcp_sock *tp = tcp_sk(sk);
1528 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1529 
1530 	if (avail <= 0)
1531 		return false;
1532 
1533 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1534 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1535 }
1536 
1537 extern void tcp_openreq_init_rwin(struct request_sock *req,
1538 				  const struct sock *sk_listener,
1539 				  const struct dst_entry *dst);
1540 
1541 void tcp_enter_memory_pressure(struct sock *sk);
1542 void tcp_leave_memory_pressure(struct sock *sk);
1543 
1544 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1545 {
1546 	struct net *net = sock_net((struct sock *)tp);
1547 	int val;
1548 
1549 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1550 	 * and do_tcp_setsockopt().
1551 	 */
1552 	val = READ_ONCE(tp->keepalive_intvl);
1553 
1554 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1555 }
1556 
1557 static inline int keepalive_time_when(const struct tcp_sock *tp)
1558 {
1559 	struct net *net = sock_net((struct sock *)tp);
1560 	int val;
1561 
1562 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1563 	val = READ_ONCE(tp->keepalive_time);
1564 
1565 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1566 }
1567 
1568 static inline int keepalive_probes(const struct tcp_sock *tp)
1569 {
1570 	struct net *net = sock_net((struct sock *)tp);
1571 	int val;
1572 
1573 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1574 	 * and do_tcp_setsockopt().
1575 	 */
1576 	val = READ_ONCE(tp->keepalive_probes);
1577 
1578 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1579 }
1580 
1581 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1582 {
1583 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1584 
1585 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1586 			  tcp_jiffies32 - tp->rcv_tstamp);
1587 }
1588 
1589 static inline int tcp_fin_time(const struct sock *sk)
1590 {
1591 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1592 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1593 	const int rto = inet_csk(sk)->icsk_rto;
1594 
1595 	if (fin_timeout < (rto << 2) - (rto >> 1))
1596 		fin_timeout = (rto << 2) - (rto >> 1);
1597 
1598 	return fin_timeout;
1599 }
1600 
1601 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1602 				  int paws_win)
1603 {
1604 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1605 		return true;
1606 	if (unlikely(!time_before32(ktime_get_seconds(),
1607 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1608 		return true;
1609 	/*
1610 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1611 	 * then following tcp messages have valid values. Ignore 0 value,
1612 	 * or else 'negative' tsval might forbid us to accept their packets.
1613 	 */
1614 	if (!rx_opt->ts_recent)
1615 		return true;
1616 	return false;
1617 }
1618 
1619 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1620 				   int rst)
1621 {
1622 	if (tcp_paws_check(rx_opt, 0))
1623 		return false;
1624 
1625 	/* RST segments are not recommended to carry timestamp,
1626 	   and, if they do, it is recommended to ignore PAWS because
1627 	   "their cleanup function should take precedence over timestamps."
1628 	   Certainly, it is mistake. It is necessary to understand the reasons
1629 	   of this constraint to relax it: if peer reboots, clock may go
1630 	   out-of-sync and half-open connections will not be reset.
1631 	   Actually, the problem would be not existing if all
1632 	   the implementations followed draft about maintaining clock
1633 	   via reboots. Linux-2.2 DOES NOT!
1634 
1635 	   However, we can relax time bounds for RST segments to MSL.
1636 	 */
1637 	if (rst && !time_before32(ktime_get_seconds(),
1638 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1639 		return false;
1640 	return true;
1641 }
1642 
1643 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1644 			  int mib_idx, u32 *last_oow_ack_time);
1645 
1646 static inline void tcp_mib_init(struct net *net)
1647 {
1648 	/* See RFC 2012 */
1649 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1650 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1651 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1652 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1653 }
1654 
1655 /* from STCP */
1656 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1657 {
1658 	tp->lost_skb_hint = NULL;
1659 }
1660 
1661 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1662 {
1663 	tcp_clear_retrans_hints_partial(tp);
1664 	tp->retransmit_skb_hint = NULL;
1665 }
1666 
1667 union tcp_md5_addr {
1668 	struct in_addr  a4;
1669 #if IS_ENABLED(CONFIG_IPV6)
1670 	struct in6_addr	a6;
1671 #endif
1672 };
1673 
1674 /* - key database */
1675 struct tcp_md5sig_key {
1676 	struct hlist_node	node;
1677 	u8			keylen;
1678 	u8			family; /* AF_INET or AF_INET6 */
1679 	u8			prefixlen;
1680 	u8			flags;
1681 	union tcp_md5_addr	addr;
1682 	int			l3index; /* set if key added with L3 scope */
1683 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1684 	struct rcu_head		rcu;
1685 };
1686 
1687 /* - sock block */
1688 struct tcp_md5sig_info {
1689 	struct hlist_head	head;
1690 	struct rcu_head		rcu;
1691 };
1692 
1693 /* - pseudo header */
1694 struct tcp4_pseudohdr {
1695 	__be32		saddr;
1696 	__be32		daddr;
1697 	__u8		pad;
1698 	__u8		protocol;
1699 	__be16		len;
1700 };
1701 
1702 struct tcp6_pseudohdr {
1703 	struct in6_addr	saddr;
1704 	struct in6_addr daddr;
1705 	__be32		len;
1706 	__be32		protocol;	/* including padding */
1707 };
1708 
1709 union tcp_md5sum_block {
1710 	struct tcp4_pseudohdr ip4;
1711 #if IS_ENABLED(CONFIG_IPV6)
1712 	struct tcp6_pseudohdr ip6;
1713 #endif
1714 };
1715 
1716 /* - pool: digest algorithm, hash description and scratch buffer */
1717 struct tcp_md5sig_pool {
1718 	struct ahash_request	*md5_req;
1719 	void			*scratch;
1720 };
1721 
1722 /* - functions */
1723 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1724 			const struct sock *sk, const struct sk_buff *skb);
1725 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1726 		   int family, u8 prefixlen, int l3index, u8 flags,
1727 		   const u8 *newkey, u8 newkeylen);
1728 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1729 		     int family, u8 prefixlen, int l3index,
1730 		     struct tcp_md5sig_key *key);
1731 
1732 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1733 		   int family, u8 prefixlen, int l3index, u8 flags);
1734 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1735 					 const struct sock *addr_sk);
1736 
1737 #ifdef CONFIG_TCP_MD5SIG
1738 #include <linux/jump_label.h>
1739 extern struct static_key_false_deferred tcp_md5_needed;
1740 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1741 					   const union tcp_md5_addr *addr,
1742 					   int family);
1743 static inline struct tcp_md5sig_key *
1744 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1745 		  const union tcp_md5_addr *addr, int family)
1746 {
1747 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1748 		return NULL;
1749 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1750 }
1751 
1752 enum skb_drop_reason
1753 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1754 		     const void *saddr, const void *daddr,
1755 		     int family, int dif, int sdif);
1756 
1757 
1758 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1759 #else
1760 static inline struct tcp_md5sig_key *
1761 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1762 		  const union tcp_md5_addr *addr, int family)
1763 {
1764 	return NULL;
1765 }
1766 
1767 static inline enum skb_drop_reason
1768 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1769 		     const void *saddr, const void *daddr,
1770 		     int family, int dif, int sdif)
1771 {
1772 	return SKB_NOT_DROPPED_YET;
1773 }
1774 #define tcp_twsk_md5_key(twsk)	NULL
1775 #endif
1776 
1777 bool tcp_alloc_md5sig_pool(void);
1778 
1779 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1780 static inline void tcp_put_md5sig_pool(void)
1781 {
1782 	local_bh_enable();
1783 }
1784 
1785 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1786 			  unsigned int header_len);
1787 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1788 		     const struct tcp_md5sig_key *key);
1789 
1790 /* From tcp_fastopen.c */
1791 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1792 			    struct tcp_fastopen_cookie *cookie);
1793 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1794 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1795 			    u16 try_exp);
1796 struct tcp_fastopen_request {
1797 	/* Fast Open cookie. Size 0 means a cookie request */
1798 	struct tcp_fastopen_cookie	cookie;
1799 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1800 	size_t				size;
1801 	int				copied;	/* queued in tcp_connect() */
1802 	struct ubuf_info		*uarg;
1803 };
1804 void tcp_free_fastopen_req(struct tcp_sock *tp);
1805 void tcp_fastopen_destroy_cipher(struct sock *sk);
1806 void tcp_fastopen_ctx_destroy(struct net *net);
1807 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1808 			      void *primary_key, void *backup_key);
1809 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1810 			    u64 *key);
1811 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1812 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1813 			      struct request_sock *req,
1814 			      struct tcp_fastopen_cookie *foc,
1815 			      const struct dst_entry *dst);
1816 void tcp_fastopen_init_key_once(struct net *net);
1817 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1818 			     struct tcp_fastopen_cookie *cookie);
1819 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1820 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1821 #define TCP_FASTOPEN_KEY_MAX 2
1822 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1823 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1824 
1825 /* Fastopen key context */
1826 struct tcp_fastopen_context {
1827 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1828 	int		num;
1829 	struct rcu_head	rcu;
1830 };
1831 
1832 void tcp_fastopen_active_disable(struct sock *sk);
1833 bool tcp_fastopen_active_should_disable(struct sock *sk);
1834 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1835 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1836 
1837 /* Caller needs to wrap with rcu_read_(un)lock() */
1838 static inline
1839 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1840 {
1841 	struct tcp_fastopen_context *ctx;
1842 
1843 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1844 	if (!ctx)
1845 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1846 	return ctx;
1847 }
1848 
1849 static inline
1850 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1851 			       const struct tcp_fastopen_cookie *orig)
1852 {
1853 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1854 	    orig->len == foc->len &&
1855 	    !memcmp(orig->val, foc->val, foc->len))
1856 		return true;
1857 	return false;
1858 }
1859 
1860 static inline
1861 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1862 {
1863 	return ctx->num;
1864 }
1865 
1866 /* Latencies incurred by various limits for a sender. They are
1867  * chronograph-like stats that are mutually exclusive.
1868  */
1869 enum tcp_chrono {
1870 	TCP_CHRONO_UNSPEC,
1871 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1872 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1873 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1874 	__TCP_CHRONO_MAX,
1875 };
1876 
1877 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1878 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1879 
1880 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1881  * the same memory storage than skb->destructor/_skb_refdst
1882  */
1883 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1884 {
1885 	skb->destructor = NULL;
1886 	skb->_skb_refdst = 0UL;
1887 }
1888 
1889 #define tcp_skb_tsorted_save(skb) {		\
1890 	unsigned long _save = skb->_skb_refdst;	\
1891 	skb->_skb_refdst = 0UL;
1892 
1893 #define tcp_skb_tsorted_restore(skb)		\
1894 	skb->_skb_refdst = _save;		\
1895 }
1896 
1897 void tcp_write_queue_purge(struct sock *sk);
1898 
1899 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1900 {
1901 	return skb_rb_first(&sk->tcp_rtx_queue);
1902 }
1903 
1904 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1905 {
1906 	return skb_rb_last(&sk->tcp_rtx_queue);
1907 }
1908 
1909 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1910 {
1911 	return skb_peek_tail(&sk->sk_write_queue);
1912 }
1913 
1914 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1915 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1916 
1917 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1918 {
1919 	return skb_peek(&sk->sk_write_queue);
1920 }
1921 
1922 static inline bool tcp_skb_is_last(const struct sock *sk,
1923 				   const struct sk_buff *skb)
1924 {
1925 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1926 }
1927 
1928 /**
1929  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1930  * @sk: socket
1931  *
1932  * Since the write queue can have a temporary empty skb in it,
1933  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1934  */
1935 static inline bool tcp_write_queue_empty(const struct sock *sk)
1936 {
1937 	const struct tcp_sock *tp = tcp_sk(sk);
1938 
1939 	return tp->write_seq == tp->snd_nxt;
1940 }
1941 
1942 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1943 {
1944 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1945 }
1946 
1947 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1948 {
1949 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1950 }
1951 
1952 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1953 {
1954 	__skb_queue_tail(&sk->sk_write_queue, skb);
1955 
1956 	/* Queue it, remembering where we must start sending. */
1957 	if (sk->sk_write_queue.next == skb)
1958 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1959 }
1960 
1961 /* Insert new before skb on the write queue of sk.  */
1962 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1963 						  struct sk_buff *skb,
1964 						  struct sock *sk)
1965 {
1966 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1967 }
1968 
1969 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1970 {
1971 	tcp_skb_tsorted_anchor_cleanup(skb);
1972 	__skb_unlink(skb, &sk->sk_write_queue);
1973 }
1974 
1975 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1976 
1977 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1978 {
1979 	tcp_skb_tsorted_anchor_cleanup(skb);
1980 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1981 }
1982 
1983 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1984 {
1985 	list_del(&skb->tcp_tsorted_anchor);
1986 	tcp_rtx_queue_unlink(skb, sk);
1987 	tcp_wmem_free_skb(sk, skb);
1988 }
1989 
1990 static inline void tcp_push_pending_frames(struct sock *sk)
1991 {
1992 	if (tcp_send_head(sk)) {
1993 		struct tcp_sock *tp = tcp_sk(sk);
1994 
1995 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1996 	}
1997 }
1998 
1999 /* Start sequence of the skb just after the highest skb with SACKed
2000  * bit, valid only if sacked_out > 0 or when the caller has ensured
2001  * validity by itself.
2002  */
2003 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2004 {
2005 	if (!tp->sacked_out)
2006 		return tp->snd_una;
2007 
2008 	if (tp->highest_sack == NULL)
2009 		return tp->snd_nxt;
2010 
2011 	return TCP_SKB_CB(tp->highest_sack)->seq;
2012 }
2013 
2014 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2015 {
2016 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2017 }
2018 
2019 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2020 {
2021 	return tcp_sk(sk)->highest_sack;
2022 }
2023 
2024 static inline void tcp_highest_sack_reset(struct sock *sk)
2025 {
2026 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2027 }
2028 
2029 /* Called when old skb is about to be deleted and replaced by new skb */
2030 static inline void tcp_highest_sack_replace(struct sock *sk,
2031 					    struct sk_buff *old,
2032 					    struct sk_buff *new)
2033 {
2034 	if (old == tcp_highest_sack(sk))
2035 		tcp_sk(sk)->highest_sack = new;
2036 }
2037 
2038 /* This helper checks if socket has IP_TRANSPARENT set */
2039 static inline bool inet_sk_transparent(const struct sock *sk)
2040 {
2041 	switch (sk->sk_state) {
2042 	case TCP_TIME_WAIT:
2043 		return inet_twsk(sk)->tw_transparent;
2044 	case TCP_NEW_SYN_RECV:
2045 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2046 	}
2047 	return inet_test_bit(TRANSPARENT, sk);
2048 }
2049 
2050 /* Determines whether this is a thin stream (which may suffer from
2051  * increased latency). Used to trigger latency-reducing mechanisms.
2052  */
2053 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2054 {
2055 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2056 }
2057 
2058 /* /proc */
2059 enum tcp_seq_states {
2060 	TCP_SEQ_STATE_LISTENING,
2061 	TCP_SEQ_STATE_ESTABLISHED,
2062 };
2063 
2064 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2065 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2066 void tcp_seq_stop(struct seq_file *seq, void *v);
2067 
2068 struct tcp_seq_afinfo {
2069 	sa_family_t			family;
2070 };
2071 
2072 struct tcp_iter_state {
2073 	struct seq_net_private	p;
2074 	enum tcp_seq_states	state;
2075 	struct sock		*syn_wait_sk;
2076 	int			bucket, offset, sbucket, num;
2077 	loff_t			last_pos;
2078 };
2079 
2080 extern struct request_sock_ops tcp_request_sock_ops;
2081 extern struct request_sock_ops tcp6_request_sock_ops;
2082 
2083 void tcp_v4_destroy_sock(struct sock *sk);
2084 
2085 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2086 				netdev_features_t features);
2087 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2088 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2089 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2090 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2091 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2092 void tcp_gro_complete(struct sk_buff *skb);
2093 
2094 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2095 
2096 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2097 {
2098 	struct net *net = sock_net((struct sock *)tp);
2099 	u32 val;
2100 
2101 	val = READ_ONCE(tp->notsent_lowat);
2102 
2103 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2104 }
2105 
2106 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2107 
2108 #ifdef CONFIG_PROC_FS
2109 int tcp4_proc_init(void);
2110 void tcp4_proc_exit(void);
2111 #endif
2112 
2113 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2114 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2115 		     const struct tcp_request_sock_ops *af_ops,
2116 		     struct sock *sk, struct sk_buff *skb);
2117 
2118 /* TCP af-specific functions */
2119 struct tcp_sock_af_ops {
2120 #ifdef CONFIG_TCP_MD5SIG
2121 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2122 						const struct sock *addr_sk);
2123 	int		(*calc_md5_hash)(char *location,
2124 					 const struct tcp_md5sig_key *md5,
2125 					 const struct sock *sk,
2126 					 const struct sk_buff *skb);
2127 	int		(*md5_parse)(struct sock *sk,
2128 				     int optname,
2129 				     sockptr_t optval,
2130 				     int optlen);
2131 #endif
2132 };
2133 
2134 struct tcp_request_sock_ops {
2135 	u16 mss_clamp;
2136 #ifdef CONFIG_TCP_MD5SIG
2137 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2138 						 const struct sock *addr_sk);
2139 	int		(*calc_md5_hash) (char *location,
2140 					  const struct tcp_md5sig_key *md5,
2141 					  const struct sock *sk,
2142 					  const struct sk_buff *skb);
2143 #endif
2144 #ifdef CONFIG_SYN_COOKIES
2145 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2146 				 __u16 *mss);
2147 #endif
2148 	struct dst_entry *(*route_req)(const struct sock *sk,
2149 				       struct sk_buff *skb,
2150 				       struct flowi *fl,
2151 				       struct request_sock *req);
2152 	u32 (*init_seq)(const struct sk_buff *skb);
2153 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2154 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2155 			   struct flowi *fl, struct request_sock *req,
2156 			   struct tcp_fastopen_cookie *foc,
2157 			   enum tcp_synack_type synack_type,
2158 			   struct sk_buff *syn_skb);
2159 };
2160 
2161 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2162 #if IS_ENABLED(CONFIG_IPV6)
2163 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2164 #endif
2165 
2166 #ifdef CONFIG_SYN_COOKIES
2167 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2168 					 const struct sock *sk, struct sk_buff *skb,
2169 					 __u16 *mss)
2170 {
2171 	tcp_synq_overflow(sk);
2172 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2173 	return ops->cookie_init_seq(skb, mss);
2174 }
2175 #else
2176 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2177 					 const struct sock *sk, struct sk_buff *skb,
2178 					 __u16 *mss)
2179 {
2180 	return 0;
2181 }
2182 #endif
2183 
2184 int tcpv4_offload_init(void);
2185 
2186 void tcp_v4_init(void);
2187 void tcp_init(void);
2188 
2189 /* tcp_recovery.c */
2190 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2191 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2192 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2193 				u32 reo_wnd);
2194 extern bool tcp_rack_mark_lost(struct sock *sk);
2195 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2196 			     u64 xmit_time);
2197 extern void tcp_rack_reo_timeout(struct sock *sk);
2198 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2199 
2200 /* tcp_plb.c */
2201 
2202 /*
2203  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2204  * expects cong_ratio which represents fraction of traffic that experienced
2205  * congestion over a single RTT. In order to avoid floating point operations,
2206  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2207  */
2208 #define TCP_PLB_SCALE 8
2209 
2210 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2211 struct tcp_plb_state {
2212 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2213 		unused:3;
2214 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2215 };
2216 
2217 static inline void tcp_plb_init(const struct sock *sk,
2218 				struct tcp_plb_state *plb)
2219 {
2220 	plb->consec_cong_rounds = 0;
2221 	plb->pause_until = 0;
2222 }
2223 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2224 			  const int cong_ratio);
2225 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2226 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2227 
2228 /* At how many usecs into the future should the RTO fire? */
2229 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2230 {
2231 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2232 	u32 rto = inet_csk(sk)->icsk_rto;
2233 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2234 
2235 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2236 }
2237 
2238 /*
2239  * Save and compile IPv4 options, return a pointer to it
2240  */
2241 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2242 							 struct sk_buff *skb)
2243 {
2244 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2245 	struct ip_options_rcu *dopt = NULL;
2246 
2247 	if (opt->optlen) {
2248 		int opt_size = sizeof(*dopt) + opt->optlen;
2249 
2250 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2251 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2252 			kfree(dopt);
2253 			dopt = NULL;
2254 		}
2255 	}
2256 	return dopt;
2257 }
2258 
2259 /* locally generated TCP pure ACKs have skb->truesize == 2
2260  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2261  * This is much faster than dissecting the packet to find out.
2262  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2263  */
2264 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2265 {
2266 	return skb->truesize == 2;
2267 }
2268 
2269 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2270 {
2271 	skb->truesize = 2;
2272 }
2273 
2274 static inline int tcp_inq(struct sock *sk)
2275 {
2276 	struct tcp_sock *tp = tcp_sk(sk);
2277 	int answ;
2278 
2279 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2280 		answ = 0;
2281 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2282 		   !tp->urg_data ||
2283 		   before(tp->urg_seq, tp->copied_seq) ||
2284 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2285 
2286 		answ = tp->rcv_nxt - tp->copied_seq;
2287 
2288 		/* Subtract 1, if FIN was received */
2289 		if (answ && sock_flag(sk, SOCK_DONE))
2290 			answ--;
2291 	} else {
2292 		answ = tp->urg_seq - tp->copied_seq;
2293 	}
2294 
2295 	return answ;
2296 }
2297 
2298 int tcp_peek_len(struct socket *sock);
2299 
2300 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2301 {
2302 	u16 segs_in;
2303 
2304 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2305 
2306 	/* We update these fields while other threads might
2307 	 * read them from tcp_get_info()
2308 	 */
2309 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2310 	if (skb->len > tcp_hdrlen(skb))
2311 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2312 }
2313 
2314 /*
2315  * TCP listen path runs lockless.
2316  * We forced "struct sock" to be const qualified to make sure
2317  * we don't modify one of its field by mistake.
2318  * Here, we increment sk_drops which is an atomic_t, so we can safely
2319  * make sock writable again.
2320  */
2321 static inline void tcp_listendrop(const struct sock *sk)
2322 {
2323 	atomic_inc(&((struct sock *)sk)->sk_drops);
2324 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2325 }
2326 
2327 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2328 
2329 /*
2330  * Interface for adding Upper Level Protocols over TCP
2331  */
2332 
2333 #define TCP_ULP_NAME_MAX	16
2334 #define TCP_ULP_MAX		128
2335 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2336 
2337 struct tcp_ulp_ops {
2338 	struct list_head	list;
2339 
2340 	/* initialize ulp */
2341 	int (*init)(struct sock *sk);
2342 	/* update ulp */
2343 	void (*update)(struct sock *sk, struct proto *p,
2344 		       void (*write_space)(struct sock *sk));
2345 	/* cleanup ulp */
2346 	void (*release)(struct sock *sk);
2347 	/* diagnostic */
2348 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2349 	size_t (*get_info_size)(const struct sock *sk);
2350 	/* clone ulp */
2351 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2352 		      const gfp_t priority);
2353 
2354 	char		name[TCP_ULP_NAME_MAX];
2355 	struct module	*owner;
2356 };
2357 int tcp_register_ulp(struct tcp_ulp_ops *type);
2358 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2359 int tcp_set_ulp(struct sock *sk, const char *name);
2360 void tcp_get_available_ulp(char *buf, size_t len);
2361 void tcp_cleanup_ulp(struct sock *sk);
2362 void tcp_update_ulp(struct sock *sk, struct proto *p,
2363 		    void (*write_space)(struct sock *sk));
2364 
2365 #define MODULE_ALIAS_TCP_ULP(name)				\
2366 	__MODULE_INFO(alias, alias_userspace, name);		\
2367 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2368 
2369 #ifdef CONFIG_NET_SOCK_MSG
2370 struct sk_msg;
2371 struct sk_psock;
2372 
2373 #ifdef CONFIG_BPF_SYSCALL
2374 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2375 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2376 #endif /* CONFIG_BPF_SYSCALL */
2377 
2378 #ifdef CONFIG_INET
2379 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2380 #else
2381 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2382 {
2383 }
2384 #endif
2385 
2386 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2387 			  struct sk_msg *msg, u32 bytes, int flags);
2388 #endif /* CONFIG_NET_SOCK_MSG */
2389 
2390 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2391 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2392 {
2393 }
2394 #endif
2395 
2396 #ifdef CONFIG_CGROUP_BPF
2397 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2398 				      struct sk_buff *skb,
2399 				      unsigned int end_offset)
2400 {
2401 	skops->skb = skb;
2402 	skops->skb_data_end = skb->data + end_offset;
2403 }
2404 #else
2405 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2406 				      struct sk_buff *skb,
2407 				      unsigned int end_offset)
2408 {
2409 }
2410 #endif
2411 
2412 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2413  * is < 0, then the BPF op failed (for example if the loaded BPF
2414  * program does not support the chosen operation or there is no BPF
2415  * program loaded).
2416  */
2417 #ifdef CONFIG_BPF
2418 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2419 {
2420 	struct bpf_sock_ops_kern sock_ops;
2421 	int ret;
2422 
2423 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2424 	if (sk_fullsock(sk)) {
2425 		sock_ops.is_fullsock = 1;
2426 		sock_owned_by_me(sk);
2427 	}
2428 
2429 	sock_ops.sk = sk;
2430 	sock_ops.op = op;
2431 	if (nargs > 0)
2432 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2433 
2434 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2435 	if (ret == 0)
2436 		ret = sock_ops.reply;
2437 	else
2438 		ret = -1;
2439 	return ret;
2440 }
2441 
2442 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2443 {
2444 	u32 args[2] = {arg1, arg2};
2445 
2446 	return tcp_call_bpf(sk, op, 2, args);
2447 }
2448 
2449 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2450 				    u32 arg3)
2451 {
2452 	u32 args[3] = {arg1, arg2, arg3};
2453 
2454 	return tcp_call_bpf(sk, op, 3, args);
2455 }
2456 
2457 #else
2458 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2459 {
2460 	return -EPERM;
2461 }
2462 
2463 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2464 {
2465 	return -EPERM;
2466 }
2467 
2468 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2469 				    u32 arg3)
2470 {
2471 	return -EPERM;
2472 }
2473 
2474 #endif
2475 
2476 static inline u32 tcp_timeout_init(struct sock *sk)
2477 {
2478 	int timeout;
2479 
2480 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2481 
2482 	if (timeout <= 0)
2483 		timeout = TCP_TIMEOUT_INIT;
2484 	return min_t(int, timeout, TCP_RTO_MAX);
2485 }
2486 
2487 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2488 {
2489 	int rwnd;
2490 
2491 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2492 
2493 	if (rwnd < 0)
2494 		rwnd = 0;
2495 	return rwnd;
2496 }
2497 
2498 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2499 {
2500 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2501 }
2502 
2503 static inline void tcp_bpf_rtt(struct sock *sk)
2504 {
2505 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2506 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2507 }
2508 
2509 #if IS_ENABLED(CONFIG_SMC)
2510 extern struct static_key_false tcp_have_smc;
2511 #endif
2512 
2513 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2514 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2515 			     void (*cad)(struct sock *sk, u32 ack_seq));
2516 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2517 void clean_acked_data_flush(void);
2518 #endif
2519 
2520 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2521 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2522 				    const struct tcp_sock *tp)
2523 {
2524 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2525 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2526 }
2527 
2528 /* Compute Earliest Departure Time for some control packets
2529  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2530  */
2531 static inline u64 tcp_transmit_time(const struct sock *sk)
2532 {
2533 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2534 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2535 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2536 
2537 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2538 	}
2539 	return 0;
2540 }
2541 
2542 #endif	/* _TCP_H */
2543