xref: /openbmc/linux/include/net/sock.h (revision f9a82c48)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 #include <linux/rbtree.h>
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <linux/refcount.h>
70 #include <net/dst.h>
71 #include <net/checksum.h>
72 #include <net/tcp_states.h>
73 #include <linux/net_tstamp.h>
74 #include <net/smc.h>
75 #include <net/l3mdev.h>
76 
77 /*
78  * This structure really needs to be cleaned up.
79  * Most of it is for TCP, and not used by any of
80  * the other protocols.
81  */
82 
83 /* Define this to get the SOCK_DBG debugging facility. */
84 #define SOCK_DEBUGGING
85 #ifdef SOCK_DEBUGGING
86 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 					printk(KERN_DEBUG msg); } while (0)
88 #else
89 /* Validate arguments and do nothing */
90 static inline __printf(2, 3)
91 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 {
93 }
94 #endif
95 
96 /* This is the per-socket lock.  The spinlock provides a synchronization
97  * between user contexts and software interrupt processing, whereas the
98  * mini-semaphore synchronizes multiple users amongst themselves.
99  */
100 typedef struct {
101 	spinlock_t		slock;
102 	int			owned;
103 	wait_queue_head_t	wq;
104 	/*
105 	 * We express the mutex-alike socket_lock semantics
106 	 * to the lock validator by explicitly managing
107 	 * the slock as a lock variant (in addition to
108 	 * the slock itself):
109 	 */
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 	struct lockdep_map dep_map;
112 #endif
113 } socket_lock_t;
114 
115 struct sock;
116 struct proto;
117 struct net;
118 
119 typedef __u32 __bitwise __portpair;
120 typedef __u64 __bitwise __addrpair;
121 
122 /**
123  *	struct sock_common - minimal network layer representation of sockets
124  *	@skc_daddr: Foreign IPv4 addr
125  *	@skc_rcv_saddr: Bound local IPv4 addr
126  *	@skc_hash: hash value used with various protocol lookup tables
127  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
128  *	@skc_dport: placeholder for inet_dport/tw_dport
129  *	@skc_num: placeholder for inet_num/tw_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_node: main hash linkage for various protocol lookup tables
140  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141  *	@skc_tx_queue_mapping: tx queue number for this connection
142  *	@skc_rx_queue_mapping: rx queue number for this connection
143  *	@skc_flags: place holder for sk_flags
144  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146  *	@skc_incoming_cpu: record/match cpu processing incoming packets
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 	 * address on 64bit arches : cf INET_MATCH()
155 	 */
156 	union {
157 		__addrpair	skc_addrpair;
158 		struct {
159 			__be32	skc_daddr;
160 			__be32	skc_rcv_saddr;
161 		};
162 	};
163 	union  {
164 		unsigned int	skc_hash;
165 		__u16		skc_u16hashes[2];
166 	};
167 	/* skc_dport && skc_num must be grouped as well */
168 	union {
169 		__portpair	skc_portpair;
170 		struct {
171 			__be16	skc_dport;
172 			__u16	skc_num;
173 		};
174 	};
175 
176 	unsigned short		skc_family;
177 	volatile unsigned char	skc_state;
178 	unsigned char		skc_reuse:4;
179 	unsigned char		skc_reuseport:1;
180 	unsigned char		skc_ipv6only:1;
181 	unsigned char		skc_net_refcnt:1;
182 	int			skc_bound_dev_if;
183 	union {
184 		struct hlist_node	skc_bind_node;
185 		struct hlist_node	skc_portaddr_node;
186 	};
187 	struct proto		*skc_prot;
188 	possible_net_t		skc_net;
189 
190 #if IS_ENABLED(CONFIG_IPV6)
191 	struct in6_addr		skc_v6_daddr;
192 	struct in6_addr		skc_v6_rcv_saddr;
193 #endif
194 
195 	atomic64_t		skc_cookie;
196 
197 	/* following fields are padding to force
198 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 	 * assuming IPV6 is enabled. We use this padding differently
200 	 * for different kind of 'sockets'
201 	 */
202 	union {
203 		unsigned long	skc_flags;
204 		struct sock	*skc_listener; /* request_sock */
205 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 	};
207 	/*
208 	 * fields between dontcopy_begin/dontcopy_end
209 	 * are not copied in sock_copy()
210 	 */
211 	/* private: */
212 	int			skc_dontcopy_begin[0];
213 	/* public: */
214 	union {
215 		struct hlist_node	skc_node;
216 		struct hlist_nulls_node skc_nulls_node;
217 	};
218 	unsigned short		skc_tx_queue_mapping;
219 #ifdef CONFIG_XPS
220 	unsigned short		skc_rx_queue_mapping;
221 #endif
222 	union {
223 		int		skc_incoming_cpu;
224 		u32		skc_rcv_wnd;
225 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
226 	};
227 
228 	refcount_t		skc_refcnt;
229 	/* private: */
230 	int                     skc_dontcopy_end[0];
231 	union {
232 		u32		skc_rxhash;
233 		u32		skc_window_clamp;
234 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 	};
236 	/* public: */
237 };
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_dst_cache: destination cache
250   *	@sk_dst_pending_confirm: need to confirm neighbour
251   *	@sk_policy: flow policy
252   *	@sk_receive_queue: incoming packets
253   *	@sk_wmem_alloc: transmit queue bytes committed
254   *	@sk_tsq_flags: TCP Small Queues flags
255   *	@sk_write_queue: Packet sending queue
256   *	@sk_omem_alloc: "o" is "option" or "other"
257   *	@sk_wmem_queued: persistent queue size
258   *	@sk_forward_alloc: space allocated forward
259   *	@sk_napi_id: id of the last napi context to receive data for sk
260   *	@sk_ll_usec: usecs to busypoll when there is no data
261   *	@sk_allocation: allocation mode
262   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
264   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265   *	@sk_sndbuf: size of send buffer in bytes
266   *	@__sk_flags_offset: empty field used to determine location of bitfield
267   *	@sk_padding: unused element for alignment
268   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269   *	@sk_no_check_rx: allow zero checksum in RX packets
270   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273   *	@sk_gso_max_size: Maximum GSO segment size to build
274   *	@sk_gso_max_segs: Maximum number of GSO segments
275   *	@sk_pacing_shift: scaling factor for TCP Small Queues
276   *	@sk_lingertime: %SO_LINGER l_linger setting
277   *	@sk_backlog: always used with the per-socket spinlock held
278   *	@sk_callback_lock: used with the callbacks in the end of this struct
279   *	@sk_error_queue: rarely used
280   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281   *			  IPV6_ADDRFORM for instance)
282   *	@sk_err: last error
283   *	@sk_err_soft: errors that don't cause failure but are the cause of a
284   *		      persistent failure not just 'timed out'
285   *	@sk_drops: raw/udp drops counter
286   *	@sk_ack_backlog: current listen backlog
287   *	@sk_max_ack_backlog: listen backlog set in listen()
288   *	@sk_uid: user id of owner
289   *	@sk_priority: %SO_PRIORITY setting
290   *	@sk_type: socket type (%SOCK_STREAM, etc)
291   *	@sk_protocol: which protocol this socket belongs in this network family
292   *	@sk_peer_pid: &struct pid for this socket's peer
293   *	@sk_peer_cred: %SO_PEERCRED setting
294   *	@sk_rcvlowat: %SO_RCVLOWAT setting
295   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
296   *	@sk_sndtimeo: %SO_SNDTIMEO setting
297   *	@sk_txhash: computed flow hash for use on transmit
298   *	@sk_filter: socket filtering instructions
299   *	@sk_timer: sock cleanup timer
300   *	@sk_stamp: time stamp of last packet received
301   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302   *	@sk_tsflags: SO_TIMESTAMPING socket options
303   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
304   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
305   *	@sk_socket: Identd and reporting IO signals
306   *	@sk_user_data: RPC layer private data
307   *	@sk_frag: cached page frag
308   *	@sk_peek_off: current peek_offset value
309   *	@sk_send_head: front of stuff to transmit
310   *	@sk_security: used by security modules
311   *	@sk_mark: generic packet mark
312   *	@sk_cgrp_data: cgroup data for this cgroup
313   *	@sk_memcg: this socket's memory cgroup association
314   *	@sk_write_pending: a write to stream socket waits to start
315   *	@sk_state_change: callback to indicate change in the state of the sock
316   *	@sk_data_ready: callback to indicate there is data to be processed
317   *	@sk_write_space: callback to indicate there is bf sending space available
318   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319   *	@sk_backlog_rcv: callback to process the backlog
320   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321   *	@sk_reuseport_cb: reuseport group container
322   *	@sk_rcu: used during RCU grace period
323   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325   *	@sk_txtime_unused: unused txtime flags
326   */
327 struct sock {
328 	/*
329 	 * Now struct inet_timewait_sock also uses sock_common, so please just
330 	 * don't add nothing before this first member (__sk_common) --acme
331 	 */
332 	struct sock_common	__sk_common;
333 #define sk_node			__sk_common.skc_node
334 #define sk_nulls_node		__sk_common.skc_nulls_node
335 #define sk_refcnt		__sk_common.skc_refcnt
336 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
337 #ifdef CONFIG_XPS
338 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
339 #endif
340 
341 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
342 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
343 #define sk_hash			__sk_common.skc_hash
344 #define sk_portpair		__sk_common.skc_portpair
345 #define sk_num			__sk_common.skc_num
346 #define sk_dport		__sk_common.skc_dport
347 #define sk_addrpair		__sk_common.skc_addrpair
348 #define sk_daddr		__sk_common.skc_daddr
349 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
350 #define sk_family		__sk_common.skc_family
351 #define sk_state		__sk_common.skc_state
352 #define sk_reuse		__sk_common.skc_reuse
353 #define sk_reuseport		__sk_common.skc_reuseport
354 #define sk_ipv6only		__sk_common.skc_ipv6only
355 #define sk_net_refcnt		__sk_common.skc_net_refcnt
356 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
357 #define sk_bind_node		__sk_common.skc_bind_node
358 #define sk_prot			__sk_common.skc_prot
359 #define sk_net			__sk_common.skc_net
360 #define sk_v6_daddr		__sk_common.skc_v6_daddr
361 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
362 #define sk_cookie		__sk_common.skc_cookie
363 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
364 #define sk_flags		__sk_common.skc_flags
365 #define sk_rxhash		__sk_common.skc_rxhash
366 
367 	socket_lock_t		sk_lock;
368 	atomic_t		sk_drops;
369 	int			sk_rcvlowat;
370 	struct sk_buff_head	sk_error_queue;
371 	struct sk_buff_head	sk_receive_queue;
372 	/*
373 	 * The backlog queue is special, it is always used with
374 	 * the per-socket spinlock held and requires low latency
375 	 * access. Therefore we special case it's implementation.
376 	 * Note : rmem_alloc is in this structure to fill a hole
377 	 * on 64bit arches, not because its logically part of
378 	 * backlog.
379 	 */
380 	struct {
381 		atomic_t	rmem_alloc;
382 		int		len;
383 		struct sk_buff	*head;
384 		struct sk_buff	*tail;
385 	} sk_backlog;
386 #define sk_rmem_alloc sk_backlog.rmem_alloc
387 
388 	int			sk_forward_alloc;
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 	unsigned int		sk_ll_usec;
391 	/* ===== mostly read cache line ===== */
392 	unsigned int		sk_napi_id;
393 #endif
394 	int			sk_rcvbuf;
395 
396 	struct sk_filter __rcu	*sk_filter;
397 	union {
398 		struct socket_wq __rcu	*sk_wq;
399 		struct socket_wq	*sk_wq_raw;
400 	};
401 #ifdef CONFIG_XFRM
402 	struct xfrm_policy __rcu *sk_policy[2];
403 #endif
404 	struct dst_entry	*sk_rx_dst;
405 	struct dst_entry __rcu	*sk_dst_cache;
406 	atomic_t		sk_omem_alloc;
407 	int			sk_sndbuf;
408 
409 	/* ===== cache line for TX ===== */
410 	int			sk_wmem_queued;
411 	refcount_t		sk_wmem_alloc;
412 	unsigned long		sk_tsq_flags;
413 	union {
414 		struct sk_buff	*sk_send_head;
415 		struct rb_root	tcp_rtx_queue;
416 	};
417 	struct sk_buff_head	sk_write_queue;
418 	__s32			sk_peek_off;
419 	int			sk_write_pending;
420 	__u32			sk_dst_pending_confirm;
421 	u32			sk_pacing_status; /* see enum sk_pacing */
422 	long			sk_sndtimeo;
423 	struct timer_list	sk_timer;
424 	__u32			sk_priority;
425 	__u32			sk_mark;
426 	unsigned long		sk_pacing_rate; /* bytes per second */
427 	unsigned long		sk_max_pacing_rate;
428 	struct page_frag	sk_frag;
429 	netdev_features_t	sk_route_caps;
430 	netdev_features_t	sk_route_nocaps;
431 	netdev_features_t	sk_route_forced_caps;
432 	int			sk_gso_type;
433 	unsigned int		sk_gso_max_size;
434 	gfp_t			sk_allocation;
435 	__u32			sk_txhash;
436 
437 	/*
438 	 * Because of non atomicity rules, all
439 	 * changes are protected by socket lock.
440 	 */
441 	unsigned int		__sk_flags_offset[0];
442 #ifdef __BIG_ENDIAN_BITFIELD
443 #define SK_FL_PROTO_SHIFT  16
444 #define SK_FL_PROTO_MASK   0x00ff0000
445 
446 #define SK_FL_TYPE_SHIFT   0
447 #define SK_FL_TYPE_MASK    0x0000ffff
448 #else
449 #define SK_FL_PROTO_SHIFT  8
450 #define SK_FL_PROTO_MASK   0x0000ff00
451 
452 #define SK_FL_TYPE_SHIFT   16
453 #define SK_FL_TYPE_MASK    0xffff0000
454 #endif
455 
456 	unsigned int		sk_padding : 1,
457 				sk_kern_sock : 1,
458 				sk_no_check_tx : 1,
459 				sk_no_check_rx : 1,
460 				sk_userlocks : 4,
461 				sk_protocol  : 8,
462 				sk_type      : 16;
463 #define SK_PROTOCOL_MAX U8_MAX
464 	u16			sk_gso_max_segs;
465 	u8			sk_pacing_shift;
466 	unsigned long	        sk_lingertime;
467 	struct proto		*sk_prot_creator;
468 	rwlock_t		sk_callback_lock;
469 	int			sk_err,
470 				sk_err_soft;
471 	u32			sk_ack_backlog;
472 	u32			sk_max_ack_backlog;
473 	kuid_t			sk_uid;
474 	struct pid		*sk_peer_pid;
475 	const struct cred	*sk_peer_cred;
476 	long			sk_rcvtimeo;
477 	ktime_t			sk_stamp;
478 #if BITS_PER_LONG==32
479 	seqlock_t		sk_stamp_seq;
480 #endif
481 	u16			sk_tsflags;
482 	u8			sk_shutdown;
483 	u32			sk_tskey;
484 	atomic_t		sk_zckey;
485 
486 	u8			sk_clockid;
487 	u8			sk_txtime_deadline_mode : 1,
488 				sk_txtime_report_errors : 1,
489 				sk_txtime_unused : 6;
490 
491 	struct socket		*sk_socket;
492 	void			*sk_user_data;
493 #ifdef CONFIG_SECURITY
494 	void			*sk_security;
495 #endif
496 	struct sock_cgroup_data	sk_cgrp_data;
497 	struct mem_cgroup	*sk_memcg;
498 	void			(*sk_state_change)(struct sock *sk);
499 	void			(*sk_data_ready)(struct sock *sk);
500 	void			(*sk_write_space)(struct sock *sk);
501 	void			(*sk_error_report)(struct sock *sk);
502 	int			(*sk_backlog_rcv)(struct sock *sk,
503 						  struct sk_buff *skb);
504 #ifdef CONFIG_SOCK_VALIDATE_XMIT
505 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
506 							struct net_device *dev,
507 							struct sk_buff *skb);
508 #endif
509 	void                    (*sk_destruct)(struct sock *sk);
510 	struct sock_reuseport __rcu	*sk_reuseport_cb;
511 	struct rcu_head		sk_rcu;
512 };
513 
514 enum sk_pacing {
515 	SK_PACING_NONE		= 0,
516 	SK_PACING_NEEDED	= 1,
517 	SK_PACING_FQ		= 2,
518 };
519 
520 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521 
522 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
523 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
524 
525 /*
526  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528  * on a socket means that the socket will reuse everybody else's port
529  * without looking at the other's sk_reuse value.
530  */
531 
532 #define SK_NO_REUSE	0
533 #define SK_CAN_REUSE	1
534 #define SK_FORCE_REUSE	2
535 
536 int sk_set_peek_off(struct sock *sk, int val);
537 
538 static inline int sk_peek_offset(struct sock *sk, int flags)
539 {
540 	if (unlikely(flags & MSG_PEEK)) {
541 		return READ_ONCE(sk->sk_peek_off);
542 	}
543 
544 	return 0;
545 }
546 
547 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548 {
549 	s32 off = READ_ONCE(sk->sk_peek_off);
550 
551 	if (unlikely(off >= 0)) {
552 		off = max_t(s32, off - val, 0);
553 		WRITE_ONCE(sk->sk_peek_off, off);
554 	}
555 }
556 
557 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558 {
559 	sk_peek_offset_bwd(sk, -val);
560 }
561 
562 /*
563  * Hashed lists helper routines
564  */
565 static inline struct sock *sk_entry(const struct hlist_node *node)
566 {
567 	return hlist_entry(node, struct sock, sk_node);
568 }
569 
570 static inline struct sock *__sk_head(const struct hlist_head *head)
571 {
572 	return hlist_entry(head->first, struct sock, sk_node);
573 }
574 
575 static inline struct sock *sk_head(const struct hlist_head *head)
576 {
577 	return hlist_empty(head) ? NULL : __sk_head(head);
578 }
579 
580 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581 {
582 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583 }
584 
585 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586 {
587 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588 }
589 
590 static inline struct sock *sk_next(const struct sock *sk)
591 {
592 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593 }
594 
595 static inline struct sock *sk_nulls_next(const struct sock *sk)
596 {
597 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 		hlist_nulls_entry(sk->sk_nulls_node.next,
599 				  struct sock, sk_nulls_node) :
600 		NULL;
601 }
602 
603 static inline bool sk_unhashed(const struct sock *sk)
604 {
605 	return hlist_unhashed(&sk->sk_node);
606 }
607 
608 static inline bool sk_hashed(const struct sock *sk)
609 {
610 	return !sk_unhashed(sk);
611 }
612 
613 static inline void sk_node_init(struct hlist_node *node)
614 {
615 	node->pprev = NULL;
616 }
617 
618 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619 {
620 	node->pprev = NULL;
621 }
622 
623 static inline void __sk_del_node(struct sock *sk)
624 {
625 	__hlist_del(&sk->sk_node);
626 }
627 
628 /* NB: equivalent to hlist_del_init_rcu */
629 static inline bool __sk_del_node_init(struct sock *sk)
630 {
631 	if (sk_hashed(sk)) {
632 		__sk_del_node(sk);
633 		sk_node_init(&sk->sk_node);
634 		return true;
635 	}
636 	return false;
637 }
638 
639 /* Grab socket reference count. This operation is valid only
640    when sk is ALREADY grabbed f.e. it is found in hash table
641    or a list and the lookup is made under lock preventing hash table
642    modifications.
643  */
644 
645 static __always_inline void sock_hold(struct sock *sk)
646 {
647 	refcount_inc(&sk->sk_refcnt);
648 }
649 
650 /* Ungrab socket in the context, which assumes that socket refcnt
651    cannot hit zero, f.e. it is true in context of any socketcall.
652  */
653 static __always_inline void __sock_put(struct sock *sk)
654 {
655 	refcount_dec(&sk->sk_refcnt);
656 }
657 
658 static inline bool sk_del_node_init(struct sock *sk)
659 {
660 	bool rc = __sk_del_node_init(sk);
661 
662 	if (rc) {
663 		/* paranoid for a while -acme */
664 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 		__sock_put(sk);
666 	}
667 	return rc;
668 }
669 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
670 
671 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672 {
673 	if (sk_hashed(sk)) {
674 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 		return true;
676 	}
677 	return false;
678 }
679 
680 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681 {
682 	bool rc = __sk_nulls_del_node_init_rcu(sk);
683 
684 	if (rc) {
685 		/* paranoid for a while -acme */
686 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 		__sock_put(sk);
688 	}
689 	return rc;
690 }
691 
692 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693 {
694 	hlist_add_head(&sk->sk_node, list);
695 }
696 
697 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698 {
699 	sock_hold(sk);
700 	__sk_add_node(sk, list);
701 }
702 
703 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704 {
705 	sock_hold(sk);
706 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 	    sk->sk_family == AF_INET6)
708 		hlist_add_tail_rcu(&sk->sk_node, list);
709 	else
710 		hlist_add_head_rcu(&sk->sk_node, list);
711 }
712 
713 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
714 {
715 	sock_hold(sk);
716 	hlist_add_tail_rcu(&sk->sk_node, list);
717 }
718 
719 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
720 {
721 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
722 }
723 
724 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
725 {
726 	sock_hold(sk);
727 	__sk_nulls_add_node_rcu(sk, list);
728 }
729 
730 static inline void __sk_del_bind_node(struct sock *sk)
731 {
732 	__hlist_del(&sk->sk_bind_node);
733 }
734 
735 static inline void sk_add_bind_node(struct sock *sk,
736 					struct hlist_head *list)
737 {
738 	hlist_add_head(&sk->sk_bind_node, list);
739 }
740 
741 #define sk_for_each(__sk, list) \
742 	hlist_for_each_entry(__sk, list, sk_node)
743 #define sk_for_each_rcu(__sk, list) \
744 	hlist_for_each_entry_rcu(__sk, list, sk_node)
745 #define sk_nulls_for_each(__sk, node, list) \
746 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
747 #define sk_nulls_for_each_rcu(__sk, node, list) \
748 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
749 #define sk_for_each_from(__sk) \
750 	hlist_for_each_entry_from(__sk, sk_node)
751 #define sk_nulls_for_each_from(__sk, node) \
752 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
753 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
754 #define sk_for_each_safe(__sk, tmp, list) \
755 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
756 #define sk_for_each_bound(__sk, list) \
757 	hlist_for_each_entry(__sk, list, sk_bind_node)
758 
759 /**
760  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
761  * @tpos:	the type * to use as a loop cursor.
762  * @pos:	the &struct hlist_node to use as a loop cursor.
763  * @head:	the head for your list.
764  * @offset:	offset of hlist_node within the struct.
765  *
766  */
767 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
768 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
769 	     pos != NULL &&						       \
770 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
771 	     pos = rcu_dereference(hlist_next_rcu(pos)))
772 
773 static inline struct user_namespace *sk_user_ns(struct sock *sk)
774 {
775 	/* Careful only use this in a context where these parameters
776 	 * can not change and must all be valid, such as recvmsg from
777 	 * userspace.
778 	 */
779 	return sk->sk_socket->file->f_cred->user_ns;
780 }
781 
782 /* Sock flags */
783 enum sock_flags {
784 	SOCK_DEAD,
785 	SOCK_DONE,
786 	SOCK_URGINLINE,
787 	SOCK_KEEPOPEN,
788 	SOCK_LINGER,
789 	SOCK_DESTROY,
790 	SOCK_BROADCAST,
791 	SOCK_TIMESTAMP,
792 	SOCK_ZAPPED,
793 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
794 	SOCK_DBG, /* %SO_DEBUG setting */
795 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
796 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
797 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
798 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
799 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
800 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
801 	SOCK_FASYNC, /* fasync() active */
802 	SOCK_RXQ_OVFL,
803 	SOCK_ZEROCOPY, /* buffers from userspace */
804 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
805 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
806 		     * Will use last 4 bytes of packet sent from
807 		     * user-space instead.
808 		     */
809 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
810 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
811 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
812 	SOCK_TXTIME,
813 	SOCK_XDP, /* XDP is attached */
814 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
815 };
816 
817 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
818 
819 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
820 {
821 	nsk->sk_flags = osk->sk_flags;
822 }
823 
824 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
825 {
826 	__set_bit(flag, &sk->sk_flags);
827 }
828 
829 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
830 {
831 	__clear_bit(flag, &sk->sk_flags);
832 }
833 
834 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
835 {
836 	return test_bit(flag, &sk->sk_flags);
837 }
838 
839 #ifdef CONFIG_NET
840 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
841 static inline int sk_memalloc_socks(void)
842 {
843 	return static_branch_unlikely(&memalloc_socks_key);
844 }
845 #else
846 
847 static inline int sk_memalloc_socks(void)
848 {
849 	return 0;
850 }
851 
852 #endif
853 
854 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
855 {
856 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
857 }
858 
859 static inline void sk_acceptq_removed(struct sock *sk)
860 {
861 	sk->sk_ack_backlog--;
862 }
863 
864 static inline void sk_acceptq_added(struct sock *sk)
865 {
866 	sk->sk_ack_backlog++;
867 }
868 
869 static inline bool sk_acceptq_is_full(const struct sock *sk)
870 {
871 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
872 }
873 
874 /*
875  * Compute minimal free write space needed to queue new packets.
876  */
877 static inline int sk_stream_min_wspace(const struct sock *sk)
878 {
879 	return sk->sk_wmem_queued >> 1;
880 }
881 
882 static inline int sk_stream_wspace(const struct sock *sk)
883 {
884 	return sk->sk_sndbuf - sk->sk_wmem_queued;
885 }
886 
887 void sk_stream_write_space(struct sock *sk);
888 
889 /* OOB backlog add */
890 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
891 {
892 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
893 	skb_dst_force(skb);
894 
895 	if (!sk->sk_backlog.tail)
896 		sk->sk_backlog.head = skb;
897 	else
898 		sk->sk_backlog.tail->next = skb;
899 
900 	sk->sk_backlog.tail = skb;
901 	skb->next = NULL;
902 }
903 
904 /*
905  * Take into account size of receive queue and backlog queue
906  * Do not take into account this skb truesize,
907  * to allow even a single big packet to come.
908  */
909 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
910 {
911 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
912 
913 	return qsize > limit;
914 }
915 
916 /* The per-socket spinlock must be held here. */
917 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
918 					      unsigned int limit)
919 {
920 	if (sk_rcvqueues_full(sk, limit))
921 		return -ENOBUFS;
922 
923 	/*
924 	 * If the skb was allocated from pfmemalloc reserves, only
925 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
926 	 * helping free memory
927 	 */
928 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
929 		return -ENOMEM;
930 
931 	__sk_add_backlog(sk, skb);
932 	sk->sk_backlog.len += skb->truesize;
933 	return 0;
934 }
935 
936 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
937 
938 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
939 {
940 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
941 		return __sk_backlog_rcv(sk, skb);
942 
943 	return sk->sk_backlog_rcv(sk, skb);
944 }
945 
946 static inline void sk_incoming_cpu_update(struct sock *sk)
947 {
948 	int cpu = raw_smp_processor_id();
949 
950 	if (unlikely(sk->sk_incoming_cpu != cpu))
951 		sk->sk_incoming_cpu = cpu;
952 }
953 
954 static inline void sock_rps_record_flow_hash(__u32 hash)
955 {
956 #ifdef CONFIG_RPS
957 	struct rps_sock_flow_table *sock_flow_table;
958 
959 	rcu_read_lock();
960 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
961 	rps_record_sock_flow(sock_flow_table, hash);
962 	rcu_read_unlock();
963 #endif
964 }
965 
966 static inline void sock_rps_record_flow(const struct sock *sk)
967 {
968 #ifdef CONFIG_RPS
969 	if (static_key_false(&rfs_needed)) {
970 		/* Reading sk->sk_rxhash might incur an expensive cache line
971 		 * miss.
972 		 *
973 		 * TCP_ESTABLISHED does cover almost all states where RFS
974 		 * might be useful, and is cheaper [1] than testing :
975 		 *	IPv4: inet_sk(sk)->inet_daddr
976 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
977 		 * OR	an additional socket flag
978 		 * [1] : sk_state and sk_prot are in the same cache line.
979 		 */
980 		if (sk->sk_state == TCP_ESTABLISHED)
981 			sock_rps_record_flow_hash(sk->sk_rxhash);
982 	}
983 #endif
984 }
985 
986 static inline void sock_rps_save_rxhash(struct sock *sk,
987 					const struct sk_buff *skb)
988 {
989 #ifdef CONFIG_RPS
990 	if (unlikely(sk->sk_rxhash != skb->hash))
991 		sk->sk_rxhash = skb->hash;
992 #endif
993 }
994 
995 static inline void sock_rps_reset_rxhash(struct sock *sk)
996 {
997 #ifdef CONFIG_RPS
998 	sk->sk_rxhash = 0;
999 #endif
1000 }
1001 
1002 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1003 	({	int __rc;						\
1004 		release_sock(__sk);					\
1005 		__rc = __condition;					\
1006 		if (!__rc) {						\
1007 			*(__timeo) = wait_woken(__wait,			\
1008 						TASK_INTERRUPTIBLE,	\
1009 						*(__timeo));		\
1010 		}							\
1011 		sched_annotate_sleep();					\
1012 		lock_sock(__sk);					\
1013 		__rc = __condition;					\
1014 		__rc;							\
1015 	})
1016 
1017 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1018 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1019 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1020 int sk_stream_error(struct sock *sk, int flags, int err);
1021 void sk_stream_kill_queues(struct sock *sk);
1022 void sk_set_memalloc(struct sock *sk);
1023 void sk_clear_memalloc(struct sock *sk);
1024 
1025 void __sk_flush_backlog(struct sock *sk);
1026 
1027 static inline bool sk_flush_backlog(struct sock *sk)
1028 {
1029 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1030 		__sk_flush_backlog(sk);
1031 		return true;
1032 	}
1033 	return false;
1034 }
1035 
1036 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1037 
1038 struct request_sock_ops;
1039 struct timewait_sock_ops;
1040 struct inet_hashinfo;
1041 struct raw_hashinfo;
1042 struct smc_hashinfo;
1043 struct module;
1044 
1045 /*
1046  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1047  * un-modified. Special care is taken when initializing object to zero.
1048  */
1049 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1050 {
1051 	if (offsetof(struct sock, sk_node.next) != 0)
1052 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1053 	memset(&sk->sk_node.pprev, 0,
1054 	       size - offsetof(struct sock, sk_node.pprev));
1055 }
1056 
1057 /* Networking protocol blocks we attach to sockets.
1058  * socket layer -> transport layer interface
1059  */
1060 struct proto {
1061 	void			(*close)(struct sock *sk,
1062 					long timeout);
1063 	int			(*pre_connect)(struct sock *sk,
1064 					struct sockaddr *uaddr,
1065 					int addr_len);
1066 	int			(*connect)(struct sock *sk,
1067 					struct sockaddr *uaddr,
1068 					int addr_len);
1069 	int			(*disconnect)(struct sock *sk, int flags);
1070 
1071 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1072 					  bool kern);
1073 
1074 	int			(*ioctl)(struct sock *sk, int cmd,
1075 					 unsigned long arg);
1076 	int			(*init)(struct sock *sk);
1077 	void			(*destroy)(struct sock *sk);
1078 	void			(*shutdown)(struct sock *sk, int how);
1079 	int			(*setsockopt)(struct sock *sk, int level,
1080 					int optname, char __user *optval,
1081 					unsigned int optlen);
1082 	int			(*getsockopt)(struct sock *sk, int level,
1083 					int optname, char __user *optval,
1084 					int __user *option);
1085 	void			(*keepalive)(struct sock *sk, int valbool);
1086 #ifdef CONFIG_COMPAT
1087 	int			(*compat_setsockopt)(struct sock *sk,
1088 					int level,
1089 					int optname, char __user *optval,
1090 					unsigned int optlen);
1091 	int			(*compat_getsockopt)(struct sock *sk,
1092 					int level,
1093 					int optname, char __user *optval,
1094 					int __user *option);
1095 	int			(*compat_ioctl)(struct sock *sk,
1096 					unsigned int cmd, unsigned long arg);
1097 #endif
1098 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1099 					   size_t len);
1100 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1101 					   size_t len, int noblock, int flags,
1102 					   int *addr_len);
1103 	int			(*sendpage)(struct sock *sk, struct page *page,
1104 					int offset, size_t size, int flags);
1105 	int			(*bind)(struct sock *sk,
1106 					struct sockaddr *uaddr, int addr_len);
1107 
1108 	int			(*backlog_rcv) (struct sock *sk,
1109 						struct sk_buff *skb);
1110 
1111 	void		(*release_cb)(struct sock *sk);
1112 
1113 	/* Keeping track of sk's, looking them up, and port selection methods. */
1114 	int			(*hash)(struct sock *sk);
1115 	void			(*unhash)(struct sock *sk);
1116 	void			(*rehash)(struct sock *sk);
1117 	int			(*get_port)(struct sock *sk, unsigned short snum);
1118 
1119 	/* Keeping track of sockets in use */
1120 #ifdef CONFIG_PROC_FS
1121 	unsigned int		inuse_idx;
1122 #endif
1123 
1124 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1125 	bool			(*stream_memory_read)(const struct sock *sk);
1126 	/* Memory pressure */
1127 	void			(*enter_memory_pressure)(struct sock *sk);
1128 	void			(*leave_memory_pressure)(struct sock *sk);
1129 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1130 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1131 	/*
1132 	 * Pressure flag: try to collapse.
1133 	 * Technical note: it is used by multiple contexts non atomically.
1134 	 * All the __sk_mem_schedule() is of this nature: accounting
1135 	 * is strict, actions are advisory and have some latency.
1136 	 */
1137 	unsigned long		*memory_pressure;
1138 	long			*sysctl_mem;
1139 
1140 	int			*sysctl_wmem;
1141 	int			*sysctl_rmem;
1142 	u32			sysctl_wmem_offset;
1143 	u32			sysctl_rmem_offset;
1144 
1145 	int			max_header;
1146 	bool			no_autobind;
1147 
1148 	struct kmem_cache	*slab;
1149 	unsigned int		obj_size;
1150 	slab_flags_t		slab_flags;
1151 	unsigned int		useroffset;	/* Usercopy region offset */
1152 	unsigned int		usersize;	/* Usercopy region size */
1153 
1154 	struct percpu_counter	*orphan_count;
1155 
1156 	struct request_sock_ops	*rsk_prot;
1157 	struct timewait_sock_ops *twsk_prot;
1158 
1159 	union {
1160 		struct inet_hashinfo	*hashinfo;
1161 		struct udp_table	*udp_table;
1162 		struct raw_hashinfo	*raw_hash;
1163 		struct smc_hashinfo	*smc_hash;
1164 	} h;
1165 
1166 	struct module		*owner;
1167 
1168 	char			name[32];
1169 
1170 	struct list_head	node;
1171 #ifdef SOCK_REFCNT_DEBUG
1172 	atomic_t		socks;
1173 #endif
1174 	int			(*diag_destroy)(struct sock *sk, int err);
1175 } __randomize_layout;
1176 
1177 int proto_register(struct proto *prot, int alloc_slab);
1178 void proto_unregister(struct proto *prot);
1179 int sock_load_diag_module(int family, int protocol);
1180 
1181 #ifdef SOCK_REFCNT_DEBUG
1182 static inline void sk_refcnt_debug_inc(struct sock *sk)
1183 {
1184 	atomic_inc(&sk->sk_prot->socks);
1185 }
1186 
1187 static inline void sk_refcnt_debug_dec(struct sock *sk)
1188 {
1189 	atomic_dec(&sk->sk_prot->socks);
1190 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1191 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1192 }
1193 
1194 static inline void sk_refcnt_debug_release(const struct sock *sk)
1195 {
1196 	if (refcount_read(&sk->sk_refcnt) != 1)
1197 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1198 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1199 }
1200 #else /* SOCK_REFCNT_DEBUG */
1201 #define sk_refcnt_debug_inc(sk) do { } while (0)
1202 #define sk_refcnt_debug_dec(sk) do { } while (0)
1203 #define sk_refcnt_debug_release(sk) do { } while (0)
1204 #endif /* SOCK_REFCNT_DEBUG */
1205 
1206 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1207 {
1208 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1209 		return false;
1210 
1211 	return sk->sk_prot->stream_memory_free ?
1212 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1213 }
1214 
1215 static inline bool sk_stream_memory_free(const struct sock *sk)
1216 {
1217 	return __sk_stream_memory_free(sk, 0);
1218 }
1219 
1220 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1221 {
1222 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1223 	       __sk_stream_memory_free(sk, wake);
1224 }
1225 
1226 static inline bool sk_stream_is_writeable(const struct sock *sk)
1227 {
1228 	return __sk_stream_is_writeable(sk, 0);
1229 }
1230 
1231 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1232 					    struct cgroup *ancestor)
1233 {
1234 #ifdef CONFIG_SOCK_CGROUP_DATA
1235 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1236 				    ancestor);
1237 #else
1238 	return -ENOTSUPP;
1239 #endif
1240 }
1241 
1242 static inline bool sk_has_memory_pressure(const struct sock *sk)
1243 {
1244 	return sk->sk_prot->memory_pressure != NULL;
1245 }
1246 
1247 static inline bool sk_under_memory_pressure(const struct sock *sk)
1248 {
1249 	if (!sk->sk_prot->memory_pressure)
1250 		return false;
1251 
1252 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1253 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1254 		return true;
1255 
1256 	return !!*sk->sk_prot->memory_pressure;
1257 }
1258 
1259 static inline long
1260 sk_memory_allocated(const struct sock *sk)
1261 {
1262 	return atomic_long_read(sk->sk_prot->memory_allocated);
1263 }
1264 
1265 static inline long
1266 sk_memory_allocated_add(struct sock *sk, int amt)
1267 {
1268 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1269 }
1270 
1271 static inline void
1272 sk_memory_allocated_sub(struct sock *sk, int amt)
1273 {
1274 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1275 }
1276 
1277 static inline void sk_sockets_allocated_dec(struct sock *sk)
1278 {
1279 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1280 }
1281 
1282 static inline void sk_sockets_allocated_inc(struct sock *sk)
1283 {
1284 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1285 }
1286 
1287 static inline u64
1288 sk_sockets_allocated_read_positive(struct sock *sk)
1289 {
1290 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1291 }
1292 
1293 static inline int
1294 proto_sockets_allocated_sum_positive(struct proto *prot)
1295 {
1296 	return percpu_counter_sum_positive(prot->sockets_allocated);
1297 }
1298 
1299 static inline long
1300 proto_memory_allocated(struct proto *prot)
1301 {
1302 	return atomic_long_read(prot->memory_allocated);
1303 }
1304 
1305 static inline bool
1306 proto_memory_pressure(struct proto *prot)
1307 {
1308 	if (!prot->memory_pressure)
1309 		return false;
1310 	return !!*prot->memory_pressure;
1311 }
1312 
1313 
1314 #ifdef CONFIG_PROC_FS
1315 /* Called with local bh disabled */
1316 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1317 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1318 int sock_inuse_get(struct net *net);
1319 #else
1320 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1321 		int inc)
1322 {
1323 }
1324 #endif
1325 
1326 
1327 /* With per-bucket locks this operation is not-atomic, so that
1328  * this version is not worse.
1329  */
1330 static inline int __sk_prot_rehash(struct sock *sk)
1331 {
1332 	sk->sk_prot->unhash(sk);
1333 	return sk->sk_prot->hash(sk);
1334 }
1335 
1336 /* About 10 seconds */
1337 #define SOCK_DESTROY_TIME (10*HZ)
1338 
1339 /* Sockets 0-1023 can't be bound to unless you are superuser */
1340 #define PROT_SOCK	1024
1341 
1342 #define SHUTDOWN_MASK	3
1343 #define RCV_SHUTDOWN	1
1344 #define SEND_SHUTDOWN	2
1345 
1346 #define SOCK_SNDBUF_LOCK	1
1347 #define SOCK_RCVBUF_LOCK	2
1348 #define SOCK_BINDADDR_LOCK	4
1349 #define SOCK_BINDPORT_LOCK	8
1350 
1351 struct socket_alloc {
1352 	struct socket socket;
1353 	struct inode vfs_inode;
1354 };
1355 
1356 static inline struct socket *SOCKET_I(struct inode *inode)
1357 {
1358 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1359 }
1360 
1361 static inline struct inode *SOCK_INODE(struct socket *socket)
1362 {
1363 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1364 }
1365 
1366 /*
1367  * Functions for memory accounting
1368  */
1369 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1370 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1371 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1372 void __sk_mem_reclaim(struct sock *sk, int amount);
1373 
1374 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1375  * do not necessarily have 16x time more memory than 4KB ones.
1376  */
1377 #define SK_MEM_QUANTUM 4096
1378 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1379 #define SK_MEM_SEND	0
1380 #define SK_MEM_RECV	1
1381 
1382 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1383 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1384 {
1385 	long val = sk->sk_prot->sysctl_mem[index];
1386 
1387 #if PAGE_SIZE > SK_MEM_QUANTUM
1388 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1389 #elif PAGE_SIZE < SK_MEM_QUANTUM
1390 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1391 #endif
1392 	return val;
1393 }
1394 
1395 static inline int sk_mem_pages(int amt)
1396 {
1397 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1398 }
1399 
1400 static inline bool sk_has_account(struct sock *sk)
1401 {
1402 	/* return true if protocol supports memory accounting */
1403 	return !!sk->sk_prot->memory_allocated;
1404 }
1405 
1406 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1407 {
1408 	if (!sk_has_account(sk))
1409 		return true;
1410 	return size <= sk->sk_forward_alloc ||
1411 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1412 }
1413 
1414 static inline bool
1415 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1416 {
1417 	if (!sk_has_account(sk))
1418 		return true;
1419 	return size<= sk->sk_forward_alloc ||
1420 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1421 		skb_pfmemalloc(skb);
1422 }
1423 
1424 static inline void sk_mem_reclaim(struct sock *sk)
1425 {
1426 	if (!sk_has_account(sk))
1427 		return;
1428 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1429 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1430 }
1431 
1432 static inline void sk_mem_reclaim_partial(struct sock *sk)
1433 {
1434 	if (!sk_has_account(sk))
1435 		return;
1436 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1437 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1438 }
1439 
1440 static inline void sk_mem_charge(struct sock *sk, int size)
1441 {
1442 	if (!sk_has_account(sk))
1443 		return;
1444 	sk->sk_forward_alloc -= size;
1445 }
1446 
1447 static inline void sk_mem_uncharge(struct sock *sk, int size)
1448 {
1449 	if (!sk_has_account(sk))
1450 		return;
1451 	sk->sk_forward_alloc += size;
1452 
1453 	/* Avoid a possible overflow.
1454 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1455 	 * is not called and more than 2 GBytes are released at once.
1456 	 *
1457 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1458 	 * no need to hold that much forward allocation anyway.
1459 	 */
1460 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1461 		__sk_mem_reclaim(sk, 1 << 20);
1462 }
1463 
1464 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1465 {
1466 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1467 	sk->sk_wmem_queued -= skb->truesize;
1468 	sk_mem_uncharge(sk, skb->truesize);
1469 	__kfree_skb(skb);
1470 }
1471 
1472 static inline void sock_release_ownership(struct sock *sk)
1473 {
1474 	if (sk->sk_lock.owned) {
1475 		sk->sk_lock.owned = 0;
1476 
1477 		/* The sk_lock has mutex_unlock() semantics: */
1478 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1479 	}
1480 }
1481 
1482 /*
1483  * Macro so as to not evaluate some arguments when
1484  * lockdep is not enabled.
1485  *
1486  * Mark both the sk_lock and the sk_lock.slock as a
1487  * per-address-family lock class.
1488  */
1489 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1490 do {									\
1491 	sk->sk_lock.owned = 0;						\
1492 	init_waitqueue_head(&sk->sk_lock.wq);				\
1493 	spin_lock_init(&(sk)->sk_lock.slock);				\
1494 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1495 			sizeof((sk)->sk_lock));				\
1496 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1497 				(skey), (sname));				\
1498 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1499 } while (0)
1500 
1501 #ifdef CONFIG_LOCKDEP
1502 static inline bool lockdep_sock_is_held(const struct sock *sk)
1503 {
1504 	return lockdep_is_held(&sk->sk_lock) ||
1505 	       lockdep_is_held(&sk->sk_lock.slock);
1506 }
1507 #endif
1508 
1509 void lock_sock_nested(struct sock *sk, int subclass);
1510 
1511 static inline void lock_sock(struct sock *sk)
1512 {
1513 	lock_sock_nested(sk, 0);
1514 }
1515 
1516 void __release_sock(struct sock *sk);
1517 void release_sock(struct sock *sk);
1518 
1519 /* BH context may only use the following locking interface. */
1520 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1521 #define bh_lock_sock_nested(__sk) \
1522 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1523 				SINGLE_DEPTH_NESTING)
1524 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1525 
1526 bool lock_sock_fast(struct sock *sk);
1527 /**
1528  * unlock_sock_fast - complement of lock_sock_fast
1529  * @sk: socket
1530  * @slow: slow mode
1531  *
1532  * fast unlock socket for user context.
1533  * If slow mode is on, we call regular release_sock()
1534  */
1535 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1536 {
1537 	if (slow)
1538 		release_sock(sk);
1539 	else
1540 		spin_unlock_bh(&sk->sk_lock.slock);
1541 }
1542 
1543 /* Used by processes to "lock" a socket state, so that
1544  * interrupts and bottom half handlers won't change it
1545  * from under us. It essentially blocks any incoming
1546  * packets, so that we won't get any new data or any
1547  * packets that change the state of the socket.
1548  *
1549  * While locked, BH processing will add new packets to
1550  * the backlog queue.  This queue is processed by the
1551  * owner of the socket lock right before it is released.
1552  *
1553  * Since ~2.3.5 it is also exclusive sleep lock serializing
1554  * accesses from user process context.
1555  */
1556 
1557 static inline void sock_owned_by_me(const struct sock *sk)
1558 {
1559 #ifdef CONFIG_LOCKDEP
1560 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1561 #endif
1562 }
1563 
1564 static inline bool sock_owned_by_user(const struct sock *sk)
1565 {
1566 	sock_owned_by_me(sk);
1567 	return sk->sk_lock.owned;
1568 }
1569 
1570 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1571 {
1572 	return sk->sk_lock.owned;
1573 }
1574 
1575 /* no reclassification while locks are held */
1576 static inline bool sock_allow_reclassification(const struct sock *csk)
1577 {
1578 	struct sock *sk = (struct sock *)csk;
1579 
1580 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1581 }
1582 
1583 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1584 		      struct proto *prot, int kern);
1585 void sk_free(struct sock *sk);
1586 void sk_destruct(struct sock *sk);
1587 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1588 void sk_free_unlock_clone(struct sock *sk);
1589 
1590 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1591 			     gfp_t priority);
1592 void __sock_wfree(struct sk_buff *skb);
1593 void sock_wfree(struct sk_buff *skb);
1594 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1595 			     gfp_t priority);
1596 void skb_orphan_partial(struct sk_buff *skb);
1597 void sock_rfree(struct sk_buff *skb);
1598 void sock_efree(struct sk_buff *skb);
1599 #ifdef CONFIG_INET
1600 void sock_edemux(struct sk_buff *skb);
1601 #else
1602 #define sock_edemux sock_efree
1603 #endif
1604 
1605 int sock_setsockopt(struct socket *sock, int level, int op,
1606 		    char __user *optval, unsigned int optlen);
1607 
1608 int sock_getsockopt(struct socket *sock, int level, int op,
1609 		    char __user *optval, int __user *optlen);
1610 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1611 				    int noblock, int *errcode);
1612 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1613 				     unsigned long data_len, int noblock,
1614 				     int *errcode, int max_page_order);
1615 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1616 void sock_kfree_s(struct sock *sk, void *mem, int size);
1617 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1618 void sk_send_sigurg(struct sock *sk);
1619 
1620 struct sockcm_cookie {
1621 	u64 transmit_time;
1622 	u32 mark;
1623 	u16 tsflags;
1624 };
1625 
1626 static inline void sockcm_init(struct sockcm_cookie *sockc,
1627 			       const struct sock *sk)
1628 {
1629 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1630 }
1631 
1632 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1633 		     struct sockcm_cookie *sockc);
1634 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1635 		   struct sockcm_cookie *sockc);
1636 
1637 /*
1638  * Functions to fill in entries in struct proto_ops when a protocol
1639  * does not implement a particular function.
1640  */
1641 int sock_no_bind(struct socket *, struct sockaddr *, int);
1642 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1643 int sock_no_socketpair(struct socket *, struct socket *);
1644 int sock_no_accept(struct socket *, struct socket *, int, bool);
1645 int sock_no_getname(struct socket *, struct sockaddr *, int);
1646 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1647 int sock_no_listen(struct socket *, int);
1648 int sock_no_shutdown(struct socket *, int);
1649 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1650 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1651 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1652 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1653 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1654 int sock_no_mmap(struct file *file, struct socket *sock,
1655 		 struct vm_area_struct *vma);
1656 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1657 			 size_t size, int flags);
1658 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1659 				int offset, size_t size, int flags);
1660 
1661 /*
1662  * Functions to fill in entries in struct proto_ops when a protocol
1663  * uses the inet style.
1664  */
1665 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1666 				  char __user *optval, int __user *optlen);
1667 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1668 			int flags);
1669 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1670 				  char __user *optval, unsigned int optlen);
1671 int compat_sock_common_getsockopt(struct socket *sock, int level,
1672 		int optname, char __user *optval, int __user *optlen);
1673 int compat_sock_common_setsockopt(struct socket *sock, int level,
1674 		int optname, char __user *optval, unsigned int optlen);
1675 
1676 void sk_common_release(struct sock *sk);
1677 
1678 /*
1679  *	Default socket callbacks and setup code
1680  */
1681 
1682 /* Initialise core socket variables */
1683 void sock_init_data(struct socket *sock, struct sock *sk);
1684 
1685 /*
1686  * Socket reference counting postulates.
1687  *
1688  * * Each user of socket SHOULD hold a reference count.
1689  * * Each access point to socket (an hash table bucket, reference from a list,
1690  *   running timer, skb in flight MUST hold a reference count.
1691  * * When reference count hits 0, it means it will never increase back.
1692  * * When reference count hits 0, it means that no references from
1693  *   outside exist to this socket and current process on current CPU
1694  *   is last user and may/should destroy this socket.
1695  * * sk_free is called from any context: process, BH, IRQ. When
1696  *   it is called, socket has no references from outside -> sk_free
1697  *   may release descendant resources allocated by the socket, but
1698  *   to the time when it is called, socket is NOT referenced by any
1699  *   hash tables, lists etc.
1700  * * Packets, delivered from outside (from network or from another process)
1701  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1702  *   when they sit in queue. Otherwise, packets will leak to hole, when
1703  *   socket is looked up by one cpu and unhasing is made by another CPU.
1704  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1705  *   (leak to backlog). Packet socket does all the processing inside
1706  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1707  *   use separate SMP lock, so that they are prone too.
1708  */
1709 
1710 /* Ungrab socket and destroy it, if it was the last reference. */
1711 static inline void sock_put(struct sock *sk)
1712 {
1713 	if (refcount_dec_and_test(&sk->sk_refcnt))
1714 		sk_free(sk);
1715 }
1716 /* Generic version of sock_put(), dealing with all sockets
1717  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1718  */
1719 void sock_gen_put(struct sock *sk);
1720 
1721 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1722 		     unsigned int trim_cap, bool refcounted);
1723 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1724 				 const int nested)
1725 {
1726 	return __sk_receive_skb(sk, skb, nested, 1, true);
1727 }
1728 
1729 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1730 {
1731 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1732 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1733 		return;
1734 	sk->sk_tx_queue_mapping = tx_queue;
1735 }
1736 
1737 #define NO_QUEUE_MAPPING	USHRT_MAX
1738 
1739 static inline void sk_tx_queue_clear(struct sock *sk)
1740 {
1741 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1742 }
1743 
1744 static inline int sk_tx_queue_get(const struct sock *sk)
1745 {
1746 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1747 		return sk->sk_tx_queue_mapping;
1748 
1749 	return -1;
1750 }
1751 
1752 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1753 {
1754 #ifdef CONFIG_XPS
1755 	if (skb_rx_queue_recorded(skb)) {
1756 		u16 rx_queue = skb_get_rx_queue(skb);
1757 
1758 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1759 			return;
1760 
1761 		sk->sk_rx_queue_mapping = rx_queue;
1762 	}
1763 #endif
1764 }
1765 
1766 static inline void sk_rx_queue_clear(struct sock *sk)
1767 {
1768 #ifdef CONFIG_XPS
1769 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1770 #endif
1771 }
1772 
1773 #ifdef CONFIG_XPS
1774 static inline int sk_rx_queue_get(const struct sock *sk)
1775 {
1776 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1777 		return sk->sk_rx_queue_mapping;
1778 
1779 	return -1;
1780 }
1781 #endif
1782 
1783 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1784 {
1785 	sk_tx_queue_clear(sk);
1786 	sk->sk_socket = sock;
1787 }
1788 
1789 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1790 {
1791 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1792 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1793 }
1794 /* Detach socket from process context.
1795  * Announce socket dead, detach it from wait queue and inode.
1796  * Note that parent inode held reference count on this struct sock,
1797  * we do not release it in this function, because protocol
1798  * probably wants some additional cleanups or even continuing
1799  * to work with this socket (TCP).
1800  */
1801 static inline void sock_orphan(struct sock *sk)
1802 {
1803 	write_lock_bh(&sk->sk_callback_lock);
1804 	sock_set_flag(sk, SOCK_DEAD);
1805 	sk_set_socket(sk, NULL);
1806 	sk->sk_wq  = NULL;
1807 	write_unlock_bh(&sk->sk_callback_lock);
1808 }
1809 
1810 static inline void sock_graft(struct sock *sk, struct socket *parent)
1811 {
1812 	WARN_ON(parent->sk);
1813 	write_lock_bh(&sk->sk_callback_lock);
1814 	rcu_assign_pointer(sk->sk_wq, parent->wq);
1815 	parent->sk = sk;
1816 	sk_set_socket(sk, parent);
1817 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1818 	security_sock_graft(sk, parent);
1819 	write_unlock_bh(&sk->sk_callback_lock);
1820 }
1821 
1822 kuid_t sock_i_uid(struct sock *sk);
1823 unsigned long sock_i_ino(struct sock *sk);
1824 
1825 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1826 {
1827 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1828 }
1829 
1830 static inline u32 net_tx_rndhash(void)
1831 {
1832 	u32 v = prandom_u32();
1833 
1834 	return v ?: 1;
1835 }
1836 
1837 static inline void sk_set_txhash(struct sock *sk)
1838 {
1839 	sk->sk_txhash = net_tx_rndhash();
1840 }
1841 
1842 static inline void sk_rethink_txhash(struct sock *sk)
1843 {
1844 	if (sk->sk_txhash)
1845 		sk_set_txhash(sk);
1846 }
1847 
1848 static inline struct dst_entry *
1849 __sk_dst_get(struct sock *sk)
1850 {
1851 	return rcu_dereference_check(sk->sk_dst_cache,
1852 				     lockdep_sock_is_held(sk));
1853 }
1854 
1855 static inline struct dst_entry *
1856 sk_dst_get(struct sock *sk)
1857 {
1858 	struct dst_entry *dst;
1859 
1860 	rcu_read_lock();
1861 	dst = rcu_dereference(sk->sk_dst_cache);
1862 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1863 		dst = NULL;
1864 	rcu_read_unlock();
1865 	return dst;
1866 }
1867 
1868 static inline void dst_negative_advice(struct sock *sk)
1869 {
1870 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1871 
1872 	sk_rethink_txhash(sk);
1873 
1874 	if (dst && dst->ops->negative_advice) {
1875 		ndst = dst->ops->negative_advice(dst);
1876 
1877 		if (ndst != dst) {
1878 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1879 			sk_tx_queue_clear(sk);
1880 			sk->sk_dst_pending_confirm = 0;
1881 		}
1882 	}
1883 }
1884 
1885 static inline void
1886 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1887 {
1888 	struct dst_entry *old_dst;
1889 
1890 	sk_tx_queue_clear(sk);
1891 	sk->sk_dst_pending_confirm = 0;
1892 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1893 					    lockdep_sock_is_held(sk));
1894 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1895 	dst_release(old_dst);
1896 }
1897 
1898 static inline void
1899 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1900 {
1901 	struct dst_entry *old_dst;
1902 
1903 	sk_tx_queue_clear(sk);
1904 	sk->sk_dst_pending_confirm = 0;
1905 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1906 	dst_release(old_dst);
1907 }
1908 
1909 static inline void
1910 __sk_dst_reset(struct sock *sk)
1911 {
1912 	__sk_dst_set(sk, NULL);
1913 }
1914 
1915 static inline void
1916 sk_dst_reset(struct sock *sk)
1917 {
1918 	sk_dst_set(sk, NULL);
1919 }
1920 
1921 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1922 
1923 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1924 
1925 static inline void sk_dst_confirm(struct sock *sk)
1926 {
1927 	if (!sk->sk_dst_pending_confirm)
1928 		sk->sk_dst_pending_confirm = 1;
1929 }
1930 
1931 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1932 {
1933 	if (skb_get_dst_pending_confirm(skb)) {
1934 		struct sock *sk = skb->sk;
1935 		unsigned long now = jiffies;
1936 
1937 		/* avoid dirtying neighbour */
1938 		if (n->confirmed != now)
1939 			n->confirmed = now;
1940 		if (sk && sk->sk_dst_pending_confirm)
1941 			sk->sk_dst_pending_confirm = 0;
1942 	}
1943 }
1944 
1945 bool sk_mc_loop(struct sock *sk);
1946 
1947 static inline bool sk_can_gso(const struct sock *sk)
1948 {
1949 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1950 }
1951 
1952 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1953 
1954 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1955 {
1956 	sk->sk_route_nocaps |= flags;
1957 	sk->sk_route_caps &= ~flags;
1958 }
1959 
1960 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1961 					   struct iov_iter *from, char *to,
1962 					   int copy, int offset)
1963 {
1964 	if (skb->ip_summed == CHECKSUM_NONE) {
1965 		__wsum csum = 0;
1966 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1967 			return -EFAULT;
1968 		skb->csum = csum_block_add(skb->csum, csum, offset);
1969 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1970 		if (!copy_from_iter_full_nocache(to, copy, from))
1971 			return -EFAULT;
1972 	} else if (!copy_from_iter_full(to, copy, from))
1973 		return -EFAULT;
1974 
1975 	return 0;
1976 }
1977 
1978 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1979 				       struct iov_iter *from, int copy)
1980 {
1981 	int err, offset = skb->len;
1982 
1983 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1984 				       copy, offset);
1985 	if (err)
1986 		__skb_trim(skb, offset);
1987 
1988 	return err;
1989 }
1990 
1991 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1992 					   struct sk_buff *skb,
1993 					   struct page *page,
1994 					   int off, int copy)
1995 {
1996 	int err;
1997 
1998 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1999 				       copy, skb->len);
2000 	if (err)
2001 		return err;
2002 
2003 	skb->len	     += copy;
2004 	skb->data_len	     += copy;
2005 	skb->truesize	     += copy;
2006 	sk->sk_wmem_queued   += copy;
2007 	sk_mem_charge(sk, copy);
2008 	return 0;
2009 }
2010 
2011 /**
2012  * sk_wmem_alloc_get - returns write allocations
2013  * @sk: socket
2014  *
2015  * Returns sk_wmem_alloc minus initial offset of one
2016  */
2017 static inline int sk_wmem_alloc_get(const struct sock *sk)
2018 {
2019 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2020 }
2021 
2022 /**
2023  * sk_rmem_alloc_get - returns read allocations
2024  * @sk: socket
2025  *
2026  * Returns sk_rmem_alloc
2027  */
2028 static inline int sk_rmem_alloc_get(const struct sock *sk)
2029 {
2030 	return atomic_read(&sk->sk_rmem_alloc);
2031 }
2032 
2033 /**
2034  * sk_has_allocations - check if allocations are outstanding
2035  * @sk: socket
2036  *
2037  * Returns true if socket has write or read allocations
2038  */
2039 static inline bool sk_has_allocations(const struct sock *sk)
2040 {
2041 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2042 }
2043 
2044 /**
2045  * skwq_has_sleeper - check if there are any waiting processes
2046  * @wq: struct socket_wq
2047  *
2048  * Returns true if socket_wq has waiting processes
2049  *
2050  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2051  * barrier call. They were added due to the race found within the tcp code.
2052  *
2053  * Consider following tcp code paths::
2054  *
2055  *   CPU1                CPU2
2056  *   sys_select          receive packet
2057  *   ...                 ...
2058  *   __add_wait_queue    update tp->rcv_nxt
2059  *   ...                 ...
2060  *   tp->rcv_nxt check   sock_def_readable
2061  *   ...                 {
2062  *   schedule               rcu_read_lock();
2063  *                          wq = rcu_dereference(sk->sk_wq);
2064  *                          if (wq && waitqueue_active(&wq->wait))
2065  *                              wake_up_interruptible(&wq->wait)
2066  *                          ...
2067  *                       }
2068  *
2069  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2070  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2071  * could then endup calling schedule and sleep forever if there are no more
2072  * data on the socket.
2073  *
2074  */
2075 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2076 {
2077 	return wq && wq_has_sleeper(&wq->wait);
2078 }
2079 
2080 /**
2081  * sock_poll_wait - place memory barrier behind the poll_wait call.
2082  * @filp:           file
2083  * @sock:           socket to wait on
2084  * @p:              poll_table
2085  *
2086  * See the comments in the wq_has_sleeper function.
2087  *
2088  * Do not derive sock from filp->private_data here. An SMC socket establishes
2089  * an internal TCP socket that is used in the fallback case. All socket
2090  * operations on the SMC socket are then forwarded to the TCP socket. In case of
2091  * poll, the filp->private_data pointer references the SMC socket because the
2092  * TCP socket has no file assigned.
2093  */
2094 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2095 				  poll_table *p)
2096 {
2097 	if (!poll_does_not_wait(p)) {
2098 		poll_wait(filp, &sock->wq->wait, p);
2099 		/* We need to be sure we are in sync with the
2100 		 * socket flags modification.
2101 		 *
2102 		 * This memory barrier is paired in the wq_has_sleeper.
2103 		 */
2104 		smp_mb();
2105 	}
2106 }
2107 
2108 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2109 {
2110 	if (sk->sk_txhash) {
2111 		skb->l4_hash = 1;
2112 		skb->hash = sk->sk_txhash;
2113 	}
2114 }
2115 
2116 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2117 
2118 /*
2119  *	Queue a received datagram if it will fit. Stream and sequenced
2120  *	protocols can't normally use this as they need to fit buffers in
2121  *	and play with them.
2122  *
2123  *	Inlined as it's very short and called for pretty much every
2124  *	packet ever received.
2125  */
2126 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2127 {
2128 	skb_orphan(skb);
2129 	skb->sk = sk;
2130 	skb->destructor = sock_rfree;
2131 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2132 	sk_mem_charge(sk, skb->truesize);
2133 }
2134 
2135 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2136 		    unsigned long expires);
2137 
2138 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2139 
2140 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2141 			struct sk_buff *skb, unsigned int flags,
2142 			void (*destructor)(struct sock *sk,
2143 					   struct sk_buff *skb));
2144 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2145 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2146 
2147 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2148 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2149 
2150 /*
2151  *	Recover an error report and clear atomically
2152  */
2153 
2154 static inline int sock_error(struct sock *sk)
2155 {
2156 	int err;
2157 	if (likely(!sk->sk_err))
2158 		return 0;
2159 	err = xchg(&sk->sk_err, 0);
2160 	return -err;
2161 }
2162 
2163 static inline unsigned long sock_wspace(struct sock *sk)
2164 {
2165 	int amt = 0;
2166 
2167 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2168 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2169 		if (amt < 0)
2170 			amt = 0;
2171 	}
2172 	return amt;
2173 }
2174 
2175 /* Note:
2176  *  We use sk->sk_wq_raw, from contexts knowing this
2177  *  pointer is not NULL and cannot disappear/change.
2178  */
2179 static inline void sk_set_bit(int nr, struct sock *sk)
2180 {
2181 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2182 	    !sock_flag(sk, SOCK_FASYNC))
2183 		return;
2184 
2185 	set_bit(nr, &sk->sk_wq_raw->flags);
2186 }
2187 
2188 static inline void sk_clear_bit(int nr, struct sock *sk)
2189 {
2190 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2191 	    !sock_flag(sk, SOCK_FASYNC))
2192 		return;
2193 
2194 	clear_bit(nr, &sk->sk_wq_raw->flags);
2195 }
2196 
2197 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2198 {
2199 	if (sock_flag(sk, SOCK_FASYNC)) {
2200 		rcu_read_lock();
2201 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2202 		rcu_read_unlock();
2203 	}
2204 }
2205 
2206 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2207  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2208  * Note: for send buffers, TCP works better if we can build two skbs at
2209  * minimum.
2210  */
2211 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2212 
2213 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2214 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2215 
2216 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2217 {
2218 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2219 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2220 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2221 	}
2222 }
2223 
2224 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2225 				    bool force_schedule);
2226 
2227 /**
2228  * sk_page_frag - return an appropriate page_frag
2229  * @sk: socket
2230  *
2231  * If socket allocation mode allows current thread to sleep, it means its
2232  * safe to use the per task page_frag instead of the per socket one.
2233  */
2234 static inline struct page_frag *sk_page_frag(struct sock *sk)
2235 {
2236 	if (gfpflags_allow_blocking(sk->sk_allocation))
2237 		return &current->task_frag;
2238 
2239 	return &sk->sk_frag;
2240 }
2241 
2242 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2243 
2244 /*
2245  *	Default write policy as shown to user space via poll/select/SIGIO
2246  */
2247 static inline bool sock_writeable(const struct sock *sk)
2248 {
2249 	return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2250 }
2251 
2252 static inline gfp_t gfp_any(void)
2253 {
2254 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2255 }
2256 
2257 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2258 {
2259 	return noblock ? 0 : sk->sk_rcvtimeo;
2260 }
2261 
2262 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2263 {
2264 	return noblock ? 0 : sk->sk_sndtimeo;
2265 }
2266 
2267 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2268 {
2269 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2270 }
2271 
2272 /* Alas, with timeout socket operations are not restartable.
2273  * Compare this to poll().
2274  */
2275 static inline int sock_intr_errno(long timeo)
2276 {
2277 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2278 }
2279 
2280 struct sock_skb_cb {
2281 	u32 dropcount;
2282 };
2283 
2284 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2285  * using skb->cb[] would keep using it directly and utilize its
2286  * alignement guarantee.
2287  */
2288 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2289 			    sizeof(struct sock_skb_cb)))
2290 
2291 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2292 			    SOCK_SKB_CB_OFFSET))
2293 
2294 #define sock_skb_cb_check_size(size) \
2295 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2296 
2297 static inline void
2298 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2299 {
2300 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2301 						atomic_read(&sk->sk_drops) : 0;
2302 }
2303 
2304 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2305 {
2306 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2307 
2308 	atomic_add(segs, &sk->sk_drops);
2309 }
2310 
2311 static inline ktime_t sock_read_timestamp(struct sock *sk)
2312 {
2313 #if BITS_PER_LONG==32
2314 	unsigned int seq;
2315 	ktime_t kt;
2316 
2317 	do {
2318 		seq = read_seqbegin(&sk->sk_stamp_seq);
2319 		kt = sk->sk_stamp;
2320 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2321 
2322 	return kt;
2323 #else
2324 	return sk->sk_stamp;
2325 #endif
2326 }
2327 
2328 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2329 {
2330 #if BITS_PER_LONG==32
2331 	write_seqlock(&sk->sk_stamp_seq);
2332 	sk->sk_stamp = kt;
2333 	write_sequnlock(&sk->sk_stamp_seq);
2334 #else
2335 	sk->sk_stamp = kt;
2336 #endif
2337 }
2338 
2339 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2340 			   struct sk_buff *skb);
2341 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2342 			     struct sk_buff *skb);
2343 
2344 static inline void
2345 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2346 {
2347 	ktime_t kt = skb->tstamp;
2348 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2349 
2350 	/*
2351 	 * generate control messages if
2352 	 * - receive time stamping in software requested
2353 	 * - software time stamp available and wanted
2354 	 * - hardware time stamps available and wanted
2355 	 */
2356 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2357 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2358 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2359 	    (hwtstamps->hwtstamp &&
2360 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2361 		__sock_recv_timestamp(msg, sk, skb);
2362 	else
2363 		sock_write_timestamp(sk, kt);
2364 
2365 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2366 		__sock_recv_wifi_status(msg, sk, skb);
2367 }
2368 
2369 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2370 			      struct sk_buff *skb);
2371 
2372 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2373 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2374 					  struct sk_buff *skb)
2375 {
2376 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2377 			   (1UL << SOCK_RCVTSTAMP))
2378 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2379 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2380 
2381 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2382 		__sock_recv_ts_and_drops(msg, sk, skb);
2383 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2384 		sock_write_timestamp(sk, skb->tstamp);
2385 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2386 		sock_write_timestamp(sk, 0);
2387 }
2388 
2389 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2390 
2391 /**
2392  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2393  * @sk:		socket sending this packet
2394  * @tsflags:	timestamping flags to use
2395  * @tx_flags:	completed with instructions for time stamping
2396  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2397  *
2398  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2399  */
2400 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2401 				      __u8 *tx_flags, __u32 *tskey)
2402 {
2403 	if (unlikely(tsflags)) {
2404 		__sock_tx_timestamp(tsflags, tx_flags);
2405 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2406 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2407 			*tskey = sk->sk_tskey++;
2408 	}
2409 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2410 		*tx_flags |= SKBTX_WIFI_STATUS;
2411 }
2412 
2413 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2414 				     __u8 *tx_flags)
2415 {
2416 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2417 }
2418 
2419 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2420 {
2421 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2422 			   &skb_shinfo(skb)->tskey);
2423 }
2424 
2425 /**
2426  * sk_eat_skb - Release a skb if it is no longer needed
2427  * @sk: socket to eat this skb from
2428  * @skb: socket buffer to eat
2429  *
2430  * This routine must be called with interrupts disabled or with the socket
2431  * locked so that the sk_buff queue operation is ok.
2432 */
2433 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2434 {
2435 	__skb_unlink(skb, &sk->sk_receive_queue);
2436 	__kfree_skb(skb);
2437 }
2438 
2439 static inline
2440 struct net *sock_net(const struct sock *sk)
2441 {
2442 	return read_pnet(&sk->sk_net);
2443 }
2444 
2445 static inline
2446 void sock_net_set(struct sock *sk, struct net *net)
2447 {
2448 	write_pnet(&sk->sk_net, net);
2449 }
2450 
2451 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2452 {
2453 	if (skb->sk) {
2454 		struct sock *sk = skb->sk;
2455 
2456 		skb->destructor = NULL;
2457 		skb->sk = NULL;
2458 		return sk;
2459 	}
2460 	return NULL;
2461 }
2462 
2463 /* This helper checks if a socket is a full socket,
2464  * ie _not_ a timewait or request socket.
2465  */
2466 static inline bool sk_fullsock(const struct sock *sk)
2467 {
2468 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2469 }
2470 
2471 /* Checks if this SKB belongs to an HW offloaded socket
2472  * and whether any SW fallbacks are required based on dev.
2473  */
2474 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2475 						   struct net_device *dev)
2476 {
2477 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2478 	struct sock *sk = skb->sk;
2479 
2480 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2481 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2482 #endif
2483 
2484 	return skb;
2485 }
2486 
2487 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2488  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2489  */
2490 static inline bool sk_listener(const struct sock *sk)
2491 {
2492 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2493 }
2494 
2495 void sock_enable_timestamp(struct sock *sk, int flag);
2496 int sock_get_timestamp(struct sock *, struct timeval __user *);
2497 int sock_get_timestampns(struct sock *, struct timespec __user *);
2498 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2499 		       int type);
2500 
2501 bool sk_ns_capable(const struct sock *sk,
2502 		   struct user_namespace *user_ns, int cap);
2503 bool sk_capable(const struct sock *sk, int cap);
2504 bool sk_net_capable(const struct sock *sk, int cap);
2505 
2506 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2507 
2508 /* Take into consideration the size of the struct sk_buff overhead in the
2509  * determination of these values, since that is non-constant across
2510  * platforms.  This makes socket queueing behavior and performance
2511  * not depend upon such differences.
2512  */
2513 #define _SK_MEM_PACKETS		256
2514 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2515 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2516 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2517 
2518 extern __u32 sysctl_wmem_max;
2519 extern __u32 sysctl_rmem_max;
2520 
2521 extern int sysctl_tstamp_allow_data;
2522 extern int sysctl_optmem_max;
2523 
2524 extern __u32 sysctl_wmem_default;
2525 extern __u32 sysctl_rmem_default;
2526 
2527 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2528 {
2529 	/* Does this proto have per netns sysctl_wmem ? */
2530 	if (proto->sysctl_wmem_offset)
2531 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2532 
2533 	return *proto->sysctl_wmem;
2534 }
2535 
2536 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2537 {
2538 	/* Does this proto have per netns sysctl_rmem ? */
2539 	if (proto->sysctl_rmem_offset)
2540 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2541 
2542 	return *proto->sysctl_rmem;
2543 }
2544 
2545 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2546  * Some wifi drivers need to tweak it to get more chunks.
2547  * They can use this helper from their ndo_start_xmit()
2548  */
2549 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2550 {
2551 	if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2552 		return;
2553 	sk->sk_pacing_shift = val;
2554 }
2555 
2556 /* if a socket is bound to a device, check that the given device
2557  * index is either the same or that the socket is bound to an L3
2558  * master device and the given device index is also enslaved to
2559  * that L3 master
2560  */
2561 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2562 {
2563 	int mdif;
2564 
2565 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2566 		return true;
2567 
2568 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2569 	if (mdif && mdif == sk->sk_bound_dev_if)
2570 		return true;
2571 
2572 	return false;
2573 }
2574 
2575 #endif	/* _SOCK_H */
2576