1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the AF_INET socket handler. 8 * 9 * Version: @(#)sock.h 1.0.4 05/13/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche <flla@stud.uni-sb.de> 15 * 16 * Fixes: 17 * Alan Cox : Volatiles in skbuff pointers. See 18 * skbuff comments. May be overdone, 19 * better to prove they can be removed 20 * than the reverse. 21 * Alan Cox : Added a zapped field for tcp to note 22 * a socket is reset and must stay shut up 23 * Alan Cox : New fields for options 24 * Pauline Middelink : identd support 25 * Alan Cox : Eliminate low level recv/recvfrom 26 * David S. Miller : New socket lookup architecture. 27 * Steve Whitehouse: Default routines for sock_ops 28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 29 * protinfo be just a void pointer, as the 30 * protocol specific parts were moved to 31 * respective headers and ipv4/v6, etc now 32 * use private slabcaches for its socks 33 * Pedro Hortas : New flags field for socket options 34 */ 35 #ifndef _SOCK_H 36 #define _SOCK_H 37 38 #include <linux/hardirq.h> 39 #include <linux/kernel.h> 40 #include <linux/list.h> 41 #include <linux/list_nulls.h> 42 #include <linux/timer.h> 43 #include <linux/cache.h> 44 #include <linux/bitops.h> 45 #include <linux/lockdep.h> 46 #include <linux/netdevice.h> 47 #include <linux/skbuff.h> /* struct sk_buff */ 48 #include <linux/mm.h> 49 #include <linux/security.h> 50 #include <linux/slab.h> 51 #include <linux/uaccess.h> 52 #include <linux/page_counter.h> 53 #include <linux/memcontrol.h> 54 #include <linux/static_key.h> 55 #include <linux/sched.h> 56 #include <linux/wait.h> 57 #include <linux/cgroup-defs.h> 58 #include <linux/rbtree.h> 59 #include <linux/filter.h> 60 #include <linux/rculist_nulls.h> 61 #include <linux/poll.h> 62 #include <linux/sockptr.h> 63 #include <linux/indirect_call_wrapper.h> 64 #include <linux/atomic.h> 65 #include <linux/refcount.h> 66 #include <net/dst.h> 67 #include <net/checksum.h> 68 #include <net/tcp_states.h> 69 #include <linux/net_tstamp.h> 70 #include <net/l3mdev.h> 71 #include <uapi/linux/socket.h> 72 73 /* 74 * This structure really needs to be cleaned up. 75 * Most of it is for TCP, and not used by any of 76 * the other protocols. 77 */ 78 79 /* Define this to get the SOCK_DBG debugging facility. */ 80 #define SOCK_DEBUGGING 81 #ifdef SOCK_DEBUGGING 82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 83 printk(KERN_DEBUG msg); } while (0) 84 #else 85 /* Validate arguments and do nothing */ 86 static inline __printf(2, 3) 87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 88 { 89 } 90 #endif 91 92 /* This is the per-socket lock. The spinlock provides a synchronization 93 * between user contexts and software interrupt processing, whereas the 94 * mini-semaphore synchronizes multiple users amongst themselves. 95 */ 96 typedef struct { 97 spinlock_t slock; 98 int owned; 99 wait_queue_head_t wq; 100 /* 101 * We express the mutex-alike socket_lock semantics 102 * to the lock validator by explicitly managing 103 * the slock as a lock variant (in addition to 104 * the slock itself): 105 */ 106 #ifdef CONFIG_DEBUG_LOCK_ALLOC 107 struct lockdep_map dep_map; 108 #endif 109 } socket_lock_t; 110 111 struct sock; 112 struct proto; 113 struct net; 114 115 typedef __u32 __bitwise __portpair; 116 typedef __u64 __bitwise __addrpair; 117 118 /** 119 * struct sock_common - minimal network layer representation of sockets 120 * @skc_daddr: Foreign IPv4 addr 121 * @skc_rcv_saddr: Bound local IPv4 addr 122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_portpair: __u32 union of @skc_dport & @skc_num 128 * @skc_family: network address family 129 * @skc_state: Connection state 130 * @skc_reuse: %SO_REUSEADDR setting 131 * @skc_reuseport: %SO_REUSEPORT setting 132 * @skc_ipv6only: socket is IPV6 only 133 * @skc_net_refcnt: socket is using net ref counting 134 * @skc_bound_dev_if: bound device index if != 0 135 * @skc_bind_node: bind hash linkage for various protocol lookup tables 136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 137 * @skc_prot: protocol handlers inside a network family 138 * @skc_net: reference to the network namespace of this socket 139 * @skc_v6_daddr: IPV6 destination address 140 * @skc_v6_rcv_saddr: IPV6 source address 141 * @skc_cookie: socket's cookie value 142 * @skc_node: main hash linkage for various protocol lookup tables 143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 144 * @skc_tx_queue_mapping: tx queue number for this connection 145 * @skc_rx_queue_mapping: rx queue number for this connection 146 * @skc_flags: place holder for sk_flags 147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 149 * @skc_listener: connection request listener socket (aka rsk_listener) 150 * [union with @skc_flags] 151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row 152 * [union with @skc_flags] 153 * @skc_incoming_cpu: record/match cpu processing incoming packets 154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) 155 * [union with @skc_incoming_cpu] 156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number 157 * [union with @skc_incoming_cpu] 158 * @skc_refcnt: reference count 159 * 160 * This is the minimal network layer representation of sockets, the header 161 * for struct sock and struct inet_timewait_sock. 162 */ 163 struct sock_common { 164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 165 * address on 64bit arches : cf INET_MATCH() 166 */ 167 union { 168 __addrpair skc_addrpair; 169 struct { 170 __be32 skc_daddr; 171 __be32 skc_rcv_saddr; 172 }; 173 }; 174 union { 175 unsigned int skc_hash; 176 __u16 skc_u16hashes[2]; 177 }; 178 /* skc_dport && skc_num must be grouped as well */ 179 union { 180 __portpair skc_portpair; 181 struct { 182 __be16 skc_dport; 183 __u16 skc_num; 184 }; 185 }; 186 187 unsigned short skc_family; 188 volatile unsigned char skc_state; 189 unsigned char skc_reuse:4; 190 unsigned char skc_reuseport:1; 191 unsigned char skc_ipv6only:1; 192 unsigned char skc_net_refcnt:1; 193 int skc_bound_dev_if; 194 union { 195 struct hlist_node skc_bind_node; 196 struct hlist_node skc_portaddr_node; 197 }; 198 struct proto *skc_prot; 199 possible_net_t skc_net; 200 201 #if IS_ENABLED(CONFIG_IPV6) 202 struct in6_addr skc_v6_daddr; 203 struct in6_addr skc_v6_rcv_saddr; 204 #endif 205 206 atomic64_t skc_cookie; 207 208 /* following fields are padding to force 209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 210 * assuming IPV6 is enabled. We use this padding differently 211 * for different kind of 'sockets' 212 */ 213 union { 214 unsigned long skc_flags; 215 struct sock *skc_listener; /* request_sock */ 216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 217 }; 218 /* 219 * fields between dontcopy_begin/dontcopy_end 220 * are not copied in sock_copy() 221 */ 222 /* private: */ 223 int skc_dontcopy_begin[0]; 224 /* public: */ 225 union { 226 struct hlist_node skc_node; 227 struct hlist_nulls_node skc_nulls_node; 228 }; 229 unsigned short skc_tx_queue_mapping; 230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 231 unsigned short skc_rx_queue_mapping; 232 #endif 233 union { 234 int skc_incoming_cpu; 235 u32 skc_rcv_wnd; 236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 237 }; 238 239 refcount_t skc_refcnt; 240 /* private: */ 241 int skc_dontcopy_end[0]; 242 union { 243 u32 skc_rxhash; 244 u32 skc_window_clamp; 245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 246 }; 247 /* public: */ 248 }; 249 250 struct bpf_local_storage; 251 252 /** 253 * struct sock - network layer representation of sockets 254 * @__sk_common: shared layout with inet_timewait_sock 255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 257 * @sk_lock: synchronizer 258 * @sk_kern_sock: True if sock is using kernel lock classes 259 * @sk_rcvbuf: size of receive buffer in bytes 260 * @sk_wq: sock wait queue and async head 261 * @sk_rx_dst: receive input route used by early demux 262 * @sk_dst_cache: destination cache 263 * @sk_dst_pending_confirm: need to confirm neighbour 264 * @sk_policy: flow policy 265 * @sk_receive_queue: incoming packets 266 * @sk_wmem_alloc: transmit queue bytes committed 267 * @sk_tsq_flags: TCP Small Queues flags 268 * @sk_write_queue: Packet sending queue 269 * @sk_omem_alloc: "o" is "option" or "other" 270 * @sk_wmem_queued: persistent queue size 271 * @sk_forward_alloc: space allocated forward 272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket 273 * @sk_napi_id: id of the last napi context to receive data for sk 274 * @sk_ll_usec: usecs to busypoll when there is no data 275 * @sk_allocation: allocation mode 276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq) 278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 279 * @sk_sndbuf: size of send buffer in bytes 280 * @__sk_flags_offset: empty field used to determine location of bitfield 281 * @sk_padding: unused element for alignment 282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 283 * @sk_no_check_rx: allow zero checksum in RX packets 284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 285 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 286 * @sk_route_forced_caps: static, forced route capabilities 287 * (set in tcp_init_sock()) 288 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 289 * @sk_gso_max_size: Maximum GSO segment size to build 290 * @sk_gso_max_segs: Maximum number of GSO segments 291 * @sk_pacing_shift: scaling factor for TCP Small Queues 292 * @sk_lingertime: %SO_LINGER l_linger setting 293 * @sk_backlog: always used with the per-socket spinlock held 294 * @sk_callback_lock: used with the callbacks in the end of this struct 295 * @sk_error_queue: rarely used 296 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 297 * IPV6_ADDRFORM for instance) 298 * @sk_err: last error 299 * @sk_err_soft: errors that don't cause failure but are the cause of a 300 * persistent failure not just 'timed out' 301 * @sk_drops: raw/udp drops counter 302 * @sk_ack_backlog: current listen backlog 303 * @sk_max_ack_backlog: listen backlog set in listen() 304 * @sk_uid: user id of owner 305 * @sk_prefer_busy_poll: prefer busypolling over softirq processing 306 * @sk_busy_poll_budget: napi processing budget when busypolling 307 * @sk_priority: %SO_PRIORITY setting 308 * @sk_type: socket type (%SOCK_STREAM, etc) 309 * @sk_protocol: which protocol this socket belongs in this network family 310 * @sk_peer_pid: &struct pid for this socket's peer 311 * @sk_peer_cred: %SO_PEERCRED setting 312 * @sk_rcvlowat: %SO_RCVLOWAT setting 313 * @sk_rcvtimeo: %SO_RCVTIMEO setting 314 * @sk_sndtimeo: %SO_SNDTIMEO setting 315 * @sk_txhash: computed flow hash for use on transmit 316 * @sk_filter: socket filtering instructions 317 * @sk_timer: sock cleanup timer 318 * @sk_stamp: time stamp of last packet received 319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only 320 * @sk_tsflags: SO_TIMESTAMPING flags 321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock 322 * for timestamping 323 * @sk_tskey: counter to disambiguate concurrent tstamp requests 324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications 325 * @sk_socket: Identd and reporting IO signals 326 * @sk_user_data: RPC layer private data 327 * @sk_frag: cached page frag 328 * @sk_peek_off: current peek_offset value 329 * @sk_send_head: front of stuff to transmit 330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] 331 * @sk_security: used by security modules 332 * @sk_mark: generic packet mark 333 * @sk_cgrp_data: cgroup data for this cgroup 334 * @sk_memcg: this socket's memory cgroup association 335 * @sk_write_pending: a write to stream socket waits to start 336 * @sk_state_change: callback to indicate change in the state of the sock 337 * @sk_data_ready: callback to indicate there is data to be processed 338 * @sk_write_space: callback to indicate there is bf sending space available 339 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 340 * @sk_backlog_rcv: callback to process the backlog 341 * @sk_validate_xmit_skb: ptr to an optional validate function 342 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 343 * @sk_reuseport_cb: reuseport group container 344 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage 345 * @sk_rcu: used during RCU grace period 346 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) 347 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME 348 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME 349 * @sk_txtime_unused: unused txtime flags 350 */ 351 struct sock { 352 /* 353 * Now struct inet_timewait_sock also uses sock_common, so please just 354 * don't add nothing before this first member (__sk_common) --acme 355 */ 356 struct sock_common __sk_common; 357 #define sk_node __sk_common.skc_node 358 #define sk_nulls_node __sk_common.skc_nulls_node 359 #define sk_refcnt __sk_common.skc_refcnt 360 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 361 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 362 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping 363 #endif 364 365 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 366 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 367 #define sk_hash __sk_common.skc_hash 368 #define sk_portpair __sk_common.skc_portpair 369 #define sk_num __sk_common.skc_num 370 #define sk_dport __sk_common.skc_dport 371 #define sk_addrpair __sk_common.skc_addrpair 372 #define sk_daddr __sk_common.skc_daddr 373 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 374 #define sk_family __sk_common.skc_family 375 #define sk_state __sk_common.skc_state 376 #define sk_reuse __sk_common.skc_reuse 377 #define sk_reuseport __sk_common.skc_reuseport 378 #define sk_ipv6only __sk_common.skc_ipv6only 379 #define sk_net_refcnt __sk_common.skc_net_refcnt 380 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 381 #define sk_bind_node __sk_common.skc_bind_node 382 #define sk_prot __sk_common.skc_prot 383 #define sk_net __sk_common.skc_net 384 #define sk_v6_daddr __sk_common.skc_v6_daddr 385 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 386 #define sk_cookie __sk_common.skc_cookie 387 #define sk_incoming_cpu __sk_common.skc_incoming_cpu 388 #define sk_flags __sk_common.skc_flags 389 #define sk_rxhash __sk_common.skc_rxhash 390 391 socket_lock_t sk_lock; 392 atomic_t sk_drops; 393 int sk_rcvlowat; 394 struct sk_buff_head sk_error_queue; 395 struct sk_buff_head sk_receive_queue; 396 /* 397 * The backlog queue is special, it is always used with 398 * the per-socket spinlock held and requires low latency 399 * access. Therefore we special case it's implementation. 400 * Note : rmem_alloc is in this structure to fill a hole 401 * on 64bit arches, not because its logically part of 402 * backlog. 403 */ 404 struct { 405 atomic_t rmem_alloc; 406 int len; 407 struct sk_buff *head; 408 struct sk_buff *tail; 409 } sk_backlog; 410 #define sk_rmem_alloc sk_backlog.rmem_alloc 411 412 int sk_forward_alloc; 413 u32 sk_reserved_mem; 414 #ifdef CONFIG_NET_RX_BUSY_POLL 415 unsigned int sk_ll_usec; 416 /* ===== mostly read cache line ===== */ 417 unsigned int sk_napi_id; 418 #endif 419 int sk_rcvbuf; 420 421 struct sk_filter __rcu *sk_filter; 422 union { 423 struct socket_wq __rcu *sk_wq; 424 /* private: */ 425 struct socket_wq *sk_wq_raw; 426 /* public: */ 427 }; 428 #ifdef CONFIG_XFRM 429 struct xfrm_policy __rcu *sk_policy[2]; 430 #endif 431 struct dst_entry *sk_rx_dst; 432 struct dst_entry __rcu *sk_dst_cache; 433 atomic_t sk_omem_alloc; 434 int sk_sndbuf; 435 436 /* ===== cache line for TX ===== */ 437 int sk_wmem_queued; 438 refcount_t sk_wmem_alloc; 439 unsigned long sk_tsq_flags; 440 union { 441 struct sk_buff *sk_send_head; 442 struct rb_root tcp_rtx_queue; 443 }; 444 struct sk_buff_head sk_write_queue; 445 __s32 sk_peek_off; 446 int sk_write_pending; 447 __u32 sk_dst_pending_confirm; 448 u32 sk_pacing_status; /* see enum sk_pacing */ 449 long sk_sndtimeo; 450 struct timer_list sk_timer; 451 __u32 sk_priority; 452 __u32 sk_mark; 453 unsigned long sk_pacing_rate; /* bytes per second */ 454 unsigned long sk_max_pacing_rate; 455 struct page_frag sk_frag; 456 netdev_features_t sk_route_caps; 457 netdev_features_t sk_route_nocaps; 458 netdev_features_t sk_route_forced_caps; 459 int sk_gso_type; 460 unsigned int sk_gso_max_size; 461 gfp_t sk_allocation; 462 __u32 sk_txhash; 463 464 /* 465 * Because of non atomicity rules, all 466 * changes are protected by socket lock. 467 */ 468 u8 sk_padding : 1, 469 sk_kern_sock : 1, 470 sk_no_check_tx : 1, 471 sk_no_check_rx : 1, 472 sk_userlocks : 4; 473 u8 sk_pacing_shift; 474 u16 sk_type; 475 u16 sk_protocol; 476 u16 sk_gso_max_segs; 477 unsigned long sk_lingertime; 478 struct proto *sk_prot_creator; 479 rwlock_t sk_callback_lock; 480 int sk_err, 481 sk_err_soft; 482 u32 sk_ack_backlog; 483 u32 sk_max_ack_backlog; 484 kuid_t sk_uid; 485 #ifdef CONFIG_NET_RX_BUSY_POLL 486 u8 sk_prefer_busy_poll; 487 u16 sk_busy_poll_budget; 488 #endif 489 spinlock_t sk_peer_lock; 490 struct pid *sk_peer_pid; 491 const struct cred *sk_peer_cred; 492 493 long sk_rcvtimeo; 494 ktime_t sk_stamp; 495 #if BITS_PER_LONG==32 496 seqlock_t sk_stamp_seq; 497 #endif 498 u16 sk_tsflags; 499 int sk_bind_phc; 500 u8 sk_shutdown; 501 u32 sk_tskey; 502 atomic_t sk_zckey; 503 504 u8 sk_clockid; 505 u8 sk_txtime_deadline_mode : 1, 506 sk_txtime_report_errors : 1, 507 sk_txtime_unused : 6; 508 509 struct socket *sk_socket; 510 void *sk_user_data; 511 #ifdef CONFIG_SECURITY 512 void *sk_security; 513 #endif 514 struct sock_cgroup_data sk_cgrp_data; 515 struct mem_cgroup *sk_memcg; 516 void (*sk_state_change)(struct sock *sk); 517 void (*sk_data_ready)(struct sock *sk); 518 void (*sk_write_space)(struct sock *sk); 519 void (*sk_error_report)(struct sock *sk); 520 int (*sk_backlog_rcv)(struct sock *sk, 521 struct sk_buff *skb); 522 #ifdef CONFIG_SOCK_VALIDATE_XMIT 523 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, 524 struct net_device *dev, 525 struct sk_buff *skb); 526 #endif 527 void (*sk_destruct)(struct sock *sk); 528 struct sock_reuseport __rcu *sk_reuseport_cb; 529 #ifdef CONFIG_BPF_SYSCALL 530 struct bpf_local_storage __rcu *sk_bpf_storage; 531 #endif 532 struct rcu_head sk_rcu; 533 }; 534 535 enum sk_pacing { 536 SK_PACING_NONE = 0, 537 SK_PACING_NEEDED = 1, 538 SK_PACING_FQ = 2, 539 }; 540 541 /* Pointer stored in sk_user_data might not be suitable for copying 542 * when cloning the socket. For instance, it can point to a reference 543 * counted object. sk_user_data bottom bit is set if pointer must not 544 * be copied. 545 */ 546 #define SK_USER_DATA_NOCOPY 1UL 547 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ 548 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) 549 550 /** 551 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied 552 * @sk: socket 553 */ 554 static inline bool sk_user_data_is_nocopy(const struct sock *sk) 555 { 556 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); 557 } 558 559 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 560 561 #define rcu_dereference_sk_user_data(sk) \ 562 ({ \ 563 void *__tmp = rcu_dereference(__sk_user_data((sk))); \ 564 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ 565 }) 566 #define rcu_assign_sk_user_data(sk, ptr) \ 567 ({ \ 568 uintptr_t __tmp = (uintptr_t)(ptr); \ 569 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 570 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ 571 }) 572 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ 573 ({ \ 574 uintptr_t __tmp = (uintptr_t)(ptr); \ 575 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ 576 rcu_assign_pointer(__sk_user_data((sk)), \ 577 __tmp | SK_USER_DATA_NOCOPY); \ 578 }) 579 580 /* 581 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 582 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 583 * on a socket means that the socket will reuse everybody else's port 584 * without looking at the other's sk_reuse value. 585 */ 586 587 #define SK_NO_REUSE 0 588 #define SK_CAN_REUSE 1 589 #define SK_FORCE_REUSE 2 590 591 int sk_set_peek_off(struct sock *sk, int val); 592 593 static inline int sk_peek_offset(struct sock *sk, int flags) 594 { 595 if (unlikely(flags & MSG_PEEK)) { 596 return READ_ONCE(sk->sk_peek_off); 597 } 598 599 return 0; 600 } 601 602 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 603 { 604 s32 off = READ_ONCE(sk->sk_peek_off); 605 606 if (unlikely(off >= 0)) { 607 off = max_t(s32, off - val, 0); 608 WRITE_ONCE(sk->sk_peek_off, off); 609 } 610 } 611 612 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 613 { 614 sk_peek_offset_bwd(sk, -val); 615 } 616 617 /* 618 * Hashed lists helper routines 619 */ 620 static inline struct sock *sk_entry(const struct hlist_node *node) 621 { 622 return hlist_entry(node, struct sock, sk_node); 623 } 624 625 static inline struct sock *__sk_head(const struct hlist_head *head) 626 { 627 return hlist_entry(head->first, struct sock, sk_node); 628 } 629 630 static inline struct sock *sk_head(const struct hlist_head *head) 631 { 632 return hlist_empty(head) ? NULL : __sk_head(head); 633 } 634 635 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 636 { 637 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 638 } 639 640 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 641 { 642 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 643 } 644 645 static inline struct sock *sk_next(const struct sock *sk) 646 { 647 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); 648 } 649 650 static inline struct sock *sk_nulls_next(const struct sock *sk) 651 { 652 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 653 hlist_nulls_entry(sk->sk_nulls_node.next, 654 struct sock, sk_nulls_node) : 655 NULL; 656 } 657 658 static inline bool sk_unhashed(const struct sock *sk) 659 { 660 return hlist_unhashed(&sk->sk_node); 661 } 662 663 static inline bool sk_hashed(const struct sock *sk) 664 { 665 return !sk_unhashed(sk); 666 } 667 668 static inline void sk_node_init(struct hlist_node *node) 669 { 670 node->pprev = NULL; 671 } 672 673 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 674 { 675 node->pprev = NULL; 676 } 677 678 static inline void __sk_del_node(struct sock *sk) 679 { 680 __hlist_del(&sk->sk_node); 681 } 682 683 /* NB: equivalent to hlist_del_init_rcu */ 684 static inline bool __sk_del_node_init(struct sock *sk) 685 { 686 if (sk_hashed(sk)) { 687 __sk_del_node(sk); 688 sk_node_init(&sk->sk_node); 689 return true; 690 } 691 return false; 692 } 693 694 /* Grab socket reference count. This operation is valid only 695 when sk is ALREADY grabbed f.e. it is found in hash table 696 or a list and the lookup is made under lock preventing hash table 697 modifications. 698 */ 699 700 static __always_inline void sock_hold(struct sock *sk) 701 { 702 refcount_inc(&sk->sk_refcnt); 703 } 704 705 /* Ungrab socket in the context, which assumes that socket refcnt 706 cannot hit zero, f.e. it is true in context of any socketcall. 707 */ 708 static __always_inline void __sock_put(struct sock *sk) 709 { 710 refcount_dec(&sk->sk_refcnt); 711 } 712 713 static inline bool sk_del_node_init(struct sock *sk) 714 { 715 bool rc = __sk_del_node_init(sk); 716 717 if (rc) { 718 /* paranoid for a while -acme */ 719 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 720 __sock_put(sk); 721 } 722 return rc; 723 } 724 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 725 726 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 727 { 728 if (sk_hashed(sk)) { 729 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 730 return true; 731 } 732 return false; 733 } 734 735 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 736 { 737 bool rc = __sk_nulls_del_node_init_rcu(sk); 738 739 if (rc) { 740 /* paranoid for a while -acme */ 741 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 742 __sock_put(sk); 743 } 744 return rc; 745 } 746 747 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 748 { 749 hlist_add_head(&sk->sk_node, list); 750 } 751 752 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 753 { 754 sock_hold(sk); 755 __sk_add_node(sk, list); 756 } 757 758 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 759 { 760 sock_hold(sk); 761 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 762 sk->sk_family == AF_INET6) 763 hlist_add_tail_rcu(&sk->sk_node, list); 764 else 765 hlist_add_head_rcu(&sk->sk_node, list); 766 } 767 768 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) 769 { 770 sock_hold(sk); 771 hlist_add_tail_rcu(&sk->sk_node, list); 772 } 773 774 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 775 { 776 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 777 } 778 779 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) 780 { 781 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 782 } 783 784 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 785 { 786 sock_hold(sk); 787 __sk_nulls_add_node_rcu(sk, list); 788 } 789 790 static inline void __sk_del_bind_node(struct sock *sk) 791 { 792 __hlist_del(&sk->sk_bind_node); 793 } 794 795 static inline void sk_add_bind_node(struct sock *sk, 796 struct hlist_head *list) 797 { 798 hlist_add_head(&sk->sk_bind_node, list); 799 } 800 801 #define sk_for_each(__sk, list) \ 802 hlist_for_each_entry(__sk, list, sk_node) 803 #define sk_for_each_rcu(__sk, list) \ 804 hlist_for_each_entry_rcu(__sk, list, sk_node) 805 #define sk_nulls_for_each(__sk, node, list) \ 806 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 807 #define sk_nulls_for_each_rcu(__sk, node, list) \ 808 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 809 #define sk_for_each_from(__sk) \ 810 hlist_for_each_entry_from(__sk, sk_node) 811 #define sk_nulls_for_each_from(__sk, node) \ 812 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 813 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 814 #define sk_for_each_safe(__sk, tmp, list) \ 815 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 816 #define sk_for_each_bound(__sk, list) \ 817 hlist_for_each_entry(__sk, list, sk_bind_node) 818 819 /** 820 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 821 * @tpos: the type * to use as a loop cursor. 822 * @pos: the &struct hlist_node to use as a loop cursor. 823 * @head: the head for your list. 824 * @offset: offset of hlist_node within the struct. 825 * 826 */ 827 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 828 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 829 pos != NULL && \ 830 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 831 pos = rcu_dereference(hlist_next_rcu(pos))) 832 833 static inline struct user_namespace *sk_user_ns(struct sock *sk) 834 { 835 /* Careful only use this in a context where these parameters 836 * can not change and must all be valid, such as recvmsg from 837 * userspace. 838 */ 839 return sk->sk_socket->file->f_cred->user_ns; 840 } 841 842 /* Sock flags */ 843 enum sock_flags { 844 SOCK_DEAD, 845 SOCK_DONE, 846 SOCK_URGINLINE, 847 SOCK_KEEPOPEN, 848 SOCK_LINGER, 849 SOCK_DESTROY, 850 SOCK_BROADCAST, 851 SOCK_TIMESTAMP, 852 SOCK_ZAPPED, 853 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 854 SOCK_DBG, /* %SO_DEBUG setting */ 855 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 856 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 857 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 858 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 859 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 860 SOCK_FASYNC, /* fasync() active */ 861 SOCK_RXQ_OVFL, 862 SOCK_ZEROCOPY, /* buffers from userspace */ 863 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 864 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 865 * Will use last 4 bytes of packet sent from 866 * user-space instead. 867 */ 868 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 869 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 870 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 871 SOCK_TXTIME, 872 SOCK_XDP, /* XDP is attached */ 873 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ 874 }; 875 876 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 877 878 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 879 { 880 nsk->sk_flags = osk->sk_flags; 881 } 882 883 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 884 { 885 __set_bit(flag, &sk->sk_flags); 886 } 887 888 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 889 { 890 __clear_bit(flag, &sk->sk_flags); 891 } 892 893 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, 894 int valbool) 895 { 896 if (valbool) 897 sock_set_flag(sk, bit); 898 else 899 sock_reset_flag(sk, bit); 900 } 901 902 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 903 { 904 return test_bit(flag, &sk->sk_flags); 905 } 906 907 #ifdef CONFIG_NET 908 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); 909 static inline int sk_memalloc_socks(void) 910 { 911 return static_branch_unlikely(&memalloc_socks_key); 912 } 913 914 void __receive_sock(struct file *file); 915 #else 916 917 static inline int sk_memalloc_socks(void) 918 { 919 return 0; 920 } 921 922 static inline void __receive_sock(struct file *file) 923 { } 924 #endif 925 926 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 927 { 928 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 929 } 930 931 static inline void sk_acceptq_removed(struct sock *sk) 932 { 933 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); 934 } 935 936 static inline void sk_acceptq_added(struct sock *sk) 937 { 938 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); 939 } 940 941 /* Note: If you think the test should be: 942 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); 943 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") 944 */ 945 static inline bool sk_acceptq_is_full(const struct sock *sk) 946 { 947 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); 948 } 949 950 /* 951 * Compute minimal free write space needed to queue new packets. 952 */ 953 static inline int sk_stream_min_wspace(const struct sock *sk) 954 { 955 return READ_ONCE(sk->sk_wmem_queued) >> 1; 956 } 957 958 static inline int sk_stream_wspace(const struct sock *sk) 959 { 960 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); 961 } 962 963 static inline void sk_wmem_queued_add(struct sock *sk, int val) 964 { 965 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); 966 } 967 968 void sk_stream_write_space(struct sock *sk); 969 970 /* OOB backlog add */ 971 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 972 { 973 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 974 skb_dst_force(skb); 975 976 if (!sk->sk_backlog.tail) 977 WRITE_ONCE(sk->sk_backlog.head, skb); 978 else 979 sk->sk_backlog.tail->next = skb; 980 981 WRITE_ONCE(sk->sk_backlog.tail, skb); 982 skb->next = NULL; 983 } 984 985 /* 986 * Take into account size of receive queue and backlog queue 987 * Do not take into account this skb truesize, 988 * to allow even a single big packet to come. 989 */ 990 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 991 { 992 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 993 994 return qsize > limit; 995 } 996 997 /* The per-socket spinlock must be held here. */ 998 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 999 unsigned int limit) 1000 { 1001 if (sk_rcvqueues_full(sk, limit)) 1002 return -ENOBUFS; 1003 1004 /* 1005 * If the skb was allocated from pfmemalloc reserves, only 1006 * allow SOCK_MEMALLOC sockets to use it as this socket is 1007 * helping free memory 1008 */ 1009 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 1010 return -ENOMEM; 1011 1012 __sk_add_backlog(sk, skb); 1013 sk->sk_backlog.len += skb->truesize; 1014 return 0; 1015 } 1016 1017 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 1018 1019 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 1020 { 1021 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 1022 return __sk_backlog_rcv(sk, skb); 1023 1024 return sk->sk_backlog_rcv(sk, skb); 1025 } 1026 1027 static inline void sk_incoming_cpu_update(struct sock *sk) 1028 { 1029 int cpu = raw_smp_processor_id(); 1030 1031 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) 1032 WRITE_ONCE(sk->sk_incoming_cpu, cpu); 1033 } 1034 1035 static inline void sock_rps_record_flow_hash(__u32 hash) 1036 { 1037 #ifdef CONFIG_RPS 1038 struct rps_sock_flow_table *sock_flow_table; 1039 1040 rcu_read_lock(); 1041 sock_flow_table = rcu_dereference(rps_sock_flow_table); 1042 rps_record_sock_flow(sock_flow_table, hash); 1043 rcu_read_unlock(); 1044 #endif 1045 } 1046 1047 static inline void sock_rps_record_flow(const struct sock *sk) 1048 { 1049 #ifdef CONFIG_RPS 1050 if (static_branch_unlikely(&rfs_needed)) { 1051 /* Reading sk->sk_rxhash might incur an expensive cache line 1052 * miss. 1053 * 1054 * TCP_ESTABLISHED does cover almost all states where RFS 1055 * might be useful, and is cheaper [1] than testing : 1056 * IPv4: inet_sk(sk)->inet_daddr 1057 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) 1058 * OR an additional socket flag 1059 * [1] : sk_state and sk_prot are in the same cache line. 1060 */ 1061 if (sk->sk_state == TCP_ESTABLISHED) 1062 sock_rps_record_flow_hash(sk->sk_rxhash); 1063 } 1064 #endif 1065 } 1066 1067 static inline void sock_rps_save_rxhash(struct sock *sk, 1068 const struct sk_buff *skb) 1069 { 1070 #ifdef CONFIG_RPS 1071 if (unlikely(sk->sk_rxhash != skb->hash)) 1072 sk->sk_rxhash = skb->hash; 1073 #endif 1074 } 1075 1076 static inline void sock_rps_reset_rxhash(struct sock *sk) 1077 { 1078 #ifdef CONFIG_RPS 1079 sk->sk_rxhash = 0; 1080 #endif 1081 } 1082 1083 #define sk_wait_event(__sk, __timeo, __condition, __wait) \ 1084 ({ int __rc; \ 1085 release_sock(__sk); \ 1086 __rc = __condition; \ 1087 if (!__rc) { \ 1088 *(__timeo) = wait_woken(__wait, \ 1089 TASK_INTERRUPTIBLE, \ 1090 *(__timeo)); \ 1091 } \ 1092 sched_annotate_sleep(); \ 1093 lock_sock(__sk); \ 1094 __rc = __condition; \ 1095 __rc; \ 1096 }) 1097 1098 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 1099 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 1100 void sk_stream_wait_close(struct sock *sk, long timeo_p); 1101 int sk_stream_error(struct sock *sk, int flags, int err); 1102 void sk_stream_kill_queues(struct sock *sk); 1103 void sk_set_memalloc(struct sock *sk); 1104 void sk_clear_memalloc(struct sock *sk); 1105 1106 void __sk_flush_backlog(struct sock *sk); 1107 1108 static inline bool sk_flush_backlog(struct sock *sk) 1109 { 1110 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 1111 __sk_flush_backlog(sk); 1112 return true; 1113 } 1114 return false; 1115 } 1116 1117 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 1118 1119 struct request_sock_ops; 1120 struct timewait_sock_ops; 1121 struct inet_hashinfo; 1122 struct raw_hashinfo; 1123 struct smc_hashinfo; 1124 struct module; 1125 struct sk_psock; 1126 1127 /* 1128 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes 1129 * un-modified. Special care is taken when initializing object to zero. 1130 */ 1131 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 1132 { 1133 if (offsetof(struct sock, sk_node.next) != 0) 1134 memset(sk, 0, offsetof(struct sock, sk_node.next)); 1135 memset(&sk->sk_node.pprev, 0, 1136 size - offsetof(struct sock, sk_node.pprev)); 1137 } 1138 1139 /* Networking protocol blocks we attach to sockets. 1140 * socket layer -> transport layer interface 1141 */ 1142 struct proto { 1143 void (*close)(struct sock *sk, 1144 long timeout); 1145 int (*pre_connect)(struct sock *sk, 1146 struct sockaddr *uaddr, 1147 int addr_len); 1148 int (*connect)(struct sock *sk, 1149 struct sockaddr *uaddr, 1150 int addr_len); 1151 int (*disconnect)(struct sock *sk, int flags); 1152 1153 struct sock * (*accept)(struct sock *sk, int flags, int *err, 1154 bool kern); 1155 1156 int (*ioctl)(struct sock *sk, int cmd, 1157 unsigned long arg); 1158 int (*init)(struct sock *sk); 1159 void (*destroy)(struct sock *sk); 1160 void (*shutdown)(struct sock *sk, int how); 1161 int (*setsockopt)(struct sock *sk, int level, 1162 int optname, sockptr_t optval, 1163 unsigned int optlen); 1164 int (*getsockopt)(struct sock *sk, int level, 1165 int optname, char __user *optval, 1166 int __user *option); 1167 void (*keepalive)(struct sock *sk, int valbool); 1168 #ifdef CONFIG_COMPAT 1169 int (*compat_ioctl)(struct sock *sk, 1170 unsigned int cmd, unsigned long arg); 1171 #endif 1172 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1173 size_t len); 1174 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1175 size_t len, int noblock, int flags, 1176 int *addr_len); 1177 int (*sendpage)(struct sock *sk, struct page *page, 1178 int offset, size_t size, int flags); 1179 int (*bind)(struct sock *sk, 1180 struct sockaddr *addr, int addr_len); 1181 int (*bind_add)(struct sock *sk, 1182 struct sockaddr *addr, int addr_len); 1183 1184 int (*backlog_rcv) (struct sock *sk, 1185 struct sk_buff *skb); 1186 bool (*bpf_bypass_getsockopt)(int level, 1187 int optname); 1188 1189 void (*release_cb)(struct sock *sk); 1190 1191 /* Keeping track of sk's, looking them up, and port selection methods. */ 1192 int (*hash)(struct sock *sk); 1193 void (*unhash)(struct sock *sk); 1194 void (*rehash)(struct sock *sk); 1195 int (*get_port)(struct sock *sk, unsigned short snum); 1196 #ifdef CONFIG_BPF_SYSCALL 1197 int (*psock_update_sk_prot)(struct sock *sk, 1198 struct sk_psock *psock, 1199 bool restore); 1200 #endif 1201 1202 /* Keeping track of sockets in use */ 1203 #ifdef CONFIG_PROC_FS 1204 unsigned int inuse_idx; 1205 #endif 1206 1207 bool (*stream_memory_free)(const struct sock *sk, int wake); 1208 bool (*stream_memory_read)(const struct sock *sk); 1209 /* Memory pressure */ 1210 void (*enter_memory_pressure)(struct sock *sk); 1211 void (*leave_memory_pressure)(struct sock *sk); 1212 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1213 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1214 /* 1215 * Pressure flag: try to collapse. 1216 * Technical note: it is used by multiple contexts non atomically. 1217 * All the __sk_mem_schedule() is of this nature: accounting 1218 * is strict, actions are advisory and have some latency. 1219 */ 1220 unsigned long *memory_pressure; 1221 long *sysctl_mem; 1222 1223 int *sysctl_wmem; 1224 int *sysctl_rmem; 1225 u32 sysctl_wmem_offset; 1226 u32 sysctl_rmem_offset; 1227 1228 int max_header; 1229 bool no_autobind; 1230 1231 struct kmem_cache *slab; 1232 unsigned int obj_size; 1233 slab_flags_t slab_flags; 1234 unsigned int useroffset; /* Usercopy region offset */ 1235 unsigned int usersize; /* Usercopy region size */ 1236 1237 struct percpu_counter *orphan_count; 1238 1239 struct request_sock_ops *rsk_prot; 1240 struct timewait_sock_ops *twsk_prot; 1241 1242 union { 1243 struct inet_hashinfo *hashinfo; 1244 struct udp_table *udp_table; 1245 struct raw_hashinfo *raw_hash; 1246 struct smc_hashinfo *smc_hash; 1247 } h; 1248 1249 struct module *owner; 1250 1251 char name[32]; 1252 1253 struct list_head node; 1254 #ifdef SOCK_REFCNT_DEBUG 1255 atomic_t socks; 1256 #endif 1257 int (*diag_destroy)(struct sock *sk, int err); 1258 } __randomize_layout; 1259 1260 int proto_register(struct proto *prot, int alloc_slab); 1261 void proto_unregister(struct proto *prot); 1262 int sock_load_diag_module(int family, int protocol); 1263 1264 #ifdef SOCK_REFCNT_DEBUG 1265 static inline void sk_refcnt_debug_inc(struct sock *sk) 1266 { 1267 atomic_inc(&sk->sk_prot->socks); 1268 } 1269 1270 static inline void sk_refcnt_debug_dec(struct sock *sk) 1271 { 1272 atomic_dec(&sk->sk_prot->socks); 1273 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1274 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1275 } 1276 1277 static inline void sk_refcnt_debug_release(const struct sock *sk) 1278 { 1279 if (refcount_read(&sk->sk_refcnt) != 1) 1280 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1281 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); 1282 } 1283 #else /* SOCK_REFCNT_DEBUG */ 1284 #define sk_refcnt_debug_inc(sk) do { } while (0) 1285 #define sk_refcnt_debug_dec(sk) do { } while (0) 1286 #define sk_refcnt_debug_release(sk) do { } while (0) 1287 #endif /* SOCK_REFCNT_DEBUG */ 1288 1289 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); 1290 1291 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) 1292 { 1293 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) 1294 return false; 1295 1296 #ifdef CONFIG_INET 1297 return sk->sk_prot->stream_memory_free ? 1298 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free, 1299 tcp_stream_memory_free, 1300 sk, wake) : true; 1301 #else 1302 return sk->sk_prot->stream_memory_free ? 1303 sk->sk_prot->stream_memory_free(sk, wake) : true; 1304 #endif 1305 } 1306 1307 static inline bool sk_stream_memory_free(const struct sock *sk) 1308 { 1309 return __sk_stream_memory_free(sk, 0); 1310 } 1311 1312 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) 1313 { 1314 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1315 __sk_stream_memory_free(sk, wake); 1316 } 1317 1318 static inline bool sk_stream_is_writeable(const struct sock *sk) 1319 { 1320 return __sk_stream_is_writeable(sk, 0); 1321 } 1322 1323 static inline int sk_under_cgroup_hierarchy(struct sock *sk, 1324 struct cgroup *ancestor) 1325 { 1326 #ifdef CONFIG_SOCK_CGROUP_DATA 1327 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), 1328 ancestor); 1329 #else 1330 return -ENOTSUPP; 1331 #endif 1332 } 1333 1334 static inline bool sk_has_memory_pressure(const struct sock *sk) 1335 { 1336 return sk->sk_prot->memory_pressure != NULL; 1337 } 1338 1339 static inline bool sk_under_memory_pressure(const struct sock *sk) 1340 { 1341 if (!sk->sk_prot->memory_pressure) 1342 return false; 1343 1344 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1345 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1346 return true; 1347 1348 return !!*sk->sk_prot->memory_pressure; 1349 } 1350 1351 static inline long 1352 sk_memory_allocated(const struct sock *sk) 1353 { 1354 return atomic_long_read(sk->sk_prot->memory_allocated); 1355 } 1356 1357 static inline long 1358 sk_memory_allocated_add(struct sock *sk, int amt) 1359 { 1360 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1361 } 1362 1363 static inline void 1364 sk_memory_allocated_sub(struct sock *sk, int amt) 1365 { 1366 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1367 } 1368 1369 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 1370 1371 static inline void sk_sockets_allocated_dec(struct sock *sk) 1372 { 1373 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1, 1374 SK_ALLOC_PERCPU_COUNTER_BATCH); 1375 } 1376 1377 static inline void sk_sockets_allocated_inc(struct sock *sk) 1378 { 1379 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1, 1380 SK_ALLOC_PERCPU_COUNTER_BATCH); 1381 } 1382 1383 static inline u64 1384 sk_sockets_allocated_read_positive(struct sock *sk) 1385 { 1386 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1387 } 1388 1389 static inline int 1390 proto_sockets_allocated_sum_positive(struct proto *prot) 1391 { 1392 return percpu_counter_sum_positive(prot->sockets_allocated); 1393 } 1394 1395 static inline long 1396 proto_memory_allocated(struct proto *prot) 1397 { 1398 return atomic_long_read(prot->memory_allocated); 1399 } 1400 1401 static inline bool 1402 proto_memory_pressure(struct proto *prot) 1403 { 1404 if (!prot->memory_pressure) 1405 return false; 1406 return !!*prot->memory_pressure; 1407 } 1408 1409 1410 #ifdef CONFIG_PROC_FS 1411 /* Called with local bh disabled */ 1412 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1413 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1414 int sock_inuse_get(struct net *net); 1415 #else 1416 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1417 int inc) 1418 { 1419 } 1420 #endif 1421 1422 1423 /* With per-bucket locks this operation is not-atomic, so that 1424 * this version is not worse. 1425 */ 1426 static inline int __sk_prot_rehash(struct sock *sk) 1427 { 1428 sk->sk_prot->unhash(sk); 1429 return sk->sk_prot->hash(sk); 1430 } 1431 1432 /* About 10 seconds */ 1433 #define SOCK_DESTROY_TIME (10*HZ) 1434 1435 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1436 #define PROT_SOCK 1024 1437 1438 #define SHUTDOWN_MASK 3 1439 #define RCV_SHUTDOWN 1 1440 #define SEND_SHUTDOWN 2 1441 1442 #define SOCK_BINDADDR_LOCK 4 1443 #define SOCK_BINDPORT_LOCK 8 1444 1445 struct socket_alloc { 1446 struct socket socket; 1447 struct inode vfs_inode; 1448 }; 1449 1450 static inline struct socket *SOCKET_I(struct inode *inode) 1451 { 1452 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1453 } 1454 1455 static inline struct inode *SOCK_INODE(struct socket *socket) 1456 { 1457 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1458 } 1459 1460 /* 1461 * Functions for memory accounting 1462 */ 1463 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); 1464 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1465 void __sk_mem_reduce_allocated(struct sock *sk, int amount); 1466 void __sk_mem_reclaim(struct sock *sk, int amount); 1467 1468 /* We used to have PAGE_SIZE here, but systems with 64KB pages 1469 * do not necessarily have 16x time more memory than 4KB ones. 1470 */ 1471 #define SK_MEM_QUANTUM 4096 1472 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1473 #define SK_MEM_SEND 0 1474 #define SK_MEM_RECV 1 1475 1476 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ 1477 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1478 { 1479 long val = sk->sk_prot->sysctl_mem[index]; 1480 1481 #if PAGE_SIZE > SK_MEM_QUANTUM 1482 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; 1483 #elif PAGE_SIZE < SK_MEM_QUANTUM 1484 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; 1485 #endif 1486 return val; 1487 } 1488 1489 static inline int sk_mem_pages(int amt) 1490 { 1491 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1492 } 1493 1494 static inline bool sk_has_account(struct sock *sk) 1495 { 1496 /* return true if protocol supports memory accounting */ 1497 return !!sk->sk_prot->memory_allocated; 1498 } 1499 1500 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1501 { 1502 if (!sk_has_account(sk)) 1503 return true; 1504 return size <= sk->sk_forward_alloc || 1505 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1506 } 1507 1508 static inline bool 1509 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1510 { 1511 if (!sk_has_account(sk)) 1512 return true; 1513 return size <= sk->sk_forward_alloc || 1514 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1515 skb_pfmemalloc(skb); 1516 } 1517 1518 static inline int sk_unused_reserved_mem(const struct sock *sk) 1519 { 1520 int unused_mem; 1521 1522 if (likely(!sk->sk_reserved_mem)) 1523 return 0; 1524 1525 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - 1526 atomic_read(&sk->sk_rmem_alloc); 1527 1528 return unused_mem > 0 ? unused_mem : 0; 1529 } 1530 1531 static inline void sk_mem_reclaim(struct sock *sk) 1532 { 1533 int reclaimable; 1534 1535 if (!sk_has_account(sk)) 1536 return; 1537 1538 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1539 1540 if (reclaimable >= SK_MEM_QUANTUM) 1541 __sk_mem_reclaim(sk, reclaimable); 1542 } 1543 1544 static inline void sk_mem_reclaim_final(struct sock *sk) 1545 { 1546 sk->sk_reserved_mem = 0; 1547 sk_mem_reclaim(sk); 1548 } 1549 1550 static inline void sk_mem_reclaim_partial(struct sock *sk) 1551 { 1552 int reclaimable; 1553 1554 if (!sk_has_account(sk)) 1555 return; 1556 1557 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1558 1559 if (reclaimable > SK_MEM_QUANTUM) 1560 __sk_mem_reclaim(sk, reclaimable - 1); 1561 } 1562 1563 static inline void sk_mem_charge(struct sock *sk, int size) 1564 { 1565 if (!sk_has_account(sk)) 1566 return; 1567 sk->sk_forward_alloc -= size; 1568 } 1569 1570 static inline void sk_mem_uncharge(struct sock *sk, int size) 1571 { 1572 int reclaimable; 1573 1574 if (!sk_has_account(sk)) 1575 return; 1576 sk->sk_forward_alloc += size; 1577 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); 1578 1579 /* Avoid a possible overflow. 1580 * TCP send queues can make this happen, if sk_mem_reclaim() 1581 * is not called and more than 2 GBytes are released at once. 1582 * 1583 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1584 * no need to hold that much forward allocation anyway. 1585 */ 1586 if (unlikely(reclaimable >= 1 << 21)) 1587 __sk_mem_reclaim(sk, 1 << 20); 1588 } 1589 1590 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1591 { 1592 sk_wmem_queued_add(sk, -skb->truesize); 1593 sk_mem_uncharge(sk, skb->truesize); 1594 __kfree_skb(skb); 1595 } 1596 1597 static inline void sock_release_ownership(struct sock *sk) 1598 { 1599 if (sk->sk_lock.owned) { 1600 sk->sk_lock.owned = 0; 1601 1602 /* The sk_lock has mutex_unlock() semantics: */ 1603 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1604 } 1605 } 1606 1607 /* 1608 * Macro so as to not evaluate some arguments when 1609 * lockdep is not enabled. 1610 * 1611 * Mark both the sk_lock and the sk_lock.slock as a 1612 * per-address-family lock class. 1613 */ 1614 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1615 do { \ 1616 sk->sk_lock.owned = 0; \ 1617 init_waitqueue_head(&sk->sk_lock.wq); \ 1618 spin_lock_init(&(sk)->sk_lock.slock); \ 1619 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1620 sizeof((sk)->sk_lock)); \ 1621 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1622 (skey), (sname)); \ 1623 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1624 } while (0) 1625 1626 static inline bool lockdep_sock_is_held(const struct sock *sk) 1627 { 1628 return lockdep_is_held(&sk->sk_lock) || 1629 lockdep_is_held(&sk->sk_lock.slock); 1630 } 1631 1632 void lock_sock_nested(struct sock *sk, int subclass); 1633 1634 static inline void lock_sock(struct sock *sk) 1635 { 1636 lock_sock_nested(sk, 0); 1637 } 1638 1639 void __lock_sock(struct sock *sk); 1640 void __release_sock(struct sock *sk); 1641 void release_sock(struct sock *sk); 1642 1643 /* BH context may only use the following locking interface. */ 1644 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1645 #define bh_lock_sock_nested(__sk) \ 1646 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1647 SINGLE_DEPTH_NESTING) 1648 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1649 1650 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); 1651 1652 /** 1653 * lock_sock_fast - fast version of lock_sock 1654 * @sk: socket 1655 * 1656 * This version should be used for very small section, where process wont block 1657 * return false if fast path is taken: 1658 * 1659 * sk_lock.slock locked, owned = 0, BH disabled 1660 * 1661 * return true if slow path is taken: 1662 * 1663 * sk_lock.slock unlocked, owned = 1, BH enabled 1664 */ 1665 static inline bool lock_sock_fast(struct sock *sk) 1666 { 1667 /* The sk_lock has mutex_lock() semantics here. */ 1668 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); 1669 1670 return __lock_sock_fast(sk); 1671 } 1672 1673 /* fast socket lock variant for caller already holding a [different] socket lock */ 1674 static inline bool lock_sock_fast_nested(struct sock *sk) 1675 { 1676 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); 1677 1678 return __lock_sock_fast(sk); 1679 } 1680 1681 /** 1682 * unlock_sock_fast - complement of lock_sock_fast 1683 * @sk: socket 1684 * @slow: slow mode 1685 * 1686 * fast unlock socket for user context. 1687 * If slow mode is on, we call regular release_sock() 1688 */ 1689 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1690 __releases(&sk->sk_lock.slock) 1691 { 1692 if (slow) { 1693 release_sock(sk); 1694 __release(&sk->sk_lock.slock); 1695 } else { 1696 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 1697 spin_unlock_bh(&sk->sk_lock.slock); 1698 } 1699 } 1700 1701 /* Used by processes to "lock" a socket state, so that 1702 * interrupts and bottom half handlers won't change it 1703 * from under us. It essentially blocks any incoming 1704 * packets, so that we won't get any new data or any 1705 * packets that change the state of the socket. 1706 * 1707 * While locked, BH processing will add new packets to 1708 * the backlog queue. This queue is processed by the 1709 * owner of the socket lock right before it is released. 1710 * 1711 * Since ~2.3.5 it is also exclusive sleep lock serializing 1712 * accesses from user process context. 1713 */ 1714 1715 static inline void sock_owned_by_me(const struct sock *sk) 1716 { 1717 #ifdef CONFIG_LOCKDEP 1718 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1719 #endif 1720 } 1721 1722 static inline bool sock_owned_by_user(const struct sock *sk) 1723 { 1724 sock_owned_by_me(sk); 1725 return sk->sk_lock.owned; 1726 } 1727 1728 static inline bool sock_owned_by_user_nocheck(const struct sock *sk) 1729 { 1730 return sk->sk_lock.owned; 1731 } 1732 1733 /* no reclassification while locks are held */ 1734 static inline bool sock_allow_reclassification(const struct sock *csk) 1735 { 1736 struct sock *sk = (struct sock *)csk; 1737 1738 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1739 } 1740 1741 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1742 struct proto *prot, int kern); 1743 void sk_free(struct sock *sk); 1744 void sk_destruct(struct sock *sk); 1745 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1746 void sk_free_unlock_clone(struct sock *sk); 1747 1748 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1749 gfp_t priority); 1750 void __sock_wfree(struct sk_buff *skb); 1751 void sock_wfree(struct sk_buff *skb); 1752 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 1753 gfp_t priority); 1754 void skb_orphan_partial(struct sk_buff *skb); 1755 void sock_rfree(struct sk_buff *skb); 1756 void sock_efree(struct sk_buff *skb); 1757 #ifdef CONFIG_INET 1758 void sock_edemux(struct sk_buff *skb); 1759 void sock_pfree(struct sk_buff *skb); 1760 #else 1761 #define sock_edemux sock_efree 1762 #endif 1763 1764 int sock_setsockopt(struct socket *sock, int level, int op, 1765 sockptr_t optval, unsigned int optlen); 1766 1767 int sock_getsockopt(struct socket *sock, int level, int op, 1768 char __user *optval, int __user *optlen); 1769 int sock_gettstamp(struct socket *sock, void __user *userstamp, 1770 bool timeval, bool time32); 1771 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1772 int noblock, int *errcode); 1773 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1774 unsigned long data_len, int noblock, 1775 int *errcode, int max_page_order); 1776 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1777 void sock_kfree_s(struct sock *sk, void *mem, int size); 1778 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1779 void sk_send_sigurg(struct sock *sk); 1780 1781 struct sockcm_cookie { 1782 u64 transmit_time; 1783 u32 mark; 1784 u16 tsflags; 1785 }; 1786 1787 static inline void sockcm_init(struct sockcm_cookie *sockc, 1788 const struct sock *sk) 1789 { 1790 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; 1791 } 1792 1793 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1794 struct sockcm_cookie *sockc); 1795 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1796 struct sockcm_cookie *sockc); 1797 1798 /* 1799 * Functions to fill in entries in struct proto_ops when a protocol 1800 * does not implement a particular function. 1801 */ 1802 int sock_no_bind(struct socket *, struct sockaddr *, int); 1803 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1804 int sock_no_socketpair(struct socket *, struct socket *); 1805 int sock_no_accept(struct socket *, struct socket *, int, bool); 1806 int sock_no_getname(struct socket *, struct sockaddr *, int); 1807 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1808 int sock_no_listen(struct socket *, int); 1809 int sock_no_shutdown(struct socket *, int); 1810 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1811 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); 1812 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1813 int sock_no_mmap(struct file *file, struct socket *sock, 1814 struct vm_area_struct *vma); 1815 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1816 size_t size, int flags); 1817 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, 1818 int offset, size_t size, int flags); 1819 1820 /* 1821 * Functions to fill in entries in struct proto_ops when a protocol 1822 * uses the inet style. 1823 */ 1824 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1825 char __user *optval, int __user *optlen); 1826 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1827 int flags); 1828 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1829 sockptr_t optval, unsigned int optlen); 1830 1831 void sk_common_release(struct sock *sk); 1832 1833 /* 1834 * Default socket callbacks and setup code 1835 */ 1836 1837 /* Initialise core socket variables */ 1838 void sock_init_data(struct socket *sock, struct sock *sk); 1839 1840 /* 1841 * Socket reference counting postulates. 1842 * 1843 * * Each user of socket SHOULD hold a reference count. 1844 * * Each access point to socket (an hash table bucket, reference from a list, 1845 * running timer, skb in flight MUST hold a reference count. 1846 * * When reference count hits 0, it means it will never increase back. 1847 * * When reference count hits 0, it means that no references from 1848 * outside exist to this socket and current process on current CPU 1849 * is last user and may/should destroy this socket. 1850 * * sk_free is called from any context: process, BH, IRQ. When 1851 * it is called, socket has no references from outside -> sk_free 1852 * may release descendant resources allocated by the socket, but 1853 * to the time when it is called, socket is NOT referenced by any 1854 * hash tables, lists etc. 1855 * * Packets, delivered from outside (from network or from another process) 1856 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1857 * when they sit in queue. Otherwise, packets will leak to hole, when 1858 * socket is looked up by one cpu and unhasing is made by another CPU. 1859 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1860 * (leak to backlog). Packet socket does all the processing inside 1861 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1862 * use separate SMP lock, so that they are prone too. 1863 */ 1864 1865 /* Ungrab socket and destroy it, if it was the last reference. */ 1866 static inline void sock_put(struct sock *sk) 1867 { 1868 if (refcount_dec_and_test(&sk->sk_refcnt)) 1869 sk_free(sk); 1870 } 1871 /* Generic version of sock_put(), dealing with all sockets 1872 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1873 */ 1874 void sock_gen_put(struct sock *sk); 1875 1876 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1877 unsigned int trim_cap, bool refcounted); 1878 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1879 const int nested) 1880 { 1881 return __sk_receive_skb(sk, skb, nested, 1, true); 1882 } 1883 1884 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1885 { 1886 /* sk_tx_queue_mapping accept only upto a 16-bit value */ 1887 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) 1888 return; 1889 sk->sk_tx_queue_mapping = tx_queue; 1890 } 1891 1892 #define NO_QUEUE_MAPPING USHRT_MAX 1893 1894 static inline void sk_tx_queue_clear(struct sock *sk) 1895 { 1896 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; 1897 } 1898 1899 static inline int sk_tx_queue_get(const struct sock *sk) 1900 { 1901 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) 1902 return sk->sk_tx_queue_mapping; 1903 1904 return -1; 1905 } 1906 1907 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) 1908 { 1909 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1910 if (skb_rx_queue_recorded(skb)) { 1911 u16 rx_queue = skb_get_rx_queue(skb); 1912 1913 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) 1914 return; 1915 1916 sk->sk_rx_queue_mapping = rx_queue; 1917 } 1918 #endif 1919 } 1920 1921 static inline void sk_rx_queue_clear(struct sock *sk) 1922 { 1923 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1924 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; 1925 #endif 1926 } 1927 1928 static inline int sk_rx_queue_get(const struct sock *sk) 1929 { 1930 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 1931 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) 1932 return sk->sk_rx_queue_mapping; 1933 #endif 1934 1935 return -1; 1936 } 1937 1938 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1939 { 1940 sk->sk_socket = sock; 1941 } 1942 1943 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1944 { 1945 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1946 return &rcu_dereference_raw(sk->sk_wq)->wait; 1947 } 1948 /* Detach socket from process context. 1949 * Announce socket dead, detach it from wait queue and inode. 1950 * Note that parent inode held reference count on this struct sock, 1951 * we do not release it in this function, because protocol 1952 * probably wants some additional cleanups or even continuing 1953 * to work with this socket (TCP). 1954 */ 1955 static inline void sock_orphan(struct sock *sk) 1956 { 1957 write_lock_bh(&sk->sk_callback_lock); 1958 sock_set_flag(sk, SOCK_DEAD); 1959 sk_set_socket(sk, NULL); 1960 sk->sk_wq = NULL; 1961 write_unlock_bh(&sk->sk_callback_lock); 1962 } 1963 1964 static inline void sock_graft(struct sock *sk, struct socket *parent) 1965 { 1966 WARN_ON(parent->sk); 1967 write_lock_bh(&sk->sk_callback_lock); 1968 rcu_assign_pointer(sk->sk_wq, &parent->wq); 1969 parent->sk = sk; 1970 sk_set_socket(sk, parent); 1971 sk->sk_uid = SOCK_INODE(parent)->i_uid; 1972 security_sock_graft(sk, parent); 1973 write_unlock_bh(&sk->sk_callback_lock); 1974 } 1975 1976 kuid_t sock_i_uid(struct sock *sk); 1977 unsigned long sock_i_ino(struct sock *sk); 1978 1979 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) 1980 { 1981 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); 1982 } 1983 1984 static inline u32 net_tx_rndhash(void) 1985 { 1986 u32 v = prandom_u32(); 1987 1988 return v ?: 1; 1989 } 1990 1991 static inline void sk_set_txhash(struct sock *sk) 1992 { 1993 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ 1994 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); 1995 } 1996 1997 static inline bool sk_rethink_txhash(struct sock *sk) 1998 { 1999 if (sk->sk_txhash) { 2000 sk_set_txhash(sk); 2001 return true; 2002 } 2003 return false; 2004 } 2005 2006 static inline struct dst_entry * 2007 __sk_dst_get(struct sock *sk) 2008 { 2009 return rcu_dereference_check(sk->sk_dst_cache, 2010 lockdep_sock_is_held(sk)); 2011 } 2012 2013 static inline struct dst_entry * 2014 sk_dst_get(struct sock *sk) 2015 { 2016 struct dst_entry *dst; 2017 2018 rcu_read_lock(); 2019 dst = rcu_dereference(sk->sk_dst_cache); 2020 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 2021 dst = NULL; 2022 rcu_read_unlock(); 2023 return dst; 2024 } 2025 2026 static inline void __dst_negative_advice(struct sock *sk) 2027 { 2028 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 2029 2030 if (dst && dst->ops->negative_advice) { 2031 ndst = dst->ops->negative_advice(dst); 2032 2033 if (ndst != dst) { 2034 rcu_assign_pointer(sk->sk_dst_cache, ndst); 2035 sk_tx_queue_clear(sk); 2036 sk->sk_dst_pending_confirm = 0; 2037 } 2038 } 2039 } 2040 2041 static inline void dst_negative_advice(struct sock *sk) 2042 { 2043 sk_rethink_txhash(sk); 2044 __dst_negative_advice(sk); 2045 } 2046 2047 static inline void 2048 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 2049 { 2050 struct dst_entry *old_dst; 2051 2052 sk_tx_queue_clear(sk); 2053 sk->sk_dst_pending_confirm = 0; 2054 old_dst = rcu_dereference_protected(sk->sk_dst_cache, 2055 lockdep_sock_is_held(sk)); 2056 rcu_assign_pointer(sk->sk_dst_cache, dst); 2057 dst_release(old_dst); 2058 } 2059 2060 static inline void 2061 sk_dst_set(struct sock *sk, struct dst_entry *dst) 2062 { 2063 struct dst_entry *old_dst; 2064 2065 sk_tx_queue_clear(sk); 2066 sk->sk_dst_pending_confirm = 0; 2067 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 2068 dst_release(old_dst); 2069 } 2070 2071 static inline void 2072 __sk_dst_reset(struct sock *sk) 2073 { 2074 __sk_dst_set(sk, NULL); 2075 } 2076 2077 static inline void 2078 sk_dst_reset(struct sock *sk) 2079 { 2080 sk_dst_set(sk, NULL); 2081 } 2082 2083 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 2084 2085 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 2086 2087 static inline void sk_dst_confirm(struct sock *sk) 2088 { 2089 if (!READ_ONCE(sk->sk_dst_pending_confirm)) 2090 WRITE_ONCE(sk->sk_dst_pending_confirm, 1); 2091 } 2092 2093 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) 2094 { 2095 if (skb_get_dst_pending_confirm(skb)) { 2096 struct sock *sk = skb->sk; 2097 unsigned long now = jiffies; 2098 2099 /* avoid dirtying neighbour */ 2100 if (READ_ONCE(n->confirmed) != now) 2101 WRITE_ONCE(n->confirmed, now); 2102 if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) 2103 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 2104 } 2105 } 2106 2107 bool sk_mc_loop(struct sock *sk); 2108 2109 static inline bool sk_can_gso(const struct sock *sk) 2110 { 2111 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 2112 } 2113 2114 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 2115 2116 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 2117 { 2118 sk->sk_route_nocaps |= flags; 2119 sk->sk_route_caps &= ~flags; 2120 } 2121 2122 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 2123 struct iov_iter *from, char *to, 2124 int copy, int offset) 2125 { 2126 if (skb->ip_summed == CHECKSUM_NONE) { 2127 __wsum csum = 0; 2128 if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) 2129 return -EFAULT; 2130 skb->csum = csum_block_add(skb->csum, csum, offset); 2131 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 2132 if (!copy_from_iter_full_nocache(to, copy, from)) 2133 return -EFAULT; 2134 } else if (!copy_from_iter_full(to, copy, from)) 2135 return -EFAULT; 2136 2137 return 0; 2138 } 2139 2140 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 2141 struct iov_iter *from, int copy) 2142 { 2143 int err, offset = skb->len; 2144 2145 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 2146 copy, offset); 2147 if (err) 2148 __skb_trim(skb, offset); 2149 2150 return err; 2151 } 2152 2153 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 2154 struct sk_buff *skb, 2155 struct page *page, 2156 int off, int copy) 2157 { 2158 int err; 2159 2160 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 2161 copy, skb->len); 2162 if (err) 2163 return err; 2164 2165 skb->len += copy; 2166 skb->data_len += copy; 2167 skb->truesize += copy; 2168 sk_wmem_queued_add(sk, copy); 2169 sk_mem_charge(sk, copy); 2170 return 0; 2171 } 2172 2173 /** 2174 * sk_wmem_alloc_get - returns write allocations 2175 * @sk: socket 2176 * 2177 * Return: sk_wmem_alloc minus initial offset of one 2178 */ 2179 static inline int sk_wmem_alloc_get(const struct sock *sk) 2180 { 2181 return refcount_read(&sk->sk_wmem_alloc) - 1; 2182 } 2183 2184 /** 2185 * sk_rmem_alloc_get - returns read allocations 2186 * @sk: socket 2187 * 2188 * Return: sk_rmem_alloc 2189 */ 2190 static inline int sk_rmem_alloc_get(const struct sock *sk) 2191 { 2192 return atomic_read(&sk->sk_rmem_alloc); 2193 } 2194 2195 /** 2196 * sk_has_allocations - check if allocations are outstanding 2197 * @sk: socket 2198 * 2199 * Return: true if socket has write or read allocations 2200 */ 2201 static inline bool sk_has_allocations(const struct sock *sk) 2202 { 2203 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 2204 } 2205 2206 /** 2207 * skwq_has_sleeper - check if there are any waiting processes 2208 * @wq: struct socket_wq 2209 * 2210 * Return: true if socket_wq has waiting processes 2211 * 2212 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 2213 * barrier call. They were added due to the race found within the tcp code. 2214 * 2215 * Consider following tcp code paths:: 2216 * 2217 * CPU1 CPU2 2218 * sys_select receive packet 2219 * ... ... 2220 * __add_wait_queue update tp->rcv_nxt 2221 * ... ... 2222 * tp->rcv_nxt check sock_def_readable 2223 * ... { 2224 * schedule rcu_read_lock(); 2225 * wq = rcu_dereference(sk->sk_wq); 2226 * if (wq && waitqueue_active(&wq->wait)) 2227 * wake_up_interruptible(&wq->wait) 2228 * ... 2229 * } 2230 * 2231 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 2232 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 2233 * could then endup calling schedule and sleep forever if there are no more 2234 * data on the socket. 2235 * 2236 */ 2237 static inline bool skwq_has_sleeper(struct socket_wq *wq) 2238 { 2239 return wq && wq_has_sleeper(&wq->wait); 2240 } 2241 2242 /** 2243 * sock_poll_wait - place memory barrier behind the poll_wait call. 2244 * @filp: file 2245 * @sock: socket to wait on 2246 * @p: poll_table 2247 * 2248 * See the comments in the wq_has_sleeper function. 2249 */ 2250 static inline void sock_poll_wait(struct file *filp, struct socket *sock, 2251 poll_table *p) 2252 { 2253 if (!poll_does_not_wait(p)) { 2254 poll_wait(filp, &sock->wq.wait, p); 2255 /* We need to be sure we are in sync with the 2256 * socket flags modification. 2257 * 2258 * This memory barrier is paired in the wq_has_sleeper. 2259 */ 2260 smp_mb(); 2261 } 2262 } 2263 2264 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 2265 { 2266 /* This pairs with WRITE_ONCE() in sk_set_txhash() */ 2267 u32 txhash = READ_ONCE(sk->sk_txhash); 2268 2269 if (txhash) { 2270 skb->l4_hash = 1; 2271 skb->hash = txhash; 2272 } 2273 } 2274 2275 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 2276 2277 /* 2278 * Queue a received datagram if it will fit. Stream and sequenced 2279 * protocols can't normally use this as they need to fit buffers in 2280 * and play with them. 2281 * 2282 * Inlined as it's very short and called for pretty much every 2283 * packet ever received. 2284 */ 2285 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 2286 { 2287 skb_orphan(skb); 2288 skb->sk = sk; 2289 skb->destructor = sock_rfree; 2290 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 2291 sk_mem_charge(sk, skb->truesize); 2292 } 2293 2294 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) 2295 { 2296 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { 2297 skb_orphan(skb); 2298 skb->destructor = sock_efree; 2299 skb->sk = sk; 2300 return true; 2301 } 2302 return false; 2303 } 2304 2305 static inline void skb_prepare_for_gro(struct sk_buff *skb) 2306 { 2307 if (skb->destructor != sock_wfree) { 2308 skb_orphan(skb); 2309 return; 2310 } 2311 skb->slow_gro = 1; 2312 } 2313 2314 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 2315 unsigned long expires); 2316 2317 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 2318 2319 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); 2320 2321 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, 2322 struct sk_buff *skb, unsigned int flags, 2323 void (*destructor)(struct sock *sk, 2324 struct sk_buff *skb)); 2325 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2326 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 2327 2328 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 2329 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 2330 2331 /* 2332 * Recover an error report and clear atomically 2333 */ 2334 2335 static inline int sock_error(struct sock *sk) 2336 { 2337 int err; 2338 2339 /* Avoid an atomic operation for the common case. 2340 * This is racy since another cpu/thread can change sk_err under us. 2341 */ 2342 if (likely(data_race(!sk->sk_err))) 2343 return 0; 2344 2345 err = xchg(&sk->sk_err, 0); 2346 return -err; 2347 } 2348 2349 void sk_error_report(struct sock *sk); 2350 2351 static inline unsigned long sock_wspace(struct sock *sk) 2352 { 2353 int amt = 0; 2354 2355 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 2356 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); 2357 if (amt < 0) 2358 amt = 0; 2359 } 2360 return amt; 2361 } 2362 2363 /* Note: 2364 * We use sk->sk_wq_raw, from contexts knowing this 2365 * pointer is not NULL and cannot disappear/change. 2366 */ 2367 static inline void sk_set_bit(int nr, struct sock *sk) 2368 { 2369 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2370 !sock_flag(sk, SOCK_FASYNC)) 2371 return; 2372 2373 set_bit(nr, &sk->sk_wq_raw->flags); 2374 } 2375 2376 static inline void sk_clear_bit(int nr, struct sock *sk) 2377 { 2378 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 2379 !sock_flag(sk, SOCK_FASYNC)) 2380 return; 2381 2382 clear_bit(nr, &sk->sk_wq_raw->flags); 2383 } 2384 2385 static inline void sk_wake_async(const struct sock *sk, int how, int band) 2386 { 2387 if (sock_flag(sk, SOCK_FASYNC)) { 2388 rcu_read_lock(); 2389 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2390 rcu_read_unlock(); 2391 } 2392 } 2393 2394 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2395 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2396 * Note: for send buffers, TCP works better if we can build two skbs at 2397 * minimum. 2398 */ 2399 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2400 2401 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2402 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2403 2404 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2405 { 2406 u32 val; 2407 2408 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 2409 return; 2410 2411 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2412 val = max_t(u32, val, sk_unused_reserved_mem(sk)); 2413 2414 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); 2415 } 2416 2417 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2418 bool force_schedule); 2419 2420 /** 2421 * sk_page_frag - return an appropriate page_frag 2422 * @sk: socket 2423 * 2424 * Use the per task page_frag instead of the per socket one for 2425 * optimization when we know that we're in the normal context and owns 2426 * everything that's associated with %current. 2427 * 2428 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest 2429 * inside other socket operations and end up recursing into sk_page_frag() 2430 * while it's already in use. 2431 * 2432 * Return: a per task page_frag if context allows that, 2433 * otherwise a per socket one. 2434 */ 2435 static inline struct page_frag *sk_page_frag(struct sock *sk) 2436 { 2437 if (gfpflags_normal_context(sk->sk_allocation)) 2438 return ¤t->task_frag; 2439 2440 return &sk->sk_frag; 2441 } 2442 2443 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2444 2445 /* 2446 * Default write policy as shown to user space via poll/select/SIGIO 2447 */ 2448 static inline bool sock_writeable(const struct sock *sk) 2449 { 2450 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); 2451 } 2452 2453 static inline gfp_t gfp_any(void) 2454 { 2455 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2456 } 2457 2458 static inline gfp_t gfp_memcg_charge(void) 2459 { 2460 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL; 2461 } 2462 2463 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2464 { 2465 return noblock ? 0 : sk->sk_rcvtimeo; 2466 } 2467 2468 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2469 { 2470 return noblock ? 0 : sk->sk_sndtimeo; 2471 } 2472 2473 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2474 { 2475 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); 2476 2477 return v ?: 1; 2478 } 2479 2480 /* Alas, with timeout socket operations are not restartable. 2481 * Compare this to poll(). 2482 */ 2483 static inline int sock_intr_errno(long timeo) 2484 { 2485 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2486 } 2487 2488 struct sock_skb_cb { 2489 u32 dropcount; 2490 }; 2491 2492 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2493 * using skb->cb[] would keep using it directly and utilize its 2494 * alignement guarantee. 2495 */ 2496 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ 2497 sizeof(struct sock_skb_cb))) 2498 2499 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2500 SOCK_SKB_CB_OFFSET)) 2501 2502 #define sock_skb_cb_check_size(size) \ 2503 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2504 2505 static inline void 2506 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2507 { 2508 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? 2509 atomic_read(&sk->sk_drops) : 0; 2510 } 2511 2512 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2513 { 2514 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2515 2516 atomic_add(segs, &sk->sk_drops); 2517 } 2518 2519 static inline ktime_t sock_read_timestamp(struct sock *sk) 2520 { 2521 #if BITS_PER_LONG==32 2522 unsigned int seq; 2523 ktime_t kt; 2524 2525 do { 2526 seq = read_seqbegin(&sk->sk_stamp_seq); 2527 kt = sk->sk_stamp; 2528 } while (read_seqretry(&sk->sk_stamp_seq, seq)); 2529 2530 return kt; 2531 #else 2532 return READ_ONCE(sk->sk_stamp); 2533 #endif 2534 } 2535 2536 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) 2537 { 2538 #if BITS_PER_LONG==32 2539 write_seqlock(&sk->sk_stamp_seq); 2540 sk->sk_stamp = kt; 2541 write_sequnlock(&sk->sk_stamp_seq); 2542 #else 2543 WRITE_ONCE(sk->sk_stamp, kt); 2544 #endif 2545 } 2546 2547 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2548 struct sk_buff *skb); 2549 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2550 struct sk_buff *skb); 2551 2552 static inline void 2553 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2554 { 2555 ktime_t kt = skb->tstamp; 2556 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2557 2558 /* 2559 * generate control messages if 2560 * - receive time stamping in software requested 2561 * - software time stamp available and wanted 2562 * - hardware time stamps available and wanted 2563 */ 2564 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2565 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2566 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2567 (hwtstamps->hwtstamp && 2568 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2569 __sock_recv_timestamp(msg, sk, skb); 2570 else 2571 sock_write_timestamp(sk, kt); 2572 2573 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2574 __sock_recv_wifi_status(msg, sk, skb); 2575 } 2576 2577 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2578 struct sk_buff *skb); 2579 2580 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) 2581 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2582 struct sk_buff *skb) 2583 { 2584 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2585 (1UL << SOCK_RCVTSTAMP)) 2586 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2587 SOF_TIMESTAMPING_RAW_HARDWARE) 2588 2589 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2590 __sock_recv_ts_and_drops(msg, sk, skb); 2591 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) 2592 sock_write_timestamp(sk, skb->tstamp); 2593 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) 2594 sock_write_timestamp(sk, 0); 2595 } 2596 2597 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2598 2599 /** 2600 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2601 * @sk: socket sending this packet 2602 * @tsflags: timestamping flags to use 2603 * @tx_flags: completed with instructions for time stamping 2604 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) 2605 * 2606 * Note: callers should take care of initial ``*tx_flags`` value (usually 0) 2607 */ 2608 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2609 __u8 *tx_flags, __u32 *tskey) 2610 { 2611 if (unlikely(tsflags)) { 2612 __sock_tx_timestamp(tsflags, tx_flags); 2613 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && 2614 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 2615 *tskey = sk->sk_tskey++; 2616 } 2617 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2618 *tx_flags |= SKBTX_WIFI_STATUS; 2619 } 2620 2621 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, 2622 __u8 *tx_flags) 2623 { 2624 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); 2625 } 2626 2627 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) 2628 { 2629 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, 2630 &skb_shinfo(skb)->tskey); 2631 } 2632 2633 /** 2634 * sk_eat_skb - Release a skb if it is no longer needed 2635 * @sk: socket to eat this skb from 2636 * @skb: socket buffer to eat 2637 * 2638 * This routine must be called with interrupts disabled or with the socket 2639 * locked so that the sk_buff queue operation is ok. 2640 */ 2641 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2642 { 2643 __skb_unlink(skb, &sk->sk_receive_queue); 2644 __kfree_skb(skb); 2645 } 2646 2647 static inline 2648 struct net *sock_net(const struct sock *sk) 2649 { 2650 return read_pnet(&sk->sk_net); 2651 } 2652 2653 static inline 2654 void sock_net_set(struct sock *sk, struct net *net) 2655 { 2656 write_pnet(&sk->sk_net, net); 2657 } 2658 2659 static inline bool 2660 skb_sk_is_prefetched(struct sk_buff *skb) 2661 { 2662 #ifdef CONFIG_INET 2663 return skb->destructor == sock_pfree; 2664 #else 2665 return false; 2666 #endif /* CONFIG_INET */ 2667 } 2668 2669 /* This helper checks if a socket is a full socket, 2670 * ie _not_ a timewait or request socket. 2671 */ 2672 static inline bool sk_fullsock(const struct sock *sk) 2673 { 2674 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2675 } 2676 2677 static inline bool 2678 sk_is_refcounted(struct sock *sk) 2679 { 2680 /* Only full sockets have sk->sk_flags. */ 2681 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); 2682 } 2683 2684 /** 2685 * skb_steal_sock - steal a socket from an sk_buff 2686 * @skb: sk_buff to steal the socket from 2687 * @refcounted: is set to true if the socket is reference-counted 2688 */ 2689 static inline struct sock * 2690 skb_steal_sock(struct sk_buff *skb, bool *refcounted) 2691 { 2692 if (skb->sk) { 2693 struct sock *sk = skb->sk; 2694 2695 *refcounted = true; 2696 if (skb_sk_is_prefetched(skb)) 2697 *refcounted = sk_is_refcounted(sk); 2698 skb->destructor = NULL; 2699 skb->sk = NULL; 2700 return sk; 2701 } 2702 *refcounted = false; 2703 return NULL; 2704 } 2705 2706 /* Checks if this SKB belongs to an HW offloaded socket 2707 * and whether any SW fallbacks are required based on dev. 2708 * Check decrypted mark in case skb_orphan() cleared socket. 2709 */ 2710 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 2711 struct net_device *dev) 2712 { 2713 #ifdef CONFIG_SOCK_VALIDATE_XMIT 2714 struct sock *sk = skb->sk; 2715 2716 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { 2717 skb = sk->sk_validate_xmit_skb(sk, dev, skb); 2718 #ifdef CONFIG_TLS_DEVICE 2719 } else if (unlikely(skb->decrypted)) { 2720 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 2721 kfree_skb(skb); 2722 skb = NULL; 2723 #endif 2724 } 2725 #endif 2726 2727 return skb; 2728 } 2729 2730 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2731 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2732 */ 2733 static inline bool sk_listener(const struct sock *sk) 2734 { 2735 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2736 } 2737 2738 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); 2739 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2740 int type); 2741 2742 bool sk_ns_capable(const struct sock *sk, 2743 struct user_namespace *user_ns, int cap); 2744 bool sk_capable(const struct sock *sk, int cap); 2745 bool sk_net_capable(const struct sock *sk, int cap); 2746 2747 void sk_get_meminfo(const struct sock *sk, u32 *meminfo); 2748 2749 /* Take into consideration the size of the struct sk_buff overhead in the 2750 * determination of these values, since that is non-constant across 2751 * platforms. This makes socket queueing behavior and performance 2752 * not depend upon such differences. 2753 */ 2754 #define _SK_MEM_PACKETS 256 2755 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) 2756 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2757 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 2758 2759 extern __u32 sysctl_wmem_max; 2760 extern __u32 sysctl_rmem_max; 2761 2762 extern int sysctl_tstamp_allow_data; 2763 extern int sysctl_optmem_max; 2764 2765 extern __u32 sysctl_wmem_default; 2766 extern __u32 sysctl_rmem_default; 2767 2768 #define SKB_FRAG_PAGE_ORDER get_order(32768) 2769 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2770 2771 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) 2772 { 2773 /* Does this proto have per netns sysctl_wmem ? */ 2774 if (proto->sysctl_wmem_offset) 2775 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); 2776 2777 return *proto->sysctl_wmem; 2778 } 2779 2780 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) 2781 { 2782 /* Does this proto have per netns sysctl_rmem ? */ 2783 if (proto->sysctl_rmem_offset) 2784 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); 2785 2786 return *proto->sysctl_rmem; 2787 } 2788 2789 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) 2790 * Some wifi drivers need to tweak it to get more chunks. 2791 * They can use this helper from their ndo_start_xmit() 2792 */ 2793 static inline void sk_pacing_shift_update(struct sock *sk, int val) 2794 { 2795 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) 2796 return; 2797 WRITE_ONCE(sk->sk_pacing_shift, val); 2798 } 2799 2800 /* if a socket is bound to a device, check that the given device 2801 * index is either the same or that the socket is bound to an L3 2802 * master device and the given device index is also enslaved to 2803 * that L3 master 2804 */ 2805 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) 2806 { 2807 int mdif; 2808 2809 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) 2810 return true; 2811 2812 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); 2813 if (mdif && mdif == sk->sk_bound_dev_if) 2814 return true; 2815 2816 return false; 2817 } 2818 2819 void sock_def_readable(struct sock *sk); 2820 2821 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); 2822 void sock_set_timestamp(struct sock *sk, int optname, bool valbool); 2823 int sock_set_timestamping(struct sock *sk, int optname, 2824 struct so_timestamping timestamping); 2825 2826 void sock_enable_timestamps(struct sock *sk); 2827 void sock_no_linger(struct sock *sk); 2828 void sock_set_keepalive(struct sock *sk); 2829 void sock_set_priority(struct sock *sk, u32 priority); 2830 void sock_set_rcvbuf(struct sock *sk, int val); 2831 void sock_set_mark(struct sock *sk, u32 val); 2832 void sock_set_reuseaddr(struct sock *sk); 2833 void sock_set_reuseport(struct sock *sk); 2834 void sock_set_sndtimeo(struct sock *sk, s64 secs); 2835 2836 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); 2837 2838 #endif /* _SOCK_H */ 2839