1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 int skc_bound_dev_if; 188 union { 189 struct hlist_node skc_bind_node; 190 struct hlist_nulls_node skc_portaddr_node; 191 }; 192 struct proto *skc_prot; 193 #ifdef CONFIG_NET_NS 194 struct net *skc_net; 195 #endif 196 197 #if IS_ENABLED(CONFIG_IPV6) 198 struct in6_addr skc_v6_daddr; 199 struct in6_addr skc_v6_rcv_saddr; 200 #endif 201 202 /* 203 * fields between dontcopy_begin/dontcopy_end 204 * are not copied in sock_copy() 205 */ 206 /* private: */ 207 int skc_dontcopy_begin[0]; 208 /* public: */ 209 union { 210 struct hlist_node skc_node; 211 struct hlist_nulls_node skc_nulls_node; 212 }; 213 int skc_tx_queue_mapping; 214 atomic_t skc_refcnt; 215 /* private: */ 216 int skc_dontcopy_end[0]; 217 /* public: */ 218 }; 219 220 struct cg_proto; 221 /** 222 * struct sock - network layer representation of sockets 223 * @__sk_common: shared layout with inet_timewait_sock 224 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 225 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 226 * @sk_lock: synchronizer 227 * @sk_rcvbuf: size of receive buffer in bytes 228 * @sk_wq: sock wait queue and async head 229 * @sk_rx_dst: receive input route used by early demux 230 * @sk_dst_cache: destination cache 231 * @sk_dst_lock: destination cache lock 232 * @sk_policy: flow policy 233 * @sk_receive_queue: incoming packets 234 * @sk_wmem_alloc: transmit queue bytes committed 235 * @sk_write_queue: Packet sending queue 236 * @sk_async_wait_queue: DMA copied packets 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_txhash: computed flow hash for use on transmit 278 * @sk_filter: socket filtering instructions 279 * @sk_protinfo: private area, net family specific, when not using slab 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 327 #define sk_bind_node __sk_common.skc_bind_node 328 #define sk_prot __sk_common.skc_prot 329 #define sk_net __sk_common.skc_net 330 #define sk_v6_daddr __sk_common.skc_v6_daddr 331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 332 333 socket_lock_t sk_lock; 334 struct sk_buff_head sk_receive_queue; 335 /* 336 * The backlog queue is special, it is always used with 337 * the per-socket spinlock held and requires low latency 338 * access. Therefore we special case it's implementation. 339 * Note : rmem_alloc is in this structure to fill a hole 340 * on 64bit arches, not because its logically part of 341 * backlog. 342 */ 343 struct { 344 atomic_t rmem_alloc; 345 int len; 346 struct sk_buff *head; 347 struct sk_buff *tail; 348 } sk_backlog; 349 #define sk_rmem_alloc sk_backlog.rmem_alloc 350 int sk_forward_alloc; 351 #ifdef CONFIG_RPS 352 __u32 sk_rxhash; 353 #endif 354 __u32 sk_txhash; 355 #ifdef CONFIG_NET_RX_BUSY_POLL 356 unsigned int sk_napi_id; 357 unsigned int sk_ll_usec; 358 #endif 359 atomic_t sk_drops; 360 int sk_rcvbuf; 361 362 struct sk_filter __rcu *sk_filter; 363 struct socket_wq __rcu *sk_wq; 364 365 #ifdef CONFIG_NET_DMA 366 struct sk_buff_head sk_async_wait_queue; 367 #endif 368 369 #ifdef CONFIG_XFRM 370 struct xfrm_policy *sk_policy[2]; 371 #endif 372 unsigned long sk_flags; 373 struct dst_entry *sk_rx_dst; 374 struct dst_entry __rcu *sk_dst_cache; 375 spinlock_t sk_dst_lock; 376 atomic_t sk_wmem_alloc; 377 atomic_t sk_omem_alloc; 378 int sk_sndbuf; 379 struct sk_buff_head sk_write_queue; 380 kmemcheck_bitfield_begin(flags); 381 unsigned int sk_shutdown : 2, 382 sk_no_check_tx : 1, 383 sk_no_check_rx : 1, 384 sk_userlocks : 4, 385 sk_protocol : 8, 386 sk_type : 16; 387 kmemcheck_bitfield_end(flags); 388 int sk_wmem_queued; 389 gfp_t sk_allocation; 390 u32 sk_pacing_rate; /* bytes per second */ 391 u32 sk_max_pacing_rate; 392 netdev_features_t sk_route_caps; 393 netdev_features_t sk_route_nocaps; 394 int sk_gso_type; 395 unsigned int sk_gso_max_size; 396 u16 sk_gso_max_segs; 397 int sk_rcvlowat; 398 unsigned long sk_lingertime; 399 struct sk_buff_head sk_error_queue; 400 struct proto *sk_prot_creator; 401 rwlock_t sk_callback_lock; 402 int sk_err, 403 sk_err_soft; 404 unsigned short sk_ack_backlog; 405 unsigned short sk_max_ack_backlog; 406 __u32 sk_priority; 407 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 408 __u32 sk_cgrp_prioidx; 409 #endif 410 struct pid *sk_peer_pid; 411 const struct cred *sk_peer_cred; 412 long sk_rcvtimeo; 413 long sk_sndtimeo; 414 void *sk_protinfo; 415 struct timer_list sk_timer; 416 ktime_t sk_stamp; 417 u16 sk_tsflags; 418 u32 sk_tskey; 419 struct socket *sk_socket; 420 void *sk_user_data; 421 struct page_frag sk_frag; 422 struct sk_buff *sk_send_head; 423 __s32 sk_peek_off; 424 int sk_write_pending; 425 #ifdef CONFIG_SECURITY 426 void *sk_security; 427 #endif 428 __u32 sk_mark; 429 u32 sk_classid; 430 struct cg_proto *sk_cgrp; 431 void (*sk_state_change)(struct sock *sk); 432 void (*sk_data_ready)(struct sock *sk); 433 void (*sk_write_space)(struct sock *sk); 434 void (*sk_error_report)(struct sock *sk); 435 int (*sk_backlog_rcv)(struct sock *sk, 436 struct sk_buff *skb); 437 void (*sk_destruct)(struct sock *sk); 438 }; 439 440 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 441 442 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 443 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 444 445 /* 446 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 447 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 448 * on a socket means that the socket will reuse everybody else's port 449 * without looking at the other's sk_reuse value. 450 */ 451 452 #define SK_NO_REUSE 0 453 #define SK_CAN_REUSE 1 454 #define SK_FORCE_REUSE 2 455 456 static inline int sk_peek_offset(struct sock *sk, int flags) 457 { 458 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 459 return sk->sk_peek_off; 460 else 461 return 0; 462 } 463 464 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 465 { 466 if (sk->sk_peek_off >= 0) { 467 if (sk->sk_peek_off >= val) 468 sk->sk_peek_off -= val; 469 else 470 sk->sk_peek_off = 0; 471 } 472 } 473 474 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 475 { 476 if (sk->sk_peek_off >= 0) 477 sk->sk_peek_off += val; 478 } 479 480 /* 481 * Hashed lists helper routines 482 */ 483 static inline struct sock *sk_entry(const struct hlist_node *node) 484 { 485 return hlist_entry(node, struct sock, sk_node); 486 } 487 488 static inline struct sock *__sk_head(const struct hlist_head *head) 489 { 490 return hlist_entry(head->first, struct sock, sk_node); 491 } 492 493 static inline struct sock *sk_head(const struct hlist_head *head) 494 { 495 return hlist_empty(head) ? NULL : __sk_head(head); 496 } 497 498 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 499 { 500 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 501 } 502 503 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 504 { 505 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 506 } 507 508 static inline struct sock *sk_next(const struct sock *sk) 509 { 510 return sk->sk_node.next ? 511 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 512 } 513 514 static inline struct sock *sk_nulls_next(const struct sock *sk) 515 { 516 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 517 hlist_nulls_entry(sk->sk_nulls_node.next, 518 struct sock, sk_nulls_node) : 519 NULL; 520 } 521 522 static inline bool sk_unhashed(const struct sock *sk) 523 { 524 return hlist_unhashed(&sk->sk_node); 525 } 526 527 static inline bool sk_hashed(const struct sock *sk) 528 { 529 return !sk_unhashed(sk); 530 } 531 532 static inline void sk_node_init(struct hlist_node *node) 533 { 534 node->pprev = NULL; 535 } 536 537 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 538 { 539 node->pprev = NULL; 540 } 541 542 static inline void __sk_del_node(struct sock *sk) 543 { 544 __hlist_del(&sk->sk_node); 545 } 546 547 /* NB: equivalent to hlist_del_init_rcu */ 548 static inline bool __sk_del_node_init(struct sock *sk) 549 { 550 if (sk_hashed(sk)) { 551 __sk_del_node(sk); 552 sk_node_init(&sk->sk_node); 553 return true; 554 } 555 return false; 556 } 557 558 /* Grab socket reference count. This operation is valid only 559 when sk is ALREADY grabbed f.e. it is found in hash table 560 or a list and the lookup is made under lock preventing hash table 561 modifications. 562 */ 563 564 static inline void sock_hold(struct sock *sk) 565 { 566 atomic_inc(&sk->sk_refcnt); 567 } 568 569 /* Ungrab socket in the context, which assumes that socket refcnt 570 cannot hit zero, f.e. it is true in context of any socketcall. 571 */ 572 static inline void __sock_put(struct sock *sk) 573 { 574 atomic_dec(&sk->sk_refcnt); 575 } 576 577 static inline bool sk_del_node_init(struct sock *sk) 578 { 579 bool rc = __sk_del_node_init(sk); 580 581 if (rc) { 582 /* paranoid for a while -acme */ 583 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 584 __sock_put(sk); 585 } 586 return rc; 587 } 588 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 589 590 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 591 { 592 if (sk_hashed(sk)) { 593 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 594 return true; 595 } 596 return false; 597 } 598 599 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 600 { 601 bool rc = __sk_nulls_del_node_init_rcu(sk); 602 603 if (rc) { 604 /* paranoid for a while -acme */ 605 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 606 __sock_put(sk); 607 } 608 return rc; 609 } 610 611 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 612 { 613 hlist_add_head(&sk->sk_node, list); 614 } 615 616 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 617 { 618 sock_hold(sk); 619 __sk_add_node(sk, list); 620 } 621 622 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 623 { 624 sock_hold(sk); 625 hlist_add_head_rcu(&sk->sk_node, list); 626 } 627 628 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 629 { 630 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 631 } 632 633 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 634 { 635 sock_hold(sk); 636 __sk_nulls_add_node_rcu(sk, list); 637 } 638 639 static inline void __sk_del_bind_node(struct sock *sk) 640 { 641 __hlist_del(&sk->sk_bind_node); 642 } 643 644 static inline void sk_add_bind_node(struct sock *sk, 645 struct hlist_head *list) 646 { 647 hlist_add_head(&sk->sk_bind_node, list); 648 } 649 650 #define sk_for_each(__sk, list) \ 651 hlist_for_each_entry(__sk, list, sk_node) 652 #define sk_for_each_rcu(__sk, list) \ 653 hlist_for_each_entry_rcu(__sk, list, sk_node) 654 #define sk_nulls_for_each(__sk, node, list) \ 655 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 656 #define sk_nulls_for_each_rcu(__sk, node, list) \ 657 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 658 #define sk_for_each_from(__sk) \ 659 hlist_for_each_entry_from(__sk, sk_node) 660 #define sk_nulls_for_each_from(__sk, node) \ 661 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 662 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 663 #define sk_for_each_safe(__sk, tmp, list) \ 664 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 665 #define sk_for_each_bound(__sk, list) \ 666 hlist_for_each_entry(__sk, list, sk_bind_node) 667 668 /** 669 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 670 * @tpos: the type * to use as a loop cursor. 671 * @pos: the &struct hlist_node to use as a loop cursor. 672 * @head: the head for your list. 673 * @offset: offset of hlist_node within the struct. 674 * 675 */ 676 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 677 for (pos = (head)->first; \ 678 (!is_a_nulls(pos)) && \ 679 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 680 pos = pos->next) 681 682 static inline struct user_namespace *sk_user_ns(struct sock *sk) 683 { 684 /* Careful only use this in a context where these parameters 685 * can not change and must all be valid, such as recvmsg from 686 * userspace. 687 */ 688 return sk->sk_socket->file->f_cred->user_ns; 689 } 690 691 /* Sock flags */ 692 enum sock_flags { 693 SOCK_DEAD, 694 SOCK_DONE, 695 SOCK_URGINLINE, 696 SOCK_KEEPOPEN, 697 SOCK_LINGER, 698 SOCK_DESTROY, 699 SOCK_BROADCAST, 700 SOCK_TIMESTAMP, 701 SOCK_ZAPPED, 702 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 703 SOCK_DBG, /* %SO_DEBUG setting */ 704 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 705 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 706 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 707 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 708 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 709 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 710 SOCK_FASYNC, /* fasync() active */ 711 SOCK_RXQ_OVFL, 712 SOCK_ZEROCOPY, /* buffers from userspace */ 713 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 714 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 715 * Will use last 4 bytes of packet sent from 716 * user-space instead. 717 */ 718 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 719 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 720 }; 721 722 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 723 { 724 nsk->sk_flags = osk->sk_flags; 725 } 726 727 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 728 { 729 __set_bit(flag, &sk->sk_flags); 730 } 731 732 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 733 { 734 __clear_bit(flag, &sk->sk_flags); 735 } 736 737 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 738 { 739 return test_bit(flag, &sk->sk_flags); 740 } 741 742 #ifdef CONFIG_NET 743 extern struct static_key memalloc_socks; 744 static inline int sk_memalloc_socks(void) 745 { 746 return static_key_false(&memalloc_socks); 747 } 748 #else 749 750 static inline int sk_memalloc_socks(void) 751 { 752 return 0; 753 } 754 755 #endif 756 757 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 758 { 759 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 760 } 761 762 static inline void sk_acceptq_removed(struct sock *sk) 763 { 764 sk->sk_ack_backlog--; 765 } 766 767 static inline void sk_acceptq_added(struct sock *sk) 768 { 769 sk->sk_ack_backlog++; 770 } 771 772 static inline bool sk_acceptq_is_full(const struct sock *sk) 773 { 774 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 775 } 776 777 /* 778 * Compute minimal free write space needed to queue new packets. 779 */ 780 static inline int sk_stream_min_wspace(const struct sock *sk) 781 { 782 return sk->sk_wmem_queued >> 1; 783 } 784 785 static inline int sk_stream_wspace(const struct sock *sk) 786 { 787 return sk->sk_sndbuf - sk->sk_wmem_queued; 788 } 789 790 void sk_stream_write_space(struct sock *sk); 791 792 /* OOB backlog add */ 793 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 794 { 795 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 796 skb_dst_force(skb); 797 798 if (!sk->sk_backlog.tail) 799 sk->sk_backlog.head = skb; 800 else 801 sk->sk_backlog.tail->next = skb; 802 803 sk->sk_backlog.tail = skb; 804 skb->next = NULL; 805 } 806 807 /* 808 * Take into account size of receive queue and backlog queue 809 * Do not take into account this skb truesize, 810 * to allow even a single big packet to come. 811 */ 812 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 813 { 814 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 815 816 return qsize > limit; 817 } 818 819 /* The per-socket spinlock must be held here. */ 820 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 821 unsigned int limit) 822 { 823 if (sk_rcvqueues_full(sk, limit)) 824 return -ENOBUFS; 825 826 __sk_add_backlog(sk, skb); 827 sk->sk_backlog.len += skb->truesize; 828 return 0; 829 } 830 831 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 832 833 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 834 { 835 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 836 return __sk_backlog_rcv(sk, skb); 837 838 return sk->sk_backlog_rcv(sk, skb); 839 } 840 841 static inline void sock_rps_record_flow_hash(__u32 hash) 842 { 843 #ifdef CONFIG_RPS 844 struct rps_sock_flow_table *sock_flow_table; 845 846 rcu_read_lock(); 847 sock_flow_table = rcu_dereference(rps_sock_flow_table); 848 rps_record_sock_flow(sock_flow_table, hash); 849 rcu_read_unlock(); 850 #endif 851 } 852 853 static inline void sock_rps_reset_flow_hash(__u32 hash) 854 { 855 #ifdef CONFIG_RPS 856 struct rps_sock_flow_table *sock_flow_table; 857 858 rcu_read_lock(); 859 sock_flow_table = rcu_dereference(rps_sock_flow_table); 860 rps_reset_sock_flow(sock_flow_table, hash); 861 rcu_read_unlock(); 862 #endif 863 } 864 865 static inline void sock_rps_record_flow(const struct sock *sk) 866 { 867 #ifdef CONFIG_RPS 868 sock_rps_record_flow_hash(sk->sk_rxhash); 869 #endif 870 } 871 872 static inline void sock_rps_reset_flow(const struct sock *sk) 873 { 874 #ifdef CONFIG_RPS 875 sock_rps_reset_flow_hash(sk->sk_rxhash); 876 #endif 877 } 878 879 static inline void sock_rps_save_rxhash(struct sock *sk, 880 const struct sk_buff *skb) 881 { 882 #ifdef CONFIG_RPS 883 if (unlikely(sk->sk_rxhash != skb->hash)) { 884 sock_rps_reset_flow(sk); 885 sk->sk_rxhash = skb->hash; 886 } 887 #endif 888 } 889 890 static inline void sock_rps_reset_rxhash(struct sock *sk) 891 { 892 #ifdef CONFIG_RPS 893 sock_rps_reset_flow(sk); 894 sk->sk_rxhash = 0; 895 #endif 896 } 897 898 #define sk_wait_event(__sk, __timeo, __condition) \ 899 ({ int __rc; \ 900 release_sock(__sk); \ 901 __rc = __condition; \ 902 if (!__rc) { \ 903 *(__timeo) = schedule_timeout(*(__timeo)); \ 904 } \ 905 lock_sock(__sk); \ 906 __rc = __condition; \ 907 __rc; \ 908 }) 909 910 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 911 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 912 void sk_stream_wait_close(struct sock *sk, long timeo_p); 913 int sk_stream_error(struct sock *sk, int flags, int err); 914 void sk_stream_kill_queues(struct sock *sk); 915 void sk_set_memalloc(struct sock *sk); 916 void sk_clear_memalloc(struct sock *sk); 917 918 int sk_wait_data(struct sock *sk, long *timeo); 919 920 struct request_sock_ops; 921 struct timewait_sock_ops; 922 struct inet_hashinfo; 923 struct raw_hashinfo; 924 struct module; 925 926 /* 927 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 928 * un-modified. Special care is taken when initializing object to zero. 929 */ 930 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 931 { 932 if (offsetof(struct sock, sk_node.next) != 0) 933 memset(sk, 0, offsetof(struct sock, sk_node.next)); 934 memset(&sk->sk_node.pprev, 0, 935 size - offsetof(struct sock, sk_node.pprev)); 936 } 937 938 /* Networking protocol blocks we attach to sockets. 939 * socket layer -> transport layer interface 940 * transport -> network interface is defined by struct inet_proto 941 */ 942 struct proto { 943 void (*close)(struct sock *sk, 944 long timeout); 945 int (*connect)(struct sock *sk, 946 struct sockaddr *uaddr, 947 int addr_len); 948 int (*disconnect)(struct sock *sk, int flags); 949 950 struct sock * (*accept)(struct sock *sk, int flags, int *err); 951 952 int (*ioctl)(struct sock *sk, int cmd, 953 unsigned long arg); 954 int (*init)(struct sock *sk); 955 void (*destroy)(struct sock *sk); 956 void (*shutdown)(struct sock *sk, int how); 957 int (*setsockopt)(struct sock *sk, int level, 958 int optname, char __user *optval, 959 unsigned int optlen); 960 int (*getsockopt)(struct sock *sk, int level, 961 int optname, char __user *optval, 962 int __user *option); 963 #ifdef CONFIG_COMPAT 964 int (*compat_setsockopt)(struct sock *sk, 965 int level, 966 int optname, char __user *optval, 967 unsigned int optlen); 968 int (*compat_getsockopt)(struct sock *sk, 969 int level, 970 int optname, char __user *optval, 971 int __user *option); 972 int (*compat_ioctl)(struct sock *sk, 973 unsigned int cmd, unsigned long arg); 974 #endif 975 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 976 struct msghdr *msg, size_t len); 977 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 978 struct msghdr *msg, 979 size_t len, int noblock, int flags, 980 int *addr_len); 981 int (*sendpage)(struct sock *sk, struct page *page, 982 int offset, size_t size, int flags); 983 int (*bind)(struct sock *sk, 984 struct sockaddr *uaddr, int addr_len); 985 986 int (*backlog_rcv) (struct sock *sk, 987 struct sk_buff *skb); 988 989 void (*release_cb)(struct sock *sk); 990 991 /* Keeping track of sk's, looking them up, and port selection methods. */ 992 void (*hash)(struct sock *sk); 993 void (*unhash)(struct sock *sk); 994 void (*rehash)(struct sock *sk); 995 int (*get_port)(struct sock *sk, unsigned short snum); 996 void (*clear_sk)(struct sock *sk, int size); 997 998 /* Keeping track of sockets in use */ 999 #ifdef CONFIG_PROC_FS 1000 unsigned int inuse_idx; 1001 #endif 1002 1003 bool (*stream_memory_free)(const struct sock *sk); 1004 /* Memory pressure */ 1005 void (*enter_memory_pressure)(struct sock *sk); 1006 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1007 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1008 /* 1009 * Pressure flag: try to collapse. 1010 * Technical note: it is used by multiple contexts non atomically. 1011 * All the __sk_mem_schedule() is of this nature: accounting 1012 * is strict, actions are advisory and have some latency. 1013 */ 1014 int *memory_pressure; 1015 long *sysctl_mem; 1016 int *sysctl_wmem; 1017 int *sysctl_rmem; 1018 int max_header; 1019 bool no_autobind; 1020 1021 struct kmem_cache *slab; 1022 unsigned int obj_size; 1023 int slab_flags; 1024 1025 struct percpu_counter *orphan_count; 1026 1027 struct request_sock_ops *rsk_prot; 1028 struct timewait_sock_ops *twsk_prot; 1029 1030 union { 1031 struct inet_hashinfo *hashinfo; 1032 struct udp_table *udp_table; 1033 struct raw_hashinfo *raw_hash; 1034 } h; 1035 1036 struct module *owner; 1037 1038 char name[32]; 1039 1040 struct list_head node; 1041 #ifdef SOCK_REFCNT_DEBUG 1042 atomic_t socks; 1043 #endif 1044 #ifdef CONFIG_MEMCG_KMEM 1045 /* 1046 * cgroup specific init/deinit functions. Called once for all 1047 * protocols that implement it, from cgroups populate function. 1048 * This function has to setup any files the protocol want to 1049 * appear in the kmem cgroup filesystem. 1050 */ 1051 int (*init_cgroup)(struct mem_cgroup *memcg, 1052 struct cgroup_subsys *ss); 1053 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1054 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1055 #endif 1056 }; 1057 1058 /* 1059 * Bits in struct cg_proto.flags 1060 */ 1061 enum cg_proto_flags { 1062 /* Currently active and new sockets should be assigned to cgroups */ 1063 MEMCG_SOCK_ACTIVE, 1064 /* It was ever activated; we must disarm static keys on destruction */ 1065 MEMCG_SOCK_ACTIVATED, 1066 }; 1067 1068 struct cg_proto { 1069 struct res_counter memory_allocated; /* Current allocated memory. */ 1070 struct percpu_counter sockets_allocated; /* Current number of sockets. */ 1071 int memory_pressure; 1072 long sysctl_mem[3]; 1073 unsigned long flags; 1074 /* 1075 * memcg field is used to find which memcg we belong directly 1076 * Each memcg struct can hold more than one cg_proto, so container_of 1077 * won't really cut. 1078 * 1079 * The elegant solution would be having an inverse function to 1080 * proto_cgroup in struct proto, but that means polluting the structure 1081 * for everybody, instead of just for memcg users. 1082 */ 1083 struct mem_cgroup *memcg; 1084 }; 1085 1086 int proto_register(struct proto *prot, int alloc_slab); 1087 void proto_unregister(struct proto *prot); 1088 1089 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1090 { 1091 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1092 } 1093 1094 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1095 { 1096 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1097 } 1098 1099 #ifdef SOCK_REFCNT_DEBUG 1100 static inline void sk_refcnt_debug_inc(struct sock *sk) 1101 { 1102 atomic_inc(&sk->sk_prot->socks); 1103 } 1104 1105 static inline void sk_refcnt_debug_dec(struct sock *sk) 1106 { 1107 atomic_dec(&sk->sk_prot->socks); 1108 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1109 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1110 } 1111 1112 static inline void sk_refcnt_debug_release(const struct sock *sk) 1113 { 1114 if (atomic_read(&sk->sk_refcnt) != 1) 1115 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1116 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1117 } 1118 #else /* SOCK_REFCNT_DEBUG */ 1119 #define sk_refcnt_debug_inc(sk) do { } while (0) 1120 #define sk_refcnt_debug_dec(sk) do { } while (0) 1121 #define sk_refcnt_debug_release(sk) do { } while (0) 1122 #endif /* SOCK_REFCNT_DEBUG */ 1123 1124 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1125 extern struct static_key memcg_socket_limit_enabled; 1126 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1127 struct cg_proto *cg_proto) 1128 { 1129 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1130 } 1131 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1132 #else 1133 #define mem_cgroup_sockets_enabled 0 1134 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1135 struct cg_proto *cg_proto) 1136 { 1137 return NULL; 1138 } 1139 #endif 1140 1141 static inline bool sk_stream_memory_free(const struct sock *sk) 1142 { 1143 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1144 return false; 1145 1146 return sk->sk_prot->stream_memory_free ? 1147 sk->sk_prot->stream_memory_free(sk) : true; 1148 } 1149 1150 static inline bool sk_stream_is_writeable(const struct sock *sk) 1151 { 1152 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1153 sk_stream_memory_free(sk); 1154 } 1155 1156 1157 static inline bool sk_has_memory_pressure(const struct sock *sk) 1158 { 1159 return sk->sk_prot->memory_pressure != NULL; 1160 } 1161 1162 static inline bool sk_under_memory_pressure(const struct sock *sk) 1163 { 1164 if (!sk->sk_prot->memory_pressure) 1165 return false; 1166 1167 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1168 return !!sk->sk_cgrp->memory_pressure; 1169 1170 return !!*sk->sk_prot->memory_pressure; 1171 } 1172 1173 static inline void sk_leave_memory_pressure(struct sock *sk) 1174 { 1175 int *memory_pressure = sk->sk_prot->memory_pressure; 1176 1177 if (!memory_pressure) 1178 return; 1179 1180 if (*memory_pressure) 1181 *memory_pressure = 0; 1182 1183 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1184 struct cg_proto *cg_proto = sk->sk_cgrp; 1185 struct proto *prot = sk->sk_prot; 1186 1187 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1188 cg_proto->memory_pressure = 0; 1189 } 1190 1191 } 1192 1193 static inline void sk_enter_memory_pressure(struct sock *sk) 1194 { 1195 if (!sk->sk_prot->enter_memory_pressure) 1196 return; 1197 1198 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1199 struct cg_proto *cg_proto = sk->sk_cgrp; 1200 struct proto *prot = sk->sk_prot; 1201 1202 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1203 cg_proto->memory_pressure = 1; 1204 } 1205 1206 sk->sk_prot->enter_memory_pressure(sk); 1207 } 1208 1209 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1210 { 1211 long *prot = sk->sk_prot->sysctl_mem; 1212 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1213 prot = sk->sk_cgrp->sysctl_mem; 1214 return prot[index]; 1215 } 1216 1217 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1218 unsigned long amt, 1219 int *parent_status) 1220 { 1221 struct res_counter *fail; 1222 int ret; 1223 1224 ret = res_counter_charge_nofail(&prot->memory_allocated, 1225 amt << PAGE_SHIFT, &fail); 1226 if (ret < 0) 1227 *parent_status = OVER_LIMIT; 1228 } 1229 1230 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1231 unsigned long amt) 1232 { 1233 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); 1234 } 1235 1236 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1237 { 1238 u64 ret; 1239 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); 1240 return ret >> PAGE_SHIFT; 1241 } 1242 1243 static inline long 1244 sk_memory_allocated(const struct sock *sk) 1245 { 1246 struct proto *prot = sk->sk_prot; 1247 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1248 return memcg_memory_allocated_read(sk->sk_cgrp); 1249 1250 return atomic_long_read(prot->memory_allocated); 1251 } 1252 1253 static inline long 1254 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1255 { 1256 struct proto *prot = sk->sk_prot; 1257 1258 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1259 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1260 /* update the root cgroup regardless */ 1261 atomic_long_add_return(amt, prot->memory_allocated); 1262 return memcg_memory_allocated_read(sk->sk_cgrp); 1263 } 1264 1265 return atomic_long_add_return(amt, prot->memory_allocated); 1266 } 1267 1268 static inline void 1269 sk_memory_allocated_sub(struct sock *sk, int amt) 1270 { 1271 struct proto *prot = sk->sk_prot; 1272 1273 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1274 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1275 1276 atomic_long_sub(amt, prot->memory_allocated); 1277 } 1278 1279 static inline void sk_sockets_allocated_dec(struct sock *sk) 1280 { 1281 struct proto *prot = sk->sk_prot; 1282 1283 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1284 struct cg_proto *cg_proto = sk->sk_cgrp; 1285 1286 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1287 percpu_counter_dec(&cg_proto->sockets_allocated); 1288 } 1289 1290 percpu_counter_dec(prot->sockets_allocated); 1291 } 1292 1293 static inline void sk_sockets_allocated_inc(struct sock *sk) 1294 { 1295 struct proto *prot = sk->sk_prot; 1296 1297 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1298 struct cg_proto *cg_proto = sk->sk_cgrp; 1299 1300 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1301 percpu_counter_inc(&cg_proto->sockets_allocated); 1302 } 1303 1304 percpu_counter_inc(prot->sockets_allocated); 1305 } 1306 1307 static inline int 1308 sk_sockets_allocated_read_positive(struct sock *sk) 1309 { 1310 struct proto *prot = sk->sk_prot; 1311 1312 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1313 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1314 1315 return percpu_counter_read_positive(prot->sockets_allocated); 1316 } 1317 1318 static inline int 1319 proto_sockets_allocated_sum_positive(struct proto *prot) 1320 { 1321 return percpu_counter_sum_positive(prot->sockets_allocated); 1322 } 1323 1324 static inline long 1325 proto_memory_allocated(struct proto *prot) 1326 { 1327 return atomic_long_read(prot->memory_allocated); 1328 } 1329 1330 static inline bool 1331 proto_memory_pressure(struct proto *prot) 1332 { 1333 if (!prot->memory_pressure) 1334 return false; 1335 return !!*prot->memory_pressure; 1336 } 1337 1338 1339 #ifdef CONFIG_PROC_FS 1340 /* Called with local bh disabled */ 1341 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1342 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1343 #else 1344 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1345 int inc) 1346 { 1347 } 1348 #endif 1349 1350 1351 /* With per-bucket locks this operation is not-atomic, so that 1352 * this version is not worse. 1353 */ 1354 static inline void __sk_prot_rehash(struct sock *sk) 1355 { 1356 sk->sk_prot->unhash(sk); 1357 sk->sk_prot->hash(sk); 1358 } 1359 1360 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1361 1362 /* About 10 seconds */ 1363 #define SOCK_DESTROY_TIME (10*HZ) 1364 1365 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1366 #define PROT_SOCK 1024 1367 1368 #define SHUTDOWN_MASK 3 1369 #define RCV_SHUTDOWN 1 1370 #define SEND_SHUTDOWN 2 1371 1372 #define SOCK_SNDBUF_LOCK 1 1373 #define SOCK_RCVBUF_LOCK 2 1374 #define SOCK_BINDADDR_LOCK 4 1375 #define SOCK_BINDPORT_LOCK 8 1376 1377 /* sock_iocb: used to kick off async processing of socket ios */ 1378 struct sock_iocb { 1379 struct list_head list; 1380 1381 int flags; 1382 int size; 1383 struct socket *sock; 1384 struct sock *sk; 1385 struct scm_cookie *scm; 1386 struct msghdr *msg, async_msg; 1387 struct kiocb *kiocb; 1388 }; 1389 1390 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1391 { 1392 return (struct sock_iocb *)iocb->private; 1393 } 1394 1395 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1396 { 1397 return si->kiocb; 1398 } 1399 1400 struct socket_alloc { 1401 struct socket socket; 1402 struct inode vfs_inode; 1403 }; 1404 1405 static inline struct socket *SOCKET_I(struct inode *inode) 1406 { 1407 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1408 } 1409 1410 static inline struct inode *SOCK_INODE(struct socket *socket) 1411 { 1412 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1413 } 1414 1415 /* 1416 * Functions for memory accounting 1417 */ 1418 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1419 void __sk_mem_reclaim(struct sock *sk); 1420 1421 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1422 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1423 #define SK_MEM_SEND 0 1424 #define SK_MEM_RECV 1 1425 1426 static inline int sk_mem_pages(int amt) 1427 { 1428 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1429 } 1430 1431 static inline bool sk_has_account(struct sock *sk) 1432 { 1433 /* return true if protocol supports memory accounting */ 1434 return !!sk->sk_prot->memory_allocated; 1435 } 1436 1437 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1438 { 1439 if (!sk_has_account(sk)) 1440 return true; 1441 return size <= sk->sk_forward_alloc || 1442 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1443 } 1444 1445 static inline bool 1446 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1447 { 1448 if (!sk_has_account(sk)) 1449 return true; 1450 return size<= sk->sk_forward_alloc || 1451 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1452 skb_pfmemalloc(skb); 1453 } 1454 1455 static inline void sk_mem_reclaim(struct sock *sk) 1456 { 1457 if (!sk_has_account(sk)) 1458 return; 1459 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1460 __sk_mem_reclaim(sk); 1461 } 1462 1463 static inline void sk_mem_reclaim_partial(struct sock *sk) 1464 { 1465 if (!sk_has_account(sk)) 1466 return; 1467 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1468 __sk_mem_reclaim(sk); 1469 } 1470 1471 static inline void sk_mem_charge(struct sock *sk, int size) 1472 { 1473 if (!sk_has_account(sk)) 1474 return; 1475 sk->sk_forward_alloc -= size; 1476 } 1477 1478 static inline void sk_mem_uncharge(struct sock *sk, int size) 1479 { 1480 if (!sk_has_account(sk)) 1481 return; 1482 sk->sk_forward_alloc += size; 1483 } 1484 1485 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1486 { 1487 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1488 sk->sk_wmem_queued -= skb->truesize; 1489 sk_mem_uncharge(sk, skb->truesize); 1490 __kfree_skb(skb); 1491 } 1492 1493 /* Used by processes to "lock" a socket state, so that 1494 * interrupts and bottom half handlers won't change it 1495 * from under us. It essentially blocks any incoming 1496 * packets, so that we won't get any new data or any 1497 * packets that change the state of the socket. 1498 * 1499 * While locked, BH processing will add new packets to 1500 * the backlog queue. This queue is processed by the 1501 * owner of the socket lock right before it is released. 1502 * 1503 * Since ~2.3.5 it is also exclusive sleep lock serializing 1504 * accesses from user process context. 1505 */ 1506 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1507 1508 static inline void sock_release_ownership(struct sock *sk) 1509 { 1510 sk->sk_lock.owned = 0; 1511 } 1512 1513 /* 1514 * Macro so as to not evaluate some arguments when 1515 * lockdep is not enabled. 1516 * 1517 * Mark both the sk_lock and the sk_lock.slock as a 1518 * per-address-family lock class. 1519 */ 1520 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1521 do { \ 1522 sk->sk_lock.owned = 0; \ 1523 init_waitqueue_head(&sk->sk_lock.wq); \ 1524 spin_lock_init(&(sk)->sk_lock.slock); \ 1525 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1526 sizeof((sk)->sk_lock)); \ 1527 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1528 (skey), (sname)); \ 1529 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1530 } while (0) 1531 1532 void lock_sock_nested(struct sock *sk, int subclass); 1533 1534 static inline void lock_sock(struct sock *sk) 1535 { 1536 lock_sock_nested(sk, 0); 1537 } 1538 1539 void release_sock(struct sock *sk); 1540 1541 /* BH context may only use the following locking interface. */ 1542 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1543 #define bh_lock_sock_nested(__sk) \ 1544 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1545 SINGLE_DEPTH_NESTING) 1546 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1547 1548 bool lock_sock_fast(struct sock *sk); 1549 /** 1550 * unlock_sock_fast - complement of lock_sock_fast 1551 * @sk: socket 1552 * @slow: slow mode 1553 * 1554 * fast unlock socket for user context. 1555 * If slow mode is on, we call regular release_sock() 1556 */ 1557 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1558 { 1559 if (slow) 1560 release_sock(sk); 1561 else 1562 spin_unlock_bh(&sk->sk_lock.slock); 1563 } 1564 1565 1566 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1567 struct proto *prot); 1568 void sk_free(struct sock *sk); 1569 void sk_release_kernel(struct sock *sk); 1570 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1571 1572 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1573 gfp_t priority); 1574 void sock_wfree(struct sk_buff *skb); 1575 void skb_orphan_partial(struct sk_buff *skb); 1576 void sock_rfree(struct sk_buff *skb); 1577 void sock_edemux(struct sk_buff *skb); 1578 1579 int sock_setsockopt(struct socket *sock, int level, int op, 1580 char __user *optval, unsigned int optlen); 1581 1582 int sock_getsockopt(struct socket *sock, int level, int op, 1583 char __user *optval, int __user *optlen); 1584 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1585 int noblock, int *errcode); 1586 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1587 unsigned long data_len, int noblock, 1588 int *errcode, int max_page_order); 1589 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1590 void sock_kfree_s(struct sock *sk, void *mem, int size); 1591 void sk_send_sigurg(struct sock *sk); 1592 1593 /* 1594 * Functions to fill in entries in struct proto_ops when a protocol 1595 * does not implement a particular function. 1596 */ 1597 int sock_no_bind(struct socket *, struct sockaddr *, int); 1598 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1599 int sock_no_socketpair(struct socket *, struct socket *); 1600 int sock_no_accept(struct socket *, struct socket *, int); 1601 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1602 unsigned int sock_no_poll(struct file *, struct socket *, 1603 struct poll_table_struct *); 1604 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1605 int sock_no_listen(struct socket *, int); 1606 int sock_no_shutdown(struct socket *, int); 1607 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1608 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1609 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); 1610 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, 1611 int); 1612 int sock_no_mmap(struct file *file, struct socket *sock, 1613 struct vm_area_struct *vma); 1614 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1615 size_t size, int flags); 1616 1617 /* 1618 * Functions to fill in entries in struct proto_ops when a protocol 1619 * uses the inet style. 1620 */ 1621 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1622 char __user *optval, int __user *optlen); 1623 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1624 struct msghdr *msg, size_t size, int flags); 1625 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1626 char __user *optval, unsigned int optlen); 1627 int compat_sock_common_getsockopt(struct socket *sock, int level, 1628 int optname, char __user *optval, int __user *optlen); 1629 int compat_sock_common_setsockopt(struct socket *sock, int level, 1630 int optname, char __user *optval, unsigned int optlen); 1631 1632 void sk_common_release(struct sock *sk); 1633 1634 /* 1635 * Default socket callbacks and setup code 1636 */ 1637 1638 /* Initialise core socket variables */ 1639 void sock_init_data(struct socket *sock, struct sock *sk); 1640 1641 /* 1642 * Socket reference counting postulates. 1643 * 1644 * * Each user of socket SHOULD hold a reference count. 1645 * * Each access point to socket (an hash table bucket, reference from a list, 1646 * running timer, skb in flight MUST hold a reference count. 1647 * * When reference count hits 0, it means it will never increase back. 1648 * * When reference count hits 0, it means that no references from 1649 * outside exist to this socket and current process on current CPU 1650 * is last user and may/should destroy this socket. 1651 * * sk_free is called from any context: process, BH, IRQ. When 1652 * it is called, socket has no references from outside -> sk_free 1653 * may release descendant resources allocated by the socket, but 1654 * to the time when it is called, socket is NOT referenced by any 1655 * hash tables, lists etc. 1656 * * Packets, delivered from outside (from network or from another process) 1657 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1658 * when they sit in queue. Otherwise, packets will leak to hole, when 1659 * socket is looked up by one cpu and unhasing is made by another CPU. 1660 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1661 * (leak to backlog). Packet socket does all the processing inside 1662 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1663 * use separate SMP lock, so that they are prone too. 1664 */ 1665 1666 /* Ungrab socket and destroy it, if it was the last reference. */ 1667 static inline void sock_put(struct sock *sk) 1668 { 1669 if (atomic_dec_and_test(&sk->sk_refcnt)) 1670 sk_free(sk); 1671 } 1672 /* Generic version of sock_put(), dealing with all sockets 1673 * (TCP_TIMEWAIT, ESTABLISHED...) 1674 */ 1675 void sock_gen_put(struct sock *sk); 1676 1677 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1678 1679 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1680 { 1681 sk->sk_tx_queue_mapping = tx_queue; 1682 } 1683 1684 static inline void sk_tx_queue_clear(struct sock *sk) 1685 { 1686 sk->sk_tx_queue_mapping = -1; 1687 } 1688 1689 static inline int sk_tx_queue_get(const struct sock *sk) 1690 { 1691 return sk ? sk->sk_tx_queue_mapping : -1; 1692 } 1693 1694 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1695 { 1696 sk_tx_queue_clear(sk); 1697 sk->sk_socket = sock; 1698 } 1699 1700 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1701 { 1702 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1703 return &rcu_dereference_raw(sk->sk_wq)->wait; 1704 } 1705 /* Detach socket from process context. 1706 * Announce socket dead, detach it from wait queue and inode. 1707 * Note that parent inode held reference count on this struct sock, 1708 * we do not release it in this function, because protocol 1709 * probably wants some additional cleanups or even continuing 1710 * to work with this socket (TCP). 1711 */ 1712 static inline void sock_orphan(struct sock *sk) 1713 { 1714 write_lock_bh(&sk->sk_callback_lock); 1715 sock_set_flag(sk, SOCK_DEAD); 1716 sk_set_socket(sk, NULL); 1717 sk->sk_wq = NULL; 1718 write_unlock_bh(&sk->sk_callback_lock); 1719 } 1720 1721 static inline void sock_graft(struct sock *sk, struct socket *parent) 1722 { 1723 write_lock_bh(&sk->sk_callback_lock); 1724 sk->sk_wq = parent->wq; 1725 parent->sk = sk; 1726 sk_set_socket(sk, parent); 1727 security_sock_graft(sk, parent); 1728 write_unlock_bh(&sk->sk_callback_lock); 1729 } 1730 1731 kuid_t sock_i_uid(struct sock *sk); 1732 unsigned long sock_i_ino(struct sock *sk); 1733 1734 static inline struct dst_entry * 1735 __sk_dst_get(struct sock *sk) 1736 { 1737 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1738 lockdep_is_held(&sk->sk_lock.slock)); 1739 } 1740 1741 static inline struct dst_entry * 1742 sk_dst_get(struct sock *sk) 1743 { 1744 struct dst_entry *dst; 1745 1746 rcu_read_lock(); 1747 dst = rcu_dereference(sk->sk_dst_cache); 1748 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1749 dst = NULL; 1750 rcu_read_unlock(); 1751 return dst; 1752 } 1753 1754 static inline void dst_negative_advice(struct sock *sk) 1755 { 1756 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1757 1758 if (dst && dst->ops->negative_advice) { 1759 ndst = dst->ops->negative_advice(dst); 1760 1761 if (ndst != dst) { 1762 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1763 sk_tx_queue_clear(sk); 1764 } 1765 } 1766 } 1767 1768 static inline void 1769 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1770 { 1771 struct dst_entry *old_dst; 1772 1773 sk_tx_queue_clear(sk); 1774 /* 1775 * This can be called while sk is owned by the caller only, 1776 * with no state that can be checked in a rcu_dereference_check() cond 1777 */ 1778 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1779 rcu_assign_pointer(sk->sk_dst_cache, dst); 1780 dst_release(old_dst); 1781 } 1782 1783 static inline void 1784 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1785 { 1786 struct dst_entry *old_dst; 1787 1788 sk_tx_queue_clear(sk); 1789 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1790 dst_release(old_dst); 1791 } 1792 1793 static inline void 1794 __sk_dst_reset(struct sock *sk) 1795 { 1796 __sk_dst_set(sk, NULL); 1797 } 1798 1799 static inline void 1800 sk_dst_reset(struct sock *sk) 1801 { 1802 sk_dst_set(sk, NULL); 1803 } 1804 1805 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1806 1807 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1808 1809 static inline bool sk_can_gso(const struct sock *sk) 1810 { 1811 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1812 } 1813 1814 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1815 1816 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1817 { 1818 sk->sk_route_nocaps |= flags; 1819 sk->sk_route_caps &= ~flags; 1820 } 1821 1822 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1823 char __user *from, char *to, 1824 int copy, int offset) 1825 { 1826 if (skb->ip_summed == CHECKSUM_NONE) { 1827 int err = 0; 1828 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1829 if (err) 1830 return err; 1831 skb->csum = csum_block_add(skb->csum, csum, offset); 1832 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1833 if (!access_ok(VERIFY_READ, from, copy) || 1834 __copy_from_user_nocache(to, from, copy)) 1835 return -EFAULT; 1836 } else if (copy_from_user(to, from, copy)) 1837 return -EFAULT; 1838 1839 return 0; 1840 } 1841 1842 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1843 char __user *from, int copy) 1844 { 1845 int err, offset = skb->len; 1846 1847 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1848 copy, offset); 1849 if (err) 1850 __skb_trim(skb, offset); 1851 1852 return err; 1853 } 1854 1855 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1856 struct sk_buff *skb, 1857 struct page *page, 1858 int off, int copy) 1859 { 1860 int err; 1861 1862 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1863 copy, skb->len); 1864 if (err) 1865 return err; 1866 1867 skb->len += copy; 1868 skb->data_len += copy; 1869 skb->truesize += copy; 1870 sk->sk_wmem_queued += copy; 1871 sk_mem_charge(sk, copy); 1872 return 0; 1873 } 1874 1875 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1876 struct sk_buff *skb, struct page *page, 1877 int off, int copy) 1878 { 1879 if (skb->ip_summed == CHECKSUM_NONE) { 1880 int err = 0; 1881 __wsum csum = csum_and_copy_from_user(from, 1882 page_address(page) + off, 1883 copy, 0, &err); 1884 if (err) 1885 return err; 1886 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1887 } else if (copy_from_user(page_address(page) + off, from, copy)) 1888 return -EFAULT; 1889 1890 skb->len += copy; 1891 skb->data_len += copy; 1892 skb->truesize += copy; 1893 sk->sk_wmem_queued += copy; 1894 sk_mem_charge(sk, copy); 1895 return 0; 1896 } 1897 1898 /** 1899 * sk_wmem_alloc_get - returns write allocations 1900 * @sk: socket 1901 * 1902 * Returns sk_wmem_alloc minus initial offset of one 1903 */ 1904 static inline int sk_wmem_alloc_get(const struct sock *sk) 1905 { 1906 return atomic_read(&sk->sk_wmem_alloc) - 1; 1907 } 1908 1909 /** 1910 * sk_rmem_alloc_get - returns read allocations 1911 * @sk: socket 1912 * 1913 * Returns sk_rmem_alloc 1914 */ 1915 static inline int sk_rmem_alloc_get(const struct sock *sk) 1916 { 1917 return atomic_read(&sk->sk_rmem_alloc); 1918 } 1919 1920 /** 1921 * sk_has_allocations - check if allocations are outstanding 1922 * @sk: socket 1923 * 1924 * Returns true if socket has write or read allocations 1925 */ 1926 static inline bool sk_has_allocations(const struct sock *sk) 1927 { 1928 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1929 } 1930 1931 /** 1932 * wq_has_sleeper - check if there are any waiting processes 1933 * @wq: struct socket_wq 1934 * 1935 * Returns true if socket_wq has waiting processes 1936 * 1937 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1938 * barrier call. They were added due to the race found within the tcp code. 1939 * 1940 * Consider following tcp code paths: 1941 * 1942 * CPU1 CPU2 1943 * 1944 * sys_select receive packet 1945 * ... ... 1946 * __add_wait_queue update tp->rcv_nxt 1947 * ... ... 1948 * tp->rcv_nxt check sock_def_readable 1949 * ... { 1950 * schedule rcu_read_lock(); 1951 * wq = rcu_dereference(sk->sk_wq); 1952 * if (wq && waitqueue_active(&wq->wait)) 1953 * wake_up_interruptible(&wq->wait) 1954 * ... 1955 * } 1956 * 1957 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1958 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1959 * could then endup calling schedule and sleep forever if there are no more 1960 * data on the socket. 1961 * 1962 */ 1963 static inline bool wq_has_sleeper(struct socket_wq *wq) 1964 { 1965 /* We need to be sure we are in sync with the 1966 * add_wait_queue modifications to the wait queue. 1967 * 1968 * This memory barrier is paired in the sock_poll_wait. 1969 */ 1970 smp_mb(); 1971 return wq && waitqueue_active(&wq->wait); 1972 } 1973 1974 /** 1975 * sock_poll_wait - place memory barrier behind the poll_wait call. 1976 * @filp: file 1977 * @wait_address: socket wait queue 1978 * @p: poll_table 1979 * 1980 * See the comments in the wq_has_sleeper function. 1981 */ 1982 static inline void sock_poll_wait(struct file *filp, 1983 wait_queue_head_t *wait_address, poll_table *p) 1984 { 1985 if (!poll_does_not_wait(p) && wait_address) { 1986 poll_wait(filp, wait_address, p); 1987 /* We need to be sure we are in sync with the 1988 * socket flags modification. 1989 * 1990 * This memory barrier is paired in the wq_has_sleeper. 1991 */ 1992 smp_mb(); 1993 } 1994 } 1995 1996 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1997 { 1998 if (sk->sk_txhash) { 1999 skb->l4_hash = 1; 2000 skb->hash = sk->sk_txhash; 2001 } 2002 } 2003 2004 /* 2005 * Queue a received datagram if it will fit. Stream and sequenced 2006 * protocols can't normally use this as they need to fit buffers in 2007 * and play with them. 2008 * 2009 * Inlined as it's very short and called for pretty much every 2010 * packet ever received. 2011 */ 2012 2013 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2014 { 2015 skb_orphan(skb); 2016 skb->sk = sk; 2017 skb->destructor = sock_wfree; 2018 skb_set_hash_from_sk(skb, sk); 2019 /* 2020 * We used to take a refcount on sk, but following operation 2021 * is enough to guarantee sk_free() wont free this sock until 2022 * all in-flight packets are completed 2023 */ 2024 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2025 } 2026 2027 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2028 { 2029 skb_orphan(skb); 2030 skb->sk = sk; 2031 skb->destructor = sock_rfree; 2032 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2033 sk_mem_charge(sk, skb->truesize); 2034 } 2035 2036 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2037 unsigned long expires); 2038 2039 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2040 2041 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2042 2043 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2044 2045 /* 2046 * Recover an error report and clear atomically 2047 */ 2048 2049 static inline int sock_error(struct sock *sk) 2050 { 2051 int err; 2052 if (likely(!sk->sk_err)) 2053 return 0; 2054 err = xchg(&sk->sk_err, 0); 2055 return -err; 2056 } 2057 2058 static inline unsigned long sock_wspace(struct sock *sk) 2059 { 2060 int amt = 0; 2061 2062 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2063 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2064 if (amt < 0) 2065 amt = 0; 2066 } 2067 return amt; 2068 } 2069 2070 static inline void sk_wake_async(struct sock *sk, int how, int band) 2071 { 2072 if (sock_flag(sk, SOCK_FASYNC)) 2073 sock_wake_async(sk->sk_socket, how, band); 2074 } 2075 2076 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2077 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2078 * Note: for send buffers, TCP works better if we can build two skbs at 2079 * minimum. 2080 */ 2081 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2082 2083 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2084 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2085 2086 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2087 { 2088 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2089 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2090 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2091 } 2092 } 2093 2094 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2095 2096 /** 2097 * sk_page_frag - return an appropriate page_frag 2098 * @sk: socket 2099 * 2100 * If socket allocation mode allows current thread to sleep, it means its 2101 * safe to use the per task page_frag instead of the per socket one. 2102 */ 2103 static inline struct page_frag *sk_page_frag(struct sock *sk) 2104 { 2105 if (sk->sk_allocation & __GFP_WAIT) 2106 return ¤t->task_frag; 2107 2108 return &sk->sk_frag; 2109 } 2110 2111 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2112 2113 /* 2114 * Default write policy as shown to user space via poll/select/SIGIO 2115 */ 2116 static inline bool sock_writeable(const struct sock *sk) 2117 { 2118 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2119 } 2120 2121 static inline gfp_t gfp_any(void) 2122 { 2123 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2124 } 2125 2126 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2127 { 2128 return noblock ? 0 : sk->sk_rcvtimeo; 2129 } 2130 2131 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2132 { 2133 return noblock ? 0 : sk->sk_sndtimeo; 2134 } 2135 2136 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2137 { 2138 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2139 } 2140 2141 /* Alas, with timeout socket operations are not restartable. 2142 * Compare this to poll(). 2143 */ 2144 static inline int sock_intr_errno(long timeo) 2145 { 2146 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2147 } 2148 2149 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2150 struct sk_buff *skb); 2151 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2152 struct sk_buff *skb); 2153 2154 static inline void 2155 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2156 { 2157 ktime_t kt = skb->tstamp; 2158 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2159 2160 /* 2161 * generate control messages if 2162 * - receive time stamping in software requested 2163 * - software time stamp available and wanted 2164 * - hardware time stamps available and wanted 2165 */ 2166 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2167 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2168 (kt.tv64 && 2169 (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE || 2170 skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP)) || 2171 (hwtstamps->hwtstamp.tv64 && 2172 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2173 __sock_recv_timestamp(msg, sk, skb); 2174 else 2175 sk->sk_stamp = kt; 2176 2177 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2178 __sock_recv_wifi_status(msg, sk, skb); 2179 } 2180 2181 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2182 struct sk_buff *skb); 2183 2184 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2185 struct sk_buff *skb) 2186 { 2187 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2188 (1UL << SOCK_RCVTSTAMP)) 2189 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2190 SOF_TIMESTAMPING_RAW_HARDWARE) 2191 2192 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2193 __sock_recv_ts_and_drops(msg, sk, skb); 2194 else 2195 sk->sk_stamp = skb->tstamp; 2196 } 2197 2198 /** 2199 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2200 * @sk: socket sending this packet 2201 * @tx_flags: completed with instructions for time stamping 2202 * 2203 * Note : callers should take care of initial *tx_flags value (usually 0) 2204 */ 2205 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2206 2207 /** 2208 * sk_eat_skb - Release a skb if it is no longer needed 2209 * @sk: socket to eat this skb from 2210 * @skb: socket buffer to eat 2211 * @copied_early: flag indicating whether DMA operations copied this data early 2212 * 2213 * This routine must be called with interrupts disabled or with the socket 2214 * locked so that the sk_buff queue operation is ok. 2215 */ 2216 #ifdef CONFIG_NET_DMA 2217 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2218 { 2219 __skb_unlink(skb, &sk->sk_receive_queue); 2220 if (!copied_early) 2221 __kfree_skb(skb); 2222 else 2223 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2224 } 2225 #else 2226 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2227 { 2228 __skb_unlink(skb, &sk->sk_receive_queue); 2229 __kfree_skb(skb); 2230 } 2231 #endif 2232 2233 static inline 2234 struct net *sock_net(const struct sock *sk) 2235 { 2236 return read_pnet(&sk->sk_net); 2237 } 2238 2239 static inline 2240 void sock_net_set(struct sock *sk, struct net *net) 2241 { 2242 write_pnet(&sk->sk_net, net); 2243 } 2244 2245 /* 2246 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2247 * They should not hold a reference to a namespace in order to allow 2248 * to stop it. 2249 * Sockets after sk_change_net should be released using sk_release_kernel 2250 */ 2251 static inline void sk_change_net(struct sock *sk, struct net *net) 2252 { 2253 struct net *current_net = sock_net(sk); 2254 2255 if (!net_eq(current_net, net)) { 2256 put_net(current_net); 2257 sock_net_set(sk, hold_net(net)); 2258 } 2259 } 2260 2261 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2262 { 2263 if (skb->sk) { 2264 struct sock *sk = skb->sk; 2265 2266 skb->destructor = NULL; 2267 skb->sk = NULL; 2268 return sk; 2269 } 2270 return NULL; 2271 } 2272 2273 void sock_enable_timestamp(struct sock *sk, int flag); 2274 int sock_get_timestamp(struct sock *, struct timeval __user *); 2275 int sock_get_timestampns(struct sock *, struct timespec __user *); 2276 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2277 int type); 2278 2279 bool sk_ns_capable(const struct sock *sk, 2280 struct user_namespace *user_ns, int cap); 2281 bool sk_capable(const struct sock *sk, int cap); 2282 bool sk_net_capable(const struct sock *sk, int cap); 2283 2284 /* 2285 * Enable debug/info messages 2286 */ 2287 extern int net_msg_warn; 2288 #define NETDEBUG(fmt, args...) \ 2289 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2290 2291 #define LIMIT_NETDEBUG(fmt, args...) \ 2292 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2293 2294 extern __u32 sysctl_wmem_max; 2295 extern __u32 sysctl_rmem_max; 2296 2297 extern int sysctl_optmem_max; 2298 2299 extern __u32 sysctl_wmem_default; 2300 extern __u32 sysctl_rmem_default; 2301 2302 #endif /* _SOCK_H */ 2303