xref: /openbmc/linux/include/net/sock.h (revision f21e49be)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
264   *	@sk_dst_cache: destination cache
265   *	@sk_dst_pending_confirm: need to confirm neighbour
266   *	@sk_policy: flow policy
267   *	@sk_receive_queue: incoming packets
268   *	@sk_wmem_alloc: transmit queue bytes committed
269   *	@sk_tsq_flags: TCP Small Queues flags
270   *	@sk_write_queue: Packet sending queue
271   *	@sk_omem_alloc: "o" is "option" or "other"
272   *	@sk_wmem_queued: persistent queue size
273   *	@sk_forward_alloc: space allocated forward
274   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
275   *	@sk_napi_id: id of the last napi context to receive data for sk
276   *	@sk_ll_usec: usecs to busypoll when there is no data
277   *	@sk_allocation: allocation mode
278   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
280   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281   *	@sk_sndbuf: size of send buffer in bytes
282   *	@__sk_flags_offset: empty field used to determine location of bitfield
283   *	@sk_padding: unused element for alignment
284   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285   *	@sk_no_check_rx: allow zero checksum in RX packets
286   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
288   *	@sk_route_forced_caps: static, forced route capabilities
289   *		(set in tcp_init_sock())
290   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
291   *	@sk_gso_max_size: Maximum GSO segment size to build
292   *	@sk_gso_max_segs: Maximum number of GSO segments
293   *	@sk_pacing_shift: scaling factor for TCP Small Queues
294   *	@sk_lingertime: %SO_LINGER l_linger setting
295   *	@sk_backlog: always used with the per-socket spinlock held
296   *	@sk_callback_lock: used with the callbacks in the end of this struct
297   *	@sk_error_queue: rarely used
298   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
299   *			  IPV6_ADDRFORM for instance)
300   *	@sk_err: last error
301   *	@sk_err_soft: errors that don't cause failure but are the cause of a
302   *		      persistent failure not just 'timed out'
303   *	@sk_drops: raw/udp drops counter
304   *	@sk_ack_backlog: current listen backlog
305   *	@sk_max_ack_backlog: listen backlog set in listen()
306   *	@sk_uid: user id of owner
307   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
308   *	@sk_busy_poll_budget: napi processing budget when busypolling
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
313   *	@sk_peer_pid: &struct pid for this socket's peer
314   *	@sk_peer_cred: %SO_PEERCRED setting
315   *	@sk_rcvlowat: %SO_RCVLOWAT setting
316   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
317   *	@sk_sndtimeo: %SO_SNDTIMEO setting
318   *	@sk_txhash: computed flow hash for use on transmit
319   *	@sk_filter: socket filtering instructions
320   *	@sk_timer: sock cleanup timer
321   *	@sk_stamp: time stamp of last packet received
322   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
323   *	@sk_tsflags: SO_TIMESTAMPING flags
324   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325   *	              for timestamping
326   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
327   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
328   *	@sk_socket: Identd and reporting IO signals
329   *	@sk_user_data: RPC layer private data
330   *	@sk_frag: cached page frag
331   *	@sk_peek_off: current peek_offset value
332   *	@sk_send_head: front of stuff to transmit
333   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334   *	@sk_security: used by security modules
335   *	@sk_mark: generic packet mark
336   *	@sk_cgrp_data: cgroup data for this cgroup
337   *	@sk_memcg: this socket's memory cgroup association
338   *	@sk_write_pending: a write to stream socket waits to start
339   *	@sk_state_change: callback to indicate change in the state of the sock
340   *	@sk_data_ready: callback to indicate there is data to be processed
341   *	@sk_write_space: callback to indicate there is bf sending space available
342   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343   *	@sk_backlog_rcv: callback to process the backlog
344   *	@sk_validate_xmit_skb: ptr to an optional validate function
345   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346   *	@sk_reuseport_cb: reuseport group container
347   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348   *	@sk_rcu: used during RCU grace period
349   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
352   *	@sk_txtime_unused: unused txtime flags
353   */
354 struct sock {
355 	/*
356 	 * Now struct inet_timewait_sock also uses sock_common, so please just
357 	 * don't add nothing before this first member (__sk_common) --acme
358 	 */
359 	struct sock_common	__sk_common;
360 #define sk_node			__sk_common.skc_node
361 #define sk_nulls_node		__sk_common.skc_nulls_node
362 #define sk_refcnt		__sk_common.skc_refcnt
363 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
364 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
365 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
366 #endif
367 
368 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
369 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
370 #define sk_hash			__sk_common.skc_hash
371 #define sk_portpair		__sk_common.skc_portpair
372 #define sk_num			__sk_common.skc_num
373 #define sk_dport		__sk_common.skc_dport
374 #define sk_addrpair		__sk_common.skc_addrpair
375 #define sk_daddr		__sk_common.skc_daddr
376 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
377 #define sk_family		__sk_common.skc_family
378 #define sk_state		__sk_common.skc_state
379 #define sk_reuse		__sk_common.skc_reuse
380 #define sk_reuseport		__sk_common.skc_reuseport
381 #define sk_ipv6only		__sk_common.skc_ipv6only
382 #define sk_net_refcnt		__sk_common.skc_net_refcnt
383 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
384 #define sk_bind_node		__sk_common.skc_bind_node
385 #define sk_prot			__sk_common.skc_prot
386 #define sk_net			__sk_common.skc_net
387 #define sk_v6_daddr		__sk_common.skc_v6_daddr
388 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
389 #define sk_cookie		__sk_common.skc_cookie
390 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
391 #define sk_flags		__sk_common.skc_flags
392 #define sk_rxhash		__sk_common.skc_rxhash
393 
394 	socket_lock_t		sk_lock;
395 	atomic_t		sk_drops;
396 	int			sk_rcvlowat;
397 	struct sk_buff_head	sk_error_queue;
398 	struct sk_buff_head	sk_receive_queue;
399 	/*
400 	 * The backlog queue is special, it is always used with
401 	 * the per-socket spinlock held and requires low latency
402 	 * access. Therefore we special case it's implementation.
403 	 * Note : rmem_alloc is in this structure to fill a hole
404 	 * on 64bit arches, not because its logically part of
405 	 * backlog.
406 	 */
407 	struct {
408 		atomic_t	rmem_alloc;
409 		int		len;
410 		struct sk_buff	*head;
411 		struct sk_buff	*tail;
412 	} sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414 
415 	int			sk_forward_alloc;
416 	u32			sk_reserved_mem;
417 #ifdef CONFIG_NET_RX_BUSY_POLL
418 	unsigned int		sk_ll_usec;
419 	/* ===== mostly read cache line ===== */
420 	unsigned int		sk_napi_id;
421 #endif
422 	int			sk_rcvbuf;
423 
424 	struct sk_filter __rcu	*sk_filter;
425 	union {
426 		struct socket_wq __rcu	*sk_wq;
427 		/* private: */
428 		struct socket_wq	*sk_wq_raw;
429 		/* public: */
430 	};
431 #ifdef CONFIG_XFRM
432 	struct xfrm_policy __rcu *sk_policy[2];
433 #endif
434 	struct dst_entry	*sk_rx_dst;
435 	int			sk_rx_dst_ifindex;
436 	u32			sk_rx_dst_cookie;
437 
438 	struct dst_entry __rcu	*sk_dst_cache;
439 	atomic_t		sk_omem_alloc;
440 	int			sk_sndbuf;
441 
442 	/* ===== cache line for TX ===== */
443 	int			sk_wmem_queued;
444 	refcount_t		sk_wmem_alloc;
445 	unsigned long		sk_tsq_flags;
446 	union {
447 		struct sk_buff	*sk_send_head;
448 		struct rb_root	tcp_rtx_queue;
449 	};
450 	struct sk_buff_head	sk_write_queue;
451 	__s32			sk_peek_off;
452 	int			sk_write_pending;
453 	__u32			sk_dst_pending_confirm;
454 	u32			sk_pacing_status; /* see enum sk_pacing */
455 	long			sk_sndtimeo;
456 	struct timer_list	sk_timer;
457 	__u32			sk_priority;
458 	__u32			sk_mark;
459 	unsigned long		sk_pacing_rate; /* bytes per second */
460 	unsigned long		sk_max_pacing_rate;
461 	struct page_frag	sk_frag;
462 	netdev_features_t	sk_route_caps;
463 	netdev_features_t	sk_route_nocaps;
464 	netdev_features_t	sk_route_forced_caps;
465 	int			sk_gso_type;
466 	unsigned int		sk_gso_max_size;
467 	gfp_t			sk_allocation;
468 	__u32			sk_txhash;
469 
470 	/*
471 	 * Because of non atomicity rules, all
472 	 * changes are protected by socket lock.
473 	 */
474 	u8			sk_padding : 1,
475 				sk_kern_sock : 1,
476 				sk_no_check_tx : 1,
477 				sk_no_check_rx : 1,
478 				sk_userlocks : 4;
479 	u8			sk_pacing_shift;
480 	u16			sk_type;
481 	u16			sk_protocol;
482 	u16			sk_gso_max_segs;
483 	unsigned long	        sk_lingertime;
484 	struct proto		*sk_prot_creator;
485 	rwlock_t		sk_callback_lock;
486 	int			sk_err,
487 				sk_err_soft;
488 	u32			sk_ack_backlog;
489 	u32			sk_max_ack_backlog;
490 	kuid_t			sk_uid;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 	u8			sk_prefer_busy_poll;
493 	u16			sk_busy_poll_budget;
494 #endif
495 	spinlock_t		sk_peer_lock;
496 	struct pid		*sk_peer_pid;
497 	const struct cred	*sk_peer_cred;
498 
499 	long			sk_rcvtimeo;
500 	ktime_t			sk_stamp;
501 #if BITS_PER_LONG==32
502 	seqlock_t		sk_stamp_seq;
503 #endif
504 	u16			sk_tsflags;
505 	int			sk_bind_phc;
506 	u8			sk_shutdown;
507 	u32			sk_tskey;
508 	atomic_t		sk_zckey;
509 
510 	u8			sk_clockid;
511 	u8			sk_txtime_deadline_mode : 1,
512 				sk_txtime_report_errors : 1,
513 				sk_txtime_unused : 6;
514 
515 	struct socket		*sk_socket;
516 	void			*sk_user_data;
517 #ifdef CONFIG_SECURITY
518 	void			*sk_security;
519 #endif
520 	struct sock_cgroup_data	sk_cgrp_data;
521 	struct mem_cgroup	*sk_memcg;
522 	void			(*sk_state_change)(struct sock *sk);
523 	void			(*sk_data_ready)(struct sock *sk);
524 	void			(*sk_write_space)(struct sock *sk);
525 	void			(*sk_error_report)(struct sock *sk);
526 	int			(*sk_backlog_rcv)(struct sock *sk,
527 						  struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
530 							struct net_device *dev,
531 							struct sk_buff *skb);
532 #endif
533 	void                    (*sk_destruct)(struct sock *sk);
534 	struct sock_reuseport __rcu	*sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 	struct bpf_local_storage __rcu	*sk_bpf_storage;
537 #endif
538 	struct rcu_head		sk_rcu;
539 };
540 
541 enum sk_pacing {
542 	SK_PACING_NONE		= 0,
543 	SK_PACING_NEEDED	= 1,
544 	SK_PACING_FQ		= 2,
545 };
546 
547 /* Pointer stored in sk_user_data might not be suitable for copying
548  * when cloning the socket. For instance, it can point to a reference
549  * counted object. sk_user_data bottom bit is set if pointer must not
550  * be copied.
551  */
552 #define SK_USER_DATA_NOCOPY	1UL
553 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
554 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
555 
556 /**
557  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
558  * @sk: socket
559  */
560 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
561 {
562 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
563 }
564 
565 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
566 
567 #define rcu_dereference_sk_user_data(sk)				\
568 ({									\
569 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
570 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
571 })
572 #define rcu_assign_sk_user_data(sk, ptr)				\
573 ({									\
574 	uintptr_t __tmp = (uintptr_t)(ptr);				\
575 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
576 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
577 })
578 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
579 ({									\
580 	uintptr_t __tmp = (uintptr_t)(ptr);				\
581 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
582 	rcu_assign_pointer(__sk_user_data((sk)),			\
583 			   __tmp | SK_USER_DATA_NOCOPY);		\
584 })
585 
586 /*
587  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
588  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
589  * on a socket means that the socket will reuse everybody else's port
590  * without looking at the other's sk_reuse value.
591  */
592 
593 #define SK_NO_REUSE	0
594 #define SK_CAN_REUSE	1
595 #define SK_FORCE_REUSE	2
596 
597 int sk_set_peek_off(struct sock *sk, int val);
598 
599 static inline int sk_peek_offset(struct sock *sk, int flags)
600 {
601 	if (unlikely(flags & MSG_PEEK)) {
602 		return READ_ONCE(sk->sk_peek_off);
603 	}
604 
605 	return 0;
606 }
607 
608 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
609 {
610 	s32 off = READ_ONCE(sk->sk_peek_off);
611 
612 	if (unlikely(off >= 0)) {
613 		off = max_t(s32, off - val, 0);
614 		WRITE_ONCE(sk->sk_peek_off, off);
615 	}
616 }
617 
618 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
619 {
620 	sk_peek_offset_bwd(sk, -val);
621 }
622 
623 /*
624  * Hashed lists helper routines
625  */
626 static inline struct sock *sk_entry(const struct hlist_node *node)
627 {
628 	return hlist_entry(node, struct sock, sk_node);
629 }
630 
631 static inline struct sock *__sk_head(const struct hlist_head *head)
632 {
633 	return hlist_entry(head->first, struct sock, sk_node);
634 }
635 
636 static inline struct sock *sk_head(const struct hlist_head *head)
637 {
638 	return hlist_empty(head) ? NULL : __sk_head(head);
639 }
640 
641 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
642 {
643 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
644 }
645 
646 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
647 {
648 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
649 }
650 
651 static inline struct sock *sk_next(const struct sock *sk)
652 {
653 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
654 }
655 
656 static inline struct sock *sk_nulls_next(const struct sock *sk)
657 {
658 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
659 		hlist_nulls_entry(sk->sk_nulls_node.next,
660 				  struct sock, sk_nulls_node) :
661 		NULL;
662 }
663 
664 static inline bool sk_unhashed(const struct sock *sk)
665 {
666 	return hlist_unhashed(&sk->sk_node);
667 }
668 
669 static inline bool sk_hashed(const struct sock *sk)
670 {
671 	return !sk_unhashed(sk);
672 }
673 
674 static inline void sk_node_init(struct hlist_node *node)
675 {
676 	node->pprev = NULL;
677 }
678 
679 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
680 {
681 	node->pprev = NULL;
682 }
683 
684 static inline void __sk_del_node(struct sock *sk)
685 {
686 	__hlist_del(&sk->sk_node);
687 }
688 
689 /* NB: equivalent to hlist_del_init_rcu */
690 static inline bool __sk_del_node_init(struct sock *sk)
691 {
692 	if (sk_hashed(sk)) {
693 		__sk_del_node(sk);
694 		sk_node_init(&sk->sk_node);
695 		return true;
696 	}
697 	return false;
698 }
699 
700 /* Grab socket reference count. This operation is valid only
701    when sk is ALREADY grabbed f.e. it is found in hash table
702    or a list and the lookup is made under lock preventing hash table
703    modifications.
704  */
705 
706 static __always_inline void sock_hold(struct sock *sk)
707 {
708 	refcount_inc(&sk->sk_refcnt);
709 }
710 
711 /* Ungrab socket in the context, which assumes that socket refcnt
712    cannot hit zero, f.e. it is true in context of any socketcall.
713  */
714 static __always_inline void __sock_put(struct sock *sk)
715 {
716 	refcount_dec(&sk->sk_refcnt);
717 }
718 
719 static inline bool sk_del_node_init(struct sock *sk)
720 {
721 	bool rc = __sk_del_node_init(sk);
722 
723 	if (rc) {
724 		/* paranoid for a while -acme */
725 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
726 		__sock_put(sk);
727 	}
728 	return rc;
729 }
730 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
731 
732 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
733 {
734 	if (sk_hashed(sk)) {
735 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
736 		return true;
737 	}
738 	return false;
739 }
740 
741 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
742 {
743 	bool rc = __sk_nulls_del_node_init_rcu(sk);
744 
745 	if (rc) {
746 		/* paranoid for a while -acme */
747 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
748 		__sock_put(sk);
749 	}
750 	return rc;
751 }
752 
753 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
754 {
755 	hlist_add_head(&sk->sk_node, list);
756 }
757 
758 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
759 {
760 	sock_hold(sk);
761 	__sk_add_node(sk, list);
762 }
763 
764 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
765 {
766 	sock_hold(sk);
767 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
768 	    sk->sk_family == AF_INET6)
769 		hlist_add_tail_rcu(&sk->sk_node, list);
770 	else
771 		hlist_add_head_rcu(&sk->sk_node, list);
772 }
773 
774 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
775 {
776 	sock_hold(sk);
777 	hlist_add_tail_rcu(&sk->sk_node, list);
778 }
779 
780 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
781 {
782 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
783 }
784 
785 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
786 {
787 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
788 }
789 
790 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
791 {
792 	sock_hold(sk);
793 	__sk_nulls_add_node_rcu(sk, list);
794 }
795 
796 static inline void __sk_del_bind_node(struct sock *sk)
797 {
798 	__hlist_del(&sk->sk_bind_node);
799 }
800 
801 static inline void sk_add_bind_node(struct sock *sk,
802 					struct hlist_head *list)
803 {
804 	hlist_add_head(&sk->sk_bind_node, list);
805 }
806 
807 #define sk_for_each(__sk, list) \
808 	hlist_for_each_entry(__sk, list, sk_node)
809 #define sk_for_each_rcu(__sk, list) \
810 	hlist_for_each_entry_rcu(__sk, list, sk_node)
811 #define sk_nulls_for_each(__sk, node, list) \
812 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
813 #define sk_nulls_for_each_rcu(__sk, node, list) \
814 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
815 #define sk_for_each_from(__sk) \
816 	hlist_for_each_entry_from(__sk, sk_node)
817 #define sk_nulls_for_each_from(__sk, node) \
818 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
819 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
820 #define sk_for_each_safe(__sk, tmp, list) \
821 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
822 #define sk_for_each_bound(__sk, list) \
823 	hlist_for_each_entry(__sk, list, sk_bind_node)
824 
825 /**
826  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
827  * @tpos:	the type * to use as a loop cursor.
828  * @pos:	the &struct hlist_node to use as a loop cursor.
829  * @head:	the head for your list.
830  * @offset:	offset of hlist_node within the struct.
831  *
832  */
833 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
834 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
835 	     pos != NULL &&						       \
836 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
837 	     pos = rcu_dereference(hlist_next_rcu(pos)))
838 
839 static inline struct user_namespace *sk_user_ns(struct sock *sk)
840 {
841 	/* Careful only use this in a context where these parameters
842 	 * can not change and must all be valid, such as recvmsg from
843 	 * userspace.
844 	 */
845 	return sk->sk_socket->file->f_cred->user_ns;
846 }
847 
848 /* Sock flags */
849 enum sock_flags {
850 	SOCK_DEAD,
851 	SOCK_DONE,
852 	SOCK_URGINLINE,
853 	SOCK_KEEPOPEN,
854 	SOCK_LINGER,
855 	SOCK_DESTROY,
856 	SOCK_BROADCAST,
857 	SOCK_TIMESTAMP,
858 	SOCK_ZAPPED,
859 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
860 	SOCK_DBG, /* %SO_DEBUG setting */
861 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
862 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
863 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
864 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
865 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
866 	SOCK_FASYNC, /* fasync() active */
867 	SOCK_RXQ_OVFL,
868 	SOCK_ZEROCOPY, /* buffers from userspace */
869 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
870 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
871 		     * Will use last 4 bytes of packet sent from
872 		     * user-space instead.
873 		     */
874 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
875 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
876 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
877 	SOCK_TXTIME,
878 	SOCK_XDP, /* XDP is attached */
879 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
880 };
881 
882 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
883 
884 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
885 {
886 	nsk->sk_flags = osk->sk_flags;
887 }
888 
889 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
890 {
891 	__set_bit(flag, &sk->sk_flags);
892 }
893 
894 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
895 {
896 	__clear_bit(flag, &sk->sk_flags);
897 }
898 
899 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
900 				     int valbool)
901 {
902 	if (valbool)
903 		sock_set_flag(sk, bit);
904 	else
905 		sock_reset_flag(sk, bit);
906 }
907 
908 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
909 {
910 	return test_bit(flag, &sk->sk_flags);
911 }
912 
913 #ifdef CONFIG_NET
914 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
915 static inline int sk_memalloc_socks(void)
916 {
917 	return static_branch_unlikely(&memalloc_socks_key);
918 }
919 
920 void __receive_sock(struct file *file);
921 #else
922 
923 static inline int sk_memalloc_socks(void)
924 {
925 	return 0;
926 }
927 
928 static inline void __receive_sock(struct file *file)
929 { }
930 #endif
931 
932 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
933 {
934 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
935 }
936 
937 static inline void sk_acceptq_removed(struct sock *sk)
938 {
939 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
940 }
941 
942 static inline void sk_acceptq_added(struct sock *sk)
943 {
944 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
945 }
946 
947 /* Note: If you think the test should be:
948  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
949  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
950  */
951 static inline bool sk_acceptq_is_full(const struct sock *sk)
952 {
953 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
954 }
955 
956 /*
957  * Compute minimal free write space needed to queue new packets.
958  */
959 static inline int sk_stream_min_wspace(const struct sock *sk)
960 {
961 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
962 }
963 
964 static inline int sk_stream_wspace(const struct sock *sk)
965 {
966 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
967 }
968 
969 static inline void sk_wmem_queued_add(struct sock *sk, int val)
970 {
971 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
972 }
973 
974 void sk_stream_write_space(struct sock *sk);
975 
976 /* OOB backlog add */
977 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
978 {
979 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
980 	skb_dst_force(skb);
981 
982 	if (!sk->sk_backlog.tail)
983 		WRITE_ONCE(sk->sk_backlog.head, skb);
984 	else
985 		sk->sk_backlog.tail->next = skb;
986 
987 	WRITE_ONCE(sk->sk_backlog.tail, skb);
988 	skb->next = NULL;
989 }
990 
991 /*
992  * Take into account size of receive queue and backlog queue
993  * Do not take into account this skb truesize,
994  * to allow even a single big packet to come.
995  */
996 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
997 {
998 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
999 
1000 	return qsize > limit;
1001 }
1002 
1003 /* The per-socket spinlock must be held here. */
1004 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1005 					      unsigned int limit)
1006 {
1007 	if (sk_rcvqueues_full(sk, limit))
1008 		return -ENOBUFS;
1009 
1010 	/*
1011 	 * If the skb was allocated from pfmemalloc reserves, only
1012 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1013 	 * helping free memory
1014 	 */
1015 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1016 		return -ENOMEM;
1017 
1018 	__sk_add_backlog(sk, skb);
1019 	sk->sk_backlog.len += skb->truesize;
1020 	return 0;
1021 }
1022 
1023 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1024 
1025 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1026 {
1027 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1028 		return __sk_backlog_rcv(sk, skb);
1029 
1030 	return sk->sk_backlog_rcv(sk, skb);
1031 }
1032 
1033 static inline void sk_incoming_cpu_update(struct sock *sk)
1034 {
1035 	int cpu = raw_smp_processor_id();
1036 
1037 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1038 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1039 }
1040 
1041 static inline void sock_rps_record_flow_hash(__u32 hash)
1042 {
1043 #ifdef CONFIG_RPS
1044 	struct rps_sock_flow_table *sock_flow_table;
1045 
1046 	rcu_read_lock();
1047 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1048 	rps_record_sock_flow(sock_flow_table, hash);
1049 	rcu_read_unlock();
1050 #endif
1051 }
1052 
1053 static inline void sock_rps_record_flow(const struct sock *sk)
1054 {
1055 #ifdef CONFIG_RPS
1056 	if (static_branch_unlikely(&rfs_needed)) {
1057 		/* Reading sk->sk_rxhash might incur an expensive cache line
1058 		 * miss.
1059 		 *
1060 		 * TCP_ESTABLISHED does cover almost all states where RFS
1061 		 * might be useful, and is cheaper [1] than testing :
1062 		 *	IPv4: inet_sk(sk)->inet_daddr
1063 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1064 		 * OR	an additional socket flag
1065 		 * [1] : sk_state and sk_prot are in the same cache line.
1066 		 */
1067 		if (sk->sk_state == TCP_ESTABLISHED)
1068 			sock_rps_record_flow_hash(sk->sk_rxhash);
1069 	}
1070 #endif
1071 }
1072 
1073 static inline void sock_rps_save_rxhash(struct sock *sk,
1074 					const struct sk_buff *skb)
1075 {
1076 #ifdef CONFIG_RPS
1077 	if (unlikely(sk->sk_rxhash != skb->hash))
1078 		sk->sk_rxhash = skb->hash;
1079 #endif
1080 }
1081 
1082 static inline void sock_rps_reset_rxhash(struct sock *sk)
1083 {
1084 #ifdef CONFIG_RPS
1085 	sk->sk_rxhash = 0;
1086 #endif
1087 }
1088 
1089 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1090 	({	int __rc;						\
1091 		release_sock(__sk);					\
1092 		__rc = __condition;					\
1093 		if (!__rc) {						\
1094 			*(__timeo) = wait_woken(__wait,			\
1095 						TASK_INTERRUPTIBLE,	\
1096 						*(__timeo));		\
1097 		}							\
1098 		sched_annotate_sleep();					\
1099 		lock_sock(__sk);					\
1100 		__rc = __condition;					\
1101 		__rc;							\
1102 	})
1103 
1104 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1105 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1106 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1107 int sk_stream_error(struct sock *sk, int flags, int err);
1108 void sk_stream_kill_queues(struct sock *sk);
1109 void sk_set_memalloc(struct sock *sk);
1110 void sk_clear_memalloc(struct sock *sk);
1111 
1112 void __sk_flush_backlog(struct sock *sk);
1113 
1114 static inline bool sk_flush_backlog(struct sock *sk)
1115 {
1116 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1117 		__sk_flush_backlog(sk);
1118 		return true;
1119 	}
1120 	return false;
1121 }
1122 
1123 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1124 
1125 struct request_sock_ops;
1126 struct timewait_sock_ops;
1127 struct inet_hashinfo;
1128 struct raw_hashinfo;
1129 struct smc_hashinfo;
1130 struct module;
1131 struct sk_psock;
1132 
1133 /*
1134  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1135  * un-modified. Special care is taken when initializing object to zero.
1136  */
1137 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1138 {
1139 	if (offsetof(struct sock, sk_node.next) != 0)
1140 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1141 	memset(&sk->sk_node.pprev, 0,
1142 	       size - offsetof(struct sock, sk_node.pprev));
1143 }
1144 
1145 /* Networking protocol blocks we attach to sockets.
1146  * socket layer -> transport layer interface
1147  */
1148 struct proto {
1149 	void			(*close)(struct sock *sk,
1150 					long timeout);
1151 	int			(*pre_connect)(struct sock *sk,
1152 					struct sockaddr *uaddr,
1153 					int addr_len);
1154 	int			(*connect)(struct sock *sk,
1155 					struct sockaddr *uaddr,
1156 					int addr_len);
1157 	int			(*disconnect)(struct sock *sk, int flags);
1158 
1159 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1160 					  bool kern);
1161 
1162 	int			(*ioctl)(struct sock *sk, int cmd,
1163 					 unsigned long arg);
1164 	int			(*init)(struct sock *sk);
1165 	void			(*destroy)(struct sock *sk);
1166 	void			(*shutdown)(struct sock *sk, int how);
1167 	int			(*setsockopt)(struct sock *sk, int level,
1168 					int optname, sockptr_t optval,
1169 					unsigned int optlen);
1170 	int			(*getsockopt)(struct sock *sk, int level,
1171 					int optname, char __user *optval,
1172 					int __user *option);
1173 	void			(*keepalive)(struct sock *sk, int valbool);
1174 #ifdef CONFIG_COMPAT
1175 	int			(*compat_ioctl)(struct sock *sk,
1176 					unsigned int cmd, unsigned long arg);
1177 #endif
1178 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1179 					   size_t len);
1180 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1181 					   size_t len, int noblock, int flags,
1182 					   int *addr_len);
1183 	int			(*sendpage)(struct sock *sk, struct page *page,
1184 					int offset, size_t size, int flags);
1185 	int			(*bind)(struct sock *sk,
1186 					struct sockaddr *addr, int addr_len);
1187 	int			(*bind_add)(struct sock *sk,
1188 					struct sockaddr *addr, int addr_len);
1189 
1190 	int			(*backlog_rcv) (struct sock *sk,
1191 						struct sk_buff *skb);
1192 	bool			(*bpf_bypass_getsockopt)(int level,
1193 							 int optname);
1194 
1195 	void		(*release_cb)(struct sock *sk);
1196 
1197 	/* Keeping track of sk's, looking them up, and port selection methods. */
1198 	int			(*hash)(struct sock *sk);
1199 	void			(*unhash)(struct sock *sk);
1200 	void			(*rehash)(struct sock *sk);
1201 	int			(*get_port)(struct sock *sk, unsigned short snum);
1202 #ifdef CONFIG_BPF_SYSCALL
1203 	int			(*psock_update_sk_prot)(struct sock *sk,
1204 							struct sk_psock *psock,
1205 							bool restore);
1206 #endif
1207 
1208 	/* Keeping track of sockets in use */
1209 #ifdef CONFIG_PROC_FS
1210 	unsigned int		inuse_idx;
1211 #endif
1212 
1213 	int			(*forward_alloc_get)(const struct sock *sk);
1214 
1215 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1216 	bool			(*sock_is_readable)(struct sock *sk);
1217 	/* Memory pressure */
1218 	void			(*enter_memory_pressure)(struct sock *sk);
1219 	void			(*leave_memory_pressure)(struct sock *sk);
1220 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1221 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1222 
1223 	/*
1224 	 * Pressure flag: try to collapse.
1225 	 * Technical note: it is used by multiple contexts non atomically.
1226 	 * All the __sk_mem_schedule() is of this nature: accounting
1227 	 * is strict, actions are advisory and have some latency.
1228 	 */
1229 	unsigned long		*memory_pressure;
1230 	long			*sysctl_mem;
1231 
1232 	int			*sysctl_wmem;
1233 	int			*sysctl_rmem;
1234 	u32			sysctl_wmem_offset;
1235 	u32			sysctl_rmem_offset;
1236 
1237 	int			max_header;
1238 	bool			no_autobind;
1239 
1240 	struct kmem_cache	*slab;
1241 	unsigned int		obj_size;
1242 	slab_flags_t		slab_flags;
1243 	unsigned int		useroffset;	/* Usercopy region offset */
1244 	unsigned int		usersize;	/* Usercopy region size */
1245 
1246 	unsigned int __percpu	*orphan_count;
1247 
1248 	struct request_sock_ops	*rsk_prot;
1249 	struct timewait_sock_ops *twsk_prot;
1250 
1251 	union {
1252 		struct inet_hashinfo	*hashinfo;
1253 		struct udp_table	*udp_table;
1254 		struct raw_hashinfo	*raw_hash;
1255 		struct smc_hashinfo	*smc_hash;
1256 	} h;
1257 
1258 	struct module		*owner;
1259 
1260 	char			name[32];
1261 
1262 	struct list_head	node;
1263 #ifdef SOCK_REFCNT_DEBUG
1264 	atomic_t		socks;
1265 #endif
1266 	int			(*diag_destroy)(struct sock *sk, int err);
1267 } __randomize_layout;
1268 
1269 int proto_register(struct proto *prot, int alloc_slab);
1270 void proto_unregister(struct proto *prot);
1271 int sock_load_diag_module(int family, int protocol);
1272 
1273 #ifdef SOCK_REFCNT_DEBUG
1274 static inline void sk_refcnt_debug_inc(struct sock *sk)
1275 {
1276 	atomic_inc(&sk->sk_prot->socks);
1277 }
1278 
1279 static inline void sk_refcnt_debug_dec(struct sock *sk)
1280 {
1281 	atomic_dec(&sk->sk_prot->socks);
1282 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1283 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1284 }
1285 
1286 static inline void sk_refcnt_debug_release(const struct sock *sk)
1287 {
1288 	if (refcount_read(&sk->sk_refcnt) != 1)
1289 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1290 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1291 }
1292 #else /* SOCK_REFCNT_DEBUG */
1293 #define sk_refcnt_debug_inc(sk) do { } while (0)
1294 #define sk_refcnt_debug_dec(sk) do { } while (0)
1295 #define sk_refcnt_debug_release(sk) do { } while (0)
1296 #endif /* SOCK_REFCNT_DEBUG */
1297 
1298 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1299 
1300 static inline int sk_forward_alloc_get(const struct sock *sk)
1301 {
1302 	if (!sk->sk_prot->forward_alloc_get)
1303 		return sk->sk_forward_alloc;
1304 
1305 	return sk->sk_prot->forward_alloc_get(sk);
1306 }
1307 
1308 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1309 {
1310 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1311 		return false;
1312 
1313 	return sk->sk_prot->stream_memory_free ?
1314 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1315 				     tcp_stream_memory_free, sk, wake) : true;
1316 }
1317 
1318 static inline bool sk_stream_memory_free(const struct sock *sk)
1319 {
1320 	return __sk_stream_memory_free(sk, 0);
1321 }
1322 
1323 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1324 {
1325 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1326 	       __sk_stream_memory_free(sk, wake);
1327 }
1328 
1329 static inline bool sk_stream_is_writeable(const struct sock *sk)
1330 {
1331 	return __sk_stream_is_writeable(sk, 0);
1332 }
1333 
1334 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1335 					    struct cgroup *ancestor)
1336 {
1337 #ifdef CONFIG_SOCK_CGROUP_DATA
1338 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1339 				    ancestor);
1340 #else
1341 	return -ENOTSUPP;
1342 #endif
1343 }
1344 
1345 static inline bool sk_has_memory_pressure(const struct sock *sk)
1346 {
1347 	return sk->sk_prot->memory_pressure != NULL;
1348 }
1349 
1350 static inline bool sk_under_memory_pressure(const struct sock *sk)
1351 {
1352 	if (!sk->sk_prot->memory_pressure)
1353 		return false;
1354 
1355 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1356 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1357 		return true;
1358 
1359 	return !!*sk->sk_prot->memory_pressure;
1360 }
1361 
1362 static inline long
1363 sk_memory_allocated(const struct sock *sk)
1364 {
1365 	return atomic_long_read(sk->sk_prot->memory_allocated);
1366 }
1367 
1368 static inline long
1369 sk_memory_allocated_add(struct sock *sk, int amt)
1370 {
1371 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1372 }
1373 
1374 static inline void
1375 sk_memory_allocated_sub(struct sock *sk, int amt)
1376 {
1377 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1378 }
1379 
1380 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1381 
1382 static inline void sk_sockets_allocated_dec(struct sock *sk)
1383 {
1384 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1385 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1386 }
1387 
1388 static inline void sk_sockets_allocated_inc(struct sock *sk)
1389 {
1390 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1391 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1392 }
1393 
1394 static inline u64
1395 sk_sockets_allocated_read_positive(struct sock *sk)
1396 {
1397 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1398 }
1399 
1400 static inline int
1401 proto_sockets_allocated_sum_positive(struct proto *prot)
1402 {
1403 	return percpu_counter_sum_positive(prot->sockets_allocated);
1404 }
1405 
1406 static inline long
1407 proto_memory_allocated(struct proto *prot)
1408 {
1409 	return atomic_long_read(prot->memory_allocated);
1410 }
1411 
1412 static inline bool
1413 proto_memory_pressure(struct proto *prot)
1414 {
1415 	if (!prot->memory_pressure)
1416 		return false;
1417 	return !!*prot->memory_pressure;
1418 }
1419 
1420 
1421 #ifdef CONFIG_PROC_FS
1422 /* Called with local bh disabled */
1423 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1424 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1425 int sock_inuse_get(struct net *net);
1426 #else
1427 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1428 		int inc)
1429 {
1430 }
1431 #endif
1432 
1433 
1434 /* With per-bucket locks this operation is not-atomic, so that
1435  * this version is not worse.
1436  */
1437 static inline int __sk_prot_rehash(struct sock *sk)
1438 {
1439 	sk->sk_prot->unhash(sk);
1440 	return sk->sk_prot->hash(sk);
1441 }
1442 
1443 /* About 10 seconds */
1444 #define SOCK_DESTROY_TIME (10*HZ)
1445 
1446 /* Sockets 0-1023 can't be bound to unless you are superuser */
1447 #define PROT_SOCK	1024
1448 
1449 #define SHUTDOWN_MASK	3
1450 #define RCV_SHUTDOWN	1
1451 #define SEND_SHUTDOWN	2
1452 
1453 #define SOCK_BINDADDR_LOCK	4
1454 #define SOCK_BINDPORT_LOCK	8
1455 
1456 struct socket_alloc {
1457 	struct socket socket;
1458 	struct inode vfs_inode;
1459 };
1460 
1461 static inline struct socket *SOCKET_I(struct inode *inode)
1462 {
1463 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1464 }
1465 
1466 static inline struct inode *SOCK_INODE(struct socket *socket)
1467 {
1468 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1469 }
1470 
1471 /*
1472  * Functions for memory accounting
1473  */
1474 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1475 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1476 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1477 void __sk_mem_reclaim(struct sock *sk, int amount);
1478 
1479 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1480  * do not necessarily have 16x time more memory than 4KB ones.
1481  */
1482 #define SK_MEM_QUANTUM 4096
1483 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1484 #define SK_MEM_SEND	0
1485 #define SK_MEM_RECV	1
1486 
1487 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1488 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1489 {
1490 	long val = sk->sk_prot->sysctl_mem[index];
1491 
1492 #if PAGE_SIZE > SK_MEM_QUANTUM
1493 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1494 #elif PAGE_SIZE < SK_MEM_QUANTUM
1495 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1496 #endif
1497 	return val;
1498 }
1499 
1500 static inline int sk_mem_pages(int amt)
1501 {
1502 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1503 }
1504 
1505 static inline bool sk_has_account(struct sock *sk)
1506 {
1507 	/* return true if protocol supports memory accounting */
1508 	return !!sk->sk_prot->memory_allocated;
1509 }
1510 
1511 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1512 {
1513 	if (!sk_has_account(sk))
1514 		return true;
1515 	return size <= sk->sk_forward_alloc ||
1516 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1517 }
1518 
1519 static inline bool
1520 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1521 {
1522 	if (!sk_has_account(sk))
1523 		return true;
1524 	return size <= sk->sk_forward_alloc ||
1525 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1526 		skb_pfmemalloc(skb);
1527 }
1528 
1529 static inline int sk_unused_reserved_mem(const struct sock *sk)
1530 {
1531 	int unused_mem;
1532 
1533 	if (likely(!sk->sk_reserved_mem))
1534 		return 0;
1535 
1536 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1537 			atomic_read(&sk->sk_rmem_alloc);
1538 
1539 	return unused_mem > 0 ? unused_mem : 0;
1540 }
1541 
1542 static inline void sk_mem_reclaim(struct sock *sk)
1543 {
1544 	int reclaimable;
1545 
1546 	if (!sk_has_account(sk))
1547 		return;
1548 
1549 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1550 
1551 	if (reclaimable >= SK_MEM_QUANTUM)
1552 		__sk_mem_reclaim(sk, reclaimable);
1553 }
1554 
1555 static inline void sk_mem_reclaim_final(struct sock *sk)
1556 {
1557 	sk->sk_reserved_mem = 0;
1558 	sk_mem_reclaim(sk);
1559 }
1560 
1561 static inline void sk_mem_reclaim_partial(struct sock *sk)
1562 {
1563 	int reclaimable;
1564 
1565 	if (!sk_has_account(sk))
1566 		return;
1567 
1568 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1569 
1570 	if (reclaimable > SK_MEM_QUANTUM)
1571 		__sk_mem_reclaim(sk, reclaimable - 1);
1572 }
1573 
1574 static inline void sk_mem_charge(struct sock *sk, int size)
1575 {
1576 	if (!sk_has_account(sk))
1577 		return;
1578 	sk->sk_forward_alloc -= size;
1579 }
1580 
1581 /* the following macros control memory reclaiming in sk_mem_uncharge()
1582  */
1583 #define SK_RECLAIM_THRESHOLD	(1 << 21)
1584 #define SK_RECLAIM_CHUNK	(1 << 20)
1585 
1586 static inline void sk_mem_uncharge(struct sock *sk, int size)
1587 {
1588 	int reclaimable;
1589 
1590 	if (!sk_has_account(sk))
1591 		return;
1592 	sk->sk_forward_alloc += size;
1593 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1594 
1595 	/* Avoid a possible overflow.
1596 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1597 	 * is not called and more than 2 GBytes are released at once.
1598 	 *
1599 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1600 	 * no need to hold that much forward allocation anyway.
1601 	 */
1602 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
1603 		__sk_mem_reclaim(sk, SK_RECLAIM_CHUNK);
1604 }
1605 
1606 static inline void sock_release_ownership(struct sock *sk)
1607 {
1608 	if (sk->sk_lock.owned) {
1609 		sk->sk_lock.owned = 0;
1610 
1611 		/* The sk_lock has mutex_unlock() semantics: */
1612 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1613 	}
1614 }
1615 
1616 /*
1617  * Macro so as to not evaluate some arguments when
1618  * lockdep is not enabled.
1619  *
1620  * Mark both the sk_lock and the sk_lock.slock as a
1621  * per-address-family lock class.
1622  */
1623 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1624 do {									\
1625 	sk->sk_lock.owned = 0;						\
1626 	init_waitqueue_head(&sk->sk_lock.wq);				\
1627 	spin_lock_init(&(sk)->sk_lock.slock);				\
1628 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1629 			sizeof((sk)->sk_lock));				\
1630 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1631 				(skey), (sname));				\
1632 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1633 } while (0)
1634 
1635 static inline bool lockdep_sock_is_held(const struct sock *sk)
1636 {
1637 	return lockdep_is_held(&sk->sk_lock) ||
1638 	       lockdep_is_held(&sk->sk_lock.slock);
1639 }
1640 
1641 void lock_sock_nested(struct sock *sk, int subclass);
1642 
1643 static inline void lock_sock(struct sock *sk)
1644 {
1645 	lock_sock_nested(sk, 0);
1646 }
1647 
1648 void __lock_sock(struct sock *sk);
1649 void __release_sock(struct sock *sk);
1650 void release_sock(struct sock *sk);
1651 
1652 /* BH context may only use the following locking interface. */
1653 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1654 #define bh_lock_sock_nested(__sk) \
1655 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1656 				SINGLE_DEPTH_NESTING)
1657 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1658 
1659 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1660 
1661 /**
1662  * lock_sock_fast - fast version of lock_sock
1663  * @sk: socket
1664  *
1665  * This version should be used for very small section, where process wont block
1666  * return false if fast path is taken:
1667  *
1668  *   sk_lock.slock locked, owned = 0, BH disabled
1669  *
1670  * return true if slow path is taken:
1671  *
1672  *   sk_lock.slock unlocked, owned = 1, BH enabled
1673  */
1674 static inline bool lock_sock_fast(struct sock *sk)
1675 {
1676 	/* The sk_lock has mutex_lock() semantics here. */
1677 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1678 
1679 	return __lock_sock_fast(sk);
1680 }
1681 
1682 /* fast socket lock variant for caller already holding a [different] socket lock */
1683 static inline bool lock_sock_fast_nested(struct sock *sk)
1684 {
1685 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1686 
1687 	return __lock_sock_fast(sk);
1688 }
1689 
1690 /**
1691  * unlock_sock_fast - complement of lock_sock_fast
1692  * @sk: socket
1693  * @slow: slow mode
1694  *
1695  * fast unlock socket for user context.
1696  * If slow mode is on, we call regular release_sock()
1697  */
1698 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1699 	__releases(&sk->sk_lock.slock)
1700 {
1701 	if (slow) {
1702 		release_sock(sk);
1703 		__release(&sk->sk_lock.slock);
1704 	} else {
1705 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1706 		spin_unlock_bh(&sk->sk_lock.slock);
1707 	}
1708 }
1709 
1710 /* Used by processes to "lock" a socket state, so that
1711  * interrupts and bottom half handlers won't change it
1712  * from under us. It essentially blocks any incoming
1713  * packets, so that we won't get any new data or any
1714  * packets that change the state of the socket.
1715  *
1716  * While locked, BH processing will add new packets to
1717  * the backlog queue.  This queue is processed by the
1718  * owner of the socket lock right before it is released.
1719  *
1720  * Since ~2.3.5 it is also exclusive sleep lock serializing
1721  * accesses from user process context.
1722  */
1723 
1724 static inline void sock_owned_by_me(const struct sock *sk)
1725 {
1726 #ifdef CONFIG_LOCKDEP
1727 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1728 #endif
1729 }
1730 
1731 static inline bool sock_owned_by_user(const struct sock *sk)
1732 {
1733 	sock_owned_by_me(sk);
1734 	return sk->sk_lock.owned;
1735 }
1736 
1737 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1738 {
1739 	return sk->sk_lock.owned;
1740 }
1741 
1742 /* no reclassification while locks are held */
1743 static inline bool sock_allow_reclassification(const struct sock *csk)
1744 {
1745 	struct sock *sk = (struct sock *)csk;
1746 
1747 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1748 }
1749 
1750 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1751 		      struct proto *prot, int kern);
1752 void sk_free(struct sock *sk);
1753 void sk_destruct(struct sock *sk);
1754 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1755 void sk_free_unlock_clone(struct sock *sk);
1756 
1757 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1758 			     gfp_t priority);
1759 void __sock_wfree(struct sk_buff *skb);
1760 void sock_wfree(struct sk_buff *skb);
1761 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1762 			     gfp_t priority);
1763 void skb_orphan_partial(struct sk_buff *skb);
1764 void sock_rfree(struct sk_buff *skb);
1765 void sock_efree(struct sk_buff *skb);
1766 #ifdef CONFIG_INET
1767 void sock_edemux(struct sk_buff *skb);
1768 void sock_pfree(struct sk_buff *skb);
1769 #else
1770 #define sock_edemux sock_efree
1771 #endif
1772 
1773 int sock_setsockopt(struct socket *sock, int level, int op,
1774 		    sockptr_t optval, unsigned int optlen);
1775 
1776 int sock_getsockopt(struct socket *sock, int level, int op,
1777 		    char __user *optval, int __user *optlen);
1778 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1779 		   bool timeval, bool time32);
1780 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1781 				    int noblock, int *errcode);
1782 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1783 				     unsigned long data_len, int noblock,
1784 				     int *errcode, int max_page_order);
1785 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1786 void sock_kfree_s(struct sock *sk, void *mem, int size);
1787 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1788 void sk_send_sigurg(struct sock *sk);
1789 
1790 struct sockcm_cookie {
1791 	u64 transmit_time;
1792 	u32 mark;
1793 	u16 tsflags;
1794 };
1795 
1796 static inline void sockcm_init(struct sockcm_cookie *sockc,
1797 			       const struct sock *sk)
1798 {
1799 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1800 }
1801 
1802 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1803 		     struct sockcm_cookie *sockc);
1804 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1805 		   struct sockcm_cookie *sockc);
1806 
1807 /*
1808  * Functions to fill in entries in struct proto_ops when a protocol
1809  * does not implement a particular function.
1810  */
1811 int sock_no_bind(struct socket *, struct sockaddr *, int);
1812 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1813 int sock_no_socketpair(struct socket *, struct socket *);
1814 int sock_no_accept(struct socket *, struct socket *, int, bool);
1815 int sock_no_getname(struct socket *, struct sockaddr *, int);
1816 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1817 int sock_no_listen(struct socket *, int);
1818 int sock_no_shutdown(struct socket *, int);
1819 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1820 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1821 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1822 int sock_no_mmap(struct file *file, struct socket *sock,
1823 		 struct vm_area_struct *vma);
1824 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1825 			 size_t size, int flags);
1826 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1827 				int offset, size_t size, int flags);
1828 
1829 /*
1830  * Functions to fill in entries in struct proto_ops when a protocol
1831  * uses the inet style.
1832  */
1833 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1834 				  char __user *optval, int __user *optlen);
1835 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1836 			int flags);
1837 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1838 			   sockptr_t optval, unsigned int optlen);
1839 
1840 void sk_common_release(struct sock *sk);
1841 
1842 /*
1843  *	Default socket callbacks and setup code
1844  */
1845 
1846 /* Initialise core socket variables */
1847 void sock_init_data(struct socket *sock, struct sock *sk);
1848 
1849 /*
1850  * Socket reference counting postulates.
1851  *
1852  * * Each user of socket SHOULD hold a reference count.
1853  * * Each access point to socket (an hash table bucket, reference from a list,
1854  *   running timer, skb in flight MUST hold a reference count.
1855  * * When reference count hits 0, it means it will never increase back.
1856  * * When reference count hits 0, it means that no references from
1857  *   outside exist to this socket and current process on current CPU
1858  *   is last user and may/should destroy this socket.
1859  * * sk_free is called from any context: process, BH, IRQ. When
1860  *   it is called, socket has no references from outside -> sk_free
1861  *   may release descendant resources allocated by the socket, but
1862  *   to the time when it is called, socket is NOT referenced by any
1863  *   hash tables, lists etc.
1864  * * Packets, delivered from outside (from network or from another process)
1865  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1866  *   when they sit in queue. Otherwise, packets will leak to hole, when
1867  *   socket is looked up by one cpu and unhasing is made by another CPU.
1868  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1869  *   (leak to backlog). Packet socket does all the processing inside
1870  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1871  *   use separate SMP lock, so that they are prone too.
1872  */
1873 
1874 /* Ungrab socket and destroy it, if it was the last reference. */
1875 static inline void sock_put(struct sock *sk)
1876 {
1877 	if (refcount_dec_and_test(&sk->sk_refcnt))
1878 		sk_free(sk);
1879 }
1880 /* Generic version of sock_put(), dealing with all sockets
1881  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1882  */
1883 void sock_gen_put(struct sock *sk);
1884 
1885 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1886 		     unsigned int trim_cap, bool refcounted);
1887 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1888 				 const int nested)
1889 {
1890 	return __sk_receive_skb(sk, skb, nested, 1, true);
1891 }
1892 
1893 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1894 {
1895 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1896 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1897 		return;
1898 	sk->sk_tx_queue_mapping = tx_queue;
1899 }
1900 
1901 #define NO_QUEUE_MAPPING	USHRT_MAX
1902 
1903 static inline void sk_tx_queue_clear(struct sock *sk)
1904 {
1905 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1906 }
1907 
1908 static inline int sk_tx_queue_get(const struct sock *sk)
1909 {
1910 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1911 		return sk->sk_tx_queue_mapping;
1912 
1913 	return -1;
1914 }
1915 
1916 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1917 {
1918 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1919 	if (skb_rx_queue_recorded(skb)) {
1920 		u16 rx_queue = skb_get_rx_queue(skb);
1921 
1922 		if (unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1923 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1924 	}
1925 #endif
1926 }
1927 
1928 static inline void sk_rx_queue_clear(struct sock *sk)
1929 {
1930 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1931 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1932 #endif
1933 }
1934 
1935 static inline int sk_rx_queue_get(const struct sock *sk)
1936 {
1937 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1938 	if (sk) {
1939 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
1940 
1941 		if (res != NO_QUEUE_MAPPING)
1942 			return res;
1943 	}
1944 #endif
1945 
1946 	return -1;
1947 }
1948 
1949 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1950 {
1951 	sk->sk_socket = sock;
1952 }
1953 
1954 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1955 {
1956 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1957 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1958 }
1959 /* Detach socket from process context.
1960  * Announce socket dead, detach it from wait queue and inode.
1961  * Note that parent inode held reference count on this struct sock,
1962  * we do not release it in this function, because protocol
1963  * probably wants some additional cleanups or even continuing
1964  * to work with this socket (TCP).
1965  */
1966 static inline void sock_orphan(struct sock *sk)
1967 {
1968 	write_lock_bh(&sk->sk_callback_lock);
1969 	sock_set_flag(sk, SOCK_DEAD);
1970 	sk_set_socket(sk, NULL);
1971 	sk->sk_wq  = NULL;
1972 	write_unlock_bh(&sk->sk_callback_lock);
1973 }
1974 
1975 static inline void sock_graft(struct sock *sk, struct socket *parent)
1976 {
1977 	WARN_ON(parent->sk);
1978 	write_lock_bh(&sk->sk_callback_lock);
1979 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1980 	parent->sk = sk;
1981 	sk_set_socket(sk, parent);
1982 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1983 	security_sock_graft(sk, parent);
1984 	write_unlock_bh(&sk->sk_callback_lock);
1985 }
1986 
1987 kuid_t sock_i_uid(struct sock *sk);
1988 unsigned long sock_i_ino(struct sock *sk);
1989 
1990 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1991 {
1992 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1993 }
1994 
1995 static inline u32 net_tx_rndhash(void)
1996 {
1997 	u32 v = prandom_u32();
1998 
1999 	return v ?: 1;
2000 }
2001 
2002 static inline void sk_set_txhash(struct sock *sk)
2003 {
2004 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2005 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2006 }
2007 
2008 static inline bool sk_rethink_txhash(struct sock *sk)
2009 {
2010 	if (sk->sk_txhash) {
2011 		sk_set_txhash(sk);
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 static inline struct dst_entry *
2018 __sk_dst_get(struct sock *sk)
2019 {
2020 	return rcu_dereference_check(sk->sk_dst_cache,
2021 				     lockdep_sock_is_held(sk));
2022 }
2023 
2024 static inline struct dst_entry *
2025 sk_dst_get(struct sock *sk)
2026 {
2027 	struct dst_entry *dst;
2028 
2029 	rcu_read_lock();
2030 	dst = rcu_dereference(sk->sk_dst_cache);
2031 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2032 		dst = NULL;
2033 	rcu_read_unlock();
2034 	return dst;
2035 }
2036 
2037 static inline void __dst_negative_advice(struct sock *sk)
2038 {
2039 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2040 
2041 	if (dst && dst->ops->negative_advice) {
2042 		ndst = dst->ops->negative_advice(dst);
2043 
2044 		if (ndst != dst) {
2045 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2046 			sk_tx_queue_clear(sk);
2047 			sk->sk_dst_pending_confirm = 0;
2048 		}
2049 	}
2050 }
2051 
2052 static inline void dst_negative_advice(struct sock *sk)
2053 {
2054 	sk_rethink_txhash(sk);
2055 	__dst_negative_advice(sk);
2056 }
2057 
2058 static inline void
2059 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2060 {
2061 	struct dst_entry *old_dst;
2062 
2063 	sk_tx_queue_clear(sk);
2064 	sk->sk_dst_pending_confirm = 0;
2065 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2066 					    lockdep_sock_is_held(sk));
2067 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2068 	dst_release(old_dst);
2069 }
2070 
2071 static inline void
2072 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2073 {
2074 	struct dst_entry *old_dst;
2075 
2076 	sk_tx_queue_clear(sk);
2077 	sk->sk_dst_pending_confirm = 0;
2078 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2079 	dst_release(old_dst);
2080 }
2081 
2082 static inline void
2083 __sk_dst_reset(struct sock *sk)
2084 {
2085 	__sk_dst_set(sk, NULL);
2086 }
2087 
2088 static inline void
2089 sk_dst_reset(struct sock *sk)
2090 {
2091 	sk_dst_set(sk, NULL);
2092 }
2093 
2094 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2095 
2096 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2097 
2098 static inline void sk_dst_confirm(struct sock *sk)
2099 {
2100 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2101 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2102 }
2103 
2104 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2105 {
2106 	if (skb_get_dst_pending_confirm(skb)) {
2107 		struct sock *sk = skb->sk;
2108 		unsigned long now = jiffies;
2109 
2110 		/* avoid dirtying neighbour */
2111 		if (READ_ONCE(n->confirmed) != now)
2112 			WRITE_ONCE(n->confirmed, now);
2113 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2114 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2115 	}
2116 }
2117 
2118 bool sk_mc_loop(struct sock *sk);
2119 
2120 static inline bool sk_can_gso(const struct sock *sk)
2121 {
2122 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2123 }
2124 
2125 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2126 
2127 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2128 {
2129 	sk->sk_route_nocaps |= flags;
2130 	sk->sk_route_caps &= ~flags;
2131 }
2132 
2133 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2134 					   struct iov_iter *from, char *to,
2135 					   int copy, int offset)
2136 {
2137 	if (skb->ip_summed == CHECKSUM_NONE) {
2138 		__wsum csum = 0;
2139 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2140 			return -EFAULT;
2141 		skb->csum = csum_block_add(skb->csum, csum, offset);
2142 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2143 		if (!copy_from_iter_full_nocache(to, copy, from))
2144 			return -EFAULT;
2145 	} else if (!copy_from_iter_full(to, copy, from))
2146 		return -EFAULT;
2147 
2148 	return 0;
2149 }
2150 
2151 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2152 				       struct iov_iter *from, int copy)
2153 {
2154 	int err, offset = skb->len;
2155 
2156 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2157 				       copy, offset);
2158 	if (err)
2159 		__skb_trim(skb, offset);
2160 
2161 	return err;
2162 }
2163 
2164 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2165 					   struct sk_buff *skb,
2166 					   struct page *page,
2167 					   int off, int copy)
2168 {
2169 	int err;
2170 
2171 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2172 				       copy, skb->len);
2173 	if (err)
2174 		return err;
2175 
2176 	skb->len	     += copy;
2177 	skb->data_len	     += copy;
2178 	skb->truesize	     += copy;
2179 	sk_wmem_queued_add(sk, copy);
2180 	sk_mem_charge(sk, copy);
2181 	return 0;
2182 }
2183 
2184 /**
2185  * sk_wmem_alloc_get - returns write allocations
2186  * @sk: socket
2187  *
2188  * Return: sk_wmem_alloc minus initial offset of one
2189  */
2190 static inline int sk_wmem_alloc_get(const struct sock *sk)
2191 {
2192 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2193 }
2194 
2195 /**
2196  * sk_rmem_alloc_get - returns read allocations
2197  * @sk: socket
2198  *
2199  * Return: sk_rmem_alloc
2200  */
2201 static inline int sk_rmem_alloc_get(const struct sock *sk)
2202 {
2203 	return atomic_read(&sk->sk_rmem_alloc);
2204 }
2205 
2206 /**
2207  * sk_has_allocations - check if allocations are outstanding
2208  * @sk: socket
2209  *
2210  * Return: true if socket has write or read allocations
2211  */
2212 static inline bool sk_has_allocations(const struct sock *sk)
2213 {
2214 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2215 }
2216 
2217 /**
2218  * skwq_has_sleeper - check if there are any waiting processes
2219  * @wq: struct socket_wq
2220  *
2221  * Return: true if socket_wq has waiting processes
2222  *
2223  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2224  * barrier call. They were added due to the race found within the tcp code.
2225  *
2226  * Consider following tcp code paths::
2227  *
2228  *   CPU1                CPU2
2229  *   sys_select          receive packet
2230  *   ...                 ...
2231  *   __add_wait_queue    update tp->rcv_nxt
2232  *   ...                 ...
2233  *   tp->rcv_nxt check   sock_def_readable
2234  *   ...                 {
2235  *   schedule               rcu_read_lock();
2236  *                          wq = rcu_dereference(sk->sk_wq);
2237  *                          if (wq && waitqueue_active(&wq->wait))
2238  *                              wake_up_interruptible(&wq->wait)
2239  *                          ...
2240  *                       }
2241  *
2242  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2243  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2244  * could then endup calling schedule and sleep forever if there are no more
2245  * data on the socket.
2246  *
2247  */
2248 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2249 {
2250 	return wq && wq_has_sleeper(&wq->wait);
2251 }
2252 
2253 /**
2254  * sock_poll_wait - place memory barrier behind the poll_wait call.
2255  * @filp:           file
2256  * @sock:           socket to wait on
2257  * @p:              poll_table
2258  *
2259  * See the comments in the wq_has_sleeper function.
2260  */
2261 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2262 				  poll_table *p)
2263 {
2264 	if (!poll_does_not_wait(p)) {
2265 		poll_wait(filp, &sock->wq.wait, p);
2266 		/* We need to be sure we are in sync with the
2267 		 * socket flags modification.
2268 		 *
2269 		 * This memory barrier is paired in the wq_has_sleeper.
2270 		 */
2271 		smp_mb();
2272 	}
2273 }
2274 
2275 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2276 {
2277 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2278 	u32 txhash = READ_ONCE(sk->sk_txhash);
2279 
2280 	if (txhash) {
2281 		skb->l4_hash = 1;
2282 		skb->hash = txhash;
2283 	}
2284 }
2285 
2286 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2287 
2288 /*
2289  *	Queue a received datagram if it will fit. Stream and sequenced
2290  *	protocols can't normally use this as they need to fit buffers in
2291  *	and play with them.
2292  *
2293  *	Inlined as it's very short and called for pretty much every
2294  *	packet ever received.
2295  */
2296 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2297 {
2298 	skb_orphan(skb);
2299 	skb->sk = sk;
2300 	skb->destructor = sock_rfree;
2301 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2302 	sk_mem_charge(sk, skb->truesize);
2303 }
2304 
2305 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2306 {
2307 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2308 		skb_orphan(skb);
2309 		skb->destructor = sock_efree;
2310 		skb->sk = sk;
2311 		return true;
2312 	}
2313 	return false;
2314 }
2315 
2316 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2317 {
2318 	if (skb->destructor != sock_wfree) {
2319 		skb_orphan(skb);
2320 		return;
2321 	}
2322 	skb->slow_gro = 1;
2323 }
2324 
2325 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2326 		    unsigned long expires);
2327 
2328 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2329 
2330 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2331 
2332 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2333 			struct sk_buff *skb, unsigned int flags,
2334 			void (*destructor)(struct sock *sk,
2335 					   struct sk_buff *skb));
2336 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2337 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2338 
2339 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2340 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2341 
2342 /*
2343  *	Recover an error report and clear atomically
2344  */
2345 
2346 static inline int sock_error(struct sock *sk)
2347 {
2348 	int err;
2349 
2350 	/* Avoid an atomic operation for the common case.
2351 	 * This is racy since another cpu/thread can change sk_err under us.
2352 	 */
2353 	if (likely(data_race(!sk->sk_err)))
2354 		return 0;
2355 
2356 	err = xchg(&sk->sk_err, 0);
2357 	return -err;
2358 }
2359 
2360 void sk_error_report(struct sock *sk);
2361 
2362 static inline unsigned long sock_wspace(struct sock *sk)
2363 {
2364 	int amt = 0;
2365 
2366 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2367 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2368 		if (amt < 0)
2369 			amt = 0;
2370 	}
2371 	return amt;
2372 }
2373 
2374 /* Note:
2375  *  We use sk->sk_wq_raw, from contexts knowing this
2376  *  pointer is not NULL and cannot disappear/change.
2377  */
2378 static inline void sk_set_bit(int nr, struct sock *sk)
2379 {
2380 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2381 	    !sock_flag(sk, SOCK_FASYNC))
2382 		return;
2383 
2384 	set_bit(nr, &sk->sk_wq_raw->flags);
2385 }
2386 
2387 static inline void sk_clear_bit(int nr, struct sock *sk)
2388 {
2389 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2390 	    !sock_flag(sk, SOCK_FASYNC))
2391 		return;
2392 
2393 	clear_bit(nr, &sk->sk_wq_raw->flags);
2394 }
2395 
2396 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2397 {
2398 	if (sock_flag(sk, SOCK_FASYNC)) {
2399 		rcu_read_lock();
2400 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2401 		rcu_read_unlock();
2402 	}
2403 }
2404 
2405 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2406  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2407  * Note: for send buffers, TCP works better if we can build two skbs at
2408  * minimum.
2409  */
2410 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2411 
2412 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2413 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2414 
2415 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2416 {
2417 	u32 val;
2418 
2419 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2420 		return;
2421 
2422 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2423 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2424 
2425 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2426 }
2427 
2428 /**
2429  * sk_page_frag - return an appropriate page_frag
2430  * @sk: socket
2431  *
2432  * Use the per task page_frag instead of the per socket one for
2433  * optimization when we know that we're in the normal context and owns
2434  * everything that's associated with %current.
2435  *
2436  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2437  * inside other socket operations and end up recursing into sk_page_frag()
2438  * while it's already in use.
2439  *
2440  * Return: a per task page_frag if context allows that,
2441  * otherwise a per socket one.
2442  */
2443 static inline struct page_frag *sk_page_frag(struct sock *sk)
2444 {
2445 	if (gfpflags_normal_context(sk->sk_allocation))
2446 		return &current->task_frag;
2447 
2448 	return &sk->sk_frag;
2449 }
2450 
2451 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2452 
2453 /*
2454  *	Default write policy as shown to user space via poll/select/SIGIO
2455  */
2456 static inline bool sock_writeable(const struct sock *sk)
2457 {
2458 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2459 }
2460 
2461 static inline gfp_t gfp_any(void)
2462 {
2463 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2464 }
2465 
2466 static inline gfp_t gfp_memcg_charge(void)
2467 {
2468 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2469 }
2470 
2471 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2472 {
2473 	return noblock ? 0 : sk->sk_rcvtimeo;
2474 }
2475 
2476 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2477 {
2478 	return noblock ? 0 : sk->sk_sndtimeo;
2479 }
2480 
2481 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2482 {
2483 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2484 
2485 	return v ?: 1;
2486 }
2487 
2488 /* Alas, with timeout socket operations are not restartable.
2489  * Compare this to poll().
2490  */
2491 static inline int sock_intr_errno(long timeo)
2492 {
2493 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2494 }
2495 
2496 struct sock_skb_cb {
2497 	u32 dropcount;
2498 };
2499 
2500 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2501  * using skb->cb[] would keep using it directly and utilize its
2502  * alignement guarantee.
2503  */
2504 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2505 			    sizeof(struct sock_skb_cb)))
2506 
2507 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2508 			    SOCK_SKB_CB_OFFSET))
2509 
2510 #define sock_skb_cb_check_size(size) \
2511 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2512 
2513 static inline void
2514 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2515 {
2516 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2517 						atomic_read(&sk->sk_drops) : 0;
2518 }
2519 
2520 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2521 {
2522 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2523 
2524 	atomic_add(segs, &sk->sk_drops);
2525 }
2526 
2527 static inline ktime_t sock_read_timestamp(struct sock *sk)
2528 {
2529 #if BITS_PER_LONG==32
2530 	unsigned int seq;
2531 	ktime_t kt;
2532 
2533 	do {
2534 		seq = read_seqbegin(&sk->sk_stamp_seq);
2535 		kt = sk->sk_stamp;
2536 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2537 
2538 	return kt;
2539 #else
2540 	return READ_ONCE(sk->sk_stamp);
2541 #endif
2542 }
2543 
2544 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2545 {
2546 #if BITS_PER_LONG==32
2547 	write_seqlock(&sk->sk_stamp_seq);
2548 	sk->sk_stamp = kt;
2549 	write_sequnlock(&sk->sk_stamp_seq);
2550 #else
2551 	WRITE_ONCE(sk->sk_stamp, kt);
2552 #endif
2553 }
2554 
2555 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2556 			   struct sk_buff *skb);
2557 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2558 			     struct sk_buff *skb);
2559 
2560 static inline void
2561 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2562 {
2563 	ktime_t kt = skb->tstamp;
2564 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2565 
2566 	/*
2567 	 * generate control messages if
2568 	 * - receive time stamping in software requested
2569 	 * - software time stamp available and wanted
2570 	 * - hardware time stamps available and wanted
2571 	 */
2572 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2573 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2574 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2575 	    (hwtstamps->hwtstamp &&
2576 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2577 		__sock_recv_timestamp(msg, sk, skb);
2578 	else
2579 		sock_write_timestamp(sk, kt);
2580 
2581 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2582 		__sock_recv_wifi_status(msg, sk, skb);
2583 }
2584 
2585 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2586 			      struct sk_buff *skb);
2587 
2588 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2589 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2590 					  struct sk_buff *skb)
2591 {
2592 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2593 			   (1UL << SOCK_RCVTSTAMP))
2594 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2595 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2596 
2597 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2598 		__sock_recv_ts_and_drops(msg, sk, skb);
2599 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2600 		sock_write_timestamp(sk, skb->tstamp);
2601 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2602 		sock_write_timestamp(sk, 0);
2603 }
2604 
2605 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2606 
2607 /**
2608  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2609  * @sk:		socket sending this packet
2610  * @tsflags:	timestamping flags to use
2611  * @tx_flags:	completed with instructions for time stamping
2612  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2613  *
2614  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2615  */
2616 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2617 				      __u8 *tx_flags, __u32 *tskey)
2618 {
2619 	if (unlikely(tsflags)) {
2620 		__sock_tx_timestamp(tsflags, tx_flags);
2621 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2622 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2623 			*tskey = sk->sk_tskey++;
2624 	}
2625 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2626 		*tx_flags |= SKBTX_WIFI_STATUS;
2627 }
2628 
2629 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2630 				     __u8 *tx_flags)
2631 {
2632 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2633 }
2634 
2635 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2636 {
2637 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2638 			   &skb_shinfo(skb)->tskey);
2639 }
2640 
2641 /**
2642  * sk_eat_skb - Release a skb if it is no longer needed
2643  * @sk: socket to eat this skb from
2644  * @skb: socket buffer to eat
2645  *
2646  * This routine must be called with interrupts disabled or with the socket
2647  * locked so that the sk_buff queue operation is ok.
2648 */
2649 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2650 {
2651 	__skb_unlink(skb, &sk->sk_receive_queue);
2652 	__kfree_skb(skb);
2653 }
2654 
2655 static inline
2656 struct net *sock_net(const struct sock *sk)
2657 {
2658 	return read_pnet(&sk->sk_net);
2659 }
2660 
2661 static inline
2662 void sock_net_set(struct sock *sk, struct net *net)
2663 {
2664 	write_pnet(&sk->sk_net, net);
2665 }
2666 
2667 static inline bool
2668 skb_sk_is_prefetched(struct sk_buff *skb)
2669 {
2670 #ifdef CONFIG_INET
2671 	return skb->destructor == sock_pfree;
2672 #else
2673 	return false;
2674 #endif /* CONFIG_INET */
2675 }
2676 
2677 /* This helper checks if a socket is a full socket,
2678  * ie _not_ a timewait or request socket.
2679  */
2680 static inline bool sk_fullsock(const struct sock *sk)
2681 {
2682 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2683 }
2684 
2685 static inline bool
2686 sk_is_refcounted(struct sock *sk)
2687 {
2688 	/* Only full sockets have sk->sk_flags. */
2689 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2690 }
2691 
2692 /**
2693  * skb_steal_sock - steal a socket from an sk_buff
2694  * @skb: sk_buff to steal the socket from
2695  * @refcounted: is set to true if the socket is reference-counted
2696  */
2697 static inline struct sock *
2698 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2699 {
2700 	if (skb->sk) {
2701 		struct sock *sk = skb->sk;
2702 
2703 		*refcounted = true;
2704 		if (skb_sk_is_prefetched(skb))
2705 			*refcounted = sk_is_refcounted(sk);
2706 		skb->destructor = NULL;
2707 		skb->sk = NULL;
2708 		return sk;
2709 	}
2710 	*refcounted = false;
2711 	return NULL;
2712 }
2713 
2714 /* Checks if this SKB belongs to an HW offloaded socket
2715  * and whether any SW fallbacks are required based on dev.
2716  * Check decrypted mark in case skb_orphan() cleared socket.
2717  */
2718 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2719 						   struct net_device *dev)
2720 {
2721 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2722 	struct sock *sk = skb->sk;
2723 
2724 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2725 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2726 #ifdef CONFIG_TLS_DEVICE
2727 	} else if (unlikely(skb->decrypted)) {
2728 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2729 		kfree_skb(skb);
2730 		skb = NULL;
2731 #endif
2732 	}
2733 #endif
2734 
2735 	return skb;
2736 }
2737 
2738 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2739  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2740  */
2741 static inline bool sk_listener(const struct sock *sk)
2742 {
2743 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2744 }
2745 
2746 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2747 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2748 		       int type);
2749 
2750 bool sk_ns_capable(const struct sock *sk,
2751 		   struct user_namespace *user_ns, int cap);
2752 bool sk_capable(const struct sock *sk, int cap);
2753 bool sk_net_capable(const struct sock *sk, int cap);
2754 
2755 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2756 
2757 /* Take into consideration the size of the struct sk_buff overhead in the
2758  * determination of these values, since that is non-constant across
2759  * platforms.  This makes socket queueing behavior and performance
2760  * not depend upon such differences.
2761  */
2762 #define _SK_MEM_PACKETS		256
2763 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2764 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2765 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2766 
2767 extern __u32 sysctl_wmem_max;
2768 extern __u32 sysctl_rmem_max;
2769 
2770 extern int sysctl_tstamp_allow_data;
2771 extern int sysctl_optmem_max;
2772 
2773 extern __u32 sysctl_wmem_default;
2774 extern __u32 sysctl_rmem_default;
2775 
2776 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2777 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2778 
2779 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2780 {
2781 	/* Does this proto have per netns sysctl_wmem ? */
2782 	if (proto->sysctl_wmem_offset)
2783 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2784 
2785 	return *proto->sysctl_wmem;
2786 }
2787 
2788 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2789 {
2790 	/* Does this proto have per netns sysctl_rmem ? */
2791 	if (proto->sysctl_rmem_offset)
2792 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2793 
2794 	return *proto->sysctl_rmem;
2795 }
2796 
2797 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2798  * Some wifi drivers need to tweak it to get more chunks.
2799  * They can use this helper from their ndo_start_xmit()
2800  */
2801 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2802 {
2803 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2804 		return;
2805 	WRITE_ONCE(sk->sk_pacing_shift, val);
2806 }
2807 
2808 /* if a socket is bound to a device, check that the given device
2809  * index is either the same or that the socket is bound to an L3
2810  * master device and the given device index is also enslaved to
2811  * that L3 master
2812  */
2813 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2814 {
2815 	int mdif;
2816 
2817 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2818 		return true;
2819 
2820 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2821 	if (mdif && mdif == sk->sk_bound_dev_if)
2822 		return true;
2823 
2824 	return false;
2825 }
2826 
2827 void sock_def_readable(struct sock *sk);
2828 
2829 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2830 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2831 int sock_set_timestamping(struct sock *sk, int optname,
2832 			  struct so_timestamping timestamping);
2833 
2834 void sock_enable_timestamps(struct sock *sk);
2835 void sock_no_linger(struct sock *sk);
2836 void sock_set_keepalive(struct sock *sk);
2837 void sock_set_priority(struct sock *sk, u32 priority);
2838 void sock_set_rcvbuf(struct sock *sk, int val);
2839 void sock_set_mark(struct sock *sk, u32 val);
2840 void sock_set_reuseaddr(struct sock *sk);
2841 void sock_set_reuseport(struct sock *sk);
2842 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2843 
2844 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2845 
2846 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2847 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2848 			   sockptr_t optval, int optlen, bool old_timeval);
2849 
2850 static inline bool sk_is_readable(struct sock *sk)
2851 {
2852 	if (sk->sk_prot->sock_is_readable)
2853 		return sk->sk_prot->sock_is_readable(sk);
2854 	return false;
2855 }
2856 #endif	/* _SOCK_H */
2857