1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/memcontrol.h> 58 #include <linux/res_counter.h> 59 #include <linux/static_key.h> 60 #include <linux/aio.h> 61 #include <linux/sched.h> 62 63 #include <linux/filter.h> 64 #include <linux/rculist_nulls.h> 65 #include <linux/poll.h> 66 67 #include <linux/atomic.h> 68 #include <net/dst.h> 69 #include <net/checksum.h> 70 71 struct cgroup; 72 struct cgroup_subsys; 73 #ifdef CONFIG_NET 74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 76 #else 77 static inline 78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 79 { 80 return 0; 81 } 82 static inline 83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 84 { 85 } 86 #endif 87 /* 88 * This structure really needs to be cleaned up. 89 * Most of it is for TCP, and not used by any of 90 * the other protocols. 91 */ 92 93 /* Define this to get the SOCK_DBG debugging facility. */ 94 #define SOCK_DEBUGGING 95 #ifdef SOCK_DEBUGGING 96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 97 printk(KERN_DEBUG msg); } while (0) 98 #else 99 /* Validate arguments and do nothing */ 100 static inline __printf(2, 3) 101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 102 { 103 } 104 #endif 105 106 /* This is the per-socket lock. The spinlock provides a synchronization 107 * between user contexts and software interrupt processing, whereas the 108 * mini-semaphore synchronizes multiple users amongst themselves. 109 */ 110 typedef struct { 111 spinlock_t slock; 112 int owned; 113 wait_queue_head_t wq; 114 /* 115 * We express the mutex-alike socket_lock semantics 116 * to the lock validator by explicitly managing 117 * the slock as a lock variant (in addition to 118 * the slock itself): 119 */ 120 #ifdef CONFIG_DEBUG_LOCK_ALLOC 121 struct lockdep_map dep_map; 122 #endif 123 } socket_lock_t; 124 125 struct sock; 126 struct proto; 127 struct net; 128 129 typedef __u32 __bitwise __portpair; 130 typedef __u64 __bitwise __addrpair; 131 132 /** 133 * struct sock_common - minimal network layer representation of sockets 134 * @skc_daddr: Foreign IPv4 addr 135 * @skc_rcv_saddr: Bound local IPv4 addr 136 * @skc_hash: hash value used with various protocol lookup tables 137 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 138 * @skc_dport: placeholder for inet_dport/tw_dport 139 * @skc_num: placeholder for inet_num/tw_num 140 * @skc_family: network address family 141 * @skc_state: Connection state 142 * @skc_reuse: %SO_REUSEADDR setting 143 * @skc_reuseport: %SO_REUSEPORT setting 144 * @skc_bound_dev_if: bound device index if != 0 145 * @skc_bind_node: bind hash linkage for various protocol lookup tables 146 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 147 * @skc_prot: protocol handlers inside a network family 148 * @skc_net: reference to the network namespace of this socket 149 * @skc_node: main hash linkage for various protocol lookup tables 150 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 151 * @skc_tx_queue_mapping: tx queue number for this connection 152 * @skc_refcnt: reference count 153 * 154 * This is the minimal network layer representation of sockets, the header 155 * for struct sock and struct inet_timewait_sock. 156 */ 157 struct sock_common { 158 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 159 * address on 64bit arches : cf INET_MATCH() and INET_TW_MATCH() 160 */ 161 union { 162 __addrpair skc_addrpair; 163 struct { 164 __be32 skc_daddr; 165 __be32 skc_rcv_saddr; 166 }; 167 }; 168 union { 169 unsigned int skc_hash; 170 __u16 skc_u16hashes[2]; 171 }; 172 /* skc_dport && skc_num must be grouped as well */ 173 union { 174 __portpair skc_portpair; 175 struct { 176 __be16 skc_dport; 177 __u16 skc_num; 178 }; 179 }; 180 181 unsigned short skc_family; 182 volatile unsigned char skc_state; 183 unsigned char skc_reuse:4; 184 unsigned char skc_reuseport:4; 185 int skc_bound_dev_if; 186 union { 187 struct hlist_node skc_bind_node; 188 struct hlist_nulls_node skc_portaddr_node; 189 }; 190 struct proto *skc_prot; 191 #ifdef CONFIG_NET_NS 192 struct net *skc_net; 193 #endif 194 /* 195 * fields between dontcopy_begin/dontcopy_end 196 * are not copied in sock_copy() 197 */ 198 /* private: */ 199 int skc_dontcopy_begin[0]; 200 /* public: */ 201 union { 202 struct hlist_node skc_node; 203 struct hlist_nulls_node skc_nulls_node; 204 }; 205 int skc_tx_queue_mapping; 206 atomic_t skc_refcnt; 207 /* private: */ 208 int skc_dontcopy_end[0]; 209 /* public: */ 210 }; 211 212 struct cg_proto; 213 /** 214 * struct sock - network layer representation of sockets 215 * @__sk_common: shared layout with inet_timewait_sock 216 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 217 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 218 * @sk_lock: synchronizer 219 * @sk_rcvbuf: size of receive buffer in bytes 220 * @sk_wq: sock wait queue and async head 221 * @sk_rx_dst: receive input route used by early tcp demux 222 * @sk_dst_cache: destination cache 223 * @sk_dst_lock: destination cache lock 224 * @sk_policy: flow policy 225 * @sk_receive_queue: incoming packets 226 * @sk_wmem_alloc: transmit queue bytes committed 227 * @sk_write_queue: Packet sending queue 228 * @sk_async_wait_queue: DMA copied packets 229 * @sk_omem_alloc: "o" is "option" or "other" 230 * @sk_wmem_queued: persistent queue size 231 * @sk_forward_alloc: space allocated forward 232 * @sk_napi_id: id of the last napi context to receive data for sk 233 * @sk_ll_usec: usecs to busypoll when there is no data 234 * @sk_allocation: allocation mode 235 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 236 * @sk_sndbuf: size of send buffer in bytes 237 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 238 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 239 * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets 240 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 241 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 242 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 243 * @sk_gso_max_size: Maximum GSO segment size to build 244 * @sk_gso_max_segs: Maximum number of GSO segments 245 * @sk_lingertime: %SO_LINGER l_linger setting 246 * @sk_backlog: always used with the per-socket spinlock held 247 * @sk_callback_lock: used with the callbacks in the end of this struct 248 * @sk_error_queue: rarely used 249 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 250 * IPV6_ADDRFORM for instance) 251 * @sk_err: last error 252 * @sk_err_soft: errors that don't cause failure but are the cause of a 253 * persistent failure not just 'timed out' 254 * @sk_drops: raw/udp drops counter 255 * @sk_ack_backlog: current listen backlog 256 * @sk_max_ack_backlog: listen backlog set in listen() 257 * @sk_priority: %SO_PRIORITY setting 258 * @sk_cgrp_prioidx: socket group's priority map index 259 * @sk_type: socket type (%SOCK_STREAM, etc) 260 * @sk_protocol: which protocol this socket belongs in this network family 261 * @sk_peer_pid: &struct pid for this socket's peer 262 * @sk_peer_cred: %SO_PEERCRED setting 263 * @sk_rcvlowat: %SO_RCVLOWAT setting 264 * @sk_rcvtimeo: %SO_RCVTIMEO setting 265 * @sk_sndtimeo: %SO_SNDTIMEO setting 266 * @sk_rxhash: flow hash received from netif layer 267 * @sk_filter: socket filtering instructions 268 * @sk_protinfo: private area, net family specific, when not using slab 269 * @sk_timer: sock cleanup timer 270 * @sk_stamp: time stamp of last packet received 271 * @sk_socket: Identd and reporting IO signals 272 * @sk_user_data: RPC layer private data 273 * @sk_frag: cached page frag 274 * @sk_peek_off: current peek_offset value 275 * @sk_send_head: front of stuff to transmit 276 * @sk_security: used by security modules 277 * @sk_mark: generic packet mark 278 * @sk_classid: this socket's cgroup classid 279 * @sk_cgrp: this socket's cgroup-specific proto data 280 * @sk_write_pending: a write to stream socket waits to start 281 * @sk_state_change: callback to indicate change in the state of the sock 282 * @sk_data_ready: callback to indicate there is data to be processed 283 * @sk_write_space: callback to indicate there is bf sending space available 284 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 285 * @sk_backlog_rcv: callback to process the backlog 286 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 287 */ 288 struct sock { 289 /* 290 * Now struct inet_timewait_sock also uses sock_common, so please just 291 * don't add nothing before this first member (__sk_common) --acme 292 */ 293 struct sock_common __sk_common; 294 #define sk_node __sk_common.skc_node 295 #define sk_nulls_node __sk_common.skc_nulls_node 296 #define sk_refcnt __sk_common.skc_refcnt 297 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 298 299 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 300 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 301 #define sk_hash __sk_common.skc_hash 302 #define sk_family __sk_common.skc_family 303 #define sk_state __sk_common.skc_state 304 #define sk_reuse __sk_common.skc_reuse 305 #define sk_reuseport __sk_common.skc_reuseport 306 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 307 #define sk_bind_node __sk_common.skc_bind_node 308 #define sk_prot __sk_common.skc_prot 309 #define sk_net __sk_common.skc_net 310 socket_lock_t sk_lock; 311 struct sk_buff_head sk_receive_queue; 312 /* 313 * The backlog queue is special, it is always used with 314 * the per-socket spinlock held and requires low latency 315 * access. Therefore we special case it's implementation. 316 * Note : rmem_alloc is in this structure to fill a hole 317 * on 64bit arches, not because its logically part of 318 * backlog. 319 */ 320 struct { 321 atomic_t rmem_alloc; 322 int len; 323 struct sk_buff *head; 324 struct sk_buff *tail; 325 } sk_backlog; 326 #define sk_rmem_alloc sk_backlog.rmem_alloc 327 int sk_forward_alloc; 328 #ifdef CONFIG_RPS 329 __u32 sk_rxhash; 330 #endif 331 #ifdef CONFIG_NET_RX_BUSY_POLL 332 unsigned int sk_napi_id; 333 unsigned int sk_ll_usec; 334 #endif 335 atomic_t sk_drops; 336 int sk_rcvbuf; 337 338 struct sk_filter __rcu *sk_filter; 339 struct socket_wq __rcu *sk_wq; 340 341 #ifdef CONFIG_NET_DMA 342 struct sk_buff_head sk_async_wait_queue; 343 #endif 344 345 #ifdef CONFIG_XFRM 346 struct xfrm_policy *sk_policy[2]; 347 #endif 348 unsigned long sk_flags; 349 struct dst_entry *sk_rx_dst; 350 struct dst_entry __rcu *sk_dst_cache; 351 spinlock_t sk_dst_lock; 352 atomic_t sk_wmem_alloc; 353 atomic_t sk_omem_alloc; 354 int sk_sndbuf; 355 struct sk_buff_head sk_write_queue; 356 kmemcheck_bitfield_begin(flags); 357 unsigned int sk_shutdown : 2, 358 sk_no_check : 2, 359 sk_userlocks : 4, 360 sk_protocol : 8, 361 sk_type : 16; 362 kmemcheck_bitfield_end(flags); 363 int sk_wmem_queued; 364 gfp_t sk_allocation; 365 u32 sk_pacing_rate; /* bytes per second */ 366 netdev_features_t sk_route_caps; 367 netdev_features_t sk_route_nocaps; 368 int sk_gso_type; 369 unsigned int sk_gso_max_size; 370 u16 sk_gso_max_segs; 371 int sk_rcvlowat; 372 unsigned long sk_lingertime; 373 struct sk_buff_head sk_error_queue; 374 struct proto *sk_prot_creator; 375 rwlock_t sk_callback_lock; 376 int sk_err, 377 sk_err_soft; 378 unsigned short sk_ack_backlog; 379 unsigned short sk_max_ack_backlog; 380 __u32 sk_priority; 381 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 382 __u32 sk_cgrp_prioidx; 383 #endif 384 struct pid *sk_peer_pid; 385 const struct cred *sk_peer_cred; 386 long sk_rcvtimeo; 387 long sk_sndtimeo; 388 void *sk_protinfo; 389 struct timer_list sk_timer; 390 ktime_t sk_stamp; 391 struct socket *sk_socket; 392 void *sk_user_data; 393 struct page_frag sk_frag; 394 struct sk_buff *sk_send_head; 395 __s32 sk_peek_off; 396 int sk_write_pending; 397 #ifdef CONFIG_SECURITY 398 void *sk_security; 399 #endif 400 __u32 sk_mark; 401 u32 sk_classid; 402 struct cg_proto *sk_cgrp; 403 void (*sk_state_change)(struct sock *sk); 404 void (*sk_data_ready)(struct sock *sk, int bytes); 405 void (*sk_write_space)(struct sock *sk); 406 void (*sk_error_report)(struct sock *sk); 407 int (*sk_backlog_rcv)(struct sock *sk, 408 struct sk_buff *skb); 409 void (*sk_destruct)(struct sock *sk); 410 }; 411 412 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 413 414 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 415 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 416 417 /* 418 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 419 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 420 * on a socket means that the socket will reuse everybody else's port 421 * without looking at the other's sk_reuse value. 422 */ 423 424 #define SK_NO_REUSE 0 425 #define SK_CAN_REUSE 1 426 #define SK_FORCE_REUSE 2 427 428 static inline int sk_peek_offset(struct sock *sk, int flags) 429 { 430 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 431 return sk->sk_peek_off; 432 else 433 return 0; 434 } 435 436 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 437 { 438 if (sk->sk_peek_off >= 0) { 439 if (sk->sk_peek_off >= val) 440 sk->sk_peek_off -= val; 441 else 442 sk->sk_peek_off = 0; 443 } 444 } 445 446 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 447 { 448 if (sk->sk_peek_off >= 0) 449 sk->sk_peek_off += val; 450 } 451 452 /* 453 * Hashed lists helper routines 454 */ 455 static inline struct sock *sk_entry(const struct hlist_node *node) 456 { 457 return hlist_entry(node, struct sock, sk_node); 458 } 459 460 static inline struct sock *__sk_head(const struct hlist_head *head) 461 { 462 return hlist_entry(head->first, struct sock, sk_node); 463 } 464 465 static inline struct sock *sk_head(const struct hlist_head *head) 466 { 467 return hlist_empty(head) ? NULL : __sk_head(head); 468 } 469 470 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 471 { 472 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 473 } 474 475 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 476 { 477 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 478 } 479 480 static inline struct sock *sk_next(const struct sock *sk) 481 { 482 return sk->sk_node.next ? 483 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 484 } 485 486 static inline struct sock *sk_nulls_next(const struct sock *sk) 487 { 488 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 489 hlist_nulls_entry(sk->sk_nulls_node.next, 490 struct sock, sk_nulls_node) : 491 NULL; 492 } 493 494 static inline bool sk_unhashed(const struct sock *sk) 495 { 496 return hlist_unhashed(&sk->sk_node); 497 } 498 499 static inline bool sk_hashed(const struct sock *sk) 500 { 501 return !sk_unhashed(sk); 502 } 503 504 static inline void sk_node_init(struct hlist_node *node) 505 { 506 node->pprev = NULL; 507 } 508 509 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 510 { 511 node->pprev = NULL; 512 } 513 514 static inline void __sk_del_node(struct sock *sk) 515 { 516 __hlist_del(&sk->sk_node); 517 } 518 519 /* NB: equivalent to hlist_del_init_rcu */ 520 static inline bool __sk_del_node_init(struct sock *sk) 521 { 522 if (sk_hashed(sk)) { 523 __sk_del_node(sk); 524 sk_node_init(&sk->sk_node); 525 return true; 526 } 527 return false; 528 } 529 530 /* Grab socket reference count. This operation is valid only 531 when sk is ALREADY grabbed f.e. it is found in hash table 532 or a list and the lookup is made under lock preventing hash table 533 modifications. 534 */ 535 536 static inline void sock_hold(struct sock *sk) 537 { 538 atomic_inc(&sk->sk_refcnt); 539 } 540 541 /* Ungrab socket in the context, which assumes that socket refcnt 542 cannot hit zero, f.e. it is true in context of any socketcall. 543 */ 544 static inline void __sock_put(struct sock *sk) 545 { 546 atomic_dec(&sk->sk_refcnt); 547 } 548 549 static inline bool sk_del_node_init(struct sock *sk) 550 { 551 bool rc = __sk_del_node_init(sk); 552 553 if (rc) { 554 /* paranoid for a while -acme */ 555 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 556 __sock_put(sk); 557 } 558 return rc; 559 } 560 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 561 562 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 563 { 564 if (sk_hashed(sk)) { 565 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 566 return true; 567 } 568 return false; 569 } 570 571 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 572 { 573 bool rc = __sk_nulls_del_node_init_rcu(sk); 574 575 if (rc) { 576 /* paranoid for a while -acme */ 577 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 578 __sock_put(sk); 579 } 580 return rc; 581 } 582 583 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 584 { 585 hlist_add_head(&sk->sk_node, list); 586 } 587 588 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 589 { 590 sock_hold(sk); 591 __sk_add_node(sk, list); 592 } 593 594 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 595 { 596 sock_hold(sk); 597 hlist_add_head_rcu(&sk->sk_node, list); 598 } 599 600 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 601 { 602 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 603 } 604 605 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 606 { 607 sock_hold(sk); 608 __sk_nulls_add_node_rcu(sk, list); 609 } 610 611 static inline void __sk_del_bind_node(struct sock *sk) 612 { 613 __hlist_del(&sk->sk_bind_node); 614 } 615 616 static inline void sk_add_bind_node(struct sock *sk, 617 struct hlist_head *list) 618 { 619 hlist_add_head(&sk->sk_bind_node, list); 620 } 621 622 #define sk_for_each(__sk, list) \ 623 hlist_for_each_entry(__sk, list, sk_node) 624 #define sk_for_each_rcu(__sk, list) \ 625 hlist_for_each_entry_rcu(__sk, list, sk_node) 626 #define sk_nulls_for_each(__sk, node, list) \ 627 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 628 #define sk_nulls_for_each_rcu(__sk, node, list) \ 629 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 630 #define sk_for_each_from(__sk) \ 631 hlist_for_each_entry_from(__sk, sk_node) 632 #define sk_nulls_for_each_from(__sk, node) \ 633 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 634 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 635 #define sk_for_each_safe(__sk, tmp, list) \ 636 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 637 #define sk_for_each_bound(__sk, list) \ 638 hlist_for_each_entry(__sk, list, sk_bind_node) 639 640 static inline struct user_namespace *sk_user_ns(struct sock *sk) 641 { 642 /* Careful only use this in a context where these parameters 643 * can not change and must all be valid, such as recvmsg from 644 * userspace. 645 */ 646 return sk->sk_socket->file->f_cred->user_ns; 647 } 648 649 /* Sock flags */ 650 enum sock_flags { 651 SOCK_DEAD, 652 SOCK_DONE, 653 SOCK_URGINLINE, 654 SOCK_KEEPOPEN, 655 SOCK_LINGER, 656 SOCK_DESTROY, 657 SOCK_BROADCAST, 658 SOCK_TIMESTAMP, 659 SOCK_ZAPPED, 660 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 661 SOCK_DBG, /* %SO_DEBUG setting */ 662 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 663 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 664 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 665 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 666 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 667 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 668 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 669 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 670 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 671 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 672 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 673 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 674 SOCK_FASYNC, /* fasync() active */ 675 SOCK_RXQ_OVFL, 676 SOCK_ZEROCOPY, /* buffers from userspace */ 677 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 678 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 679 * Will use last 4 bytes of packet sent from 680 * user-space instead. 681 */ 682 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 683 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 684 }; 685 686 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 687 { 688 nsk->sk_flags = osk->sk_flags; 689 } 690 691 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 692 { 693 __set_bit(flag, &sk->sk_flags); 694 } 695 696 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 697 { 698 __clear_bit(flag, &sk->sk_flags); 699 } 700 701 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 702 { 703 return test_bit(flag, &sk->sk_flags); 704 } 705 706 #ifdef CONFIG_NET 707 extern struct static_key memalloc_socks; 708 static inline int sk_memalloc_socks(void) 709 { 710 return static_key_false(&memalloc_socks); 711 } 712 #else 713 714 static inline int sk_memalloc_socks(void) 715 { 716 return 0; 717 } 718 719 #endif 720 721 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 722 { 723 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 724 } 725 726 static inline void sk_acceptq_removed(struct sock *sk) 727 { 728 sk->sk_ack_backlog--; 729 } 730 731 static inline void sk_acceptq_added(struct sock *sk) 732 { 733 sk->sk_ack_backlog++; 734 } 735 736 static inline bool sk_acceptq_is_full(const struct sock *sk) 737 { 738 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 739 } 740 741 /* 742 * Compute minimal free write space needed to queue new packets. 743 */ 744 static inline int sk_stream_min_wspace(const struct sock *sk) 745 { 746 return sk->sk_wmem_queued >> 1; 747 } 748 749 static inline int sk_stream_wspace(const struct sock *sk) 750 { 751 return sk->sk_sndbuf - sk->sk_wmem_queued; 752 } 753 754 extern void sk_stream_write_space(struct sock *sk); 755 756 /* OOB backlog add */ 757 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 758 { 759 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 760 skb_dst_force(skb); 761 762 if (!sk->sk_backlog.tail) 763 sk->sk_backlog.head = skb; 764 else 765 sk->sk_backlog.tail->next = skb; 766 767 sk->sk_backlog.tail = skb; 768 skb->next = NULL; 769 } 770 771 /* 772 * Take into account size of receive queue and backlog queue 773 * Do not take into account this skb truesize, 774 * to allow even a single big packet to come. 775 */ 776 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb, 777 unsigned int limit) 778 { 779 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 780 781 return qsize > limit; 782 } 783 784 /* The per-socket spinlock must be held here. */ 785 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 786 unsigned int limit) 787 { 788 if (sk_rcvqueues_full(sk, skb, limit)) 789 return -ENOBUFS; 790 791 __sk_add_backlog(sk, skb); 792 sk->sk_backlog.len += skb->truesize; 793 return 0; 794 } 795 796 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 797 798 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 799 { 800 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 801 return __sk_backlog_rcv(sk, skb); 802 803 return sk->sk_backlog_rcv(sk, skb); 804 } 805 806 static inline void sock_rps_record_flow(const struct sock *sk) 807 { 808 #ifdef CONFIG_RPS 809 struct rps_sock_flow_table *sock_flow_table; 810 811 rcu_read_lock(); 812 sock_flow_table = rcu_dereference(rps_sock_flow_table); 813 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash); 814 rcu_read_unlock(); 815 #endif 816 } 817 818 static inline void sock_rps_reset_flow(const struct sock *sk) 819 { 820 #ifdef CONFIG_RPS 821 struct rps_sock_flow_table *sock_flow_table; 822 823 rcu_read_lock(); 824 sock_flow_table = rcu_dereference(rps_sock_flow_table); 825 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash); 826 rcu_read_unlock(); 827 #endif 828 } 829 830 static inline void sock_rps_save_rxhash(struct sock *sk, 831 const struct sk_buff *skb) 832 { 833 #ifdef CONFIG_RPS 834 if (unlikely(sk->sk_rxhash != skb->rxhash)) { 835 sock_rps_reset_flow(sk); 836 sk->sk_rxhash = skb->rxhash; 837 } 838 #endif 839 } 840 841 static inline void sock_rps_reset_rxhash(struct sock *sk) 842 { 843 #ifdef CONFIG_RPS 844 sock_rps_reset_flow(sk); 845 sk->sk_rxhash = 0; 846 #endif 847 } 848 849 #define sk_wait_event(__sk, __timeo, __condition) \ 850 ({ int __rc; \ 851 release_sock(__sk); \ 852 __rc = __condition; \ 853 if (!__rc) { \ 854 *(__timeo) = schedule_timeout(*(__timeo)); \ 855 } \ 856 lock_sock(__sk); \ 857 __rc = __condition; \ 858 __rc; \ 859 }) 860 861 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 862 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 863 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 864 extern int sk_stream_error(struct sock *sk, int flags, int err); 865 extern void sk_stream_kill_queues(struct sock *sk); 866 extern void sk_set_memalloc(struct sock *sk); 867 extern void sk_clear_memalloc(struct sock *sk); 868 869 extern int sk_wait_data(struct sock *sk, long *timeo); 870 871 struct request_sock_ops; 872 struct timewait_sock_ops; 873 struct inet_hashinfo; 874 struct raw_hashinfo; 875 struct module; 876 877 /* 878 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 879 * un-modified. Special care is taken when initializing object to zero. 880 */ 881 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 882 { 883 if (offsetof(struct sock, sk_node.next) != 0) 884 memset(sk, 0, offsetof(struct sock, sk_node.next)); 885 memset(&sk->sk_node.pprev, 0, 886 size - offsetof(struct sock, sk_node.pprev)); 887 } 888 889 /* Networking protocol blocks we attach to sockets. 890 * socket layer -> transport layer interface 891 * transport -> network interface is defined by struct inet_proto 892 */ 893 struct proto { 894 void (*close)(struct sock *sk, 895 long timeout); 896 int (*connect)(struct sock *sk, 897 struct sockaddr *uaddr, 898 int addr_len); 899 int (*disconnect)(struct sock *sk, int flags); 900 901 struct sock * (*accept)(struct sock *sk, int flags, int *err); 902 903 int (*ioctl)(struct sock *sk, int cmd, 904 unsigned long arg); 905 int (*init)(struct sock *sk); 906 void (*destroy)(struct sock *sk); 907 void (*shutdown)(struct sock *sk, int how); 908 int (*setsockopt)(struct sock *sk, int level, 909 int optname, char __user *optval, 910 unsigned int optlen); 911 int (*getsockopt)(struct sock *sk, int level, 912 int optname, char __user *optval, 913 int __user *option); 914 #ifdef CONFIG_COMPAT 915 int (*compat_setsockopt)(struct sock *sk, 916 int level, 917 int optname, char __user *optval, 918 unsigned int optlen); 919 int (*compat_getsockopt)(struct sock *sk, 920 int level, 921 int optname, char __user *optval, 922 int __user *option); 923 int (*compat_ioctl)(struct sock *sk, 924 unsigned int cmd, unsigned long arg); 925 #endif 926 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 927 struct msghdr *msg, size_t len); 928 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 929 struct msghdr *msg, 930 size_t len, int noblock, int flags, 931 int *addr_len); 932 int (*sendpage)(struct sock *sk, struct page *page, 933 int offset, size_t size, int flags); 934 int (*bind)(struct sock *sk, 935 struct sockaddr *uaddr, int addr_len); 936 937 int (*backlog_rcv) (struct sock *sk, 938 struct sk_buff *skb); 939 940 void (*release_cb)(struct sock *sk); 941 void (*mtu_reduced)(struct sock *sk); 942 943 /* Keeping track of sk's, looking them up, and port selection methods. */ 944 void (*hash)(struct sock *sk); 945 void (*unhash)(struct sock *sk); 946 void (*rehash)(struct sock *sk); 947 int (*get_port)(struct sock *sk, unsigned short snum); 948 void (*clear_sk)(struct sock *sk, int size); 949 950 /* Keeping track of sockets in use */ 951 #ifdef CONFIG_PROC_FS 952 unsigned int inuse_idx; 953 #endif 954 955 bool (*stream_memory_free)(const struct sock *sk); 956 /* Memory pressure */ 957 void (*enter_memory_pressure)(struct sock *sk); 958 atomic_long_t *memory_allocated; /* Current allocated memory. */ 959 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 960 /* 961 * Pressure flag: try to collapse. 962 * Technical note: it is used by multiple contexts non atomically. 963 * All the __sk_mem_schedule() is of this nature: accounting 964 * is strict, actions are advisory and have some latency. 965 */ 966 int *memory_pressure; 967 long *sysctl_mem; 968 int *sysctl_wmem; 969 int *sysctl_rmem; 970 int max_header; 971 bool no_autobind; 972 973 struct kmem_cache *slab; 974 unsigned int obj_size; 975 int slab_flags; 976 977 struct percpu_counter *orphan_count; 978 979 struct request_sock_ops *rsk_prot; 980 struct timewait_sock_ops *twsk_prot; 981 982 union { 983 struct inet_hashinfo *hashinfo; 984 struct udp_table *udp_table; 985 struct raw_hashinfo *raw_hash; 986 } h; 987 988 struct module *owner; 989 990 char name[32]; 991 992 struct list_head node; 993 #ifdef SOCK_REFCNT_DEBUG 994 atomic_t socks; 995 #endif 996 #ifdef CONFIG_MEMCG_KMEM 997 /* 998 * cgroup specific init/deinit functions. Called once for all 999 * protocols that implement it, from cgroups populate function. 1000 * This function has to setup any files the protocol want to 1001 * appear in the kmem cgroup filesystem. 1002 */ 1003 int (*init_cgroup)(struct mem_cgroup *memcg, 1004 struct cgroup_subsys *ss); 1005 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1006 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1007 #endif 1008 }; 1009 1010 /* 1011 * Bits in struct cg_proto.flags 1012 */ 1013 enum cg_proto_flags { 1014 /* Currently active and new sockets should be assigned to cgroups */ 1015 MEMCG_SOCK_ACTIVE, 1016 /* It was ever activated; we must disarm static keys on destruction */ 1017 MEMCG_SOCK_ACTIVATED, 1018 }; 1019 1020 struct cg_proto { 1021 void (*enter_memory_pressure)(struct sock *sk); 1022 struct res_counter *memory_allocated; /* Current allocated memory. */ 1023 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1024 int *memory_pressure; 1025 long *sysctl_mem; 1026 unsigned long flags; 1027 /* 1028 * memcg field is used to find which memcg we belong directly 1029 * Each memcg struct can hold more than one cg_proto, so container_of 1030 * won't really cut. 1031 * 1032 * The elegant solution would be having an inverse function to 1033 * proto_cgroup in struct proto, but that means polluting the structure 1034 * for everybody, instead of just for memcg users. 1035 */ 1036 struct mem_cgroup *memcg; 1037 }; 1038 1039 extern int proto_register(struct proto *prot, int alloc_slab); 1040 extern void proto_unregister(struct proto *prot); 1041 1042 static inline bool memcg_proto_active(struct cg_proto *cg_proto) 1043 { 1044 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); 1045 } 1046 1047 static inline bool memcg_proto_activated(struct cg_proto *cg_proto) 1048 { 1049 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); 1050 } 1051 1052 #ifdef SOCK_REFCNT_DEBUG 1053 static inline void sk_refcnt_debug_inc(struct sock *sk) 1054 { 1055 atomic_inc(&sk->sk_prot->socks); 1056 } 1057 1058 static inline void sk_refcnt_debug_dec(struct sock *sk) 1059 { 1060 atomic_dec(&sk->sk_prot->socks); 1061 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1062 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1063 } 1064 1065 static inline void sk_refcnt_debug_release(const struct sock *sk) 1066 { 1067 if (atomic_read(&sk->sk_refcnt) != 1) 1068 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1069 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1070 } 1071 #else /* SOCK_REFCNT_DEBUG */ 1072 #define sk_refcnt_debug_inc(sk) do { } while (0) 1073 #define sk_refcnt_debug_dec(sk) do { } while (0) 1074 #define sk_refcnt_debug_release(sk) do { } while (0) 1075 #endif /* SOCK_REFCNT_DEBUG */ 1076 1077 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1078 extern struct static_key memcg_socket_limit_enabled; 1079 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1080 struct cg_proto *cg_proto) 1081 { 1082 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1083 } 1084 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1085 #else 1086 #define mem_cgroup_sockets_enabled 0 1087 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1088 struct cg_proto *cg_proto) 1089 { 1090 return NULL; 1091 } 1092 #endif 1093 1094 static inline bool sk_stream_memory_free(const struct sock *sk) 1095 { 1096 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1097 return false; 1098 1099 return sk->sk_prot->stream_memory_free ? 1100 sk->sk_prot->stream_memory_free(sk) : true; 1101 } 1102 1103 static inline bool sk_stream_is_writeable(const struct sock *sk) 1104 { 1105 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1106 sk_stream_memory_free(sk); 1107 } 1108 1109 1110 static inline bool sk_has_memory_pressure(const struct sock *sk) 1111 { 1112 return sk->sk_prot->memory_pressure != NULL; 1113 } 1114 1115 static inline bool sk_under_memory_pressure(const struct sock *sk) 1116 { 1117 if (!sk->sk_prot->memory_pressure) 1118 return false; 1119 1120 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1121 return !!*sk->sk_cgrp->memory_pressure; 1122 1123 return !!*sk->sk_prot->memory_pressure; 1124 } 1125 1126 static inline void sk_leave_memory_pressure(struct sock *sk) 1127 { 1128 int *memory_pressure = sk->sk_prot->memory_pressure; 1129 1130 if (!memory_pressure) 1131 return; 1132 1133 if (*memory_pressure) 1134 *memory_pressure = 0; 1135 1136 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1137 struct cg_proto *cg_proto = sk->sk_cgrp; 1138 struct proto *prot = sk->sk_prot; 1139 1140 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1141 if (*cg_proto->memory_pressure) 1142 *cg_proto->memory_pressure = 0; 1143 } 1144 1145 } 1146 1147 static inline void sk_enter_memory_pressure(struct sock *sk) 1148 { 1149 if (!sk->sk_prot->enter_memory_pressure) 1150 return; 1151 1152 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1153 struct cg_proto *cg_proto = sk->sk_cgrp; 1154 struct proto *prot = sk->sk_prot; 1155 1156 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1157 cg_proto->enter_memory_pressure(sk); 1158 } 1159 1160 sk->sk_prot->enter_memory_pressure(sk); 1161 } 1162 1163 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1164 { 1165 long *prot = sk->sk_prot->sysctl_mem; 1166 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1167 prot = sk->sk_cgrp->sysctl_mem; 1168 return prot[index]; 1169 } 1170 1171 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1172 unsigned long amt, 1173 int *parent_status) 1174 { 1175 struct res_counter *fail; 1176 int ret; 1177 1178 ret = res_counter_charge_nofail(prot->memory_allocated, 1179 amt << PAGE_SHIFT, &fail); 1180 if (ret < 0) 1181 *parent_status = OVER_LIMIT; 1182 } 1183 1184 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1185 unsigned long amt) 1186 { 1187 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT); 1188 } 1189 1190 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) 1191 { 1192 u64 ret; 1193 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE); 1194 return ret >> PAGE_SHIFT; 1195 } 1196 1197 static inline long 1198 sk_memory_allocated(const struct sock *sk) 1199 { 1200 struct proto *prot = sk->sk_prot; 1201 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1202 return memcg_memory_allocated_read(sk->sk_cgrp); 1203 1204 return atomic_long_read(prot->memory_allocated); 1205 } 1206 1207 static inline long 1208 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1209 { 1210 struct proto *prot = sk->sk_prot; 1211 1212 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1213 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1214 /* update the root cgroup regardless */ 1215 atomic_long_add_return(amt, prot->memory_allocated); 1216 return memcg_memory_allocated_read(sk->sk_cgrp); 1217 } 1218 1219 return atomic_long_add_return(amt, prot->memory_allocated); 1220 } 1221 1222 static inline void 1223 sk_memory_allocated_sub(struct sock *sk, int amt) 1224 { 1225 struct proto *prot = sk->sk_prot; 1226 1227 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1228 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1229 1230 atomic_long_sub(amt, prot->memory_allocated); 1231 } 1232 1233 static inline void sk_sockets_allocated_dec(struct sock *sk) 1234 { 1235 struct proto *prot = sk->sk_prot; 1236 1237 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1238 struct cg_proto *cg_proto = sk->sk_cgrp; 1239 1240 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1241 percpu_counter_dec(cg_proto->sockets_allocated); 1242 } 1243 1244 percpu_counter_dec(prot->sockets_allocated); 1245 } 1246 1247 static inline void sk_sockets_allocated_inc(struct sock *sk) 1248 { 1249 struct proto *prot = sk->sk_prot; 1250 1251 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1252 struct cg_proto *cg_proto = sk->sk_cgrp; 1253 1254 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1255 percpu_counter_inc(cg_proto->sockets_allocated); 1256 } 1257 1258 percpu_counter_inc(prot->sockets_allocated); 1259 } 1260 1261 static inline int 1262 sk_sockets_allocated_read_positive(struct sock *sk) 1263 { 1264 struct proto *prot = sk->sk_prot; 1265 1266 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1267 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated); 1268 1269 return percpu_counter_read_positive(prot->sockets_allocated); 1270 } 1271 1272 static inline int 1273 proto_sockets_allocated_sum_positive(struct proto *prot) 1274 { 1275 return percpu_counter_sum_positive(prot->sockets_allocated); 1276 } 1277 1278 static inline long 1279 proto_memory_allocated(struct proto *prot) 1280 { 1281 return atomic_long_read(prot->memory_allocated); 1282 } 1283 1284 static inline bool 1285 proto_memory_pressure(struct proto *prot) 1286 { 1287 if (!prot->memory_pressure) 1288 return false; 1289 return !!*prot->memory_pressure; 1290 } 1291 1292 1293 #ifdef CONFIG_PROC_FS 1294 /* Called with local bh disabled */ 1295 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1296 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 1297 #else 1298 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1299 int inc) 1300 { 1301 } 1302 #endif 1303 1304 1305 /* With per-bucket locks this operation is not-atomic, so that 1306 * this version is not worse. 1307 */ 1308 static inline void __sk_prot_rehash(struct sock *sk) 1309 { 1310 sk->sk_prot->unhash(sk); 1311 sk->sk_prot->hash(sk); 1312 } 1313 1314 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1315 1316 /* About 10 seconds */ 1317 #define SOCK_DESTROY_TIME (10*HZ) 1318 1319 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1320 #define PROT_SOCK 1024 1321 1322 #define SHUTDOWN_MASK 3 1323 #define RCV_SHUTDOWN 1 1324 #define SEND_SHUTDOWN 2 1325 1326 #define SOCK_SNDBUF_LOCK 1 1327 #define SOCK_RCVBUF_LOCK 2 1328 #define SOCK_BINDADDR_LOCK 4 1329 #define SOCK_BINDPORT_LOCK 8 1330 1331 /* sock_iocb: used to kick off async processing of socket ios */ 1332 struct sock_iocb { 1333 struct list_head list; 1334 1335 int flags; 1336 int size; 1337 struct socket *sock; 1338 struct sock *sk; 1339 struct scm_cookie *scm; 1340 struct msghdr *msg, async_msg; 1341 struct kiocb *kiocb; 1342 }; 1343 1344 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 1345 { 1346 return (struct sock_iocb *)iocb->private; 1347 } 1348 1349 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 1350 { 1351 return si->kiocb; 1352 } 1353 1354 struct socket_alloc { 1355 struct socket socket; 1356 struct inode vfs_inode; 1357 }; 1358 1359 static inline struct socket *SOCKET_I(struct inode *inode) 1360 { 1361 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1362 } 1363 1364 static inline struct inode *SOCK_INODE(struct socket *socket) 1365 { 1366 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1367 } 1368 1369 /* 1370 * Functions for memory accounting 1371 */ 1372 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 1373 extern void __sk_mem_reclaim(struct sock *sk); 1374 1375 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1376 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1377 #define SK_MEM_SEND 0 1378 #define SK_MEM_RECV 1 1379 1380 static inline int sk_mem_pages(int amt) 1381 { 1382 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1383 } 1384 1385 static inline bool sk_has_account(struct sock *sk) 1386 { 1387 /* return true if protocol supports memory accounting */ 1388 return !!sk->sk_prot->memory_allocated; 1389 } 1390 1391 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1392 { 1393 if (!sk_has_account(sk)) 1394 return true; 1395 return size <= sk->sk_forward_alloc || 1396 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1397 } 1398 1399 static inline bool 1400 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1401 { 1402 if (!sk_has_account(sk)) 1403 return true; 1404 return size<= sk->sk_forward_alloc || 1405 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1406 skb_pfmemalloc(skb); 1407 } 1408 1409 static inline void sk_mem_reclaim(struct sock *sk) 1410 { 1411 if (!sk_has_account(sk)) 1412 return; 1413 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1414 __sk_mem_reclaim(sk); 1415 } 1416 1417 static inline void sk_mem_reclaim_partial(struct sock *sk) 1418 { 1419 if (!sk_has_account(sk)) 1420 return; 1421 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1422 __sk_mem_reclaim(sk); 1423 } 1424 1425 static inline void sk_mem_charge(struct sock *sk, int size) 1426 { 1427 if (!sk_has_account(sk)) 1428 return; 1429 sk->sk_forward_alloc -= size; 1430 } 1431 1432 static inline void sk_mem_uncharge(struct sock *sk, int size) 1433 { 1434 if (!sk_has_account(sk)) 1435 return; 1436 sk->sk_forward_alloc += size; 1437 } 1438 1439 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1440 { 1441 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1442 sk->sk_wmem_queued -= skb->truesize; 1443 sk_mem_uncharge(sk, skb->truesize); 1444 __kfree_skb(skb); 1445 } 1446 1447 /* Used by processes to "lock" a socket state, so that 1448 * interrupts and bottom half handlers won't change it 1449 * from under us. It essentially blocks any incoming 1450 * packets, so that we won't get any new data or any 1451 * packets that change the state of the socket. 1452 * 1453 * While locked, BH processing will add new packets to 1454 * the backlog queue. This queue is processed by the 1455 * owner of the socket lock right before it is released. 1456 * 1457 * Since ~2.3.5 it is also exclusive sleep lock serializing 1458 * accesses from user process context. 1459 */ 1460 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1461 1462 /* 1463 * Macro so as to not evaluate some arguments when 1464 * lockdep is not enabled. 1465 * 1466 * Mark both the sk_lock and the sk_lock.slock as a 1467 * per-address-family lock class. 1468 */ 1469 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1470 do { \ 1471 sk->sk_lock.owned = 0; \ 1472 init_waitqueue_head(&sk->sk_lock.wq); \ 1473 spin_lock_init(&(sk)->sk_lock.slock); \ 1474 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1475 sizeof((sk)->sk_lock)); \ 1476 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1477 (skey), (sname)); \ 1478 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1479 } while (0) 1480 1481 extern void lock_sock_nested(struct sock *sk, int subclass); 1482 1483 static inline void lock_sock(struct sock *sk) 1484 { 1485 lock_sock_nested(sk, 0); 1486 } 1487 1488 extern void release_sock(struct sock *sk); 1489 1490 /* BH context may only use the following locking interface. */ 1491 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1492 #define bh_lock_sock_nested(__sk) \ 1493 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1494 SINGLE_DEPTH_NESTING) 1495 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1496 1497 extern bool lock_sock_fast(struct sock *sk); 1498 /** 1499 * unlock_sock_fast - complement of lock_sock_fast 1500 * @sk: socket 1501 * @slow: slow mode 1502 * 1503 * fast unlock socket for user context. 1504 * If slow mode is on, we call regular release_sock() 1505 */ 1506 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1507 { 1508 if (slow) 1509 release_sock(sk); 1510 else 1511 spin_unlock_bh(&sk->sk_lock.slock); 1512 } 1513 1514 1515 extern struct sock *sk_alloc(struct net *net, int family, 1516 gfp_t priority, 1517 struct proto *prot); 1518 extern void sk_free(struct sock *sk); 1519 extern void sk_release_kernel(struct sock *sk); 1520 extern struct sock *sk_clone_lock(const struct sock *sk, 1521 const gfp_t priority); 1522 1523 extern struct sk_buff *sock_wmalloc(struct sock *sk, 1524 unsigned long size, int force, 1525 gfp_t priority); 1526 extern struct sk_buff *sock_rmalloc(struct sock *sk, 1527 unsigned long size, int force, 1528 gfp_t priority); 1529 extern void sock_wfree(struct sk_buff *skb); 1530 extern void skb_orphan_partial(struct sk_buff *skb); 1531 extern void sock_rfree(struct sk_buff *skb); 1532 extern void sock_edemux(struct sk_buff *skb); 1533 1534 extern int sock_setsockopt(struct socket *sock, int level, 1535 int op, char __user *optval, 1536 unsigned int optlen); 1537 1538 extern int sock_getsockopt(struct socket *sock, int level, 1539 int op, char __user *optval, 1540 int __user *optlen); 1541 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 1542 unsigned long size, 1543 int noblock, 1544 int *errcode); 1545 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1546 unsigned long header_len, 1547 unsigned long data_len, 1548 int noblock, 1549 int *errcode, 1550 int max_page_order); 1551 extern void *sock_kmalloc(struct sock *sk, int size, 1552 gfp_t priority); 1553 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 1554 extern void sk_send_sigurg(struct sock *sk); 1555 1556 /* 1557 * Functions to fill in entries in struct proto_ops when a protocol 1558 * does not implement a particular function. 1559 */ 1560 extern int sock_no_bind(struct socket *, 1561 struct sockaddr *, int); 1562 extern int sock_no_connect(struct socket *, 1563 struct sockaddr *, int, int); 1564 extern int sock_no_socketpair(struct socket *, 1565 struct socket *); 1566 extern int sock_no_accept(struct socket *, 1567 struct socket *, int); 1568 extern int sock_no_getname(struct socket *, 1569 struct sockaddr *, int *, int); 1570 extern unsigned int sock_no_poll(struct file *, struct socket *, 1571 struct poll_table_struct *); 1572 extern int sock_no_ioctl(struct socket *, unsigned int, 1573 unsigned long); 1574 extern int sock_no_listen(struct socket *, int); 1575 extern int sock_no_shutdown(struct socket *, int); 1576 extern int sock_no_getsockopt(struct socket *, int , int, 1577 char __user *, int __user *); 1578 extern int sock_no_setsockopt(struct socket *, int, int, 1579 char __user *, unsigned int); 1580 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1581 struct msghdr *, size_t); 1582 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1583 struct msghdr *, size_t, int); 1584 extern int sock_no_mmap(struct file *file, 1585 struct socket *sock, 1586 struct vm_area_struct *vma); 1587 extern ssize_t sock_no_sendpage(struct socket *sock, 1588 struct page *page, 1589 int offset, size_t size, 1590 int flags); 1591 1592 /* 1593 * Functions to fill in entries in struct proto_ops when a protocol 1594 * uses the inet style. 1595 */ 1596 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1597 char __user *optval, int __user *optlen); 1598 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1599 struct msghdr *msg, size_t size, int flags); 1600 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1601 char __user *optval, unsigned int optlen); 1602 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1603 int optname, char __user *optval, int __user *optlen); 1604 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1605 int optname, char __user *optval, unsigned int optlen); 1606 1607 extern void sk_common_release(struct sock *sk); 1608 1609 /* 1610 * Default socket callbacks and setup code 1611 */ 1612 1613 /* Initialise core socket variables */ 1614 extern void sock_init_data(struct socket *sock, struct sock *sk); 1615 1616 extern void sk_filter_release_rcu(struct rcu_head *rcu); 1617 1618 /** 1619 * sk_filter_release - release a socket filter 1620 * @fp: filter to remove 1621 * 1622 * Remove a filter from a socket and release its resources. 1623 */ 1624 1625 static inline void sk_filter_release(struct sk_filter *fp) 1626 { 1627 if (atomic_dec_and_test(&fp->refcnt)) 1628 call_rcu(&fp->rcu, sk_filter_release_rcu); 1629 } 1630 1631 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1632 { 1633 atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1634 sk_filter_release(fp); 1635 } 1636 1637 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1638 { 1639 atomic_inc(&fp->refcnt); 1640 atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc); 1641 } 1642 1643 /* 1644 * Socket reference counting postulates. 1645 * 1646 * * Each user of socket SHOULD hold a reference count. 1647 * * Each access point to socket (an hash table bucket, reference from a list, 1648 * running timer, skb in flight MUST hold a reference count. 1649 * * When reference count hits 0, it means it will never increase back. 1650 * * When reference count hits 0, it means that no references from 1651 * outside exist to this socket and current process on current CPU 1652 * is last user and may/should destroy this socket. 1653 * * sk_free is called from any context: process, BH, IRQ. When 1654 * it is called, socket has no references from outside -> sk_free 1655 * may release descendant resources allocated by the socket, but 1656 * to the time when it is called, socket is NOT referenced by any 1657 * hash tables, lists etc. 1658 * * Packets, delivered from outside (from network or from another process) 1659 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1660 * when they sit in queue. Otherwise, packets will leak to hole, when 1661 * socket is looked up by one cpu and unhasing is made by another CPU. 1662 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1663 * (leak to backlog). Packet socket does all the processing inside 1664 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1665 * use separate SMP lock, so that they are prone too. 1666 */ 1667 1668 /* Ungrab socket and destroy it, if it was the last reference. */ 1669 static inline void sock_put(struct sock *sk) 1670 { 1671 if (atomic_dec_and_test(&sk->sk_refcnt)) 1672 sk_free(sk); 1673 } 1674 1675 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1676 const int nested); 1677 1678 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1679 { 1680 sk->sk_tx_queue_mapping = tx_queue; 1681 } 1682 1683 static inline void sk_tx_queue_clear(struct sock *sk) 1684 { 1685 sk->sk_tx_queue_mapping = -1; 1686 } 1687 1688 static inline int sk_tx_queue_get(const struct sock *sk) 1689 { 1690 return sk ? sk->sk_tx_queue_mapping : -1; 1691 } 1692 1693 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1694 { 1695 sk_tx_queue_clear(sk); 1696 sk->sk_socket = sock; 1697 } 1698 1699 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1700 { 1701 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1702 return &rcu_dereference_raw(sk->sk_wq)->wait; 1703 } 1704 /* Detach socket from process context. 1705 * Announce socket dead, detach it from wait queue and inode. 1706 * Note that parent inode held reference count on this struct sock, 1707 * we do not release it in this function, because protocol 1708 * probably wants some additional cleanups or even continuing 1709 * to work with this socket (TCP). 1710 */ 1711 static inline void sock_orphan(struct sock *sk) 1712 { 1713 write_lock_bh(&sk->sk_callback_lock); 1714 sock_set_flag(sk, SOCK_DEAD); 1715 sk_set_socket(sk, NULL); 1716 sk->sk_wq = NULL; 1717 write_unlock_bh(&sk->sk_callback_lock); 1718 } 1719 1720 static inline void sock_graft(struct sock *sk, struct socket *parent) 1721 { 1722 write_lock_bh(&sk->sk_callback_lock); 1723 sk->sk_wq = parent->wq; 1724 parent->sk = sk; 1725 sk_set_socket(sk, parent); 1726 security_sock_graft(sk, parent); 1727 write_unlock_bh(&sk->sk_callback_lock); 1728 } 1729 1730 extern kuid_t sock_i_uid(struct sock *sk); 1731 extern unsigned long sock_i_ino(struct sock *sk); 1732 1733 static inline struct dst_entry * 1734 __sk_dst_get(struct sock *sk) 1735 { 1736 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1737 lockdep_is_held(&sk->sk_lock.slock)); 1738 } 1739 1740 static inline struct dst_entry * 1741 sk_dst_get(struct sock *sk) 1742 { 1743 struct dst_entry *dst; 1744 1745 rcu_read_lock(); 1746 dst = rcu_dereference(sk->sk_dst_cache); 1747 if (dst) 1748 dst_hold(dst); 1749 rcu_read_unlock(); 1750 return dst; 1751 } 1752 1753 extern void sk_reset_txq(struct sock *sk); 1754 1755 static inline void dst_negative_advice(struct sock *sk) 1756 { 1757 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1758 1759 if (dst && dst->ops->negative_advice) { 1760 ndst = dst->ops->negative_advice(dst); 1761 1762 if (ndst != dst) { 1763 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1764 sk_reset_txq(sk); 1765 } 1766 } 1767 } 1768 1769 static inline void 1770 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1771 { 1772 struct dst_entry *old_dst; 1773 1774 sk_tx_queue_clear(sk); 1775 /* 1776 * This can be called while sk is owned by the caller only, 1777 * with no state that can be checked in a rcu_dereference_check() cond 1778 */ 1779 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1780 rcu_assign_pointer(sk->sk_dst_cache, dst); 1781 dst_release(old_dst); 1782 } 1783 1784 static inline void 1785 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1786 { 1787 spin_lock(&sk->sk_dst_lock); 1788 __sk_dst_set(sk, dst); 1789 spin_unlock(&sk->sk_dst_lock); 1790 } 1791 1792 static inline void 1793 __sk_dst_reset(struct sock *sk) 1794 { 1795 __sk_dst_set(sk, NULL); 1796 } 1797 1798 static inline void 1799 sk_dst_reset(struct sock *sk) 1800 { 1801 spin_lock(&sk->sk_dst_lock); 1802 __sk_dst_reset(sk); 1803 spin_unlock(&sk->sk_dst_lock); 1804 } 1805 1806 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1807 1808 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1809 1810 static inline bool sk_can_gso(const struct sock *sk) 1811 { 1812 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1813 } 1814 1815 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1816 1817 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1818 { 1819 sk->sk_route_nocaps |= flags; 1820 sk->sk_route_caps &= ~flags; 1821 } 1822 1823 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1824 char __user *from, char *to, 1825 int copy, int offset) 1826 { 1827 if (skb->ip_summed == CHECKSUM_NONE) { 1828 int err = 0; 1829 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); 1830 if (err) 1831 return err; 1832 skb->csum = csum_block_add(skb->csum, csum, offset); 1833 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1834 if (!access_ok(VERIFY_READ, from, copy) || 1835 __copy_from_user_nocache(to, from, copy)) 1836 return -EFAULT; 1837 } else if (copy_from_user(to, from, copy)) 1838 return -EFAULT; 1839 1840 return 0; 1841 } 1842 1843 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1844 char __user *from, int copy) 1845 { 1846 int err, offset = skb->len; 1847 1848 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1849 copy, offset); 1850 if (err) 1851 __skb_trim(skb, offset); 1852 1853 return err; 1854 } 1855 1856 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, 1857 struct sk_buff *skb, 1858 struct page *page, 1859 int off, int copy) 1860 { 1861 int err; 1862 1863 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1864 copy, skb->len); 1865 if (err) 1866 return err; 1867 1868 skb->len += copy; 1869 skb->data_len += copy; 1870 skb->truesize += copy; 1871 sk->sk_wmem_queued += copy; 1872 sk_mem_charge(sk, copy); 1873 return 0; 1874 } 1875 1876 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1877 struct sk_buff *skb, struct page *page, 1878 int off, int copy) 1879 { 1880 if (skb->ip_summed == CHECKSUM_NONE) { 1881 int err = 0; 1882 __wsum csum = csum_and_copy_from_user(from, 1883 page_address(page) + off, 1884 copy, 0, &err); 1885 if (err) 1886 return err; 1887 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1888 } else if (copy_from_user(page_address(page) + off, from, copy)) 1889 return -EFAULT; 1890 1891 skb->len += copy; 1892 skb->data_len += copy; 1893 skb->truesize += copy; 1894 sk->sk_wmem_queued += copy; 1895 sk_mem_charge(sk, copy); 1896 return 0; 1897 } 1898 1899 /** 1900 * sk_wmem_alloc_get - returns write allocations 1901 * @sk: socket 1902 * 1903 * Returns sk_wmem_alloc minus initial offset of one 1904 */ 1905 static inline int sk_wmem_alloc_get(const struct sock *sk) 1906 { 1907 return atomic_read(&sk->sk_wmem_alloc) - 1; 1908 } 1909 1910 /** 1911 * sk_rmem_alloc_get - returns read allocations 1912 * @sk: socket 1913 * 1914 * Returns sk_rmem_alloc 1915 */ 1916 static inline int sk_rmem_alloc_get(const struct sock *sk) 1917 { 1918 return atomic_read(&sk->sk_rmem_alloc); 1919 } 1920 1921 /** 1922 * sk_has_allocations - check if allocations are outstanding 1923 * @sk: socket 1924 * 1925 * Returns true if socket has write or read allocations 1926 */ 1927 static inline bool sk_has_allocations(const struct sock *sk) 1928 { 1929 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1930 } 1931 1932 /** 1933 * wq_has_sleeper - check if there are any waiting processes 1934 * @wq: struct socket_wq 1935 * 1936 * Returns true if socket_wq has waiting processes 1937 * 1938 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1939 * barrier call. They were added due to the race found within the tcp code. 1940 * 1941 * Consider following tcp code paths: 1942 * 1943 * CPU1 CPU2 1944 * 1945 * sys_select receive packet 1946 * ... ... 1947 * __add_wait_queue update tp->rcv_nxt 1948 * ... ... 1949 * tp->rcv_nxt check sock_def_readable 1950 * ... { 1951 * schedule rcu_read_lock(); 1952 * wq = rcu_dereference(sk->sk_wq); 1953 * if (wq && waitqueue_active(&wq->wait)) 1954 * wake_up_interruptible(&wq->wait) 1955 * ... 1956 * } 1957 * 1958 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1959 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1960 * could then endup calling schedule and sleep forever if there are no more 1961 * data on the socket. 1962 * 1963 */ 1964 static inline bool wq_has_sleeper(struct socket_wq *wq) 1965 { 1966 /* We need to be sure we are in sync with the 1967 * add_wait_queue modifications to the wait queue. 1968 * 1969 * This memory barrier is paired in the sock_poll_wait. 1970 */ 1971 smp_mb(); 1972 return wq && waitqueue_active(&wq->wait); 1973 } 1974 1975 /** 1976 * sock_poll_wait - place memory barrier behind the poll_wait call. 1977 * @filp: file 1978 * @wait_address: socket wait queue 1979 * @p: poll_table 1980 * 1981 * See the comments in the wq_has_sleeper function. 1982 */ 1983 static inline void sock_poll_wait(struct file *filp, 1984 wait_queue_head_t *wait_address, poll_table *p) 1985 { 1986 if (!poll_does_not_wait(p) && wait_address) { 1987 poll_wait(filp, wait_address, p); 1988 /* We need to be sure we are in sync with the 1989 * socket flags modification. 1990 * 1991 * This memory barrier is paired in the wq_has_sleeper. 1992 */ 1993 smp_mb(); 1994 } 1995 } 1996 1997 /* 1998 * Queue a received datagram if it will fit. Stream and sequenced 1999 * protocols can't normally use this as they need to fit buffers in 2000 * and play with them. 2001 * 2002 * Inlined as it's very short and called for pretty much every 2003 * packet ever received. 2004 */ 2005 2006 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2007 { 2008 skb_orphan(skb); 2009 skb->sk = sk; 2010 skb->destructor = sock_wfree; 2011 /* 2012 * We used to take a refcount on sk, but following operation 2013 * is enough to guarantee sk_free() wont free this sock until 2014 * all in-flight packets are completed 2015 */ 2016 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 2017 } 2018 2019 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2020 { 2021 skb_orphan(skb); 2022 skb->sk = sk; 2023 skb->destructor = sock_rfree; 2024 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2025 sk_mem_charge(sk, skb->truesize); 2026 } 2027 2028 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2029 unsigned long expires); 2030 2031 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2032 2033 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2034 2035 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2036 2037 /* 2038 * Recover an error report and clear atomically 2039 */ 2040 2041 static inline int sock_error(struct sock *sk) 2042 { 2043 int err; 2044 if (likely(!sk->sk_err)) 2045 return 0; 2046 err = xchg(&sk->sk_err, 0); 2047 return -err; 2048 } 2049 2050 static inline unsigned long sock_wspace(struct sock *sk) 2051 { 2052 int amt = 0; 2053 2054 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2055 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 2056 if (amt < 0) 2057 amt = 0; 2058 } 2059 return amt; 2060 } 2061 2062 static inline void sk_wake_async(struct sock *sk, int how, int band) 2063 { 2064 if (sock_flag(sk, SOCK_FASYNC)) 2065 sock_wake_async(sk->sk_socket, how, band); 2066 } 2067 2068 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2069 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2070 * Note: for send buffers, TCP works better if we can build two skbs at 2071 * minimum. 2072 */ 2073 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2074 2075 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2076 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2077 2078 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2079 { 2080 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2081 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2082 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2083 } 2084 } 2085 2086 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 2087 2088 /** 2089 * sk_page_frag - return an appropriate page_frag 2090 * @sk: socket 2091 * 2092 * If socket allocation mode allows current thread to sleep, it means its 2093 * safe to use the per task page_frag instead of the per socket one. 2094 */ 2095 static inline struct page_frag *sk_page_frag(struct sock *sk) 2096 { 2097 if (sk->sk_allocation & __GFP_WAIT) 2098 return ¤t->task_frag; 2099 2100 return &sk->sk_frag; 2101 } 2102 2103 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2104 2105 /* 2106 * Default write policy as shown to user space via poll/select/SIGIO 2107 */ 2108 static inline bool sock_writeable(const struct sock *sk) 2109 { 2110 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2111 } 2112 2113 static inline gfp_t gfp_any(void) 2114 { 2115 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2116 } 2117 2118 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2119 { 2120 return noblock ? 0 : sk->sk_rcvtimeo; 2121 } 2122 2123 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2124 { 2125 return noblock ? 0 : sk->sk_sndtimeo; 2126 } 2127 2128 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2129 { 2130 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2131 } 2132 2133 /* Alas, with timeout socket operations are not restartable. 2134 * Compare this to poll(). 2135 */ 2136 static inline int sock_intr_errno(long timeo) 2137 { 2138 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2139 } 2140 2141 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2142 struct sk_buff *skb); 2143 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2144 struct sk_buff *skb); 2145 2146 static inline void 2147 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2148 { 2149 ktime_t kt = skb->tstamp; 2150 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2151 2152 /* 2153 * generate control messages if 2154 * - receive time stamping in software requested (SOCK_RCVTSTAMP 2155 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 2156 * - software time stamp available and wanted 2157 * (SOCK_TIMESTAMPING_SOFTWARE) 2158 * - hardware time stamps available and wanted 2159 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 2160 * SOCK_TIMESTAMPING_RAW_HARDWARE) 2161 */ 2162 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2163 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 2164 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 2165 (hwtstamps->hwtstamp.tv64 && 2166 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 2167 (hwtstamps->syststamp.tv64 && 2168 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 2169 __sock_recv_timestamp(msg, sk, skb); 2170 else 2171 sk->sk_stamp = kt; 2172 2173 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2174 __sock_recv_wifi_status(msg, sk, skb); 2175 } 2176 2177 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2178 struct sk_buff *skb); 2179 2180 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2181 struct sk_buff *skb) 2182 { 2183 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2184 (1UL << SOCK_RCVTSTAMP) | \ 2185 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ 2186 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \ 2187 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \ 2188 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE)) 2189 2190 if (sk->sk_flags & FLAGS_TS_OR_DROPS) 2191 __sock_recv_ts_and_drops(msg, sk, skb); 2192 else 2193 sk->sk_stamp = skb->tstamp; 2194 } 2195 2196 /** 2197 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2198 * @sk: socket sending this packet 2199 * @tx_flags: filled with instructions for time stamping 2200 * 2201 * Currently only depends on SOCK_TIMESTAMPING* flags. 2202 */ 2203 extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags); 2204 2205 /** 2206 * sk_eat_skb - Release a skb if it is no longer needed 2207 * @sk: socket to eat this skb from 2208 * @skb: socket buffer to eat 2209 * @copied_early: flag indicating whether DMA operations copied this data early 2210 * 2211 * This routine must be called with interrupts disabled or with the socket 2212 * locked so that the sk_buff queue operation is ok. 2213 */ 2214 #ifdef CONFIG_NET_DMA 2215 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2216 { 2217 __skb_unlink(skb, &sk->sk_receive_queue); 2218 if (!copied_early) 2219 __kfree_skb(skb); 2220 else 2221 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 2222 } 2223 #else 2224 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early) 2225 { 2226 __skb_unlink(skb, &sk->sk_receive_queue); 2227 __kfree_skb(skb); 2228 } 2229 #endif 2230 2231 static inline 2232 struct net *sock_net(const struct sock *sk) 2233 { 2234 return read_pnet(&sk->sk_net); 2235 } 2236 2237 static inline 2238 void sock_net_set(struct sock *sk, struct net *net) 2239 { 2240 write_pnet(&sk->sk_net, net); 2241 } 2242 2243 /* 2244 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 2245 * They should not hold a reference to a namespace in order to allow 2246 * to stop it. 2247 * Sockets after sk_change_net should be released using sk_release_kernel 2248 */ 2249 static inline void sk_change_net(struct sock *sk, struct net *net) 2250 { 2251 put_net(sock_net(sk)); 2252 sock_net_set(sk, hold_net(net)); 2253 } 2254 2255 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2256 { 2257 if (skb->sk) { 2258 struct sock *sk = skb->sk; 2259 2260 skb->destructor = NULL; 2261 skb->sk = NULL; 2262 return sk; 2263 } 2264 return NULL; 2265 } 2266 2267 extern void sock_enable_timestamp(struct sock *sk, int flag); 2268 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 2269 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 2270 extern int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 2271 int level, int type); 2272 2273 /* 2274 * Enable debug/info messages 2275 */ 2276 extern int net_msg_warn; 2277 #define NETDEBUG(fmt, args...) \ 2278 do { if (net_msg_warn) printk(fmt,##args); } while (0) 2279 2280 #define LIMIT_NETDEBUG(fmt, args...) \ 2281 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 2282 2283 extern __u32 sysctl_wmem_max; 2284 extern __u32 sysctl_rmem_max; 2285 2286 extern int sysctl_optmem_max; 2287 2288 extern __u32 sysctl_wmem_default; 2289 extern __u32 sysctl_rmem_default; 2290 2291 #endif /* _SOCK_H */ 2292